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Abstract
Relating behavior to brain activity in animals is a fundamental goal in neuroscience, with practical applications in building
robust brain-machine interfaces. However, the domain gap between individuals is a major issue that prevents the training of
general models that work on unlabeled subjects. Since 3D pose data can now be reliably extracted from multi-view video
sequences without manual intervention, we propose to use it to guide the encoding of neural action representations together
with a set of neural and behavioral augmentations exploiting the properties of microscopy imaging. To test our method, we
collect a large dataset that features flies and their neural activity. To reduce the domain gap, during training, we mix features
of neural and behavioral data across flies that seem to be performing similar actions. To show our method can generalize
further neural modalities and other downstream tasks, we test our method on a human neural Electrocorticography dataset,
and another RGB video data of human activities from different viewpoints. We believe our work will enable more robust
neural decoding algorithms to be used in future brain-machine interfaces.

Keywords Animal pose estimation · Two-photon microscopy · Action recognition · Self-supervised learning

1 Introduction

Neural decoding of action, the accurate prediction of behav-
ior from brain activity, is a fundamental challenge in neu-
roscience with important applications in the development
of robust brain machine interfaces (Ahmed et al., 2021;
Spampinato et al., 2017; Palazzo et al., 2018, 2021). Recent
technological advances have enabled simultaneous record-
ings of neural activity and behavioral data in experimental
animals and humans (Dombeck et al., 2007; Seelig et al.,
2010; Chen et al., 2018; Pandarinath et al., 2018; Ecker et
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al., 2010; Topalovic et al., 2020; Urai et al., 2021). Neverthe-
less, our understanding of the complex relationship between
behavior and neural activity remains limited.

A major reason is that it is difficult to obtain many record-
ings from mammals and a few subjects are typically not
enough to perform meaningful analyses (Pei et al., 2021).
This is less of a problem when studying the fly Drosophila
melanogaster, for which long neural and behavioral datasets
can be obtained for many individual animals (Fig. 1). Never-
theless, current supervised approaches for performing neural
decoding (Nakagome et al., 2020; Glaser et al., 2020) still
do not generalize well across subjects because each nervous
system is unique (Fig. 2). This creates a significant domain-
gap that necessitates tedious and difficult manual labeling
of actions. Furthermore, a different model must be trained
for each individual subject, requiring more annotation and
overwhelming the resources of most laboratories.

Another problem is that experimental neural imaging
data often has unique temporal and spatial properties. The
slow decay time of fluorescence signals introduces temporal
artifacts. Thus, neural imaging frames include information
about an animal’s previous behavioral state. This compli-
cates decoding and requires specific handling that standard
machine learning algorithms do not provide.
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Fig. 1 Our Motion Capture and Two-Photon (MC2P) Dataset. A teth-
ered fly (Drosophila melanogaster) is recorded using six multi-view
infrared cameras and a two-photon microscope. The resulting dataset
includes the following.A 2D poses extracted from different views (only
three are shown), calculated on grayscale images. B 3D poses triangu-
lated from the 2D views. C Synchronized, registered, and denoised
single-channel fluorescence calcium imaging data using a two-photon
microscope. Shown are color-coded activity patterns for populations of

descending neurons from the brain. These carry action information (red
is active, blue is inactive). D Annotations for eight subjects of eight
different behaviors, four of which are shown here. E Manual neural
segmentation has been performed to extract neural activity traces for
each neuron. We will release our MC2P publicly. Examples videos of
selected actions andmulti-modal data are in the SupplementaryMaterial

To address these challenges, we propose to learn neu-
ral action representations—embeddings of behavioral states
within neural activity patterns—in an self-supervised fash-
ion. To this end, we leverage the recent development of
computer vision approaches for automated, markerless 3D
pose estimation (Günel et al., 2019; Nath et al., 2019)
to provide the required supervisory signals without human
intervention. We first show that using contrastive learning
to generate latent vectors by maximizing the mutual infor-
mation of simultaneously recorded neural and behavioral
data modalities is not sufficient to overcome the domain gap
between subjects and to generalize to unlabeled subjects at
test time (Fig. 3B). To address this problem, we introduce
two sets of techniques:

1. To close the domain gap between subjects, we leverage
3D pose information. Specifically, we use pose data to
find sequences of similar actions between a source and
multiple target subjects. Given these sequences, we mix
and replace neural or behavioral data of the source sub-
ject with the ones composed of multiple target subjects.
To make this possible, we propose a new Mixup strat-
egy which merges selected samples from multiple target
animals, practically hiding the identity information. This
allows us to train our decoder to ignore subject identity
and close the domain gap.

2. Tomitigate the slowly decaying calcium data impact from
past actions on neural images, we add simulated random-
ized versions of this effect to our training neural images
in the form of a temporally exponentially decaying ran-
dom action. This trains our decoder to learn the necessary
invariance and to ignore the real decay in neural cal-
cium imaging data. Similarly, tomake the neural encoders
robust to imaging noise resulting from low image spatial
resolution, we augment random sequences into sequences
of neural data to replicate this noise.

The combination of these techniques allowed us to bridge
the domain gap across subjects in an unsupervised manner
(Fig. 3D),making it possible to performaction recognition on
unlabeled subjects better than earlier techniques, including
those requiring supervision (Glaser et al., 2020; Batty et al.,
2019; Kostas et al., 2021). To test the generalization capac-
ity of neural decoding algorithms, we record and use MC2P
dataset, which we will make publicly available (Aymanns
et al., 2022) 1. It includes two-photon microscope recordings
of multiple spontaneously behaving Drosophila, and associ-
ated behavioral data together with action labels.

Finally, to demonstrate that our technique generalizes
beyond this one dataset, we tested it on two additional ones.
One dataset features neural ECoG recordings and 2D pose

1 The dataset can be accessed from https://github.com/semihgunel/
mc2p.
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Fig. 2 Domain gap between nervous systems across subjects. Neural
imaging data from four different animals in each corner. Images differ in
terms of total brightness, the location of observed neurons, the number
of visible neurons, and the shape and size of axons

data for epileptic patients (Peterson, 2021; Singh et al., 2021)
along with the well-known H36M dataset (Ionescu et al.,
2014) in which we treat the multiple views as independent
domains. In all of the datasets, our ultimate goal is to interpret
neural or video data so that one can generate latent represen-
tations that are useful for action recognition. Our method
markedly improves across-subject action recognition in all
datasets.

We hope our work will inspire the use and development
of more general self-supervised neural feature extraction
algorithms in neuroscience. These approaches promise to
accelerate our understanding of how neural dynamics give
rise to complex animal behaviors and can enable more robust
neural decoding algorithms to be used in brain-machine inter-
faces.

2 RelatedWork

2.1 Neural Action Decoding

The ability to infer behavioral intentions from neural data, or
neural decoding of behavior, is essential for the development
of effective brain-machine interfaces and for closed-loop
experimentation (Wen et al., 2021; Lau et al., 2021). Neural
decoders can be used to increase themobility of patients with
disabilities (Collinger et al., 2018; Ganzer et al., 2020), or
neuromuscular diseases (Utsumi et al., 2018), and can expand
our understanding of how the nervous system works (Sani et
al., 2018). However, most neural decoding methods require
manual annotations of training data that are both tedious to
acquire and error prone (Glaser et al., 2020; Lacourse et al.,
2020; Segalin et al., 2021).

Existing self-supervised neural decoding methods (Wang
et al., 2018; Kostas et al., 2021; Mohsenvand et al., 2020;
Peterson et al., 2021) cannot be used on unlabeled subjects
without action labels. A potential solution would be to use
domain adaptation techniques to treat each new subject as
a new domain. However, existing domain adaptation studies

of neural decoding (Li et al., 2020; Farshchian et al., 2018)
have focused on gradual domain shifts associated with slow
changes in sensor measurements rather than the challenge of
generalizing across individual subjects. In contrast to these
methods, our approach is self-supervised and can generalize
to unlabeled subjects at test time, without requiring action
labels for new individuals.

2.2 Action Recognition

Contrastive learning has been extensively used on human
motion sequences to perform action recognition using 3D
pose data (Liu et al., 2020; Su et al., 2020; Lin et al., 2020)
and video-based action understanding (Pan et al., 2021; Dave
et al., 2021). Similarly, supervised and unsupervised action
recognition approaches have been used on animal datasets
on pose or RGB modalities (Sun et al., 2021; Eyjolfsdottir,
2017; Eyjolfsdottir et al., 2014, 2017; Bohnslav et al., 2021;
Wiltschko et al., 2015).However, a barrier to using these tools
in neuroscience is that the statistics of our neural data—the
locations and sizes of cells—and behavioral data—body part
lengths and limb ranges of motion—can be very different
from animal to animal, creating a large domain gap.

In theory, there are multimodal domain adaptation meth-
ods for action recognition that coulddealwith this gap (Munro
& Damen, 2020; Chen et al., 2019; Xu et al., 2021). How-
ever, they assume supervision in the form of labeled source
data. Inmost laboratory settings, where large amounts of data
are collected and resources are limited, this is an impractical
solution.

2.3 Representation Learning

Most efforts to derive a low dimensional representation of
neural activity have used recurrent models (Nassar et al.,
2019; Linderman et al., 2019, 2017), variational autoen-
coders (Gao et al., 2016; Pandarinath et al., 2018), and
dynamical systems (Abbaspourazad et al., 2021; Shenoy &
Kao, 2021). Video and pose data have previously been used
to segment and cluster temporally related behavioral infor-
mation (Sun et al., 2021; Segalin et al., 2020; Overman et al.,
2021; Pereira et al., 2020; Johnson et al., 2020).

By contrast, there have been relatively few approaches
developed to extract behavioral representations from neural
imagingdata (Batty et al., 2019;Sani et al., 2021;Glaser et al.,
2020).Most have focused on identifying simple relationships
between these two modalities using simple supervised meth-
ods, such as correlation analysis, generalized linear models
(Robie et al., 2017; Musall et al., 2019; Stringer et al., 2019),
or regressive methods (Batty et al., 2019). We present a joint
modeling of motion capture and neural modalities to fully
extract behavioral information from neural data using a self-
supervised learning technique.
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Fig. 3 t-SNE plots of the neural data. Each color denotes a different fly.
The red dots are embeddings of the same action label in two different
subjects. A Raw neural data. B SimCLR (Chen et al., 2020) represen-
tation, C Domain adaptation using a two-layer MLP discriminator and

a Gradient Reversal Layer. D Ours. The identity of the animals is dis-
carded and the semantic structure is preserved better than the previous
methods, as similar same actions are positioned similarly, irrespective
of subject identity

2.4 Pose Estimation

In order to utilize the advances in large behavioral recordings,
recent efforts have made it possible to perform markerless
predictions of 2D poses on animals using mostly deep learn-
ing (Pereira et al., 2020; Wu et al., 2020; Bala et al., 2020;
Graving et al., 2019; Li et al., 2020). 2D animal poses can be
converted into 3D animal poses using multi-view stereo sys-
tems or using liftingmethods (Karashchuk et al., 2021;Günel
et al., 2019; Gosztolai et al., 2021; Pedersen et al., 2020).
Similarly, multi-animal tracking and pose estimation can be
achieved using deep learning (Koger et al., 2022; Walter &
Couzin, 2021). At the same time, realistic animal models
have been built for downstream applications such as extract-
ing 3D shape and texture from images, for animals such as
mice, zebras, and elephants (Kulkarni et al., 2020; Sanakoyeu
et al., 2020; Lobato-Rios et al., 2021; Bolaños et al., 2021).

2.5 Mixup Training

Mixup regularization was first proposed as a way to learn
continuous latent spaces and to improve generalization for
supervised learning (Berthelot et al., 2019; Verma et al.,
2019; Zhang et al., 2018). Several previous studies have used
aMixup strategy to generate new positive pairs in contrastive
learning (Shen et al., 2022; Lee et al., 2021). Mixup has
rarely been used for domain adaptation. Recent examples
include temporal background mixing (Sahoo et al., 2021),
prediction smoothing across domains (Mao et al., 2019), and
training better discriminators on uni-modal datasets (Sahoo
et al., 2020). Our Mixup strategy can be regarded as a multi-
modal extension of the previous approaches (Sahoo et al.,
2021; Zhang et al., 2018) where per-frame feature-level
stochasticMixup between domainswas performed to explore
shared space and to hide identity information. Unlike these
approaches, we explicitly condition the sampling procedure
on the input data. We demonstrate that this approach helps
to learn domain-invariant neural features.

In this work, we propose a new action recognition sys-
tem by learning joint neural-behavioral representations using
multi-modal pre-training. We learn these joint representa-
tions together with a novel set of augmentation strategies.
Our method performs action classification without requiring
action labels in the target domain. We show that our method
outperforms previous neural action decoding work on three
different datasets. We hope our method will accelerate our
understanding of how neural dynamics give rise to complex
animal behaviors and can enable more robust neural decod-
ing algorithms to be used in brain-machine interfaces.

3 Approach

Our ultimate goal is to interpret neural data so that, given a
neural image, one can generate latent representations that are
useful for downstream tasks. This is challenging due to the
wide domain-gap in neural representations between different
subjects (Fig. 2). Hence, we aim to leverage self-supervised
learning techniques to derive rich features that, once trained,
could be used on downstream tasks including action recog-
nition to predict the behaviors of unlabeled subjects.

Our data is composed of set of neural images synchro-
nized with behavioral data, where we do not know where
each action starts and ends. We leveraged contrastive learn-
ing to generate latent vectors from both modalities such that
their mutual information would be maximized and therefore
describe the same underlying action. However, this is insuffi-
cient to address the domain-gap between subjects (Fig. 3B).
To do so, we implement an across-domain mixing strategy:
We replace the original pose or neural data of an animal
with mix of another set of animals from the same dataset,
for which there is a high degree of 3D pose similarity at
each given instance in time. Unlike behavioral data, neu-
ral data has unique properties. Neural calcium data contains
information about previous actions because it decays slowly
across time and it involves limited spatial resolution. To teach
our model the invariance of these artifacts of neural data,
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we propose two data augmentation techniques: (i) Neural
Calcium augmentation - given a sequence of neural data,
we apply an exponentially decaying neural snapshot to the
sequence, which imitates the decaying impact of previous
actions, (ii) Neural Noise augmentation - to make the model
more robust to noise, we applied an augmentation which
merges a sequence of neural data with another randomly
sampled neural sequence using a coefficient.

Together, these augmentations enable a self-supervised
approach to (i) bridge the domain gap between subjects
allowing testing on unlabeled ones, and (ii) imitate the tem-
poral and spatial properties of neural data, diversifying it and
making it more robust to noise. In the following section, we
describe these steps in more detail.

3.1 Problem Definition

Weassume a paired set of dataDs = {(
bsi ,n

s
i

)}ns
i=1, whereb

s
i

and nsi represent behavioral and neural information respec-
tively, with ns being the number of samples for subject s ∈ S.
We quantify behavioral informationbsi as a set of 3Dposesbsk
for each frame k ∈ i takenof subject s, andneural information
nsi as a set of two-photonmicroscope imagesnsk , for all frames
k ∈ i capturing the activity of neurons. The data is captured
such that the twomodalities are always synchronized (paired)
without human intervention, and therefore describe the same
set of events. Our goal is to learn an unsupervised parame-
terized image encoder function fn , that maps a set of neural
images nsi to a low-dimensional representation. We aim for
our learned representation to be representative of the under-
lying action label, while being agnostic to both modality and
the identity. We assume that we are not given action labels
during pre-training. Also note that we do not know at which
point in the captured data an action starts and ends. We just
have a series of unknown actions performed by different sub-
jects.

3.2 Contrastive Representation Learning

For each input pair
(
bsi ,n

s
i

)
, we first draw a random aug-

mented version (b̃si , ñ
s
i ) with a sampled transformation

function tn ∼ Tn and tb ∼ Tb , where Tn and Tb represent
a family of stochastic augmentation functions for behav-
ioral and neural data, respectively, which are described in
the following sections. Next, the encoder functions fb and
fn transform the input data into low-dimensional vectors hb
and hn , followed by non-linear projection functions gb and
gn , which further transform data into the vectors zb and zn .
For the behavioral modality, in order to facilitate mixing,
we first transform augmented input data b̃si into ms

i using a
shallow frame-wise MLP, as shown in Fig 4. For the neural
modality, we instead directly apply mixing using hn , since

frame-level mixing is not possible. We give the details of
the mixing strategy in the next sections. During training, we
sample a minibatch of N input pairs

(
bsi ,n

s
i

)
, and train with

the loss function

Lb→n
NCE = −

N∑

i=1

log
exp

(〈
zib, z

i
n

〉
/τ

)

∑N
k=1 exp

(〈
zib, z

k
n

〉
/τ

) (1)

where
〈
zib, z

i
n

〉
is the cosine similarity between behavioral and

neural modalities and τ ∈ R
+ is the temperature parameter.

Intuitively, the loss functionmeasures classification accuracy
of a N-class classifier that tries to predict zin given the true
pair zib. To symmetrize the loss function with respect to the
negative samples, we also define

Ln→b
NCE = −

N∑

i=1

log
exp

(〈
zib, z

i
n

〉
/τ

)

∑N
k=1 exp

(〈
zkb, z

i
n

〉
/τ

) . (2)

We take the combined loss function to be LNCE = Lb→n
NCE +

Ln→b
NCE , as in Zhang et al. (2020), Yuan et al. (2021). The

loss functionmaximizes themutual information between two
modalities (van den Oord et al., 2019). Although standard
contrastive learning bridges the gap between differentmodal-
ities, it does not bridge the gap between different subjects
(Fig. 3B). This is a fundamental challenge that we address in
this work through augmentations described in the following
section, which are part of the neural and behavioral family
of augmentations Tn and Tb.

3.2.1 Mixup Strategy

Given a set of consecutive 3D poses bsi and their features
ms

i calculated by a shallow MLP from augmented b̃si , for
each k ∈ i, we stochastically replace ms

k with a mix of its
two pose neighbors, sampled from two subjects, in the set of
domains DS , where S is the set of all animals. To get one
of the neighbors, we first uniformly sample a domain ŝ ∈ S
and define a probability distribution Pŝ

bsk
over the domainDŝ

with respect to single 3D pose bsk ,

Pŝ
bsk

(bŝl ) = exp(−‖bŝl − bsk‖2)∑
bŝm∈Dŝ

exp(−‖bŝm − bsk‖2)
. (3)

We then sample from the above distribution and pass it
through the shallow MLP, which yields mŝ

l ∼ Pŝ
bsk
. Notice

that, although distribution is conditioned on the 3D pose bs ,
we sample back 3D pose featuresms . In practice, we calcu-
late the distribution P only over the approximate N nearest
neighbors of bsk , in order to speed up the implementation.
We empirically set N to 128. Given two samplesmŝ

l andm
s
j
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Fig. 4 Our approach to learning an effective representation of behav-
iors. First, we sample a synchronized set of behavioral and neural
frames, (bi,ni). Then, we augment these data using randomly sam-
pled augmentation functions tb and tn . Encoders fb and fn generate
intermediate representations hb and hn , which are then projected into
zb and zt by two separate projection heads gb and gn . For the behavioral

modality, we first apply a frame-wise MLP before fb. We then apply
mixing onmb

i . For the neural modality, we apply mixing on hni without
an MLP, since mixing cannot be done at frame level. We maximize the
similarity between the two projections using an InfoNCE loss. At test
time, the red branch and hni is used for neural decoding

from the above distribution from independent domains, we
then return the mixed version of

m̃s
k = λmŝ

l + (1 − λ)ms
j . (4)

We sample the mixing coefficient λ from the Beta distri-
bution λ ∼ Beta(α, β). Our Mixup strategy removes the
identity information in the behavioral data without perturb-
ing it to the extent that semantic action information is lost.
Since each behavioral sample ms

i is composed of a set of
3D pose features, and each 3D pose feature ms

k,∀k ∈ i is
replaced with a feature of a random domain, the transformed
sample m̃s

i is nowcomposed ofmultiple domains. This forces
the behavioral encoding function fb to leave identity infor-
mation out, therefore generalizing across multiple domains
(Fig. 5).

Our Mixup augmentation is similar to the synonym
replacement augmentation used in natural language process-
ing (Wei & Zou, 2019), where randomly selected words in
a sentence are replaced by their synonyms, therefore chang-
ing the syntactic form of the sentence without altering the
semantics. Instead, we randomly replace each 3D pose in a
motion sequence. To the best of our knowledge, we are the
first to use frame-wise mix strategy in the context of time-
series analysis or for domain adaptation that is conditioned
on the input.

To keepmixing symmetric, we also mix the neural modal-
ity. To mix a set of neural features hsi , we take its behavioral
pair bsi , and search for similar sets of poses in other domains,
with the assumption that similar sets of poses describe the
same action. Therefore, once similar behavioral data is found,
their neural data can be mixed. Note that, unlike behavior
mixing, we do not calculate the distribution on individual
3D pose bsk , but instead on the whole set of behavioral data
bsi , because similarity in a single pose does not necessarily
imply similar actions and similar neural data. More formally,

given the behavioral-neural pair
(
bsi ,n

s
i

)
, we mix the neural

modality features hsi by sampling two new neural features hsj
and hŝl from distinct animals ŝ and s, using the probability
distribution

Pŝ
nsi

(bŝj ) = exp(−‖bŝj − bsi ‖2)∑
bŝm∈Dŝ

exp(−‖bŝm − bsi ‖2)
, (5)

and then we return

h̃sk = λhŝl + (1 − λ)hsj . (6)

Similarly, first we sample the mixing coefficient λ from the
Beta distribution λ ∼ Beta(α, β). This yields new mixed
neural feature h̃si , where the augmented neural data comes
from two different subjects in S.

3.2.2 Neural Calcium Augmentation

Our neural data was obtained using two-photon microscopy
and fluorescence calcium imaging. The resulting images are
only a function of the underlying neural activity, and have
temporal properties that differ from the true neural activ-
ity. For example, calcium signals from a neuron change
much more slowly than the neuron’s actual firing rate.
Consequently, a single neural image nt includes decaying
information concerning neural activity from the recent past,
and thus carries information about previous behaviors. This
makes it harder to decode the current behavioral state.

We aimed to prevent this overlap of ongoing and previ-
ous actions. Specifically, we wanted to teach our network to
be invariant with respect to past behavioral information by
augmenting the set of possible past actions. To do this, we
generated new data ñsi , that included previous neural activ-
ity nsk . To mimic calcium indicator decay dynamics, given a
neural data sample nsi of multiple frames, we sample a new
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Fig. 5 Our Mixup strategy. Each 3D pose is processed by a pose-wise
MLP to generate 3D pose features. Then, each 3D pose feature in the
motion sequence of Domain 2 is randomly replaced with mix of two of
its neighbors, from the set of domains ŝ ∈ S, which includes Domains
1 and 3. The Mixup augmentation hides identity information, while
keeping pose changes in the sequence minimal

neural frame nsk from the same domain, where k /∈ i. We
then convolve nsk with the temporally decaying calcium con-
volutional kernel K, therefore creating a set of images from
a single frame nsk , which we then add back to the original
data sample nsi . This results in ñsi = nsi + K ∗ nsk where ∗
denotes the convolutional operation. In the Supplementary
Material, we explain calcium dynamics and our calculation
of the kernel K in more detail.

3.2.3 Neural Noise Augmentation

Two-photon microscopy images often include multiple neu-
ral signals combined within a single pixel. This is due to the
the fact that multiple axons can be present in a small tissue
volume that is below the spatial resolution of themicroscope.
To mimic this noise-adding effect, given a neural image nsi ,
we randomly sample a set of frames nŝk, from a random
domain ŝ. We then return the blend of these two videos,
ñsi = nsi + αnŝk, to mix and hide the behavioral information.
Unlike the CutMix (Yun et al., 2019) augmentations used for
supervised training, we apply the augmentation in an unsu-
pervised setup to make the model more robust to noise. We
sample a random α for the entire set of samples in nsi .

4 Experiments

We test our method on three datasets. In this section, we
describe these datasets, the set of baselines against which we
compare our model, and finally the quantitative comparison
of all models.

4.1 Datasets

We ran most of our experiments on a large dataset of fly neu-
ral and behavioral recordings that we acquired and describe
below, which we calledMC2P. To demonstrate our method’s
ability to generalize, we also adapted it to run on another
multimodal dataset that features neural ECoG recordings
and markerless motion capture (Peterson, 2021; Singh et
al., 2021), as well as the well known H36M human motion
dataset (Ionescu et al., 2014).

4.1.1 MC2P

Since there was no available neural-behavioral dataset with
a rich variety of spontaneous behaviors from multiple indi-
viduals, we acquired our own dataset that we name Motion
Capture and Two-photon Dataset (MC2P). We will release
this dataset publicly. MC2P features data acquired from teth-
ered behaving adult flies, Drosophila melanogaster (Fig. 1),
It includes:

1. Infrared video sequences of the fly acquired using six
synchronized and calibrated infrared cameras forming a
ringwith the animal at its center. The images are 480×960
pixels in size and recorded at 100 fps.

2. Neural activity imaging obtained from the axons of
descendingneurons that pass from thebrain tofly’s ventral
nerve cord (motor system) and drive actions. The neural
images are 480 × 736 pixels in size and recorded at 16
fps using a two-photon microscope (Chen et al., 2018)
that measures the calcium influx which is a proxy for the
neuron’s actual firing rate.

We recorded 40 animals over 364 trials, resulting in 20.7
hours of recordings with 7,480,000 behavioral images and
1,197,025 neural images. We provide additional details and
examples in theSupplementaryMaterial.Wegive an example
video of synchronized behavioral and neural modalities in
Supplementary Videos 1 and 2.

Toobtain quantitative behavioral data fromvideo sequences,
we extracted 3D poses expressed in terms of the 3D coor-
dinates of 38 keypoints (Günel et al., 2019). We provide
an example of detected poses and motion capture in Sup-
plementary Videos 3 and 4. For validation purposes, we
manually annotated a subset of frames using eight behavioral
labels: forwardwalking,pushing,hindleg grooming,abdomi-
nal grooming, rest, foreleg grooming, antenna grooming, and
eye grooming. We provide an example of behavioral anno-
tations in Supplementary Video 5. To keep the experiments
consistent, we always paired 32 frames of neural data with 8
frames of behavioral data.
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Fig. 6 Domain Gap in the H3.6M dataset. Similar to the domain gap
across nervous systems, RGB images show a significant domain gap
when the camera angle changes across individuals. We guide action
recognition across cameras in RGB images using 3D poses and behav-
ioral mixing

4.1.2 ECoG Dataset

(Peterson, 2021; Singh et al., 2021): This dataset was
recorded from epilepsy patients over a period of 7-9 days.
Each patient had 90 electrodes implanted under their skull.
The data comprises human neural Electrocorticography
(ECoG) recordings and markerless motion capture of upper-
body 2D poses. The dataset is labeled to indicate periods
of voluntary spontaneous motions, or rest. As for two-
photon images in flies, ECoG recordings show a significant
domain gap across individual subjects.We applied our multi-
modal contrastive learning approach on ECoG and 2D pose
data along with mixing-augmentation. Then, we applied an
across-subject benchmark in which we do action recognition
on a new subject without known action labels (Fig. 6).

4.1.3 H3.6M

H3.6M is a multi-view motion capture dataset that is not
inherently multimodal. However, to test our approach in a
very different context than the other two cases, we treated
the videos acquired by different camera angles as belong-
ing to separate domains. Since videos are tied to 3D poses,
we used these two modalities and applied mixing augmenta-
tion together with multimodal contrastive learning to reduce
the domain gap across individuals. Then, we evaluated the
learned representations by performing action recognition on
a camera angle that we do not have action labels for. This
simulates our across-subject benchmark used in the MC2P
dataset. For each experimentwe selected three actions, which
can be classified without examining large window sizes. We
give additional details in the Supplementary Material.

4.2 Baselines

We evaluated our method using two supervised baselines,
Neural Linear and Neural MLP. These directly predict
action labels from neural data without any self-supervised
pretraining using cross-entropy loss. We do not use any post-
processing or smoothing after any of our baselines. We also
compared our approach to three regression methods that
attempt to regress behavioral data from neural data, which

is a common neural decoding technique. These include a
recent neural decoding algorithm, BehaveNet (Batty et al.,
2019), as well as to two other regression baselines with
recurrent and convolutional approaches: Regression (Recur-
rent) and Regression (Convolution). In addition, we compare
our approach to recent self-supervised representation learn-
ing methods, including SeqCLR (Mohsenvand et al., 2020)
and SimCLR (Chen et al., 2020). We also combine con-
volutional regression-based method (Reg. (Conv)) or the
self-supervised learning algorithm SimCLR with the com-
mon domain adaptation techniques Gradient Reversal Layer
(GRL) (Ganin & Lempitsky, 2015), or MeanMaximumDis-
crepancy (Gretton et al., 2006). This yields four domain
adaptation models. Finally, we apply a recent multi-modal
domain adaptation network for action recognition, MM-
SADA (Munro & Damen, 2020) on MC2P dataset. For all
of these methods, we used the same backbone architecture.
We describe the backbone architecture in more detail in the
Supplementary Material. We describe the baselines in more
detail in following:

4.2.1 Supervised

A feedforward network trained with manually annotated
action labels using cross-entropy loss, having neural data as
input. We discarded datapoints that did not have associated
behavioral labels. For the MLP baseline, we trained a simple
three layerMLPwith a hidden layer size of 128 neurons with
ReLU activation and without batch normalization.

4.2.2 Regression (Convolutional)

A fully-convolutional feedforward network trained with
MSE loss for behavioral reconstruction task, given the set
of neural images. To keep the architectures consistent with
the other methods, the average pooling is followed by a pro-
jection layer, which is used as the final representation of this
model.

4.2.3 Regression (Recurrent)

This is similar to the one above but the last projection net-
work was replaced with a two-layer GRUmodule. The GRU
module takes as an input the fixed representation of neural
images. At each time step, the GRUmodule predicts a single
3D pose with a total of eight steps to predict the eight poses
associated with an input neural image. This model is trained
with an MSE loss. We take the input of the GRU module as
the final representation of neural encoder.
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4.2.4 BehaveNet

This uses a discrete autoregressive hidden Markov model
(ARHMM) to decompose 3D motion information into dis-
crete “behavioral syllables” (Batty et al., 2019). As in the
regression baseline, the neural information is used to predict
the posterior probability of observing each discrete syllable.
Unlike the original method, we used 3D poses instead of
RGB videos as targets. We skipped compressing the behav-
ioral data using a convolutional autoencoder because, unlike
RGB videos, 3D poses are already low-dimensional.

4.2.5 SimCLR

We trained the original SimCLRmodule without the calcium
imaging data and mixing augmentations (Chen et al., 2020).
As in our approach,we took the features before the projection
layer as the final representation.

4.2.6 Gradient Reversal Layer (GRL)

Together with the contrastive loss, we trained a two-layer
MLP domain discriminator per modality, Db and Dn , which
estimates the domain of the neural and behavioral repre-
sentations (Ganin & Lempitsky, 2015). Discriminators were
trained by minimizing

LD =
∑

x∈{b,n} −d log (Dm ( fm(x))) (7)

where d is the one-hot identity vector. Gradient Rever-
sal layer is inserted before the projection layer. Given the
reversed gradients, the neural and behavioral encoders fn
and fb learn to fool the discriminator and outputs invariant
representations across domains, hence acting as a domain
adaptation module. We kept the hyperparameters of the dis-
criminator the same as in previous work (Munro & Damen,
2020). We froze the weights of the discriminator for the
first 10 epochs, and trained only the LNCE . We trained the
network using both loss functions, LNCE + λDLD , for the
remainder of training. We set the hyperparameters λD to 10
empirically.

4.2.7 MaximumMean Discrepancy (MMD)

We replaced adversarial loss in GRL baseline with a statis-
tical test that minimizes the distributional discrepancy from
different domains (Gretton et al., 2006).

4.2.8 MM-SADA

A recent multi-modal domain adaptation model for action
recognition that minimizes cross-entropy loss on target

labels, adverserial loss for domain adaptation, and contrastive
losses to maximize consistency between multiple modalities
(Munro & Damen, 2020). As we do not assume any action
labels during the contrastive training phase, we removed the
cross-entropy loss.

4.2.9 SeqCLR

This approach learns a uni-modal self-supervised contrastive
model (Mohsenvand et al., 2020). Hence, we only apply
it to the neural imaging data, without using the behavioral
modality. As this method was previously applied on datasets
with Electroencephalography (ECoG) imaging technique,
we removed ECoG specific augmentations.

4.2.10 MaximumMean Discrepancy (MMD)

We replaced adversarial loss in GRL baseline with a sta-
tistical test to minimize the distributional discrepancy from
different domains (Gretton et al., 2006). Similar to previ-
ous work, we applied MMD only on the representations
before the projection layer independently on both modali-
ties (Munro & Damen, 2020; Kang et al., 2020). Similar
to the GLR baseline, we first trained 10 epochs only using
the contrastive loss, and trained using the combined losses
LNCE+λMMDLMMD for the remainder.We set the hyperpa-
rameters λMMD as 1 empirically. For the domain adaptation
methods GRL and MMD, we reformulated the denomina-
tor of the contrastive loss function. Given a domain function
dom which gives the domain of the data sample, we replaced
one side of LNCE in Eq. 1 with,

log
exp

(〈
zib, z

i
n

〉
/τ

)

∑N
k=1 1[dom(i)=dom(k)] exp

(〈
zib, z

k
n

〉
/τ

) , (8)

where selective negative sampling prevents the formation
of trivial negative pairs across domains, therefore making it
easier tomergemultiple domains. Negative pairs formed dur-
ing contrastive learning try to push away inter-domain pairs,
whereas domain adaptation methods try to merge multiple
domains to close the domain gap. We found that the training
of contrastive and domain adaptation losses together could
be quite unstable, unless the above changes were made to the
contrastive loss function.

4.3 Benchmarks

Since our goal is to create useful representations of neural
images in an self-supervised way, we focused on single- and
across-subject action recognition. Specifically, we trained
our neural decoder fn along with the others without using
any action labels. Then, freezing the neural encoder parame-
ters, we trained a linearmodel on the encoded features, which
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is an evaluation protocol widely used in the field (Chen et al.,
2020; Lin et al., 2020; He et al., 2020; Dave et al., 2021). We
used either half or all action labels. We mention the specifics
of the train-test split in the Supplementary Material.

4.3.1 Single-Subject Action Recognition

For each subject, we trained and tested a simple linear clas-
sifier independently on the learned representations to predict
action labels. We assume that we are given action labels on
the subject we are testing. In Table 1 we report aggregated
results.

4.3.2 Across-Subject Action Recognition

We trained linear classifiers on N-1 subjects simultaneously
and tested on the left-out one. Therefore, we assume we do
not have action labels for the target subject. We repeated the
experiment for each individual and report the mean accuracy
in Tables 1 and 2.

4.3.3 Identity Recognition

As a sanity check, we attempted to classify subject identity
among the individuals given the learned representations. We
again used a linear classifier to test the domain invariance
of the learned representations. In the case that the learned
representations are domain (subject) invariant, we expect that
the linear classifier will not be able to detect the domain of
the representations, resulting in a lower identity recognition
accuracy. Identity recognition results are rerported inTables 1
and 2.

5 Results

5.1 Single-Subject Action Recognition onM2CP

For the Single-Subject baseline, joint modeling of common
latent space out-performed supervised models by a large
margin, even when the linear classifier was trained on the
action labels of the tested animal. Our mixing and neural
augmentations resulted in an accuracy boost when compared
with a simple contrastive learning method, SimCLR (Chen
et al., 2020). Although regression-based methods can extract
behavioral information from the neural data, they do not
produce discriminative features. When combined with the
proposed set of augmentations, our method performs bet-
ter than previous neural decoding models because it extracts
richer features thanks to a better self-supervised pretraining
step. Domain adaptation techniques do not result in a sig-
nificant difference in the single-subject baseline; the domain
gap in a single animal is smaller than between animals.

5.2 Across-Subject Action Recognition onM2CP

We show that supervised models do not generalize across
animals, because each nervous system is unique. Before
using the proposed augmentations, the contrastive method
SimCLR performed worse than convolutional and recurrent
regression-based methods including the current state-of-art
BehaveNet (Batty et al., 2019). This was due to large domain
gap between animals in the latent embeddings (Fig. 3B).
Although the domain adaptation methods MMD (Maximum
Mean Discrepancy) and GRL (Gradient Reversal Layer)
close the domain gap when used with contrastive learn-
ing, they do not position semantically similar points near
one another (Fig. 3C). As a result, domain adaptation-based
methods do not result in significant improvements in the
across-subject action recognition task. Although regression-
based methods suffer less from the domain gap problem,
they do not produce representations that are as discrimina-
tive as contrastive learning-based methods. Our proposed set
of augmentations and strategies close the domain gap, while
improving the action recognition baseline for self-supervised
methods, for both single-subject and across-subject tasks
(Fig. 3D).

5.3 Action Recognition on ECoGMotion versus Rest

As shown at the bottom of Table 2, our approach significantly
lowers the identity information in ECoG embeddings, while
significantly increasing across-subject action recognition
accuracy compared to the regression and multi-modal Sim-
CLR baselines. Low supervised accuracy confirms a strong
domain gap across individuals. Note that uni-modal con-
trastive modeling of ECoG recordings (SimCLR (ECoG))
does not yield strong across-subject action classification
accuracy because uni-modal modeling cannot deal with the
large domain gap in the learned representations.

5.4 Human Action Recognition on H3.6M

We observe in Table 2 that, similar to the previous datasets,
the low performance of the supervised baseline and the uni-
modalmodeling of RGB images (SimCLR (RGB)) are due to
the domain-gap in the across-subject benchmark. This obser-
vation is confirmed by the high identity recognition of these
models. Our mixing strategy strongly improves compared to
the regression and multi-modal contrastive (SimCLR) base-
lines. Similar to the previous datasets, uni-modal contrastive
training cannot generalize across subjects, due to the large
domain gap.

123



International Journal of Computer Vision (2023) 131:813–833 823

Ta
bl
e
1

A
ct
io
n
re
co
gn
iti
on

ac
cu
ra
cy

on
M
C
2P

da
ta
se
t

Ta
sk
s
→

Si
ng
le
-S
ub
je
ct

↑
A
cr
os
s-
Su

bj
ec
t↑

Id
en
tit
y
R
ec
og

.↓
Po

se
Pe
rc
en
ta
ge

of
D
at
a

→
0.
5

1.
0

0.
5

1.
0

0.
5

1.
0

R
an
do
m

G
ue
ss

16
.6

16
.6

16
.6

16
.6

12
.5

12
.5

�
N
eu
ra
l(
L
in
ea
r)

29
.3

32
.5

18
.4

18
.4

10
0.
0

10
0.
0

�
N
eu
ra
l(
M
L
P)

–
–

18
.4

18
.4

10
0.
0

10
0.
0

�
Se
qC

L
R
(M

oh
se
nv
an
d
et
al
.,
20
20
)

39
.5

42
.1

21
.9

28
.4

93
.0

96
.5

�
O
ur
s
(N

eu
ra
lO

nl
y)

42
.0

44
.8

21
.3

30
.6

94
.1

96
.8

�
Si
m
C
L
R
(C

he
n
et
al
.,
20
20
)

54
.3

57
.6

46
.9

50
.6

69
.9

80
.3

��
R
eg
re
ss
io
n
(R
ec
ur
re
nt
)

53
.6

59
.7

49
.4

51
.2

89
.5

91
.8

��
R
eg
re
ss
io
n
(C
on
vo
lu
tio

n)
52
.6

59
.6

50
.6

55
.8

88
.7

92
.5

��
B
eh
av
eN

et
(B
at
ty

et
al
.,
20
19
)

54
.6

60
.2

50
.5

56
.8

80
.2

83
.4

��
Si
m
C
L
R
(C

he
n
et
al
.,
20
20
)
+
M
M
D
(G

re
tto

n
et
al
.,
20
06
)

53
.6

57
.8

50
.1

53
.1

18
.4

21
.2

��
Si
m
C
L
R
(C

he
n
et
al
.,
20
20
)
+
G
R
L
(G

an
in

&
L
em

pi
ts
ky
,2

01
5)

53
.5

56
.3

49
.9

52
.3

16
.7

19
.1

��
R
eg
.(
C
on
v.
)
+
M
M
D
(G

re
tto

n
et
al
.,
20
06
)

54
.5

60
.7

52
.6

55
.4

18
.2

19
.5

��
R
eg
.(
C
on
v.
)
+
G
R
L
(G

an
in

&
L
em

pi
ts
ky
,2

01
5)

55
.5

60
.2

51
.8

55
.7

17
.2

17
.3

��
M
M
-S
A
D
A
(M

un
ro

&
D
am

en
,2

02
0)

53
.1

56
.2

49
.2

52
.1

13
.8

15
.2

��
O
ur
s

57
.6

63
.1

54
.8

61
.5

13
.2

13
.6

��

B
ol
d
va
lu
es

de
no
te
th
e
be
st
m
et
ho
d
fo
r
ea
ch

ca
te
go
ry

Si
ng

le
-
an
d
A
cr
os
s-
Su

bj
ec
t
ac
tio

n
re
co
gn

iti
on

re
su
lts

on
th
e
M
C
2P

da
ta
se
t.
N
eu
ra
l
M
L
P
re
su
lts

fo
r
th
e
si
ng

le
-s
ub

je
ct

ta
sk

ar
e
re
m
ov
ed

be
ca
us
e
si
ng

le
su
bj
ec
ts
of
te
n
do

no
t
ha
ve

en
ou
gh

la
be
ls

fo
r
ev
er
y
ac
tio

n.
Sm

al
le
r
nu
m
be
rs

ar
e
be
tte
r
fo
r
Id
en
tit
y
R
ec
og
ni
tio

n.
O
ur

m
et
ho
d
pe
rf
or
m
s
be
tte
r
th
an

pr
ev
io
us

ne
ur
al

de
co
di
ng

m
et
ho
ds

an
d
ot
he
r
se
lf
-s
up
er
vi
se
d
le
ar
ni
ng

ba
se
d
pr
e-
tr
ai
ni
ng

m
et
ho

ds
in

al
lb

en
ch
m
ar
ks
,w

hi
le
at
th
e
sa
m
e
tim

e
cl
os
in
g
th
e
do

m
ai
n
ga
p
be
tw

ee
n
an
im

al
s,
as

sh
ow

n
by

th
e
id
en
tit
y
re
co
gn

iti
on

ta
sk
.T

he
la
st
co
lu
m
n
sp
ec
ifi
es

w
he
th
er

th
e
m
et
ho

d
ha
s
ac
ce
ss

to
m
ot
io
n
ca
pt
ur
e
in
fo
rm

at
io
n
du
ri
ng

tr
ai
ni
ng

123



824 International Journal of Computer Vision (2023) 131:813–833

Table 2 Action recognition accuracy on H36M and ECoG dataset

Dataset Tasks → A.S. A.S. I.R.
% of Data → 0.5 1.0 1.0

H3.6M Walking, Sitting, Posing Random Gu. 33.0 33.0 33.0

Supervised 46.6 48.3 100.0

SimCLR (RGB) 33.2 33.5 99.5

SimCLR 53.3 55.7 99.2

Regression (Conv.) 65.2 68.8 68.4

Ours 72.4 73.6 42.3

H3.6M Walking, Directions, Eating Random Gu. 33.3 33.3 33.3

Supervised 31.2 30.9 100.0

SimCLR (RGB) 34.6 34.4 100.0

SimCLR 52.3 53.2 94.8

Regression (Conv.) 44.8 48.7 62.1

Ours 63.2 68.3 44.8

ECoG Moving, Rest Random Gu. 50.0 50.0 33.3

Supervised 54.2 53.8 100.0

SimCLR (ECoG) 52.3 55.1 98.0

SimCLR 64.6 72.1 81.1

Regression (Conv.) 64.1 71.8 74.3

Ours 75.8 81.9 53.0

Across-subject (A.S.) and identity recognition (I.R.) results on H3.6M dataset (Ionescu et al., 2014) using RGB and 3D pose, and on ECoG Move
vs Rest (Peterson, 2021) using neural ECoG recordings and 2D pose. For Ours, we remove calcium imaging specific augmentations and only use
mixing strategy. Mixing strategy closes the domain gap for the contrastive learning and strongly improves across-subject action recognition on both
datasets

Table 3 Ablation on effects of different augmentations

Method Single Across Identity
Subj.↑ Subj.↑ Recog. ↓

w/ Mixing Strategy � + 2.7 � + 7.9 � -63.0

+ w/ Calcium Augmentation � + 2.1 � + 2.7 � +1.2

+ w/ N. Noise Augmentation � + 1.1 � + 1.2 � -0.8

Showing the effect of different augmentations on single-subject, across-
subject and identity recognition benchmarks on MC2P Dataset, when
compared to simple contrastive model

Table 4 Ablation on neural preprocessing

Method Single Across Identity
Subj.↑ Subj.↑ Recog. ↓

CaImAn 56.8 56.1 17.0

Ours 63.1 61.5 13.6

Comparing standart neural processing library CaImAn with our aug-
mentations on MC2P Dataset

5.5 Ablation Study

We compare the individual contributions of different aug-
mentations proposed in our method. We report these results
in Table 3. We observe that all augmentations contribute to

single- and across-subject benchmarks. Our mixing augmen-
tation strongly affects the across-subject benchmark, while
at the same time greatly decreasing the domain gap, as quan-
tified by the identity recognition result. Other augmentations
haveminimal effects on the domain gap, as they only slightly
affect the identity recognition benchmark (Tables 4 and 5).

We compare our neural augmentations to standart neural
preprocessing approaches commonly used in neuroscience.
To compare, we use the state-of-art neural preprocessing
libraryCaImAn (Giovannucci et al., 2019). CaImAn requires
the tuning of 25 parameters for spike inference. Running a
single-set of parameters took 5h of processing. As shown
in Tab. 4, this algorithm produced worse results, likely due
to errors in ROI detection and spike inference. Because
our method can be run on the raw data, without requiring
ROI detection and spike inference, it removes the burden
of an extensive hyperparameter search and unnecessarily
long computational times. Thus, we believe that our aug-
mentations and model are more general and useful for the
community. Lastly, we performed ablation experiment on
mixing individual modalities and report the results in Tab. 5.
Mixing both modalities results in the best scores. However,
when mixed alone, the behavioral modality performs supe-
rior as it more effectively hides subject identity information,
since it is mixed in pose level instead of window level.
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Table 5 Ablation on mixing of different modalities on MC2P dataset

Method Single Across Identity
Subj.↑ Subj.↑ Recog. ↓

No Mix. 59.1 51.2 81.7

N. Mix. 60.4 58.9 36.8

B. Mix. 61.0 60.2 25.2

N. + B. Mix. 63.1 61.5 13.6

Showing the effect of mixing different modalities on MC2P dataset

6 Conclusion

We have introduced an self-supervised neural action rep-
resentation framework for neural imaging and behavioral
videography data. We extended previous methods by incor-
porating a new mixing based domain adaptation technique
which we have shown to be useful on three very different
multimodal datasets, together with a set of domain-specific
neural augmentations. Two of these datasets are publicly
available. We created the third dataset, which we call
MC2P, by recording video and neural data for Drosophila
melanogaster and will release it publicly to speed-up the
development of self-supervised methods in neuroscience
(Aymanns et al., 2022). We hope our work will help the
development of effective brain machine interface and neural
decoding algorithms. In future work, we plan to disentangle
remaining long-term non-behavioral information that has a
global effect on neural data, such as hunger or thirst, and test
our method on different neural recording modalities. As a
potential negative impact, we assume that once neural data
is taken without consent, our method can be used to extract
private information.
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Appendix for Overcoming the Domain Gap in
Neural Action Representations

Human Actions

We apply multi-modal contrastive learning on windows of
time series and RGB videos. We make the analogy that, sim-
ilar to the neural data, RGBvideos fromdifferent view angles
show a domain gap although they are tied to the same 3D
pose. Therefore, to test our method, we select three individ-
uals with different camera angles where all actors perform
the same three actions. We test domain adaptation using the
Across-Subject benchmark, where we train our linear action
classifier on labels of one individual and test it on the oth-
ers. We repeat the same experiment three times and report
the mean results. We show the results of Across-Subject and
Identity Recognition in Table 2.

For preprocessing, we remove global translation and rota-
tion from 3D poses by subtracting the root joint and then
rotating the skeletons to point in the same direction. We use
resnet18 for the RGB encoder and a 4 layer convolutional
network for the 3D pose encoder. We use S1, S5 and S7 and
all their behaviors for training, except for the three behav-
iors which we used for testing. For each number, we report
three-fold cross-validation results (Fig. 7).

Dataset Details

Dataset Collection

Here we provide a more detailed technical explanation
of the experimental dataset. Transgenic female Drosophila
melanogaster flies aged 2-4 days post-eclosionwere selected
for experiments. They were raised on a 12h:12h day, night
light cycle and recorded in either the morning or late after-
noon Zeitgeber time. Flies expressed both GCaMP6s and
tdTomato in all brain neurons as delineated by
otd-Gal4 expression, (; Otd−nls:FLPo(att P40)

P20XU AS−I V S−GCaMP6satt P40 ;
R57C10−GAL4,tub>GAL80>
Pw[+mC]=U AS−tdT om.S3 .) The fluorescence of GCaMP6s

proteinswithin the neuron increaseswhen it binds to calcium.
There is an increase in intracellular calcium when neurons
become active and fire action potentials. Due to the rela-
tively slow release (as opposed to binding) of calcium by
GCaMP6s molecules, the signal decays exponentially. We
also expressed the red fluorescent protein, tdTomato, in the
same neurons as an anatomical fiduciary to be used for neural
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Fig. 7 Changing window size for the mixing of behavioral modality on
the MC2P dataset. Statistics of the behavioral modality as a function of
changing the window size. Decreasing the window size increases clus-
tering homogeneity and Mean Maximum Discrepancy (MMD) when
applied to the raw data, therefore suggesting higher quality mixing in

individual poses instead of sequences of poses. mixing augmentation
with a smaller window size lowers the degree of perturbation, quanti-
fied byMean SquaredDistance. However, identity recognition accuracy
does not change considerably when mixing is done with different win-
dow sizes

data registration. This compensates for image defor-
mations and translations during animal movements. We
recorded neural data using a two-photon microscope (Thor-
Labs, Germany; Bergamo2) by scanning the cervical con-
nective. This neural tissue serves as a conduit between the
brain and ventral nerve cord (VNC) (Chen et al., 2018). The
brain-onlyGCaMP6s expression pattern in combinationwith
restrictions of recording to the cervical connective allowed
us to record a large population of descending neuron axons
while also being certain that none of the axons arose from
ascending neurons in the VNC. Because descending neurons
are expected to drive ongoing actions (Cande et al., 2018),
this imaging approach has the added benefit of ensuring that
the imaged cells should, in principle, relate to paired behav-
ioral data.

To synchronize two-photon images and RGB-signals,
which are acquired at different sampling rates, we use
BNC 2110 terminal block (National Instrument, USA) and
ThorSync software (Thorlabs, USA).We record both modal-
ities using our custom setup Fig. 8. We then use sampling
timestamps as references to align data; each neural frame is
associated with the behavioral frame with the closest times-
tamps.

To create behavioral modality for the MC2P dataset, we
used the off-the-shelf DeepFly3D network with pre-trained
weights (Günel et al., 2019). The input toDeepFly3D is video
data from our six infrared cameras. These images are then
used to identify the 3D positions of 38 landmarks per animal
using DeepFly3D: (i) five on each limb - the thorax-coxa,
coxa-femur, femur-tibia, and tibia-tarsus joints as well as the
pretarsus, (ii) six on the abdomen - three on each side, and
(iii) one on each antenna. DeepFly3D detects arbitrary points
on the fly’s body and relies on bundle adjustment to simulta-
neously assign 3D locations to these points and to estimate
the positions and orientations of each camera. DeepFly3D is
trained on 37,000 frames which were created automatically
using an active learning system, and another 3,000 manual
annotations. DeepFly3D achieves a Root Mean Square Error
(RMSE) of 13.9 pixels. We compared the reported Deep-

Fly3D error on their original datasetwith our own predictions
in our MC2P dataset. We observed resulting error is around
21.1 pixels. We believe the larger error is due to the differ-
ent experimental settings, and slightly different illumination
conditions. Although the error is quantitatively larger, visu-
ally we found little difference from the original performance.
Similar to the previous reports, we have found extremities
(tarsus tip) exhibited larger errors than the other joints, per-
haps due to occlusions from the setup, and higher variance
overall. For the action annotations, we have used two sets
of annotators. We have not observed a significant annotation
difference between the annotators. In general, the event starts
and ends only differ by less than 5.4 frames between the two
annotators on average. This is much smaller than the aver-
age length of action, 116 frames. We then continued to label
actions using a single annotator. We believe the small error
rate is due to the relatively stereotyped behavior repertoire
of Drosohpila, which makes it much easier to label actions.

Behavioral Pre-processing

For the MC2P dataset, we register each 3D pose into a
canonical coordinate system using Procrustes’s analysis and
normalize limb-lengths across subjects. Since each animal
is tethered under the two-photon microscope, they do not
change their rotation during the experiment. For each of the
six legs, we set the body-coxa locations so that relative sizes
of the animals do not reflected in the data.We then normalize
the data using calculated mean and variance across animals.

Neural Pre-Processing

For neural preprocessing, we developed our own, light-
weight approach because conventional NMF methods (i)
were designed for easy-to-identify, rodent neural cell bodies
but do not generalize to tracking our axons, (ii) model action
potentials, but do not take into account the distinct dynami-
cal properties of graded potential neurons, and (iii) perform
an optimization that, in our hands, is overly sensitive to ini-
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Fig. 8 Recording Setup for theMC2PDataset. Calibrated infrared cam-
eras form a ring with the animal at its center A two-photon microscope
measures the calcium influxwhile positioned directly above the cameras

tial conditions and computationally very expensive to run on
our full dataset. For our approach, data were synchronized
using a custom Python package (Aymanns, 2021). We then
estimated the motion of the neurons using images acquired
on the red (tdTomato) PMT channel. The first image of the
first trial was selected as a reference frame to which all other
frames were registered. For image registration, we estimated
the vector field describing the motion between two frames.
To do this, we numerically solved the optimization problem
in Eq. 9, where w is the motion field, It is the image being
transformed, Ir is the reference image, and � is the set of all
pixel coordinates (Chen et al., 2018; Aymanns, 2021).

ŵ = argminw

∑

x∈�

||It (x + w(x)) − Ir (x)||22

− λ
∑

x∈�

||∇w(x)||22 (9)

A smoothness promoting parameter λ was empirically set
to 800. We then applied ŵ to the green PMT channel
(GCaMP6s). To denoise the motion corrected green signal,
we trained a DeepInterpolation network (Lecoq et al., 2020)
for nine epochs for each animal and applied it to the rest of
the frames. We only used the first 100 frames of each trial
and used the first and last trials as validation data. The batch
size was set to 20 and we used 30 frames before and after the
current frame as input. In order to have a direct correlation

Fig. 9 Motion Capture and two-photon dataset statistics. VisualizingA
the number of annotations per animal and B the distribution of the dura-
tions of each behavior across animals. Unlike scripted human behaviors,
animal behaviors occur spontaneously. The total number of behaviors
and their durations do not follow a uniform distribution, therefore mak-
ing it harder to model

between pixel intensity and neuronal activity we applied the
following transformation to all neural images F−F0

F0
× 100,

where F0 is the baseline fluorescence in the absence of neural
activity. To estimate F0, we used the pixel-wise minimum of
a moving average of 15 frames.

Neural Fluorescence Signal Decay

The formal relationship between the neural image nt and
neural activity (underlying neural firings) st can be modeled
as a first-order autoregressive process

nt = γnt−1 + αst ,

where st is a binary variable indicating an event at time t (e.g.
the neuron firing an action potential). The amplitudes γ and
α determine the rate at which the signal decays and the initial
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Fig. 10 Visualizing the temporal correlation between behavioral and
neural energies onmultiple animals. The behavioral and neural energies
are calculated as the normalized distances between consecutive frames.

The multi-modal energies show a similar temporal pattern. The slower
neural energy decay is due to the calcium dynamics

response to an event, respectively. In general, 0 < γ < 1,
therefore resulting in an exponential decay of information
pertaining to st to be inside of nt . A single neural image nt
includes decaying information from previous neural activity,
and hence carries information from previous behaviors. For
more detailed information on calcium dynamics, see Pnev-
matikakis et al. (2013); Rupprecht et al. (2021). Assuming no
neural firings, st = 0, nt is given by nt = γ tn0. Therefore,
we define the calcium kernel K as Kt = γ t .

Dataset Analysis

We show the distribution of annotations across 7 animals
and action duration distribution in Appendix Fig. 9. Unlike
scripted actions in human datasets, the animal behavior is
spontaneous, therefore does not follow a uniform distribu-
tion. The average duration of behaviors can also change
across behaviors. Walking is the most common behavior and
lasts longer than other behaviors. We visualize the correla-
tion between the neural and behavioral energy in Appendix
Fig. 10. We quantify the energy as the Euclidean distance
between consecutive, vectorized 3D poses. Similarly, for the
neural energy, we calculate the Euclidean distance between
consecutive images. To be able to compare corresponding
energies, we first synchronize neural and behavioral modal-
ities. We then smooth the corresponding time series using
Gaussian convolution with kernel size of 11 frames. We
observe that there is a strong correlation between the modal-
ities, suggesting large mutual information.

Method Details

Augmentations

Aside from the augmentations mentioned before, for the
neural image transformation family Tn , we used a sequen-
tial application of Poisson noise and Gaussian blur and
color jittering. In contrast with recent work on contrastive
visual representation learning, we only applied brightness
and contrast adjustments in color jittering because neural
images have a single channel that measures calcium indi-
cator fluorescence intensity. We did not apply any cropping
augmentation, such as cutout, because action representation
is often highly localized and non-redundant (e.g., grooming
is associated with the activity of a small set of neurons and
thuswith only a small number of pixels).We applied the same
augmentations to each frame in single sample of neural data.

For the behavior transformation family Tb, we used a
sequential application of scaling, shear, and random tem-
poral and spatial dropping. We did not apply rotation and
translation augmentations because the animals were tethered
(i.e., restrained from moving freely), and their direction and
absolute location were fixed throughout the experiment. We
did not use timewarping because neural and behavioral infor-
mation are temporally linked (e.g., fast walking has different
neural representations than slow walking).

Mixing Parameters

We analyze the effects of mixing individual poses, instead of
whole motion sequences, through our mixing augmentation

123



International Journal of Computer Vision (2023) 131:813–833 829

Table 6 Architecture details

First part of the Neural Encoder fn
Layer # filters K S Output

input 1 – – T × 128 × 128

conv1 19 (3,3,3) (1,2,2) T × 128 × 128

conv2 37 (3,3,3) (1,2,2) T × 64 × 64

conv3 55 (3,3,3) (1,2,2) T × 32 × 32

conv4 73 (3,3,3) (1,2,2) T × 16 × 16

conv5 91 (3,3,3) (1,2,2) T × 8 × 8

conv6 109 (3,3,3) (1,2,2) T × 4 × 4

conv7 128 (3,3,3) (1,2,2) T × 2 × 2

conv8 128 (3,3,3) (1,1) T × 1 × 1

attention9 – (1,1) (1,1) 1 × 1 × 128

fc10 128 (1,1) (1,1) 1 × 1 × 1

fc11 128 (1,1) (1,1) T × 1 × 1

Behavioral Encoder fb
Layer # filters K S Output

input 60 – – T × 60

conv1 64 (3) (1) T × 64

conv2 80 (3) (1) T × 80

mp2 – (2) (2) T /2 × 80

conv2 96 (3) (1) T /2 × 96

conv2 112 (3) (1) T /2 × 112

conv2 128 (3) (1) T /2 × 128

attention6 – (1) (1) 1 × 128

fc7 128 (1) (1) 1 × 128

Shown are half of the neural encoder fn and behavior encoder fb func-
tions. How these encoders are used is shown in Fig. 3. Both encoders
produce 128 dimensional output, while first half of the neural encoder
do not downsample on the temporal axis. mp denotes a max-pooling
layer. Batch Normalization and ReLU activation are added after every
convolutional layer

in Fig. 7. We compare the distribution similarity across indi-
viduals when tested on single poses and windows of poses.
We observe that the distribution similarity across individu-
als in behavioral modality is much larger in pose level when
compared to the whole motion sequence, therefore making
it easier to mix behavioral data in pose level. We quan-
tify the distribution similarity using MMD (MeanMaximum
Discrepancy) and Homogeneity metrics. Similarly, mixing
individual poses decreases the overall change in the motion
sequence, as quantified by the Mean Squared Distance. Yet,
the degree to which identity information is hid does not
strongly correlate with the window size of mixing. There-
fore, overall, suggesting mixing in pose level is better than
mixing whole motion sequences.

Implementation Details

For all methods, we initialized the weights of the networks
randomly unless otherwise specified. To keep the experi-

ments consistent, we always paired 32 frames of neural data
with 8 frames of behavioral data. For the neural data, we used
a larger time window because the timescale during which
dynamic changes occur are smaller. For the pairedmodalities,
we considered data synchronized if their center frames had
the same timestamp. We trained contrastive methods for 200
epochs and set the temperature value τ to 0.1.We set the out-
put dimension of zb and zn to 128. We used a cosine training
schedule with three epochs of warm-up. For non-contrastive
methods, we trained for 200 epochs with a learning rate of
1e−4, and aweight decayof 1e−5, using theAdamoptimizer
(Kingma & Ba, 2015). We ran all experiments using an Intel
Core i9-7900X CPU, 32 GB of DDR4 RAM, and a GeForce
GTX 1080. Training for a single SimCLR network for 200
epochs took 12 hours. To create train and test splits, we
removed two trials from each animal and used them only for
testing. We used the architecture shown in Appendix Table
6 for the neural image and behavioral pose encoder. Each
layer except the final fully-connected layer was followed by
Batch Normalization and a ReLU activation function (Ioffe
& Szegedy, 2015). For the self-attention mechanism in the
behavioral encoder (Appendix Table 6), we implement Bah-
danau attention (Bahdanau et al., 2015). Given the set of
intermediate behavioral representations S ∈ R

T×D , we first
calculated,

r = W2 tanh
(
W1S

�)
, ai = − log

(
exp (ri )∑
j exp

(
r j

)

)

where W1 and W2 are a set of matrices of shape R12×D and
R
1×12 respectively. ai is the assigned score i-th pose in the

sequence of motion. Then the final representation is given
by

∑T
i ai Si . For the projection function gn and gb we use a

simple 2 layer MLP.

Supplementary Videos

Motion Capture and Two-Photon (MC2P) Dataset: The
following videos are sample behavioral-neural recordings
from two different flies. The videos show (left) raw behav-
ioral RGBvideo togetherwith (right) registered and denoised
neural images at their original resolutions. The behavioral
video is resampled and synchronized with the neural data.
The colorbar indicates normalized relative intensity values.
Calculation of �F/F is previously explained under Dataset
Collection section.
Video 1: https://drive.google.com/file/d/1-xjiwn7qgiou3_
nf0nlyu7549KKlSfUx
Video 2: https://drive.google.com/file/d/1DUOzSbbE8uPd
PNvXChJWYb9bN9AyUfuO
Action Label Annotations: Sample behavioral recordings
frommultiple animals using a single camera. Shown are eight
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different action labels: forward walking, pushing, hindleg
grooming, abdominal grooming, foreleg grooming, antennal
grooming, eye grooming and resting. Videos are temporally
down-sampled. Animals and labels are randomly sampled.
Video 3: https://drive.google.com/file/d/1cnwRRyDZ4crrV
VxRBbx32Za-vlxSP7sy
Animal Motion Capture: Sample behavioral recordings with
2Dposes from six different camera views. Each color denotes
a different limb. The videos are temporally down-sampled for
easier view.
Video 4: https://drive.google.com/file/d/1uYcL7_Zl-N0ml
G1VTrg67s2Cy71wml5S
Video 5: https://drive.google.com/file/d/1eMcP-Ec1c4yBQ
pC4CNv45py7gObmuUeA
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