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Abstract
Consistency regularization is one of the most widely-used techniques for semi-supervised learning (SSL). Generally, the aim
is to train a model that is invariant to various data augmentations. In this paper, we revisit this idea and find that enforcing
invariance by decreasing distances between features from differently augmented images leads to improved performance.
However, encouraging equivariance instead, by increasing the feature distance, further improves performance. To this end, we
propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss, that imposes
consistency and equivariance on the classifier and the feature level, respectively. Experimental results show that our model
defines a new state of the art across a variety of standard semi-supervised learning benchmarks as well as imbalanced semi-
supervised learning benchmarks. Particularly, we outperform previous work by a significant margin in low data regimes and
at large imbalance ratios. Extensive experiments are conducted to analyze the method, and the code will be published.

Keywords Semi-supervised learning · Consistency regularization · Representation learning · Classification

1 Introduction

Deep learning requires large-scale and annotated datasets to
reach state-of-the-art performance (Russakovsky et al. 2015;
Lin et al. 2014). As labels are not always available or expen-
sive to acquire a wide range of semi-supervised learning
(SSL) methods have been proposed to leverage unlabeled
data (Tarvainen andValpola 2017; Laine andAila 2017;Miy-
ato et al. 2018; Verma et al. 2019; Berthelot et al. 2019; Sohn
et al. 2020; Xie et al. 2020; Berthelot et al. 2020; Arazo et
al. 2020; Lee 2013; Pham et al. 2020; French et al. 2020;
Bachman et al. 2019; Chen et al. 2020b).

Consistency regularization (Bachman et al. 2014; Laine
and Aila 2017; Sajjadi et al. 2016) is one of the most widely-
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used SSL methods. Recent work (Sohn et al. 2020; Xie
et al. 2020; Kuo et al. 2020) achieves strong performance
by utilizing unlabeled data in a way that model predictions
should be invariant to input perturbations. However, when
using advanced and strong data augmentation schemes, we
question if the model should be invariant to such strong
perturbations. In Fig. 1 we illustrate that strong data aug-
mentation leads to perceptually highly diverse images. Thus,
we argue that improving equivariance on such strongly
augmented images can provide even better performance
rather than making the model invariant to all kinds of aug-
mentations. Moreover, existing works apply consistency
regularization either at the feature level or at the classifier
level. We find empirically that it is more beneficial to intro-
duce consistency on both levels. To this end, we propose a
simple yet effective technique, Feature Distance Loss (Feat-
DistLoss), to improve data-augmentation-based consistency
regularization.

We formulate our FeatDistLoss as to explicitly encourage
invariance or equivariance between features from different
augmentationswhile enforcing the same semantic class label.
Figure 2 shows the intuition behind the idea. Specifically,
encouragement of equivariance for the same image but dif-
ferent augmentations (increase distance between stars and
circles of the same color) pushes representations apart from
each other, thus, covering more space for the class. Impos-
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Fig. 1 Examples of strongly and weakly augmented images from
CIFAR-100 (please refer to Sect. 3.3 for details of strong and weak
augmentation). The visually large difference between them indicates
that it can be more beneficial if they are treated differently

Fig. 2 Binary classification task. Stars are features of strongly aug-
mented images and circles are of weakly augmented images (please
refer to Sect. 3.3 for details of strong and weak augmentation). While
encouraging invariance by decreasing distance between features from
differently augmented images gives good performance (left), encour-
aging equivariant representations by increasing the distance regularizes
the feature space more, leading to even better generalization perfor-
mance

ing invariance, on the contrary, makes the representations
of the same semantic class more compact. In this work, we
empirically find that increasing equivariance to differently
augmented versions of the same image can lead to better
performance especially when rather few labels are available
per class (see Sect. 4.3).

This paper introduces the method CR-Match which com-
bines FeatDistLoss with other strong techniques defining a
new state-of-the-art across a wide range of settings of stan-
dard SSL benchmarks, including CIFAR-10, CIFAR-100,
SVHN, STL-10, and Mini-Imagenet. More specifically, our
contribution is fourfold. (1) We improve data-augmentation-
based consistency regularization by a simple yet effective
technique for SSL called FeatDistLoss which regularizes
the distance between feature representations from differently
augmented images of the same class as well as the classifier
simultaneously. (2) We show that while encouraging invari-

ance results in good performance, encouraging equivariance
to differently augmented versions of the same image con-
sistently results in even better generalization performance.
(3) We provide comprehensive ablation studies on different
distance functions and different augmentations with respect
to the proposed FeatDistLoss. (4) In combination with other
strong techniques, we achieve new state-of-the-art results
on most standard semi-supervised learning benchmarks as
well as imbalanced semi-supervised learning benchmarks.
In particular, our method outperforms previous methods by
a significant margin in low data regimes and at large imbal-
ance ratios.

A preliminary version of this work has been published in
Fan et al. (2021). In this work, we extend Fan et al. (2021) in
three aspects: (1) We extend the existing standard SSL set-
tings by providing evaluations on wider range of the datasets
and showing the benefit of the proposed technique on top
of various SSL methods. In particular, combining with the
recently publishedmethodFlexMatch (Zhang et al. 2021),we
can push the state-of-the-art even further under the standard
settings. Moreover, we evaluate our method on ImageNet to
verify that themethod scales to larger datasets as well. (2)We
evaluate our methods under a more realistic and challenging
setting: imbalanced SSL, where the training data is not only
partially annotated but also exhibits long-tailed class distri-
bution. We achieve new state-of-the-art results on multiple
imbalanced SSL benchmarks across a wide range of settings.
(3) To givemore in-depth insight into ourmethod,we provide
pseudo-code and more analysis of the method, especially the
robustness against important hyper-parameters.

2 RelatedWork

SSL is a broad field aiming to exploit both labeled and unla-
beled data. Consistency regularization is a powerful method
for SSL (Rasmus et al. 2015; Sajjadi et al. 2016; Bachman et
al. 2014). The idea is that the model should output consistent
predictions for perturbed versions of the same input. Many
works exploreddifferentways to generate suchperturbations.
For example, Tarvainen andValpola (2017) uses an exponen-
tial moving average of the trained model to produce another
input; Sajjadi et al. (2016) and Laine andAila (2017) use ran-
dommax-pooling andDropout (Srivastava et al. 2014);Xie et
al. (2020), Berthelot et al. (2020), Sohn et al. (2020) and Kuo
et al. (2020) use advanced data augmentation; Berthelot et
al. (2019), Verma et al. (2019) and Berthelot et al. (2020) use
MixUp regularization (Zhang et al. 2018), which encourages
convex behavior “between” examples; Gong et al. (2021)
enforces label consistency with alpha-divergence. Another
spectrum of popular approaches is pseudo-labeling (Scudder
1965; Nesterov 1983; Lee 2013), where the model is trained
with artificial labels. Arazo et al. (2020) trained the model
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with “soft” pseudo-labels from network predictions; Pham
et al. (2020) proposed a meta learning method that deploys a
teacher model to adjust the pseudo-label alongside the train-
ing of the student; Sohn et al. (2020) and Lee (2013) learn
from “hard” pseudo-labels and only retain a pseudo-label if
the largest class probability is above a predefined threshold;
Zhang et al. (2021) further refines the thresholding mecha-
nism by adaptively adjusting thresholds for different classes
according to the learning effect of each class. Furthermore,
there are many excellent works around generative models
(Kingma et al. 2014; Odena 2016; Denton et al. 2016) and
graph-based methods (Luo et al. 2018; Liu et al. 2019; Ben-
gio et al. 2006; Joachims 2003). We refer to Chapelle et al.
(2009), Zhu (2005) and Zhu (2009) for a more comprehen-
sive introduction of SSL methods.

Noise injection plays a crucial role in consistency regular-
ization (Xie et al. 2020). Thus advanced data augmentation,
especially combined with weak data augmentation, intro-
duces stronger noise to unlabeled data and brings substantial
improvements (Berthelot et al. 2020; Sohn et al. 2020).
Sohn et al. (2020) proposes to integrate pseudo-labeling into
the pipeline by computing pseudo-labels from weakly aug-
mented images, and then uses the cross-entropy loss between
the pseudo-labels and strongly augmented images. Besides
the classifier level consistency, our model also introduces
consistency on the feature level, which explicitly regularizes
representation learning and shows improved generalization
performance. Moreover, self-supervised learning is known
to be beneficial in the context of SSL. He et al. (2020), Chen
et al. (2020a), Chen et al. (2020b) and Rebuffi et al. (2020),
self-supervised pre-training is used to initialize SSL. How-
ever, these methods normally have several training phases,
where many hyper-parameters are involved. We follow the
trend of Zhai et al. (2019) and Berthelot et al. (2020) to incor-
porate an auxiliary self-supervised loss alongside training.
Specifically, we optimizes a rotation prediction loss (Gidaris
and Komodakis 2018).

Another paradigmofSSL is tofirst performself-supervised
pre-training on unlabeled data and then fine-tune the pre-
trained model with labeled data. In particular, contrastive
learning based methods are gaining popularity and achieve
good performance recently (Chen et al. 2020b;He et al. 2020;
Caron et al. 2020; Grill et al. 2020; Bardes et al. 2022; Chen
andHe 2021). The goal of contrastive representation learning
is to learn an embedding space in which different versions
of the same image stay close to each other while features
of different images are far apart. Different to this stream
of works, our FeatDistLoss with equivariance pushes apart
features from different augmentations of the same image
while enforcing the same semantic label, which leads to both
more expressive representation and more powerful classifier.
Moreover, FeatDistLoss does not have the collapse problem
(Chen and He 2021) due to the availability of labeled data.

Equivariant representations are recently explored by cap-
sule networks (Sabour et al. 2017; Hinton et al. 2018). They
replaced max-pooling layers with convolutional strides and
dynamic routing to preserve more information about the
input, allowing for preservationof part-whole relationships in
the data. It has been shown, that the input can be reconstructed
from the output capsule vectors. Another stream of work
on group equivariant networks (Cohen and Welling 2016;
Weiler and Cesa 2019; Cohen and Welling 2016) explores
various equivariant architectures that produce transform in a
predictable linear manner under transformations of the input.
Different from previous work, our work explores equivariant
representations in the sense that differently augmented ver-
sions of the same image are represented by different points
in the feature space despite the same semantic label. As we
will show in Sect. 4.3, information like object location or ori-
entation is more predictable from our model when features
are pushed apart from each other.

Imbalanced semi-supervised learning While SSL has
been extensively studied, the setting of class-imbalanced
semi-supervised is rather under-explored. Most successful
methods from standard SSL do not generalize well to this
more realistic scenariowithout addressing the data imbalance
explicitly. Hyun et al. (2020) proposed a suppressed consis-
tency loss to suppress the loss on minority classes. Kim et
al. (2020) proposed Distribution Aligning Refinery (DARP)
to refine raw pseudo-labels via convex optimization. Wei et
al. (2021) found that the raw SSL methods usually have high
recall and low precision for head classes while the reverse is
true for the tail classes and further proposed a reverse sam-
pling method for unlabeled data based on that. BiS (He et
al. 2021) implements a novel sampler which is helpful for
the encoder in the beginning but classifier in the end. DASO
(Oh et al. 2022) refines pseudo-labels by two complemen-
tary classifiers. ABC (Lee et al. 2021) introduces an auxiliary
classifierwhich is trained in a balancedway to help themodel
while sharing the same backbone. As is shown in Sect. 5,
we examine the effectiveness of our method on top of state-
of-the-art imbalanced SSL frameworks and show improved
results.

3 CR-Match

Consistency regularization is highly-successful and widely-
adopted technique in SSL (Bachman et al. 2014; Laine and
Aila 2017; Sajjadi et al. 2016; Sohn et al. 2020; Xie et al.
2020; Kuo et al. 2020). In this work, we aim to leverage and
improve it by even further regularizing the feature space.
To this end, we present a simple yet effective technique
FeatDistLoss to explicitly regularize representation learn-
ing and classifier learning at the same time. We describe
our SSL method, called CR-Match, which shows improved

123



International Journal of Computer Vision (2023) 131:626–643 629

performance across many different settings, especially in
scenarios with few labels. In this section, we first describe
our technique FeatDistLoss and then present CR-Match that
combines FeatDistLoss with other regularization techniques
inspired from the literature.

3.1 Feature Distance Loss

Background The idea of consistency regularization (Bach-
man et al. 2014; Laine and Aila 2017; Sajjadi et al. 2016)
is to encourage the model predictions to be invariant to
input perturbations. Given a batch of n unlabeled images
ui , i ∈ (1, ..., n), consistency regularization can be formu-
lated as the following loss function:

1

n

n∑

i=1

‖ f (A(ui )) − f (α(ui ))‖22 (1)

where f is an encoder network that maps an input image to
a d-dimensional feature space; A and α are two stochastic
functions which are, in our case, strong and weak augmenta-
tions, respectively (details in Sect. 3.3). By minimizing the
L2 distance between perturbed images, the representation is
therefore encouraged to become more invariant with respect
to different augmentations, which helps generalization. The
intuition behind this is that a good model should be robust to
data augmentations of the images.

FeatDistLossAs shown inFig. 3,we extend the above con-
sistency regularization idea by introducing consistencyon the
classifier level and invariance or equivariance on the feature
level. FeatDistLoss thus allows to apply different types of
control for these levels. In particular, when encouraging to
reduce the feature distance, it becomes similar to classic con-
sistency regularization, and encourages invariance between
differently augmented images. As argued above, making the
model predictions invariant to input perturbations gives good
generalization performance. Instead, in this work we find it
is more beneficial to treat images from different augmenta-
tions differently because some distorted images are largely
different from their original images as demonstrated visually
in Fig. 1. Therefore, the final model (CR-Match) uses Feat-
DistLoss to increase the distance between image features
from augmentations of different intensities while at the same
time enforcing the same semantic label for them. Note that
in Sect. 4.3, we conduct an ablation study on the choice of
distance function, where we denote CR-Match as CR-Equiv,
and the model that encourages invariance as CR-Inv.

The final objective for the FeatDistLoss consists of two
terms: LDist (on the feature level), that explicitly regularizes
feature distances between embeddings, and a standard cross-
entropy loss LPseudoLabel (on the classifier level) based on
pseudo-labeling.

With LDist we either decrease or increase the feature dis-
tance between weakly and strongly augmented versions of
the same image in a low-dimensional space projected from
the original feature space to overcome the curse of dimen-
sionality (Bellman 1966). Let d(·, ·) be a distance metric and
z be a linear layer that maps the high-dimensional feature
into a low-dimensional space. Given an unlabeled image ui ,
we first extract features with strong and weak augmentations
by f (A(ui )) and f (α(ui )) as shown in Fig. 3a, and then
FeatDistLoss is computed as:

LDist (ui ) = d(z( f (A(ui ))), z( f (α(ui )))) (2)

Different choices of performingLDist are studied inSect. 4.3,
where we find empirically that applying LDist at (a) using
cosine distance in Fig. 3 gives the best performance. The use
of the projection head z does not only reduce the computation
burden as the original feature space is high-dimensional, but
also brings additional performance improvements as shown
in Chen et al. (2020a) and Chen et al. (2020b).

At the same time, images from strong and weak aug-
mentations should have the same class label because they
are essentially generated from the same original image.
Inspired by Sohn et al. (2020), given an unlabeled image ui ,
a pseudo-label distribution is first generated from the weakly
augmented image by p̂i = g( f (α(ui ))), and then a cross-
entropy loss is computed between the pseudo-label and the
prediction for the corresponding strongly augmented version
as:

LPseudoLabel(ui ) = �CE (p̂i , g( f (A(ui )))) (3)

where �CE is the cross-entropy, g is a linear classifier that
maps a feature representation to a class distribution, and
A(ui ) denotes the operator for strong augmentations.

Putting it all together, FeatDistLoss processes a batch of
unlabeled data ui , i ∈ (1, ..., Bu) with the following loss:

LU = 1

Bu

Bu∑

i=1

1{ci > τ }(LDist (ui ) + LPseudoLabel(ui ))

(4)

where ci = max p̂i is the confidence score, and 1{·} is the
indicator functionwhich outputs 1when the confidence score
is above a threshold. This confidence thresholding mecha-
nism ensures that the loss is only computed for unlabeled
images for which the model generates a high-confidence
prediction. Therefore, it controls the trade-off between the
quality and the quantity of contributing unlabeled samples.
As is shown in Sect. 4.2, a higher threshold τ is normally pre-
ferred because it alleviates the instability early in the training
by eliminating less confident unlabeled samples. As training
progresses, the model produces more confident predictions
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Fig. 3 The proposed FeatDistLoss utilizes unlabeled images in two
ways: on the classifier level, different versions of the same image should
generate the same class label, whereas on the feature level, representa-
tions are encouraged to become either more equivariant (pushing away)
or invariant (pulling together). f and f̂ denote strong andweak features;

p and p̂ are predicted class distributions from strong and weak features;
a, b denote features before and after the global average pooling layer.
Our final model takes features from a) and encourages equivariance to
differently augmented versions of the same image. An ablation study
of other choices is in Sect. 4.3

and more samples will contribute to the final loss, which also
provides a natural curriculum to balance labeled and unla-
beled losses (Sohn et al. 2020). Moreover, the thresholding
mechanism is applied for both the feature level consistency
and the classifier level consistency so that the two losses are
well-synchronized.

As mentioned before, depending on the function d, Feat-
DistLoss can decrease the distance between features from
different data augmentation schemes (when d is a dis-
tance function, thus pulling the representations together), or
increase it (when d is a similarity function, thus pushing the
representations apart). As shown in Table 5, we find that
both cases results in an improved performance. However,
increasing the distance between weakly and strongly aug-
mented examples consistently results in better generalization
performance. We conjecture that the reason lies in the fact
that FeatDistLoss by increasing the feature distance explores
equivariance properties (differently augmented versions of
the same image having distinct features but the same label)
of the representations. It encourages the model to have more
distinct weakly and strongly augmented images while still
imposing the same label, which leads to bothmore expressive
representation andmore powerful classifier. As wewill show
in Sect. 4.3, information like object location or orientation is
more predictable frommodels trainedwith FeatDistLoss that
pushes the representations apart. Additional ablation studies
of other design choices such as the distance function and the
linear projection z are also provided in Sect. 4.3.

3.2 Overall CR-Match

Now we describe our SSL method called CR-Match lever-
aging the above FeatDistLoss. Pseudo-code for processing a

batch of labeled and unlabeled examples is shown in Algo-
rithm 1.

Algorithm 1
Require: Labeled batch X = {

(xi ,pi ) : i ∈ (1, . . . , Bs)
}
, unlabeled

batch U = {
ui : i ∈ (1, . . . , Bu)

}
, confidence threshold τ , Feat-

DistLoss weight λu , rotation prediction loss weight λr , classifier g,
distance metric d, FeatDistLoss head z, rotation prediction head h.

1: � Cross-entropy loss for labeled data
2: LS = 1

Bs

∑Bs
i=1 �CE (pi , g(α(xi )))

3: for i = 1 toBu do
4: � Extract representation from weak data augmentation
5: uw

i = f (α(ui ))
6: � Extract representation from strong data augmentation
7: usi = f (A(ui ))
8: � Compute confidence score from the weakly augmented image
9: ci = max g(uw

i )

10: end for
11: � Cross-entropy loss with pseudo-label for unlabeled data
12: LPseudo = 1

Bu

∑Bu
i=1 1{ci > τ } �CE (g(uw

i ),usi )
13: � Increase the feature distance for unlabeled data
14: LDist = 1

Bu

∑Bu
i=1 1{ci > τ } − d(z(uw

i ), z(usi ))
15: � rotation prediction loss
16: LRot = 1

4Bu

∑Bu
i=1

∑
r∈R �CE (r , h(R(uw

i , r))) return LS +
λu(LPseudo + LDist ) + λrLRot

Given a batch of labeled images with their labels as X =
{(xi ,pi ) : i ∈ (1, ..., Bs)} and a batch of unlabeled images
as U = {ui : i ∈ (1, ..., Bu)}. 1 CR-Match minimizes the
following learning objective:

LS(X ) + λuLU (U) + λrLRot (U) (5)

1 In practice, unlabeled data includes all labeled data without labels.
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where LS is the supervised cross-entropy loss for labeled
images with weak data augmentation regularization; LU

is our novel feature distance loss for unlabeled images
which explicitly regularizes the distance betweenweakly and
strongly augmented images in the feature space; and LRot is
a self-supervised loss for unlabeled images and stands for
rotation prediction from Gidaris and Komodakis (2018) to
provide an additional supervisory and regularizing signal.

Fully supervised loss for labeled data We use cross-
entropy loss with weak data augmentation regularization for
labeled data:

LS = 1

Bs

Bs∑

i=1

�CE (pi , g( f (α(xi )))) (6)

where �CE is the cross-entropy loss, α(xi ) is the extracted
feature from a weakly augmented image xi , g is the same
linear classifier as in equation 2, and pi is the corresponding
label for xi .

Self-supervised loss for unlabeled data Rotation predic-
tion (Gidaris and Komodakis 2018) (RotNet) is one of the
most successful self-supervised learning methods, and has
been shown to be complementary to SSL methods (Zhai et
al. 2019; Berthelot et al. 2019; Rebuffi et al. 2020). Here, we
create four rotated images by 0◦, 90◦, 180◦, and 270◦ for each
unlabeled image ui for i ∈ (1, ..., μB). Then, classification
loss is applied to train the model predicting the rotation as a
four-class classification task:

LRot = 1

4Bu

Bu∑

i=1

∑

r∈R
�CE (r , h(α(R(ui , r)))) (7)

where R is {0◦, 90◦, 180◦, 270◦} and r refers to one of the
four rotations, h denotes a three-layer MLP with its hidden
dimension the same as the input dimension. Using a predictor
head is shown to be beneficial for such an auxiliary loss (Chen
et al. 2020a, b). Note that rotation prediction, though com-
monly used, might also have adverse effects. For example,
numbers six and nine in most print fonts are centrosymmet-
ric, rotating one upside down gives the other.

3.3 Implementation Details

Data augmentation As mentioned above, CR-Match adopts
two types of data augmentations: weak augmentation and
strong augmentation from Sohn et al. (2020). Specifically,
the weak augmentation α corresponds to a standard random
cropping and randommirroring with probability 0.5, and the
strong augmentation A is a combination of RandAugment
(Cubuk et al. 2020) and CutOut (DeVries and Taylor 2017).
At each training step, we uniformly sample two operations
for the strong augmentation from a collection of transforma-

tions and apply them with a randomly sampled magnitude
from a predefined range. The complete table of transforma-
tion operations for the strong augmentation is provided in the
supplementary material.

Other implementation details For our results in Sects. 4
and 5, we minimize the cosine similarity in FeatDistLoss,
and use a fully-connected layer for the projection layer
z, which maps the feature from the original un-flattened
8192-dimension space into a 128-dimension space, the same
dimension as the feature dimension for classification. The
dimension of the original feature space and the patch size
are fixed and depend on the architecture, which is cho-
sen following the previous conventions (Oliver et al. 2018;
Berthelot et al. 2019, 2020; Sohn et al. 2020). In our case,
8192 = 8 × 8 × 128, where the patch size is 8 × 8, and
there are 128 feature maps. The predictor head h in rotation
prediction loss consists of two fully-connected layers and
a ReLU as non-linearity. We use the same λu = λr = 1
in all experiments since CR-Match shows good robustness
within a range of loss weights in our preliminary experi-
ments. We train our model for 512 epochs on CIFAR-10,
CIFAR-100, and SVHN. On STL-10 and Mini-ImageNet,
we train the model for 300 epochs. Other hyper-parameters
are from Sohn et al. (2020) for the compatibility. Specifi-
cally, the confidence thresholds τ for pseudo-label selection
is 0.95. We use SGD with momentum 0.9 and cosine learn-
ing rate schedule from Sohn et al. (2020) starting from 0.03,
batch size Bs is 64 for labeled data, and Bu is 7 × Bs . The
final performance is reported using an exponential moving
average of model parameters as recommended by Tarvainen
and Valpola (2017). As a common practice, we repeat each
experiment with five different data splits and report the mean
and the standard deviation of the error rate.

4 Experimental Results

Following protocols from previous work (Berthelot et al.
2019; Sohn et al. 2020), we conduct experiments on sev-
eral commonly used SSL image classification benchmarks
to test the efficacy of CR-Match. We show our main results
in Sect. 4.1, where we achieve state-of-the-art error rates
across all settings on SVHN (Netzer et al. 2011), CIFAR-
10 (Krizhevsky and Hinton 2009), CIFAR-100 (Krizhevsky
and Hinton 2009), STL-10 (Coates et al. 2011), and mini-
ImageNet (Ravi and Larochelle 2017). In our ablation study
in Sect. 4.2 we analyze the effect of FeatDistLoss and RotNet
across different settings. Finally, in Sect. 4.3 we extensively
analyse various design choices for our FeatDistLoss.
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Table 2 Left: error rates on STL-10 and SVHN

Per class labels STL-10 SVHN
100 labels 4 labels 25 labels 100 labels

Mean Teacher (Tarvainen and Valpola 2017) 21.34 ± 2.39* - 3.57 ± 0.11* 3.42 ± 0.07*

MixMatch (Berthelot et al. 2019) 10.18 ± 1.46 42.55 ± 14.53* 3.78 ± 0.26 3.27 ± 0.31

UDA (Xie et al. 2020) 7.66 ± 0.56* 52.63 ± 20.51* 2.72 ± 0.40 2.23 ± 0.07

ReMixMatch (Berthelot et al. 2020) 6.18 ± 1.24 3.34 ± 0.20* 3.10 ± 0.50 2.83 ± 0.30

FixMatch (RA) (Sohn et al. 2020) 7.98 ± 1.50 3.96 ± 2.17 2.48 ± 0.38 2.28 ± 0.11

FixMatch (CTA) (Sohn et al. 2020) 5.17 ± 0.63 7.65 ± 7.65 2.64 ± 0.64 2.36 ± 0.19

FeatMatch (Kuo et al. 2020) – – 3.34 ± 0.19† 3.10 ± 0.06†

FlexMatch (Zhang et al. 2021) 6.15 ± 0.25 20.81 ± 5.26 17.32 ± 2.07 12.90 ± 2.68

CR-Match 4.89 ± 0.17 2.79 ± 0.93 2.35 ± 0.29 2.08 ± 0.07

Per class labels Mini-ImageNet
40 labels 100 labels

Mean Teacher (Tarvainen and Valpola 2017) 72.51 ± 0.22 57.55 ± 1.11

Label Propagation (Iscen et al. 2019) 70.29 ± 0.81 57.58 ± 1.47

PLCB (Arazo et al. 2020) 56.49 ± 0.51 46.08 ± 0.11

FeatMatch (Kuo et al. 2020) 39.05 ± 0.06 34.79 ± 0.22

CR-Match 34.87 ± 0.99 32.58 ± 1.60

A Wide ResNet-28-2 and a Wide ResNet-37-2 (Zagoruyko and Komodakis 2016) is used for SVHN and STL-10, repectively. The same code base
is adopted as Sohn et al. (2020) to make the results directly comparable. Notations follow Table 1. Right: error rates on Mini-ImageNet with 40
labels and 100 labels per class. All methods are evaluated on the same ResNet-18 architecture
*Numbers are generated by Sohn et al. (2020)
†Numbers are produced without CutOut. The best number is in bold and the second best number is in italic

4.1 Main Results

In the following, each dataset subsection includes two para-
graphs. The first provides technical details and the second
discusses experimental results.

CIFAR-10, CIFAR-100, and SVHN We follow prior work
(Sohn et al. 2020) and use 4, 25, and 100 labels per class
on CIFAR-100 and SVHN without extra data. For CIFAR-
10, we experiment with settings of 4, 25, and 400 labels per
class. We create labeled data by random sampling, and the
remaining images are regarded as unlabeled by discarding
their labels. Following Berthelot et al. (2019), Sohn et al.
(2020) and Berthelot et al. (2020), we use aWide ResNet-28-
2 (Zagoruyko and Komodakis 2016) with 1.5M parameters
on CIFAR-10 and SVHN, and aWide ResNet-28-8 with 135
filters per layer (26M parameters) on CIFAR-100.

As shown in Tables 1 and 2, our method improves over
previous methods across all settings, and defines a new state-
of-the-art. Most importantly, we improve error rates in low
data regimes by a large margin (e.g., with 4 labeled examples
per class on CIFAR-100, we outperform FlexMatch and the
second best method by 10.19 and 8.56% in absolute value
respectively). Prior works (Sohn et al. 2020; Berthelot et al.
2019, 2020) have reported results using a larger network
architecture on CIFAR-100 to obtain better performance.
On the contrary, we additionally evaluate our method on the

small network used in CIFAR-10 and find that our method is
more than 17 times (17 ≈ 26/1.5) parameter-efficient than
FixMatch. We reach 46.05% error rate on CIFAR-100 with 4
labels per class using the small model, which is still slightly
better than the result of FixMatch using a larger model.

STL-10 STL-10 contains 5000 labeled images of size 96-
by-96 from 10 classes and 100,000 unlabeled images. The
dataset pre-defines ten folds of 1000 labeled examples from
the training data, and we evaluate our method on five of
these ten folds as in Sohn et al. (2020) and Berthelot et
al. (2020). Following Berthelot et al. (2019), we use the
same Wide ResNet-37-2 model (comprising 5.9M param-
eters), and report error rates in Table 2.

Our method achieves state-of-the-art performance with
4.89% error rate. Note that FixMatch with error rate 5.17%
used the more advanced CTAugment (Berthelot et al. 2020),
which learns augmentation policies alongside model train-
ing. When evaluated with the same data augmentation
(RandAugment) as we use in CR-Match, our result surpasses
FixMatch by 3.09% (3.09%=7.98−4.89%),which indicates
that CR-Match itself induces a strong regularization effect.

Mini-ImageNet We follow Iscen et al. (2019), Arazo et
al. (2020) and Kuo et al. (2020) to construct the mini-
ImageNet training set. Specifically, 50,000 training examples
and 10,000 test examples are randomly selected for a prede-
fined list of 100 classes (Ravi and Larochelle 2017) from
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Table 3 Error rates on ImageNet after 220 iterations

Method Top-1 Top-5

FixMatch (Sohn et al. 2020) 43.66* 21.80*

FlexMatch (Zhang et al. 2021) 41.85* 19.48*

CR-Match§ 40.69 18.44

CR-Match§ refers to CR-Match combinedwith CPL (Zhang et al. 2021)
from FlexMatch
*Numbers are from Zhang et al. (2021)
The best number is in bold

ILSVRC (Deng et al. 2009). Following Kuo et al. (2020), we
use a ResNet-18 network (He et al. 2016) as our model and
experiment with settings of 40 labels per class and 100 labels
per class.

As shown in Table 2, our method consistently improves
over previous methods and achieves a new state-of-the-art
in both the 40-label and 100-label settings. Especially in the
40-label case, CR-Match achieves an error rate of 34.87%
which is 4.18% higher than the second best result. Note that
our method is 2 timesmore data efficient than the second best
method FeatMatch (Kuo et al. 2020) (FeatMatch, using 100
labels per class, reaches a similar error rate as our method
with 40 labeled examples per class).

ImageNet To verify the effectiveness of our method on
large scale datasets, we conduct experiments on ImageNet-
1k. Following Zhang et al. (2021), we take∼ 10% (100,000)
training images as the labeled set and construct unlabeled set
using the rest of the images. The validation setting remains
the same.We train aResNet-50 (He et al. 2016)with the same
hyper-parameters from Zhang et al. (2021). Note that Fix-
Match and FlexMatch use different protocols on ImageNet,
and we follow the setup from FlexMatch therefore the num-
bers are directly comparable.

Table 3 shows the error rate comparison after running 220

iterations. Ourmethod outperforms the previous state-of-the-
art by 1.04% absolute top-5 error rate, which demonstrates
the efficacy of the proposed method at large scale dataset.

4.2 Ablation Study

In this section, we analyze how FeatDistLoss and RotNet
influence the performance across different settings, partic-
ularly when there are few labeled samples. We conduct
experiments on a single split on CIFAR-10, CIFAR-100, and
SVHN with 4 labeled examples per class, and on MiniIma-
geNet with 40 labels per class. Specifically, we remove the
LDist from Eq. (4) and train the model again using the same
training scheme for each setting. We do not ablate LPseudo

and LS due to the fact that removing one of them leads to a
divergence of training.

We report final test error rates in Table 4. We see that both
RotNet and FeatDistLoss contribute to the final performance
while their proportions can be different depending on the set-
ting and dataset. ForMiniImageNet, CIFAR-100 and SVHN,
the combination of both outperforms the individual losses.
For CIFAR-10, FeatDistLoss even outperforms the combi-
nation of both. This suggests that RotNet and FeatDistLoss
are both important components for CR-Match to achieve
the state-of-the-art performance. Note that RotNet can be
replaced by other types of self-supervision as well. We opt
RotNet due to its superior performance in our initial experi-
ments. OnCIFAR-100with 4 labels per class, CRMatchwith
SimCLR achieves an error rate of 42.50% compared to that
of 39.22% from CRMatch with RotNet. More details of the
experiment are provided in the supplementary material.

Figure 4 shows a more detailed analysis of the training
process on CIFAR-100 with 4 labels per class for CR-Match
andCR-Matchwithout FeatDistLoss. The confidence thresh-
old in CR-Match filters out unconfident predictions during
training. Therefore, at each training step only images with
confidence scores above the threshold contribute to the loss.
We observe that CR-Match improves pseudo-labels for the
unlabeled data, as it achieves a lower error rate of all unla-
beled images aswell as contributing unlabeled images during
the training while maintaining the percentage of contribut-
ing images. The increasing of the pseudo-label error rate in
Fig. 4middle is due to the increasing of the percentage of con-
tributing pseudo-labels and the prediction confidence. At the
beginning of the training, the contributing pseudo-labels are
mostly correct as only a small number of samples are highly
confident and, thus, selected. However, during the course
of the training, the overall prediction confidence increases,
resulting in more unlabeled data being used, which intro-
duces more errors in pseudo-labels.

Effect of different confidence thresholds For the main
results in Sect. 4.1, we use a confidence threshold of 0.95
following Sohn et al. (2020).We now study themodel robust-
ness against different confidence thresholds. Experiments are
conducted on a single split with 4 labeled examples from
CIFAR-100 on a Wide ResNet-28-2. Figure 5 shows the
error rate of CR-Match when using a confidence threshold
from 0.90 to 0.99. In general, the thresholding mechanism
provides the model a relatively smooth transition between
learning from labeled data and learning from unlabeled data.
A low percentage of the contributing unlabeled data at the
beginning of the training can alleviate the potential error
introduced by the low-quality pseudo-labels. This suggests
that the quality of pseudo-labels is more important than the
quantity for reaching a high accuracy at the early stage. As
the model learns from the labeled data, the error rate of the
pseudo-label decreases, and the model becomes more confi-
dent about its predictions. Then, the number of unlabeled data
that contribute to the final loss gradually increases, which
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Table 4 Ablation studies across
different settings

RotNet FeatDistLoss MiniImageNet@40 CIFAR10@4 CIFAR100@4 SVHN@4

35.13 11.86 46.22 2.42

� 34.14 10.33 43.48 2.34

� 34.64 11.27 41.48 2.21

� � 33.82 10.92 39.22 2.09

The best number is in bold
Error rates are reported for a single split

Fig. 4 Ablation study of our best model on CIFAR-100 with 4 labels
per class. Left: CR-Match has a lower pseudo-label error rate. Middle:
if only the confident predictions are taken into account, CR-Match out-
performs the other with a even larger margin in terms of pseudo-label

error rate. Right: in spite of a better pseudo-label error rate on contribut-
ing unlabeled images, the percentage of contributing unlabeled images
is maintained the same for CR-Match

Fig. 5 Left: effect of different confidence thresholds on error rate. We
run experiments on a single split of CIFAR-100 with 4 labels per class.
The model is a Wide-ResNet-28-2. Our model shows good robustness
against small changes in the confidence threshold. Middle: effect of

different confidence thresholds on pseudo-label error rate during the
training. Right: effect of different confidence thresholds on the number
of unlabeled training samples

allows the model to continue learning from unlabeled data.
Figure 5 left also implies that ourmodel is quite robust against
small changes in the confidence threshold.

4.3 Influence of Feature Distance Loss

In this section, we analyze different design choices for
FeatDistLoss to provide additional insights of how it helps
generalization. We focus on a single split with 4 labeled
examples from CIFAR-100 and report results for a Wide
ResNet-28-2 (Zagoruyko and Komodakis 2016). For fair

comparison, the same 4 random labeled examples for each
class are used across all experiments in this section.

Different distance metrics for FeatDistLoss Here we
discuss the effect of different metric functions d for Feat-
DistLoss. Specifically, we compare two groups of functions
in Table 5: metrics that increase the distance between fea-
tures, including cosine similarity, negative JS divergence,
and L2 similarity (i.e. normalized negative L2 distance);
metrics that decrease the distance between features, includ-
ing cosine distance, JS divergence, and L2 distance. We
find that both increasing and decreasing distance between
features of different augmentations give reasonable perfor-
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Table 5 Effect of different distance functions for FeatDistLoss

Metric Error rate

Impose equivariance Cosine similarity 45.52

L2 similarity 46.22

Negative JS div. 46.46

Impose invariance Cosine distance 46.98

L2 distance 48.74

JS divergence 47.48

CR-Match w/o FeatDistLoss 48.89

The best number is in bold
The same split onCIFAR-100with 4 labels per class and aWideResNet-
28-2 is used for all experiments. Metrics that pull features together
performs worse than those that push features apart. The error rate of
CR-Match without FeatDistLoss is shown at the bottom

Table 6 Error rates of binary classification (whether a specific augmen-
tation is applied) on the features from CR-Equiv (increasing the cosine
distance) and CR-Inv (decreasing the cosine distance)

Transformations Feature extractor
CR-Equiv CR-Inv

Translation 33.22 ± 0.28 36.80 ± 0.30

Scaling 11.09 ± 0.66 14.87 ± 0.40

Rotation 15.05 ± 0.33 21.92 ± 0.32

ColorJittering 31.04 ± 0.50 35.99 ± 0.27

We evaluate translation, scaling, rotation, and color jittering. Lower
error rate indicates more equivariant features. Results are averaged over
10 runs

mance. However, increasing the distance always performs
better than the counterpart (e.g., cosine similarity is better
than cosine distance). We conjecture that decreasing the fea-
ture distance corresponds to an increase of the invariance
to data augmentation and leads to ignorance of information
like rotation or translation of the object. In contrast, increas-
ing the feature distance while still imposing the same label
makes the representation equivariant to these augmentations,
resulting in more descriptive and expressive representation
with respect to augmentation. Moreover, a classifier has
to cover a broader space in the feature space to recognize
rather dissimilar images from the same class, which leads
to improved generalization. In summary, we found that both
increasing and decreasing feature distance improve over the
model which only applies consistency on the classifier level,
whereas increasing distances shows better performance by
making representations more equivariant. Please refer to the
supplementary material for experiments of combining both
invariant and equivariant loss in FeatDistLoss.

Invariance and equivariance Here we provide an addi-
tional analysis to demonstrate that increasing the feature
distance provides equivariant features while the other pro-
vides invariant features. Based on the intuition that specific
transformations of the input image should be more pre-

dictable from equivariant representations, we quantify the
equivariance by how accurate a linear classifier can distin-
guish between features from augmented and original images.
Specifically,we compare twomodels fromTable 5: themodel
trained with cosine similarity denoted as CR-Equiv and the
model trained with cosine distance denoted as CR-Inv. We
train a linear SVM to predict whether a certain transforma-
tion is applied for the input image. 1000 test images from
CIFAR-100 are used for training and the rest (9000) for val-
idation. The binary classifier is trained by an SGD optimizer
with an initial learning rate of 0.001 for 50 epochs, and the
feature extractor is fixed during training. We evaluate trans-
lation, scaling, rotation, and color jittering in Table 6. All
augmentations are from the standard PyTorch library. The
SVM has a better error rate across all augmentations when
trained on CR-Equiv features, which means information like
object location or orientation is more predictable from CR-
Equiv features, suggesting that CR-Equiv produces more
equivariant features than CR-Inv. Furthermore, if the SVM
is trained to classify strongly and weakly augmented image
features, CR-Equiv achieves a 0.27% test error while CR-Inv
is 46.18%.

Regularization on the classifier level As we described
in Sect. 3, FeatDistLoss contains two levels of regulariza-
tion: On the feature level, representations are encouraged to
become more equivariant. On the classifier level, the same
class label is imposed on different versions of the same
image via pseudo-labeling. Here we provide more insights
into the regularization on the classifier level in Table 7.
Specifically, we conduct experiments on replacing or com-
plementing the CE loss with Jensen–Shannon divergence.
First, we can see that removing the classifier loss and using
only the equivariant loss on the feature level leads to a signif-
icant drop on performance (from 45.52% to 91.53%). This
is because LDist alone will just make the model aware of
the difference between augmentations but does not help the
classifier to distinguish between classes of unlabeled data,
making the classifier unable to benefit from the usage of unla-
beled data. Thus, the performance is on par with the model
trained on labeled data only (91.28% error rate) Second,
complementing the cross-entropy loss on the classifier level
with Jensen-Shannon divergence, improves the performance
(45.01%) while replacing it leads to inferior performance
(76.83%).

Different data augmentations for FeatDistLoss. In our
main results in Sect. 4.1, FeatDistLoss is computed between
features generated by weak augmentation and strong aug-
mentation. Here we investigate the impact of FeatDistLoss
with respect to different types of data augmentations. Specif-
ically, we evaluate the error rate of CR-Inv and CR-Equiv
under three augmentation strategies: weak-weak pair indi-
cates that FeatDistLoss uses two weakly augmented images,
weak-strong pair indicates that FeatDistLoss uses a weak
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Table 7 Effect of different regularization techniques on the classifier
level

Classifier level Feature level Error rate

None None 91.28

None Equiv. 91.53

CE Equiv. 45.52

JSD Equiv. 76.83

CE + JSD Equiv. 45.01

The best number is in bold
CE denotes cross-entropy loss. JSD denotes Jensen-Shannon diver-
gence. Equiv. denotes the equivariance version of LDist . Note that the
chance level is 99%. None + None represents the model trained with
labeled data only. The same split on CIFAR-100 with 4 labels per class
and a Wide ResNet-28-2 is used for all experiments

Table 8 Effect of combinations of weak and strong augmentation in
FeatDistLoss on a Wide ResNet-28-2 for CR-Inv and CR-Equiv

Error rate CR-Inv CR-Equiv

Weak-weak 48.88 48.51

Weak-strong 46.98 45.52

Strong-strong 48.57 48.05

The best number is in bold

augmentation and a strong augmentation, and strong-strong
pair indicates that FeatDistLoss uses two strongly augmented
images.

As shown in Table 8, using either CR-Inv or CR-Equiv
using weak-strong pairs conistently outperforms the other
augmentation settings (weak-weak and strong-strong). Addi-
tionally, CR-Equiv consistently achieves better generaliza-
tion performance across all three settings. In particular, in
the case advocated in this paper, namely using weak-strong
pairs, CR-Equiv outperforms CR-Inv by 1.46%. Even in the
other two settings, CR-Equiv leads to improved performance
even though only by a small margin. This suggests that, on
the one hand, that it is important to use different types of
augmentations for our FeatDistLoss. And on the other hand,
maximizing distances between images that are inherently dif-
ferent while still imposing the same class label makes the
model more robust against changes in the feature space and
thus gives better generalization performance.

Linear projection and confidence threshold in FeatDist-
Loss As mentioned in Sect. 3, we apply LDist at (a) in Fig. 3
with a linear layer mapping the feature from the encoder to
a low-dimensional space before computing the loss, to alle-
viate the curse of dimensionality. Also, the loss only takes
effect when the model’s prediction has a confidence score
above a predefined threshold τ . Here we study the effect
of other design choices in Table 9. While features after the
global average pooling (i.e. (b)) gives a better result than the
ones directly from the feature extractor, (b) performs worse

than (a) when additional projection heads are added. Thus,
we use features from the feature extractor in CR-Match.

The error rate increases from 45.52 to 48.37 and 47.52%
when removing the linear layer and replacing the linear layer
by a MLP (two fully-connected layers and a ReLU acti-
vation function), respectively. This suggests that a lower
dimensional space serves better for comparing distances, but
a non-linear mapping does not give further improvement.
Moreover, when we apply FeatDistLoss for all pairs of input
images by removing the confidence threshold, the test error
increases from 45.52 to 46.94%, which suggests that regular-
ization should be only performed on features that are actually
used to update the model parameters, and ignoring those that
are also ignored by the model.

FeatDistLoss improves decision boundaries As suggested
by Fig. 2, models trained with FeatDistLoss tend to have
improved decision boundaries. Here we take two models
from Sect. 4.2, CR-Match (39.22% error rate) and CR-Match
without FeatDistLoss (41.48% error rate), and plot t-SNE
plots of features extracted from unlabeled images. As shown
in Fig. 6, CR-Match with FeatDistLoss produces better sep-
aration between classes. For example, CR-Match forms two
clearer clusters for caterpillar and butterfly, while CR-Match
without FeatDistLoss mostly mixes them up. Another exam-
ple is that the overlap between crab, bowl, and pear is much
less for CR-Match compared to CR-Match without FeatDis-
tLoss. Moreover, the improved decision boundaries also lead
to better per-class error rate. The standard deviation of per-
class error rates for CR-Match is 4.34% lower than that from
CR-Match without FeatDistLoss (30.83% v.s. 26.49%).

Additional analysis on FeatDistLoss. To further verify the
importance of FeatDistLoss, we show in Fig. 7 the contribu-
tion of FeatDistLoss compared to other losses. The model
is CR-Equiv. trained on CIFAR-100 with 4 labels per class.
We can see that during the training, the two components of
FeatDistLoss, LDist and LPseudoLabel , account for a large
portion of the overall loss, thus, the gradient. Note thatLDist

is the negative cosine distance, thus, ranging from 1 to −1.

5 Experiments on Imbalanced SSL

In this section, we go beyond the standard setting and evalu-
ate the efficacy of ourmethod under imbalanced SSL settings
where both labeled and unlabeled data follow class imbal-
anced distributions. We first present the problem setup of
imbalanced SSL. Then, we introduce the construction of the
datasets before showing the final evaluation results.

Problem setup and notations For a K-class classifica-
tion problem, there is a labeled set X = {(xn, yn) :
n ∈ (1, ..., N )} and an unlabeled set U = {um : m ∈
(1, ..., M)}, where xn,um ∈ R

d are training examples and
yn ∈ {1, ..., K } are class labels for labeled examples. Nk and

123



638 International Journal of Computer Vision (2023) 131:626–643

Table 9 Effect of the projection
head z, and the place to apply
LDist

Features taken from Fig. 3 at Feature Feature + linear Feature + MLP

(a) 48.37 45.52 47.52

(b) 47.37 46.10 47.15

The best number is in bold
(a) denotes un-flattened features taken from the feature extractor directly
(b) denotes features after the global average pooling. MLP has 2 FC layers and a ReLU. Removing the linear
projection head harms the test error, and a non-linear projection head does not improve the performance
further

Fig. 6 We plot t-SNE of input image features extracted by a CR-Match
model trained without FeatDistLoss (left) and a CR-Match model with
it (right). The better separation from CR-Match suggests that FeatDis-
tLoss improves decision boundaries

Fig. 7 The amount of the contribution of the regularization term in the
loss. The model is CR-Equiv. trained on CIFAR-100 with 4 labels per
class

Mk denote the numbers of labeled and unlabeled examples
in class k, respectively, i.e.,

∑K
k=1 Nk = N and

∑K
k=1 Mk =

M . Without loss of generality, we assume the classes are
sorted by the number of training samples in descending order,
i.e., N1 ≥ N2 ≥ ... ≥ Nk . The goal is to train a classifier
f : Rd → {1, ..., K } on X ∪ U that generalizes well on a
class-balanced test set.

Datasets We consider three common datasets in the field
to evaluate the efficacy of CRMatch for imbalanced SSL:
CIFAR10-LT (Krizhevsky and Hinton 2009), CIFAR100-LT
(Krizhevsky and Hinton 2009), and Semi-Aves (Su and Maji
2021).

For CIFAR-10-LT and CIFAR100-LT, we follow the con-
vention (Kim et al. 2020; Wei et al. 2021) and randomly
select some training images for each class determined by a
pre-defined imbalance ratio γ as the labeled and the unla-

beled set. Specifically, we set Nk = N1 · γ − k−1
K−1 for labeled

data and Mk = M1 · γ − k−1
K−1 for unlabeled data. We use

N1 = 1500; M1 = 3000 for CIFAR-10 and N1 = 150;
M1 = 300 forCIFAR-100, respectively. FollowingKimet al.
(2020) andWei et al. (2021),we report resultswith imbalance
ratio γ = 50, 100 and 150 for CIFAR10-LT and γ = 20, 50
and 100 for CIFAR100-LT. Therefore, the number of labeled
samples for the least class is 10 and 1 for CIFAR-10 with
γ = 150 and CIFAR-100 with γ = 100, respectively.

Semi-Aves is a subset of bird species from the Aves king-
dom of the iNaturalist 2018 dataset. There are 200 in-class
and 800 out-of-class categories. The dataset consists of a
labeled set Lin with 3,959 labeled images, an in-class unla-
beled set Uin with 26,640 images, an out-of-class unlabeled
set Uout with 122,208 images, a validation set Lval of 2,000
images, and 8,000 test images. The training data in Lin ,Uin ,
andUout has imbalanced distributions, specifically Lin has 5
to 43 images andUin has 16 to 229 images per class. The val-
idation data and test data have a uniform distribution with 40
and 10 images per class, repectively. In our experiments, we
use Lin or Lin ∪ Lval as the labeled set and Uin as the unla-
beled set. We do not use unlabeled images from Uout since
out-of-class unlabeled images are found empirically harmful
to the final performance (Oliver et al. 2018) andmaking good
use of out-of-class unlabeled images is out of the scope of
this paper. More details on the class distribution can be found
in Su and Maji (2021).

Implementation details Due to the performance superior-
ity of LU−equiv over LU−inv , we use CR-Equiv throughout
this section. For all experiments in this section, we use the
same hyper-parameters and design choices from the CIFAR
experiments in Sect. 4.1. We deploy FixMatch (Sohn et al.
2020) as the base SSL method due to its superiority under

123



International Journal of Computer Vision (2023) 131:626–643 639

Table 10 Class-wise precision and recall (%) on the balanced test set of CIFAR-10-LT

Class index 1 2 3 4 5 6 7 8 9 10 Avg.

Recall FixMatch + CReST+ 98.6 99.3 85.8 77.4 84.4 63.4 77.2 55.5 37.4 34.6 71.3

CR-Match + CReST+ 98.6 99.6 88.8 82.5 86.7 67.8 78.7 57.0 42.7 40.6 74.3

Precision FixMatch + CReST+ 53.3 61.4 71.4 57.9 77.0 82.4 93.0 97.1 97.6 98.0 78.9

CR-Match + CReST+ 56.1 62.9 75.1 63.7 78.6 83.3 94.5 97.1 98.1 97.1 80.7

The best number is in bold
Models are trained with imbalance ratio γ = 150

Table 11 Classification
accuracy (%) on CIFAR-10-LT
using a Wide ResNet-28-2 under
the uniform test distribution of
three different class-imbalance
ratios γ

CIFAR-10-LT
γ=50 γ=100 γ=150

Vanilla 65.2±0.05∗ 58.8±0.13∗ 55.6±0.43∗

Long-tailed recognition methods

Re-sampling (Japkowicz 2000) 64.3±0.48∗ 55.8±0.47∗ 52.2±0.05∗

LDAM-DRW (Cao et al. 2019) 68.9±0.07∗ 62.8±0.17∗ 57.9±0.20∗

cRT (Kang et al. 2020) 67.8±0.13∗ 63.2±0.45∗ 59.3±0.10∗

SSL methods

FixMatch (Sohn et al. 2020) 81.58 ± 0.34 74.74 ± 1.35 70.04 ± 0.77

ReMixMatch (Berthelot et al. 2020) 82.79 ± 0.17 76.81 ± 0.23 72.53 ± 1.16

FlexMatch (Zhang et al. 2021) 81.89 ± 0.25 74.94 ± 0.96 70.09 ± 0.42

CR-Match 82.87 ± 0.04 76.54 ± 0.87 72.14 ± 0.76

FixMatch + DARP (Kim et al. 2020) 82.46 ± 0.30 76.51 ± 0.50 71.88 ± 1.02

ReMixMatch + DARP (Kim et al. 2020) 82.88 ± 0.23 76.77 ± 0.29 72.90 ± 0.95

FlexMatch + DARP (Kim et al. 2020) 81.93 ± 0.22 74.84 ± 0.66 70.46 ± 0.58

CR-Match + DARP 83.22 ± 0.27 77.32 ± 0.29 73.44 ± 0.06

FixMatch + CReST+ (Wei et al. 2021) 82.25 ± 0.08 76.31 ± 0.23 71.70 ± 0.83

ReMixMatch + CReST+ (Wei et al. 2021) 83.71 ± 0.17 79.13 ± 0.19 75.17 ± 0.31

FlexMatch + CReST+ (Wei et al. 2021) 82.75 ± 0.25 77.23 ± 0.35 72.21 ± 0.11

CR-Match + CReST+ 84.11 ± 0.32 78.55 ± 0.55 74.21 ± 0.11

FixMatch + CoSSL (Fan et al. 2022) 86.63 ± 0.24 83.10 ± 0.48 80.15 ± 0.59

ReMixMatch + CoSSL (Fan et al. 2022) 87.55 ± 0.06 84.15 ± 0.65 81.28 ± 0.95

FlexMatch + CoSSL (Fan et al. 2022) 86.30 ± 0.30 81.61 ± 0.74 78.80 ± 0.73

CR-Match + CoSSL (Fan et al. 2022) 88.11 ± 0.17 84.80 ± 0.54 82.29 ± 0.33

The numbers are averaged over 5 different folds. We use the same code base as Kim et al. (2020) for fair
comparison following Oliver et al. (2018). Numbers with * are taken from the original papers. The best
number is in bold and the second best number is in italic

the standard SSL settings. A Wide ResNet-28-2 (Zagoruyko
and Komodakis 2016) is used as the backbone as recom-
mended by Oliver et al. (2018). We base our implementation
on the public codebases of eachmethods. Therefore,method-
specific hyper-parameters follow the same as in their original
papers (Kim et al. 2020; Wei et al. 2021). For example, all
experiments on CIFAR-LT are trained with batch size 64
using Adam optimizer (Kingma and Ba 2015) with a con-
stant learning rate of 0.002 without any decay. We train the
models for 500 epochs, each ofwhich has 500 steps, resulting
in a total number of 2.5 × 105 training iterations. On Semi-
Aves, we follow the hyper-parameters from Oh et al. (2022).
For example, the models are trained for 90 epochs with a

batch size of 256, and the optimizer is SGD with a learning
rate of 0.04. For all experiments, we report the average test
accuracy of the last 20 epochs following Oliver et al. (2018).

Results on CIFAR-10 and CIFAR-100 Tables 11 and
12 compare our method with various SSL algorithms and
long-tailed recognition algorithms on CIFAR-10-LT and
CIFAR-100-LT with various imbalance ratios γ . Adding
our method shows improved performance in most of set-
tings. Our method combining with CoSSL (Fan et al. 2022)
achieves the best or comparable performance across all set-
tings. In particular, CRMatch + CoSSL outperforms others at
large imbalance ratios (82.29% v.s. the second best 81.28%
on CIFAR-10 at imbalance ratio γ = 150), which indi-
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Table 12 Classification
accuracy (%) on CIFAR-100-LT
under the uniform test
distribution of three different
class-imbalance ratios γ

CIFAR-100-LT
γ = 20 γ = 50 γ = 100

FixMatch (Sohn et al. 2020) 49.58 ± 0.90 42.10 ± 0.38 37.46 ± 0.48

ReMixMatch (Berthelot et al. 2020) 51.46 ± 0.51 44.37 ± 0.62 39.29 ± 0.59

FlexMatch (Zhang et al. 2021) 51.00 ± 0.75 42.86 ± 0.42 37.20 ± 0.51

CR-Match 52.03 ± 0.42 44.37 ± 0.57 39.32 ± 0.31

FixMatch + DARP (Kim et al. 2020) 50.89 ± 0.86 43.12 ± 0.61 38.19 ± 0.47

ReMixMatch + DARP (Kim et al. 2020) 51.95 ± 0.40 45.24 ± 0.46 39.50 ± 0.58

FlexMatch + DARP (Kim et al. 2020) 50.78 ± 0.71 42.81 ± 0.36 36.99 ± 0.66

CR-Match + DARP 49.33 ± 0.32 44.13 ± 0.38 39.18 ± 0.80

FixMatch + CReST+ (Wei et al. 2021) 51.87 ± 0.11 45.25 ± 0.06 40.41 ± 0.35

ReMixMatch + CReST+ (Wei et al. 2021) 51.22 ± 0.38 45.91 ± 0.33 41.24 ± 0.79

FlexMatch + CReST+ (Wei et al. 2021) 51.16 ± 0.63 43.12 ± 0.57 38.09 ± 0.58

CR-Match + CReST+ 53.77 ± 0.36 46.44 ± 0.58 40.94 ± 0.43

FixMatch + CoSSL (Fan et al. 2022) 53.99 ± 0.87 47.78 ± 0.53 42.87 ± 0.61

ReMixMatch + CoSSL (Fan et al. 2022) 55.92 ± 0.69 49.10 ± 0.59 44.10 ± 0.68

FlexMatch + CoSSL (Fan et al. 2022) 53.46 ± 0.79 46.83 ± 0.80 41.42 ± 0.58

CR-Match + CoSSL (Fan et al. 2022) 55.34 ± 0.43 48.83 ± 0.87 44.21 ± 0.61

The numbers are averaged over 5 different folds. We reproduce all numbers using the same codebase from
Kim et al. (2020) for a fair comparison. The best number is in bold and the second best number is in italic

Table 13 Classification
accuracy (%) on Semi-Aves
under the uniform test
distribution

Semi-Aves
X = Lin ∪ Lval X = Lin

FixMatch (Sohn et al. 2020) 53.15 42.46

ReMixMatch (Berthelot et al. 2020) 51.28 40.10

FlexMatch (Zhang et al. 2021) 52.78 43.50

CRMatch 54.53 44.42

FixMatch + CoSSL (Fan et al. 2022) 54.15 44.58

ReMixMatch + CoSSL (Fan et al. 2022) 54.13 43.97

FlexMatch + CoSSL (Fan et al. 2022) 53.98 44.09

CRMatch + CoSSL (Fan et al. 2022) 54.90 45.81

Ltrain and Lin ∪ Lval have imbalance ratio γ ≈ 9 and γ ≈ 4, respectively. The best number is in bold and
the second best number is in italic

cates the superiority of our method in handling severe dataset
imbalance.

To analyze how the improvement is obtained, we compare
the class-wise precision and recall of CReST+ and CReST+
with our method in Table 10. Both models are trained with
imbalance ratio γ = 150 on CIFAR-10-LT using the same
data split. The class indices are sorted according to the num-
ber of samples in descending order, i.e., class 1 has the largest
number of data. For CReST+, the head classes tend to have
higher precision but lower recall while the tail classes have
lower precision but higher recall. By adding our method, the
recall on the tail classes canbe significantly improvedwithout
sacrificing much precision, which leads to the overall better
performance. Similarly, the precision of the head classes is
improved while the recall remains at the same level.

Results on Semi-Aves As Semi-Aves is naturally imbal-
anced (γ ≈ 9 and 4 for Ltrain and Lin ∪ Lval , respectively),
we compare CRMatch with other methods using different
numbers of labeled data. We report the raw performance of
backbone algorithms as well as the performance with CoSSL
(Fan et al. 2022) considering its superior performance on
CIFAR-10-LT and CIFAR-100-LT. From Table 13, we can
see that CRMatch outperforms other backbone algorithms
by a large margin in both settings. While CoSSL leads to
improvement in all methods, CRMatch still achieves the best
performance, which demonstrates the effectiveness of our
method in realistic settings.
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6 Conclusion

The idea of consistency regularization gives rise to many
successful works for SSL (Bachman et al. 2014; Laine and
Aila 2017; Sajjadi et al. 2016; Sohn et al. 2020; Xie et al.
2020; Kuo et al. 2020). While making the model invariant
against input perturbations induced by data augmentation
gives improved performance, the scheme tends to be subop-
timal when augmentations of different intensities are used.
In this work, we propose a simple yet effective improvement,
called FeatDistLoss. It introduces consistency regularization
on both the classifier level, where the same class label is
imposed for versions of the same image, and the feature
level, where distances between features from augmenta-
tions of different intensities is increased. By encouraging the
representation to distinguish between weakly and strongly
augmented images, FeatDistLoss encourages more equiv-
ariant representations, leading to improved classification
boundaries, and a more robust model.

Through extensive experiments we show the superiority
of our training framework, and define a new state-of-the-art
on both standard and imbalanced semi-supervised learning
benchmarks. Particularly, our method outperforms previous
methods in low data regimes by significant margins, e.g., on
CIFAR-100 with 4 annotated examples per class, our error
rate (39.45%) is 4.83% better than the second best (44.28%).
In future work, we are interested in integrating more prior
knowledge and stronger regularization into SSL to further
push the performance in low data regimes.
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