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Abstract
Despite their recent successes, generative adversarial networks (GANs) for semantic image synthesis still suffer from poor
image quality when trained with only adversarial supervision. Previously, additionally employing the VGG-based perceptual
loss has helped to overcome this issue, significantly improving the synthesis quality, but at the same time limited the progress
of GAN models for semantic image synthesis. In this work, we propose a novel, simplified GAN model, which needs only
adversarial supervision to achieve high quality results. We re-design the discriminator as a semantic segmentation network,
directly using the given semantic label maps as the ground truth for training. By providing stronger supervision to the
discriminator as well as to the generator through spatially- and semantically-aware discriminator feedback, we are able to
synthesize images of higher fidelity and with a better alignment to their input label maps, making the use of the perceptual
loss superfluous. Furthermore, we enable high-quality multi-modal image synthesis through global and local sampling of a
3D noise tensor injected into the generator, which allows complete or partial image editing. We show that images synthesized
by our model are more diverse and follow the color and texture distributions of real images more closely. We achieve a strong
improvement in image synthesis quality over prior state-of-the-art models across the commonly used ADE20K, Cityscapes,
and COCO-Stuff datasets using only adversarial supervision. In addition, we investigate semantic image synthesis under
severe class imbalance and sparse annotations, which are common aspects in practical applications but were overlooked in
prior works. To this end, we evaluate our model on LVIS, a dataset originally introduced for long-tailed object recognition.
We thereby demonstrate high performance of our model in the sparse and unbalanced data regimes, achieved by means of the
proposed 3D noise and the ability of our discriminator to balance class contributions directly in the loss function. Our code
and pretrained models are available at https://github.com/boschresearch/OASIS.
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1 Introduction

Conditional generative adversarial networks (GANs) (Mirza
& Osindero, 2014) synthesize images conditioned on class
labels (Brock et al., 2019; Casanova et al., 2021), text (Reed
et al., 2016; Zhang et al., 2018a, 2021), other images (Isola
et al., 2017; Huang et al., 2018; Park et al., 2020), or seman-
tic label maps (Park et al., 2019b; Liu et al., 2019; Wang
et al., 2021b). In this work, we focus on the latter, address-
ing semantic image synthesis. Taking pixel-level annotated
semantic maps as input, semantic image synthesis enables
the rendering of realistic images from user-specified layouts,
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Fig. 1 Existing semantic image synthesis models heavily rely on the VGG-based perceptual loss to improve the quality of generated images. In
contrast, our model (OASIS) can synthesize diverse and high-quality images while only using an adversarial loss, without any external supervision

without the use of an intricate graphics engine. Therefore, its
applications range widely from content creation and image
editing to producing training data for downstream applica-
tions that adhere to specific semantic requirements (Park et
al., 2019a; Ntavelis et al., 2020).

Despite the recent progress on stabilizing GANs (Miyato
et al., 2018; Zhang & Khoreva, 2019; Karras et al., 2020a;
Sauer et al., 2021) and developing their architectures (Kar-
ras et al., 2021, 2019, 2020b; Brock et al., 2019; Liu et al.,
2021), state-of-the-art GAN-based semantic image synthe-
sis models (Park et al., 2019b; Liu et al., 2019; Wang et
al., 2021b) still greatly suffer from training instabilities and
poor image quality when the generator is only trained to fool
the discriminator in an adversarial fashion (see Fig. 1). An
established practice to overcome this issue is to employ a
perceptual loss (Wang et al., 2018) to train the generator, in
addition to the discriminator loss. The perceptual loss aims to
match intermediate features of synthetic and real images, that
are estimated via an external perception network. A popular
choice for such a network is VGG (Simonyan & Zisserman,
2015), pre-trained on ImageNet (Deng et al., 2009).Although
the perceptual loss substantially improves the performance
of previous methods, it comes with the computational over-
head introduced by utilizing an extra network for training.
Moreover, as we show in our experiments, it dominates over
the adversarial loss during training, as the generator starts
to learn mostly through minimizing the VGG loss, which
has a negative impact on the diversity and quality of gen-
erated images. Therefore, in this work we propose a novel,
simplified model that establishes new state-of-the-art results
without requiring a perceptual loss.

To achieve semantic image synthesis of high quality, the
training signal to the GAN generator should contain feed-
back on whether the generated images are well aligned to the
input label maps. Thus, a fundamental question for GAN-
based semantic image synthesis models is how to design
the discriminator that would efficiently utilize information
from given semantic label maps, in addition to judging
the realism of given images. Conventional methods (Park
et al., 2019b; Wang et al., 2018, 2021b; Liu et al., 2019;
Isola et al., 2017; Ntavelis et al., 2020) adopt a multi-
scale classification network, taking the label map as input
along with the image, and making a global image-level
real/fake decision. This discriminator has limited represen-
tation power, as it is not incentivized to learn high-fidelity
pixel-level details of the images and their precise alignment
with the input semantic label maps. For example, such a
classification-based discriminator can base its decision solely
on image realism, without the need of examining the align-
ment between the image and labelmap. Tomitigate this issue,
we propose an alternative architecture for the discriminator,
re-designing it as an encoder-decoder semantic segmentation
network (Ronneberger et al., 2015), and directly exploit-
ing the given semantic label maps as ground truth via an
(N + 1)-class cross-entropy loss. This new discriminator
provides semantically-aware pixel-level feedback to the gen-
erator, partitioning the image into segments belonging to one
of the N real semantic classes or the fake class. With this
design, the network cannot ignore the provided label maps,
as it has to predict a correct class label for each pixel of an
image. Enabled by the discriminator per-pixel response, we
further introduce a LabelMix regularization, which fosters
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Fig. 2 OASISmulti-modal synthesis results. The 3D noise can be sam-
pled globally (first 2 rows), changing the whole scene, or locally (last 2
rows), partially changing the image. For the latter, we sample different

noise per region, like the bed segment (in red) or arbitrary areas defined
by shapes (Color figure online)

the discriminator to focus more on the semantic and struc-
tural differences of real and synthetic images. The proposed
changes lead to amuch stronger discriminator, that maintains
a powerful semantic representation of objects, giving more
meaningful feedback to the generator, and thus making the
perceptual loss supervision superfluous (see Fig. 1).

Semantic image synthesis is naturally a one-to-many ma-
pping, where one label map can correspond to many possible
real images. Thus, a desirable property of a generator is to
generate a diverse set of images from a single label map,
only by sampling noise. This property is known as multi-
modality. Previously, only using a noise vector as input was
not sufficient to achieve multi-modality, because the genera-
tor tended to mostly ignore the noise or synthesized images
of poor quality (Isola et al., 2017; Wang et al., 2018). Thus,
prior work (Wang et al., 2018; Park et al., 2019b) resorted to
using an image encoder to produce multi-modal outputs. In
this work, we enable multi-modal synthesis of the generator
via a newly-introduced 3D noise sampling method, without
requiring an image encoder and not relying on availability of
a reference image to produce new image styles. Empowered
by our stronger discriminator, the generator can now effec-
tively synthesize different images by simply resampling a
3D noise tensor, which is used not only as the input, but
is also combined with intermediate features via conditional
normalization at every layer. This procedure makes the gen-

erator spatially sensitive to noise, so we can re-sample it both
globally (channel-wise) and locally (pixel-wise), allowing to
change not only the appearance of thewhole scene, but also of
specific semantic classes or any chosen area (see Fig. 2). As
shown in our experiments, the proposed 3D noise injection
scheme enables a significantly higher diversity of synthesis
compared to previous methods.

With the proposed modifications in the discriminator and
generator design, we outperform the prior state of the art
in synthesis quality across the commonly used ADE20K
(Zhou et al., 2017), COCO-Stuff (Caesar et al., 2018) and
Cityscapes (Cordts et al., 2016) datasets. Omitting the neces-
sity of theVGGperceptual loss, ourmodel generates samples
of higher quality and diversity, and follows the color and tex-
ture distributions of real images more closely.

A well known challenge for semantic segmentation appli-
cations is the problem of class imbalance. In practice, a
dataset can contain underrepresented classes (representing
a very small fraction of the dataset pixels), which can lead
to suboptimal performance of models (Sudre et al., 2017).
However, to the best of our knowledge, this problem has
not been studied in the context of semantic image synthe-
sis. For this reason, we propose to extend the evaluation
setup used in previous works by using the highly imbalanced
LVIS dataset (Gupta et al., 2019). Originally introduced as
a dataset for long-tailed object recognition, LVIS contains
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a large set of 1203 classes, the majority of which appear
only in a few images. Moreover, to simplify dataset curation,
labelmaps in LVISwere annotated sparsely, with large image
areas being occupied with a generic background label. The
above properties make LVIS a very challenging evaluation
setting for previous semantic image synthesis models, as we
demonstrate by the example of the state-of-the-art SPADE
model (Park et al., 2019b). As the classification-based dis-
criminator of SPADE makes a global real/fake decision for
each image-label pair, the loss contribution originating from
underrepresented classes can be dominated by the loss contri-
bution of well represented classes. In contrast, our proposed
discriminator mitigates this issue: with the (N + 1)-class
cross-entropy loss computed for each image pixel, it becomes
possible to assign higher weights for the pixels belonging to
underrepresented classes. As shown in our experiments, our
model successfully deals with both the extreme class imbal-
ance and sparsity in label maps, outperforming SPADE on
the LVIS dataset by a large margin.

To extend the evaluation of our model further, we test
the efficacy of generated images when applied as synthetic
data augmentation for the training of semantic segmenta-
tion networks. This way, the performance of semantic image
synthesis is assessed through a task that holistically requires
high image quality, diversity, and precise image alignment
to the label maps. We demonstrate that the synthetic data
produced by our model achieves high performance on this
test, eliciting a notable increase in downstream segmenta-
tion performance. In doing so, our model outperforms a
strong baseline SPADE (Park et al., 2019b), indicating its
high potential to be applied in segmentation applications. In
addition,we also demonstrate howourmodel for thefirst time
enables the application of a GAN-based semantic image syn-
thesismodel to unlabelled images, without requiring external
segmentation networks. Thanks to a good segmentation per-
formance of our trained discriminator, we can infer the label
map of an image and generate many alternative versions of
the same scene by varying the 3D noise.We find these results
promising for future utilization of our model in applications.

We call our model OASIS, as it needs only adversarial
supervision for semantic image synthesis. In summary, our
main contributions include:

– We propose a novel segmentation-based discriminator
architecture, that gives more powerful feedback to the
generator and eliminates the necessity of the perceptual
loss supervision.

– We present a simple 3D noise sampling scheme, notably
increasing the diversity of multi-modal synthesis and
enabling both complete or partial resampling of a gener-
ated image.

– With the OASIS model, we achieve high-quality results
on the ADE20K, Cityscapes and COCO-Stuff datasets,

outperforming previous state-of-the-art models while
relying only on adversarial supervision. We show that
images synthesized byOASIS exhibit much higher diver-
sity and more closely follow the color and texture
distributions of real images.

– We propose to use the LVIS dataset (Gupta et al., 2019) to
assess image generation in the regime with many under-
represented semantic classes, leading to a severe class
imbalance. We show how the OASIS design directly
addresses these issues and thereby outperforms the strong
baseline SPADE (Park et al., 2019b) by a large margin.

– We test the efficacy of generated images for synthetic data
augmentation, as a unified measure that simultaneously
depends on image quality, diversity, and label map align-
ment. The images generated by OASIS elicit a stronger
increase in downstream segmentation performance com-
pared to SPADE, suggesting a higher potential of our
model for future utilization in applications.

This paper is an extended version of our previous work
(Schönfeld et al., 2021). Compared to the prior conference
version, we provide a a significantly extended experimental
evaluation and a more in-depth discussion of the proposed
contributions. In particular, the conventional evaluation setup
is extended to the extremely imbalanced data regime on the
LVIS dataset (see Sect. 4.3).We further extend the evaluation
by testing the efficacy of synthetic images as data augmen-
tation for the task of semantic segmentation (see Sect. 4.5).
We add new results on the synthesis of diverse images from
unlabelled data (see Sect. 4.4 and Fig. 13). These new results
highlight specific benefits of our approach compared to other
models. Finally, we offer a new detailed ablation study of the
method (see Tables 7, 10, 11, 12a) and extend the discussion
of ourmodel by analysing its independence on the perceptual
loss (Sect. 3.4).

2 RelatedWork

Semantic image synthesis. The task of semantic image syn-
thesis is to solve the inverse problem of semantic image
segmentation: generate photorealistic and diverse images
from provided semantic label maps. Currently, the most
prominent approaches for this task are based on conditional
GANs (Mirza & Osindero, 2014), as first proposed by the
Pix2pix model (Isola et al., 2017). Pix2pix generates images
with an encoder-decoder generator that takes label maps
as input, and employs a PatchGAN discriminator which is
induced to distinguish between real and fake image-label
pairs. Lately, various GAN models with modified generator
and discriminator architectures have been introduced (Wang
et al., 2018; Park et al., 2019b; Liu et al., 2019; Tang et al.,
2020c, b; Ntavelis et al., 2020; Wang et al., 2021b; Richard-
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son et al., 2021; Li et al., 2021) to improve the quality
and diversity of image synthesis. Besides GANs, Chen and
Koltun (2017) proposed to use a cascaded refinement net-
work (CRN) for high-resolution semantic image synthesis,
and SIMS (Qi et al., 2018) extended it with a non-parametric
component, serving as a memory bank of source material
to assist the synthesis. Further, Li et al. (2019) employed
implicit maximum likelihood estimation (Li &Malik, 2018)
to increase the synthesis diversity of the CRN model. How-
ever, these approaches still underperform in comparison to
state-of-the-art GAN models. Therefore, we next focus on
the recent GAN architectures for semantic image synthesis.
Discriminator architectures. To provide a powerful guid-
ing signal to the generator, a GANdiscriminator for semantic
image synthesis should evaluate both the image realism and
its alignment to the provided semantic label map. Thus, a
fundamental question is to find the most efficient way for
the discriminator to utilize the given semantic label maps. To
this end, Pix2pix (Isola et al., 2017), Pix2pixHD (Wang et
al., 2018) and SPADE (Park et al., 2019b) rely on concate-
nating the label maps directly to the input image, which is
fed to a multi-scale PatchGAN discriminator. Alternatively,
SESAME(Ntavelis et al., 2020) employed aprojection-based
discriminator (Miyato & Koyama, 2018), applying an addi-
tional branch to process semantic label maps separately from
images, and merging the two streams before the last con-
volutional layer via a pixel-wise multiplication. CC-FPSE
(Liu et al., 2019) proposed a feature-pyramid discriminator,
embedding both images and label maps into a joint fea-
ture map, and then consecutively upsampling it in order to
classify it as real/fake at multiple scales. LGGAN (Tang et
al., 2020c) introduced a classification-based feature learning
module to learn more discriminative and class-specific fea-
tures. In this work, we propose to use a simple pixel-wise
semantic segmentation network as a discriminator instead of
multi-scale image classifiers as in the above approaches, and
to directly exploit the semantic label maps for its supervi-
sion. Segmentation-based discriminators have been shown
to improve semantic segmentation (Souly et al., 2017) and
unconditional image synthesis (Schönfeld et al., 2020), but
to the best of our knowledge have not been explored for
semantic image synthesis and our work is the first to apply
an adversarial semantic segmentation loss for this task.
Generator architectures.To enforce the alignment between
the generated images and the conditioning label maps, pre-
vious methods explored different ways to incorporate the
label maps into the generator training. In many conventional
approaches (Isola et al., 2017; Wang et al., 2018; Tang et
al., 2020b, c; Ntavelis et al., 2020; Richardson et al., 2021),
label maps are provided to the generator via an additional
encoder network. However, this solution has been shown to
be suboptimal at preserving the semantic information until
the later stages of image generation. Therefore, SPADE intro-

duced a spatially-adaptive normalization layer that directly
modulates the label map onto the generator’s hidden layer
outputs at various scales. Alternatively, CC-FPSE proposed
to use spatially-varying convolution kernels conditioned on
the label map. Most recently, SC-GAN (Wang et al., 2021b)
utilized label maps as input to generate class-specific seman-
tic vectors at different scales, which are used as conditioning
at different layers of the image rendering network; and Col-
lageGAN (Li et al., 2021) proposed to extract a label map
representation via feature pyramid encoder and inject it as
spatial style tensor to a StyleGAN2 generator.

While improving the quality of generated images, the
above models struggled to achieve multi-modality through
sampling the input noise, as the generator tended to become
insensitive to noise or achieved only poor quality, as first
observed by (Isola et al., 2017). Thus, the above approaches
resorted to having an image encoder in the generator design to
enable multi-modal synthesis. The generator then combines
the extracted image style with the label map to reconstruct
the original image. By alternating the style vector, one can
generatemultiple outputs conditioned on the same labelmap.
However, using an image encoder is a resource-demanding
solution. In this work, we enable multi-modal synthesis
directly through sampling of a 3D noise tensor which is
injected at every layer of the network. Different from the
structured noise injection of Alharbi and Wonka (2020) and
class-specific latent codes of Zhu et al. (2020), we inject
the 3D noise along with label maps and adjust it to image
resolution, also enabling re-sampling of selected semantic
segments (see Fig. 2).
Perceptual losses. Gatys et al. (2015, 2016); Johnson et al.
(2016) and Bruna et al. (2016) were pioneers at exploiting
perceptual losses to produce high-quality images for super-
resolution and style transfer using convolutional networks.
Such a loss extracts deep features from real and generated
images by an external classification network, and minimizes
their L1-distance to bring fake images closer to the real data.
For semantic image synthesis, the VGG-based perceptual
loss was first introduced by CRN (Chen & Koltun, 2017),
and later adopted by Pix2pixHD (Isola et al., 2017). Since
then, it has become a default for training the generator (Park
et al., 2019b; Liu et al., 2019; Tan et al., 2020; Tang et al.,
2020a; Richardson et al., 2021; Wang et al., 2021b; Li et al.,
2021). As the perceptual loss is based on a VGG network
pre-trained on ImageNet (Deng et al., 2009), methods rely-
ing on it are constrained by the ImageNet domain and the
representational power of VGG. With the recent progress on
GAN training, e.g., by architecture designs and regulariza-
tion techniques, the actual necessity of the perceptual loss
requires a reassessment. We experimentally show that such
loss imposes unnecessary constraints on the generator, signif-
icantly limiting the diversity among samples. Trainedwithout
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Fig. 3 SPADE (left) versus OASIS (right). OASIS outperforms
SPADE, while being simpler and lighter: it uses only an adversarial loss
as supervision and a single segmentation-based discriminator, without

relying on heavy external networks. Furthermore, OASIS learns to syn-
thesizemulti-modal outputs by directly re-sampling the 3Dnoise tensor,
instead of using an image encoder as in SPADE

the VGG loss, our model achieves improved diversity, at the
same time not compromising the quality of generated images.

3 The OASIS Model

In this section, we present our OASIS model, which, in
contrast to other semantic image synthesis methods, needs
only adversarial supervision for training. Using SPADE
as a starting point (Sect. 3.1), we first propose to re-
design the discriminator as a semantic segmentation network,
directly using the given semantic label maps as ground truth
(Sect. 3.2). Empowered by spatially- and semantically-aware
feedback of the new discriminator, we next re-design the
SPADE generator, enabling its effective multi-modal syn-
thesis via 3D noise sampling (Sect. 3.3). Lastly, we illustrate
the superfluity of the VGG loss for our model (Sect. 3.4).

3.1 The SPADE Baseline

We choose SPADE as our baseline as it is a state-of-the-art
model and a relatively simple representative of conventional
semantic image synthesis models. As depicted in Fig. 3,
the discriminator of SPADE largely follows the PatchGAN
multi-scale discriminator (Isola et al., 2017), adopting two
image classification networks operating at different resolu-
tions. Both of them take the channel-wise concatenation of
the semantic label map and the real/fake image as input,
and produce real/fake classification scores. On the generator
side, SPADE adopts spatially-adaptive normalization layers
to effectively integrate the semantic labelmap into the synthe-
sis process from low to high scales. Additionally, the image
encoder is used to extract the style vector from the reference
image, which is then combined with a 1D noise vector for
multi-modal synthesis. The training loss of SPADE consists
of three terms, namely, an adversarial loss, a featurematching
loss and the VGG-based perceptual loss:

L = max
G

min
D

Ladv + λfmLfm + λvggLvgg. (1)

Overall, SPADE is a resource-demandingmodel at both train-
ing and test time, i.e., with two PatchGAN discriminators, an
image encoder in addition to the generator, and theVGG loss.
In the following, we revisit its architecture and introduce a
simpler and more efficient solution that offers better perfor-
mance and reduces the model complexity.

3.2 The OASIS Discriminator

To train the generator to synthesize high-quality images
that are well aligned with the input semantic label maps,
we need a powerful discriminator that coherently captures
discriminative semantic features at different image scales.
While classification-based discriminators, such as Patch-
GAN, take label maps as input concatenated to images, they
can afford to ignore them and make the decision solely on
image patch realism. Thus, we propose to cast the discrimi-
nator task as a multi-class semantic segmentation problem to
directly utilize label maps for supervision, and accordingly
alter its architecture to an encoder-decoder segmentation net-
work (see Fig. 3). Encoder-decoder networks have proven to
be effective for semantic segmentation (Badrinarayanan et
al., 2016; Chen et al., 2018). Thus, we build our discrim-
inator architecture upon U-Net (Ronneberger et al., 2015),
which consists of the encoder and decoder connected by
skip connections. This discriminator architecture is multi-
scale through its design, integrating information over up- and
down-sampling pathways as well as through the encoder-
decoder skip connections. The segmentation task of the
discriminator is formulated to predict the per-pixel class label
of the real images, using the given semantic label maps as
ground truth. In addition to the N semantic classes from the
label maps, all pixels of fake images are categorized as one
extra class. As the formulated semantic segmentation prob-
lem has N + 1 classes, we propose to use an (N + 1)-class
cross-entropy loss for training.
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Fig. 4 LabelMix regularization. Real x and fake x̂ images are mixed
using a binary mask M , sampled based on the label map, resulting in
LabelMix(x,x̂). The consistency regularization minimizes the L2 dis-

tance between the logits of DLabelMix(x,x̂) and LabelMix(Dx ,Dx̂ ). In this
visualization, black corresponds to the fake class in the N +1 segmen-
tation output

In practice, the N semantic classes are often imbalanced,
as some of the classes represent significantly less pixels of
the dataset compared to others. The loss contribution for such
underrepresented classes can be dominated by well repre-
sented classes, which can lead to suboptimal performance. To
mitigate this issue, empowered by the pixel-level loss compu-
tation of our discriminator, we propose to weight each class
by its inverse pixel-wise frequency in a batch, thus giving
underrepresented semantic classes more weight. In doing so,
the loss contributions of each class are equally balanced, and,
thus, the generator is also encouraged to paymore attention to
underrepresented classes. Mathematically, the new discrim-
inator loss is expressed as:

LD = − E(x,t)

⎡
⎣

N∑
c=1

αc

H×W∑
i, j

ti, j,c log D(x)i, j,c

⎤
⎦

− E(z,t)

⎡
⎣

H×W∑
i, j

log D(G(z, t))i, j,c=N+1

⎤
⎦ ,

(2)

where x denotes the real image; (z, t) is the noise-label map
pair used by the generator G to synthesize a fake image;
and the discriminator D maps the real or fake image into a
per-pixel (N + 1)-class prediction probability. The ground
truth label map t has three dimensions, where the first two
correspond to the spatial position (i, j) ∈ H × W , and the
third one is a one-hot vector encoding the class c ∈ {1, .., N+
1}. The class balancing weight αc is the inverse pixel-wise
frequency of a class c per batch:

αc = H × W∑H×W
i, j Et

[
1[ti, j,c = 1]] . (3)

In effect, improving the synthesis of underrepresented and
well represented classes is equally necessary to minimize
the loss. As we show in Sect. 4.3, this step helps to improve
the synthesis quality of underrepresented classes.
LabelMix regularization. In order to encourage our dis-
criminator to focus on differences in content and structure
between the fake and real classes, we propose a LabelMix
regularization. Based on the semantic layout, we generate a
binary mask M to mix a pair (x, x̂) of real and fake images
conditioned on the same label map: LabelMix(x, x̂, M) =
M � x + (1 − M) � x̂ , as visualized in Fig. 4. Given the
mixed image, we further train the discriminator to be equiv-
ariant under the LabelMix operation. This is achieved by
adding a consistency loss term Lcons to Eq. 2:

Lcons =
∥∥∥Dlogits

(
LabelMix(x, x̂, M)

)

− LabelMix
(
Dlogits(x), Dlogits(x̂), M

)∥∥∥2,
(4)

where Dlogits are the logits attained before the last softmax
activation layer, and ‖·‖ is the L2 norm. This consistency loss
compares the output of the discriminator on the LabelMix
image with the LabelMix of its outputs, penalizing the dis-
criminator for inconsistent predictions. LabelMix is different
to CutMix (Yun et al., 2019), which randomly samples the
binary mask M . A random mask will introduce inconsis-
tency between the pixel-level labels and the scene layout
provided by the label map. For an object with the class label
c, it will contain pixels from both real and fake images,
resulting in two labels, i.e. c and N +1. To avoid such incon-
sistency, the mask of LabelMix is generated according to
the label map, providing natural borders between semantic
regions, see Mask M in Fig. 4. Under LabelMix regular-
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ization, the generator is encouraged to respect the natural
semantic boundaries, improving pixel-level realism while
also considering the class segment shapes.
Alternative ways to encode label maps. Besides the pro-
posed (N+1)-class cross entropy loss, there are otherways to
incorporate a label map into the training of a segmentation-
based discriminator. One can concatenate the label map to
the input image, analogous to SPADE. Another option is to
use projection, by taking the inner product between the last
linear layer output and the embedded label map, analogous to
class-label conditionalGANs (Miyato&Koyama, 2018). For
both alternatives, the training loss is the pixel-level real/fake
binary cross-entropy (Schönfeld et al., 2020). As in these two
variants the label maps are used as input to the discrimina-
tor (concatenated to the input image or fed to the last linear
layer), they are propagated forward through the network. In
contrast, the (N+1)-setting uses label maps only as targets
for the loss computation, so they are propagated backward
through the network via the gradients updates. Backward
propagation ensures that the discriminator learns semantic-
aware features, in contrast to forward propagation, where the
alignment of a generated image to the input label map can
be ignored. The comparison between the above label map
encodings is shown in Table 9.

3.3 The OASIS Generator

To stay in linewith theOASIS discriminator design, the train-
ing loss for the generator is changed to

LG = −E(z,t)

⎡
⎣

N∑
c=1

αc

H×W∑
i, j

ti, j,c log D(G(z, t))i, j,c

⎤
⎦ , (5)

which is a direct outcome of the non-saturation trick (Good-
fellow et al., 2014) to Eq. 2. We next re-design the generator
to enable multi-modal synthesis through noise sampling.
SPADE is deterministic in its default setup, but can be trained
with an extra image encoder to generate multi-modal out-
puts. We introduce a simpler version, that enables synthesis
of diverse outputs directly from input noise. For this, we con-
struct a noise tensor of size M×H×W , matching the spatial
dimensions of the label map of size N×H×W , where N is
the number of semantic labels and H × W corresponds to
the height and width of the image. Note that for simplicity
during training we sample the 3D noise tensor globally, i.e.
per-channel, replicating each channel value spatially along
the height and width of the tensor. In other words, a M-
dimensional latent vector is sampled and then broadcasted
to each pixel of an image. We analyze alternative ways of
sampling 3D noise during training in the ablation section
(see Sect. 4.6). After sampling, the noise and the label map
are concatenated along the channel dimensions to form a

combined noise-label 3D tensor of size (M+N )×H×W .
This combined tensor serves as input to the first generator
layer, but also as input to the spatially-adaptive normalization
layers in every generator block. This way, all intermediate
feature maps are conditioned on both the semantic labels
and the noise (see Fig. 3), making the noise hard to ignore.
As the 3D noise is channel- and pixel-wise sensitive, at test
time, one can sample the noise globally, per-channel, and
locally, per-segment or per-pixel, for controlled synthesis of
the whole scene or of specific semantic objects. For example,
when generating a scene of a bedroom, one can re-sample the
noise locally and change the appearance of the bed alone (see
Fig. 2).

Note that using image styles via an encoder, as in SPADE,
is also possible in our setting, as the 3D noise can be simply
concatenated to the encoder style features. Lastly, to further
reduce the complexity, we remove the first residual block in
the generator, reducing the number of parameters from 96M
to 72M without a noticeable performance loss (see Table 7).

3.4 Superfluity of the Perceptual Loss for OASIS

In contrast to SPADE, which strongly relies on the percep-
tual loss during training (see Fig. 1), the OASIS generator is
trained only with the adversarial loss from the segmentation-
based discriminator, according to Eq. 5. To illustrate the
insignificance of the VGG loss for OASIS, in Fig. 5 we com-
pare the curves of the VGG and generator adversarial loss
functions of SPADEandOASIS, for comparison additionally
trained with the perceptual loss. We see that SPADE focuses
on minimizing the VGG loss during training, but keeps the
adversarial generator loss constant. Without a rich training
signal from its Patch-GAN discriminator, the generator of
SPADE resorts to learningmostly from theVGG loss. In con-
trast, with the stronger discriminator supervision provided by
the semantic label maps and the multi-scale U-Net architec-
ture, OASIS achieves a better adversarial balance. Hence, the
generator is forced to learn semantically meaningful features
that the segmentation-based discriminator judges as real, and
the generator loss does not stay constant (see Fig. 5).

Fig. 5 VGG and adversarial generator loss functions for SPADE and
OASIS trained with VGG loss on ADE20k dataset. The adversarial loss
scales are different due to different objectives (binary or (N+1)-class
cross entropy loss)
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Fig. 6 Qualitative comparison of OASIS with other methods on ADE20K and Cityscapes. Trained with only adversarial supervision, our model
generates images with better perceptual quality and structure

The advantage of training the generator only with the
adversarial loss is three-fold. Firstly, the perceptual loss can
bias the training signal with the color and texture statistics
encoded in the VGG features extracted from ImageNet. As
shown in Sect. 4.2, the strong adversarial supervision from
the OASIS discriminator, without the VGG loss, allows to
generate images with color and texture distributions closer
to the provided real data. Secondly, the perceptual loss can
induce unnecessary constraints on the generator and thus sig-
nificantly limit the diversity of multi-modal image syntesis.
This effect is further demonstrated in Table 2. Lastly, remov-
ing theperceptual loss eliminates the computational overhead
which was introduced by an additional VGG network during
training.

4 Experiments

We provide an extensive experimental evaluation of our con-
tributions, using the official implementation of SPADE1 as
our baseline. The setup of our experiments is described in
detail in Sect. 4.1. Firstly, we compare OASIS with prior
methods on common semantic image synthesis benchmark
datasets, comparing their performance in terms of both
image quality and diversity (Sect. 4.2). To further high-
light the advantages of OASIS over the SPADE baseline,
we provide additional discussions on different aspects of
the semantic image synthesis. In particular, Sect. 4.3 is
devoted to the performance analysis on the underrepresented
classes, extending the comparison of the models to the LVIS

1 https://github.com/NVlabs/SPADE.
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dataset (Gupta et al., 2019). Section 4.4 demonstrates new
semantic image editing techniques enabled by OASIS. Sec-
tion 4.5 explores the application of generated images as
synthetic data augmentation for the training of semantic seg-
mentation networks. Lastly, we provide an extensive ablation
study to verify the effectiveness of the proposed contributions
(Sect. 4.6).

4.1 Experimental Setup

Datasets. We conduct experiments on several challenging
datasets. Firstly, to compare OASIS with prior models, we
use the ADE20K (Zhou et al., 2017), COCO-Stuff (Caesar
et al., 2018) and Cityscapes (Cordts et al., 2016), which are
the three benchmark datasets commonly used in the semantic
image synthesis literature (see Sect. 4.2). The image resolu-
tion is set to 256x256 for ADE20K and COCO-Stuff, and
256x512 for experiments on Cityscapes. Following Qi et al.
(2018), we also evaluate OASIS on ADE20K-outdoors, the
subset of ADE20K containing only outdoor scenes.

Secondly, to test the capability of models to learn under-
represented classes, we conduct additional evaluations on
the ADE20K and LVIS dataset (Gupta et al., 2019) (see
Sect. 4.3). We select ADE20K among conventional datasets
for its notable class imbalance, as among its 150 classes,
more than 86% of the image pixels belong only to the 30
best represented ones (see Table 3). In addition, to test the
networks undermore extreme class imbalance, we propose to
use LVIS, the dataset that has been originally introduced for
the task of long-tailed instance segmentation. LVIS employs
the same set of training images as COCO-Stuff, but its anno-
tations are different in two important ways. Firstly, LVIS
provides a significantly larger set of 1203 annotated classes,
following a long-tailed distribution in which some classes
are present only in one or a few training samples (see Fig. 7).
Secondly, due to a fixed labelling budget, different back-
ground types were not considered for annotation in LVIS.
Consequently, the images in LVIS dataset contain large areas
belonging to the background class, which sometimes covers
more than 90% of the pixels in an image (see grey areas
in Fig. 10). For the above two reasons, the structure of LVIS
poses a new challenge for semantic image synthesis, as mod-
els need to account for amuchmore extreme class imbalance.
We conduct experiments on LVIS at the image resolution of
128x128.
Training. We follow the experimental setting of Park et al.
(2019b). The Adam (Kingma & Ba, 2015) optimizer was
used with momenta β = (0, 0.999) and constant learning
rates (0.0001, 0.0004) forG and D. We did not use the GAN
feature matching loss for OASIS, as we did not observe any
improvement with it, and used the VGG loss only for abla-
tions with λVGG = 10. The parameter for LabelMix λLM was
set to 5 for ADE20k and Cityscapes, and to 10 for COCO-

Fig. 7 Comparison of class distributions of the COCO and LVIS
datasets. LVIS has a much larger vocabulary of 1203 classes with a
long tail of underrepresented classes

Stuff and LVIS. The latent dimension M was set to 64.
We did not experience any training instabilities and, thus,
did not employ any extra stabilization techniques. All our
models use an exponential moving average (EMA) of the
generator weights with 0.9999 decay. All the experiments
were run on 4 Tesla V100 GPUs, with a batch size of 20
for Cityscapes and 32 for the other datasets. The training
epochs are 200 on ADE20K and Cityscapes, and 100 for the
larger COCO-Stuff and LVIS datasets. On average, a com-
plete forward-backward pass with batch size 32 on ADE20k
takes around 0.95ms per training image.
Evaluation metrics. Following prior work (Park et al.,
2019b; Liu et al., 2019), we evaluate the quality of seman-
tic image synthesis by computing the FID (Heusel et al.,
2017) and evaluate the alignment of the generated images
with their semantic label maps via mIoU (mean intersection-
over-union) or mAP (mean average precision) on the test
set (see Sect. 4.2). mIoU evaluates the alignment of gener-
ated images with their ground truth label maps, as measured
by an external pre-trained semantic segmentation network.
We use UperNet101 (Xiao et al., 2018) for ADE20K, multi-
scale DRN-D-105 (Yu et al., 2017) for Cityscapes, and
DeepLabV2 (Chen et al., 2015) for COCO-Stuff. Differ-
ently, for theLVIS dataset, the alignment of generated images
to ground truth label maps is measured using mAP instead
of mIoU, following the official guidelines for evaluating
instance segmentation models on this dataset (see Sect. 4.3).
We compute mAP using a state-of-the-art instance segmen-
tation model fromWang et al. (2021a), pre-trained on LVIS.

In addition, to better understand how the perceptual loss
influences the synthesis performance, we propose to com-
pare the color and texture statistics of generated and real
images. For this, we compute color histograms in the LAB
space and measure the earth mover’s distance between the
real and generated image sets (Rubner et al., 2000). We also
measure the texture similarity to the real data as the χ2-
distance between Local Binary Patterns histograms (Ojala
et al., 1996). As different semantic classes have different
color and texture distributions, we aggregate the histogram
distances separately per class and compute their average.
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Table 1 Comparison with other methods across datasets

Method # param VGG ADE20K ADE-outd. Cityscapes COCO-stuff
FID↓ mIoU↑ FID↓ mIoU↑ FID↓ mIoU↑ FID↓ mIoU↑

CRN 84M ✓ 73.3 22.4 99.0 16.5 104.7 52.4 70.4 23.7

SIMS 56M ✓ n/a n/a 67.7 13.1 49.7 47.2 n/a n/a

Pix2pixHD 183M ✓ 81.8 20.3 97.8 17.4 95.0 58.3 111.5 14.6

LGGAN n/a ✓ 31.6 41.6 n/a n/a 57.7 68.4 n/a n/a

CC-FPSE 131M ✓ 31.7 43.7 n/a n/a 54.3 65.5 19.2 41.6

SC-GAN 66M ✓ 29.3 45.2 n/a n/a 49.5 66.9 18.1 42.0

SESAME 104M ✓ 31.9 49.0 n/a n/a 54.2 66.0 n/a n/a

SPADE 102M ✓ 33.9 38.5 63.3 30.8 71.8 62.3 22.6 37.4

SPADE+ 102M ✓ 32.9 42.5 51.1 32.1 47.8 64.0 21.7 38.8

✗ 60.7 21.0 65.4 22.7 61.4 47.6 99.1 16.1

OASIS 94M ✗ 28.3 48.8 48.6 40.4 47.7 69.3 17.0 44.1

Bold denotes the best performance

To measure the diversity among synthesized samples in
the multi-modal image generation regime, we evaluate MS-
SSIM (Wang et al., 2003) and LPIPS (Zhang et al., 2018b)
between the images generated from the same label map. For
each label map in the test set, we generate 20 images and
compute the mean pairwise scores. For the final numbers,
the scores are averaged over all label maps.

Lastly, we propose to test the efficacy of generated images
when applied as synthetic data augmentation for the task
of semantic segmentation (see Sect. 4.5). For this, we take
a DeepLab-V3 segmentation network with a ResNeSt-50
backbone (Zhang et al., 2020) and train it on ADE20K and
Cityscapes. At each training step of DeepLab-V3, we add
for each training image its synthetic counterpart to the batch,
generated from the same label map. The efficacy of synthetic
images is therefore measured by its effect on the downstream
mIoU performance of DeepLab-V3.

4.2 Evaluation of the Synthesis Quality and Diversity

In this section, we compare OASIS to previous state-of-the-
art methods. For a fair comparison to the baseline SPADE,
we additionally train this model without the featurematching
loss and using EMA (Yaz et al., 2018) at the test phase. We
refer to this improved baseline as SPADE+.
Synthesis quality. Table 1 compares the image synthesis
quality achieved by OASIS and previous methods. In this
table, we report the results of our evaluation for OASIS and
SPADE+, and the officially reported numbers for all the other
models. As seen from Table 1, OASIS outperforms prior
state-of-the-art models in FID on all benchmark datasets.
Our model also achieves the highest mIoU scores on three
out of four datasets, being almost on par with the highest
score on ADE20K achieved by SESAME (Ntavelis et al.,

Fig. 8 Histogram distances to real data on the ADE20K validation set.
While SPADE+ relies on the VGG loss to learn colors and textures,
OASIS achieves low scores without it

2020) Importantly, OASIS achieves the improvement using
only adversarial supervision from its segmentation-based
discriminator. On the contrary, in the absence of the VGG
loss, the baseline SPADE+ does not produce images of high
visual quality (see Fig. 1), with two-digit drops in FID scores
observed for all the datasets in Table 1. The strong adversar-
ial supervision also allows OASIS to produce images with
color and texture distributions closer to the real data. Such
improvement over SPADE+on theADE20Kdataset is shown
in Fig. 8, where OASIS achieves the lowest color and tex-
ture distances to the target distribution. In contrast, SPADE+
needs to compensate a weaker discriminator signal with the
VGG loss, struggling to learn the color and texture distribu-
tion of real images without it (see Fig. 8).

Figure 6 shows a qualitative comparison of our results to
previous models. Our approach noticeably improves image
quality, synthesizing finer textures and more natural col-
ors. While the previous methods occasionally produce areas
with unnatural checkerboard artifacts,OASISgenerates large
objects and surfaces with higher photorealism. Notably, the
improvement over previous models is especially remarkable
for the semantic classes that occupy large areas, e.g, wall
(rows 1,4 in Fig. 6), road (rows 5,6) or water (row 3).
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Table 2 Multi-modal synthesis
evaluation on ADE20K

Method Multi-mod. VGG MS-SSIM↓ LPIPS↑ FID↓ mIoU↑
SPADE+ Encoder ✓ 0.85 0.16 33.4 40.2

SPADE+ 3D noise ✗ 0.35 0.50 58.4 18.7

✓ 0.53 0.36 34.4 36.2

OASIS 3D noise ✗ 0.65 0.35 28.3 48.8

✓ 0.88 0.15 31.6 50.8

Bold and italic denote the best and the worst performance

Fig. 9 Failure mode of OASIS. Without the VGG loss, OASIS has less
constraints on the diversity in colors and textures. This helps to achieve
higher diversity among the generated samples, but sometimes leads to

synthesis of objects with outlier colors and textures which may look
less realistic compared to Park et al. (2019b) and Liu et al. (2019)

Synthesis diversity. By resampling the input 3D noise,
OASIS can produce diverse images given the same label
map (see Fig. 2). To measure the diversity of such multi-
modal synthesis, we evaluate MS-SSIM (Wang et al., 2003)
and LPIPS (Zhang et al., 2018b). The lower the MS-SSIM
and the higher the LPIPS scores, the more diverse the gener-
ated images are. As seen from Table 2, OASIS outperforms
SPADE+ in both diversity metrics, improving the MS-SSIM
scores from 0.85 to 0.65 and LPIPS from 0.16 to 0.35. To
assess the effect of the perceptual loss and the noise sam-
pling on diversity, we train SPADE+ with 3D noise or the
image encoder, and with or without the perceptual loss.
Table 2 shows that OASIS, without the perceptual VGG
loss, improves over SPADE+ with the image encoder, both
in terms of image diversity (MS-SSIM, LPIPS) and qual-
ity (mean FID, mIoU across 20 realizations). Using 3D
noise further increases diversity for SPADE+. However, a
strong quality-diversity trade-off exists for SPADE+: 3D
noise improves diversity at the cost of quality, and the per-
ceptual loss improves quality at the cost of diversity. We

conclude that our 3D noise injection strongly improves the
synthesis diversity, while the VGG loss decreases it.

While the increased diversity is a big advantage, it can also
lead to failures in rare cases: for some samples the colors and
textures of objects may lie further from the real distribution
and seem unnatural to the human eye (see Fig. 9).

4.3 Synthesis Performance on Underrepresented
Classes

Class imbalance is a well-known challenge in semantic seg-
mentation applications (Sudre et al., 2017). Similarly to
semantic segmentation, to ensure good performance in real-
life test scenarios, semantic image synthesis models should
account for a possible dataset class imbalance, especially
considering that GANs are notorious for dropping modes of
training data (Arjovsky & Bottou, 2017). However, to the
best of our knowledge, this issue was not addressed in prior
works. Thus, in what follows, we evaluate the performance
of OASIS and SPADE+ on the ADE20K and LVIS datasets,
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Table 3 Per-class IoU scores on
ADE20k, grouped by pixel-wise
frequency (the fraction of all
pixels in the datasets belonging
to one class)

Classes IDs Pixel-wise frequency (%) mIoU
SPADE+ OASIS (w/o αc) OASIS (w. αc)

0–29 86.4 63.7 69.1 68.8

30–59 7.2 47.4 52.4 56.6

60–89 3.5 45.3 47.0 51.5

90–119 1.8 29.3 36.2 41.5

120–149 1.0 26.2 31.2 39.7

0–149 (all classes) 100 42.4 47.2 51.6

Bold denotes the best performance. Training with per-class loss balancing is denoted by αc

Table 4 Comparison of SPADE+ and OASIS on the LVIS dataset with
1203 classes and a long tail of underrepresented classes

Method FID ↓ mAP, % ↑ Classes with AP > 0 ↑
SPADE+ 26.8 4.56 439

OASIS 15.3 5.38 510

real data 0 6.70 624

Bold denotes the best performance. Last row shows the scores for the
LVIS validation set

considering their class imbalances. While the class imbal-
ance in ADE20K is notable (e.g., 86.4% of all image pixels
belongs to the 30 best represented classes), this issue is much
more amplified in LVIS, which has a long tail of underrep-
resented classes (see Fig. 7).
Evaluation on ADE20K. OASIS significantly outperforms
the SPADE+ baseline in the alignment between generated
images and label maps, as measured by mIoU (see Table 1).
As shown in Table 3, the improvement in mIoU on ADE20K
comes mainly from the better IoU scores achieved for under-
represented semantic classes.

To illustrate this, the semantic classes are sorted by their
pixel-wise frequency in the training images, obtained by
dividing the number of pixels a class occupies in the dataset
by the total number of pixels of all images (2nd column in
Table 3). Table 3 highlights that the relative gain in mIoU is
especially high for the groups of underrepresented semantic
classes, that cover less than 3% of all pixels in the dataset.
For these classes, the relative gain over the SPADE+ base-
line exceeds 40%.Remarkably, the gain for this groupmainly
comes from the per-class balancing applied in theOASIS loss
function (columns “w/o αc” and “w. αc”), which draws the
attention of the discriminator to underrepresented semantic
classes, thus allowing a higher quality of their generation.
This class balancing computes a weight αc for the losses of
each class c on a per-batch basis, for which the total number
of pixels in a given batch is divided by the number of pixels
belonging to the class (see Eqs. 2 and 3 ). We note that the
possibility to introduce the pixel-wise frequency based bal-
ancing requires the loss to be computed separately for each
image pixel. This is a unique property of the OASIS dis-

criminator, in contrast to conventional classification-based
discriminators, which have to evaluate realism with a single
score for images containing both well- and underrepresented
classes together.
Evaluation onLVIS. A quantitative comparison between the
models on the LVIS dataset is shown in Table 4. In this more
extremely imbalanced data regime, the gain of our model is
pronounced: OASIS outperforms SPADE+ by a large mar-
gin, lowering the FID by 43% (from 26.8 to 15.3). Figure 10
shows a qualitative comparison between the models. OASIS
produces images of higher visual quality with more natural
colors and textures. In Table 4 we report the mean Aver-
age Precision (mAP) of the instance segmentation network
evaluated on the set of generated images. OASIS outper-
forms SPADE+ in mAP by a notable margin (5.38 vs 4.56),
thus producing objects with a more realistic appearance and
largely reducing the gap to real data (mAP of 6.70). To eval-
uate the ability of the models to generate underrepresented
classes at the tail of the LVIS data distribution, we count the
number of classes for which a non-zero AP score is achieved.
Table 4 shows that OASIS can model more semantic classes:
OASIS achieves a positive AP for 510 semantic classes com-
pared to 439 for SPADE+, thus exhibiting a better capability
to synthesize underrepresented classes.

In addition to better handling the class imbalance, OASIS
also visually outperforms SPADE+ on the LVIS label maps
with a very large proportion of the background class. As
seen in Fig. 10 (four rightmost columns), from such label
maps, SPADE+ fails to produce plausible images and suffers
from mode collapse. In contrast, OASIS successfully deals
with such kinds of inputs, producing diverse and visually
plausible images even for the least annotated label maps,
with the highest proportion of the background class.

In conclusion, we consider long-tailed datasets, such
as LVIS, an interesting direction for future work, as the
improved synthesis of multiple tail classes under severe
imbalance can significantly boost the applicability of seman-
tic image synthesis to real-world applications.
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Fig. 10 Qualitative comparison between OASIS and SPADE+ on the
long-tailed LVIS dataset with 1203 classes. OASIS generates higher-
quality images with more natural colors and textures. For label maps

covered mostly by the background class (four right columns), OASIS
hallucinates plausible and diverse images, while SPADE+ suffers from
mode collapse

Fig. 11 Images generated by OASIS on ADE20K with 256 × 256 resolution using different 3D noise inputs. For both input label maps, the noise
is re-sampled globally (first row) or locally in the areas marked in red (second row)

4.4 Image Editing with OASIS

OASIS can generatemany different-looking images for a sin-
gle label map by directly resampling input 3D noise. In the
following,we present qualitativemulti-modal results and dis-

cuss two unique semantic image editing techniques enabled
by our model: local resampling of selected semantic classes
and diverse resampling of unlabelled images.
Global and local resampling of the 3D noise. The 3D
noise of OASIS modulates the activations directly at every
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Fig. 12 Latent space interpolations between images generated by OASIS for the ADE20K dataset at resolution 256 × 256. The first two rows
display global interpolations. The second two rows show local interpolations of the floor or water only

generator layer, matching the spatial resolution of features
at different generation scales. Therefore, such modulation
affects both global and local characteristics of a generated
image. At test time, this allows different strategies for noise
sampling. For example, the noise can be sampled globally for
all pixels, varying thewhole image (see Fig. 11, first and third
rows). Alternatively, a noise vector can be re-sampled only
for specified image regions, resulting in local image edit-
ing while preserving the rest of the scene. For example, the
local strategy allows to re-sample only the sky area in a land-
scape scenery, or only the window in a scene of a bedroom
(see Fig. 11, second and fourth rows). Spatial sensitivity of
OASIS to 3D noise is further demonstrated in Fig. 12, show-
ing interpolations in the latent space. The learned latent space
captures well the semantic meaning of objects and allows
smooth interpolations not only globally, but also locally for
selected objects (see Fig. 12, two last rows).
Creating diverse images from unlabelled data. In contrast
to previous semantic image synthesis methods, the OASIS
discriminator can be reused as a stand-alone image seg-
menter. To obtain a segmentation prediction for a given
image, a user just needs to feed it to our pre-trained discrim-
inator and select the highest activation among real classes in
its (N + 1)-channel output for each pixel. When tested as
an image segmenter on the validation set of ADE20K, the
OASIS discriminator reaches a mIoU of 40.0. For compari-

son, the state-of-the-art model DeepLab-V3 with a ResNeST
backbone (Zhang et al., 2020) achieves an mIoU of 46.91.
The good segmentation performance allows OASIS to be
applied to unlabelled images: given an unseen image with-
out the ground truth annotation, OASIS can predict a label
map via the discriminator. Subsequently feeding this predic-
tion to the generator allows to synthesize a scene with the
same layout but different style (see Fig. 13). The recreated
scenes closely follow the ground truth label map of the orig-
inal image and vary considerably, due to the high sensitivity
of OASIS to the 3D noise. We note that OASIS uniquely
reaches this ability using only adversarial training, without
the need for an external segmentation network or additional
loss functions. We believe that the ability to create multi-
ple versions of one image while retaining the layout, but not
requiring the ground truth labelmap,may provide useful data
augmentation for various applications in future research.

4.5 Synthetic Data Augmentation

As an additional evaluation method, we test the efficacy
of generated images when applied as synthetic data augmen-
tation for the task of semantic segmentation. Synthetic data
augmentation is a task that benefits from both image qual-
ity and diversity, as well as the ability to generate semantic
classes that are underrepresented in the original data (see
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Fig. 13 After training, the OASIS discriminator can be used to segment
images. The first two columns show the real image and the segmentation
of the discriminator. Using the predicted label map, the generator can

produce multiple versions of the original image by resampling noise
(Recreations 1–3). Note that no ground truth maps are required

Table 5 Semantic segmentation performance of ResNeSt-50 with and
without synthetic data augmentation (DA)

Data augmentation Cityscapes ADE20K
mIoU↑ mIoU↑

No synthetic DA 62.7 41.0

With SPADE 62.6 41.6

With OASIS 64.7 41.8

Bold denotes the best performance

Table 3). Therefore, the effect of synthetic data augmen-
tation on downstream performance can constitute a more
holistic evaluation of semantic image synthesis models. To
test the efficiency of OASIS, we train a DeepLab-V3 seg-
mentation network on ADE20K and Cityscapes, at each step
augmenting each training image with its synthetic augmen-
tation, produced by OASIS from the same label map.

We compare OASIS against the strong baseline SPADE in
Table 5. Between the two methods, OASIS elicits a stronger
increase in segmentation performance with an improvement
of 2.0 mIoU on Cityscapes and 0.8 mIoU on ADE20K,
compared to DeepLab-V3 trained without synthetic aug-
mentation. The higher performance improvement of OASIS
compared to SPADE is explained by all the previously
observed gains in image quality, diversity, and the alignment
to input label maps (see Fig. 8, Tables 1 and 2). In addition
to that, the segmentation performance is also improved due
to the fact that OASIS tends to synthesize underrepresented

classes better than SPADE, which is evident from Table
6. This table compares the IoU performance of DeepLab-
V3 on the well represented and underrepresented classes of
Cityscapes, as measured by the pixel-wise frequency of the
semantic class in the dataset. Examples of well represented
classes are road and building (see the 1st row of Table 6),
while classes like bicycle or traffic light are the least rep-
resented in the dataset (see 4th row in Table 6). Note that
the IoU comparison in Table 6 is different from Table 3,
where the IoU was measured directly on synthetic data using
a pretrained segmenter. It can be seen that the improvement
in IoU through OASIS can be mostly attributed to better
performance on underrepresented classes, as the gap in per-
formance betweenOASIS andSPADEbecomes larger for the
classes which are less represented. Lastly, since the OASIS
generator was trained to fool an image segmenter (theOASIS
discriminator), it may synthesize harder examples for seman-
tic segmentation than SPADE, thus having higher potential
to improve the generalization of segmentation networks to
challenging corner cases. We find the above results promis-
ing for future utilization of OASIS in various downstream
applications. Moreover, for future research, we find it inter-
esting to explore synthetic data augmentation in combination
with other data augmentation techniques, e.g., RandAugment
(Cubuk et al., 2020), which has the potential to provide fur-
ther performance gains for downstream applications.
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Table 6 Per-class IoU scores on
Cityscapes, obtained without
(None) and with synthetic data
augmentation using SPADE or
OASIS

Sorted classes Pixel-wise frequency (%) None SPADE OASIS
abs rel abs rel

0–4 82.7 90.6 90.6 +0.0 90.9 + 0.3

5–8 12.5 66.2 66.2 +0.0 67.4 + 1.2

9–12 3.3 50.2 49.1 −1.1 52.2 + 2.0

13–18 1.6 51.9 52.3 +0.4 55.4 +3.5

All classes 100 62.7 62.6 −0.1 64.7 + 2.0

The classes are sorted and grouped by class pixel-wise frequency, as measured by the total fraction of pixels
in the dataset belonging to one class. Bold denotes the best performance. The absolute (abs) and relative (rel)
mIoU gain via data augmentation is shown

Table 7 Main ablation on
ADE20K. The OASIS generator
is a lighter version of the
SPADE+ generator (72M vs
96M parameters)

G D VGG LabelMix FID↓ mIoU↑
SPADE+ SPADE+ ✗ ✗ 60.7 21.0

SPADE+ OASIS ✗ ✗ 29.0 52.1

OASIS OASIS ✗ ✗ 29.3 51.6

✗ ✓ 28.4 50.6

OASIS +3D noise OASIS ✗ ✓ 28.3 48.8

✓ ✓ 31.6 50.8

Bold denotes the best performance

Table 8 Ablation on the D architecture

D architecture w/o VGG with VGG
FID↓ mIoU↑ FID↓ mIoU↑

MS-PatchGAN (2x) 60.7 21.0 32.9 42.5

PatchGAN 197 0.62 34.2 42.2

ResNet-PatchGAN 147 0.42 32.4 45.1

OASIS 29.3 51.6 29.2 51.1

Bold denotes the best performance, italics shows collapsed runs

4.6 Ablations

We conduct all our ablations on the ADE20K dataset. We
choose this dataset as it more challenging (with 150 classes)
than Cityscapes (35 classes) and ADE20K-Outdoors (110
classes), and has more reasonable training time (5 days)
compared to COCO-Stuff and LVIS (4 weeks). Our main
ablation shows the impact of the main technical components
of OASIS, including the new discriminator, lighter generator,
LabelMix and the 3D noise. Further ablations are concerned
with the architecture changes in the discriminator, the label
map encoding in the discriminator, different noise sampling
strategies, LabelMix and the GAN feature matching loss.
Main ablation. Table 7 shows that SPADE+ achieves low
performance on the image quality metrics without the per-
ceptual loss. Replacing the SPADE+ discriminator with the
OASIS discriminator, while keeping the generator fixed,
improves FID and mIoU by more than 30 points. Changing
the SPADE+ generator to the lighter OASIS generator leads

Table 9 Ablation on the label map encoding runs

Label encoding w/o VGG with VGG
FID↓ mIoU↑ FID↓ mIoU↑

Input concatenation 280 0.02 30.0 43.9

Projection 32.4 44.9 28.0 46.9

N+1 loss 28.3 47.2 28.6 49.8

Balanced N+1 loss 29.3 51.6 29.2 51.1

Bold denotes the best performance, italics shows collapsed runs

to a negligible degradation of 0.3 in FID and 0.5 inmIoU, but
reduces the number of parameters from 96M to 72M. With
LabelMix FID improves further by about 1 point. Adding 3D
noise improves FID but degrades mIoU, as diversity com-
plicates the task of the pre-trained semantic segmentation
network used to compute the mIoU score. For OASIS the
perceptual loss deteriorates FID by more than 2 points, but
improves mIoU. Overall, without the VGG loss the new dis-
criminator is the key to the performance boost over SPADE+.
Ablation on the discriminator architecture. We train the
OASIS generator with three alternative discriminators: the
original multi-scale PatchGAN consisting of two networks,
a single-scale PatchGAN, and a ResNet-based discriminator,
corresponding to the encoder of the U-Net shaped OASIS
discriminator. Table 8 shows that the alternative discrimina-
tors only performwell with perceptual supervision, while the
OASIS discriminator achieves superior performance inde-
pendent of it. The single-scale discriminators even collapse
without the perceptual loss (italic in Table 8).
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Table 10 Different 3D noise
sampling strategies during
training. Bold denotes the best
performance

Sampling Cityscapes ADE20K
FID↓ mIoU↑ MS-SSIM↓ FID↓ mIoU↑ MS-SSIM↓

Image-level 47.7 69.3 0.64 28.3 48.8 0.65

Region-level 48.1 69.7 0.62 28.8 48.1 0.58

Pixel-level 50.9 65.5 0.84 28.6 34.0 0.68

Mix 46.4 70.9 0.68 28.5 47.6 0.66

Ablation on the discriminator label map encoding. We
study four different ways to use label maps in the discrimi-
nator: the first encoding is input concatenation, as in SPADE.
The second option is a pixel-wise projection-based GAN
loss (Miyato & Koyama, 2018). Unlike Miyato and Koyama
(2018), we condition the GAN loss on the label map instead
of a single label. The third and fourth option is to employ the
label maps as ground truth for the N + 1 segmentation loss,
or for the class-balanced N + 1 loss (see Sect. 3.2). For a
fair comparison we use neither 3D noise nor LabelMix. As
shown in Table 9, input concatenation is not sufficient with-
out additional perceptual loss supervision, leading to training
collapse. Without the perceptual loss, the N + 1 loss outper-
forms the input concatenation and the projection in both the
FID and mIoU metrics. Finally, the class balancing enables
enhanced supervision for underrepresented semantic classes,
which noticeably improves mIoU scores. On the other hand,
we observed that the FID metric is more sensitive to the syn-
thesis of well represented classes and not underrepresented
classes, which explains the negative effect of the class bal-
ancing on FID.
Ablation on noise sampling strategies for training.Our 3D
noise can contain the same sampled vector for each pixel, or
different vectors for different regions. This allows for dif-
ferent sampling strategies during training. Table 10 shows
the effect of using different methods of sampling 3D noise
for different locations during training: Image-level sampling
creates one global 1D noise vector and replicates it along the
height and width of the label map to create a 3D noise tensor.
Region-level sampling relies on generating one 1D noise vec-
tor per semantic class, and stacking them in 3D to match the
height and width of the semantic label map. Pixel-level sam-
pling creates different noise for every spatial position, with
no replication taking place. Mix switches between image-
level and region-level sampling via a coin flip decision at
every training step. With no obvious winner in performance,
we choose the simplest scheme (image-level) for our exper-
iments. We find a further investigation with more advanced
strategies an interesting direction for future work.
Ablation on LabelMix. Consistency regularization for the
segmentation output of the discriminator requires a method
of generating binarymasks. Therefore,we compare the effec-
tiveness of CutMix (Yun et al., 2019) and our proposed
LabelMix. Both methods produce binary masks, but only

Table 11 Ablation study on the impact of LabelMix and CutMix for
consistency regularization (CR) in OASIS on Cityscapes

Transformation FID↓ mIoU ↑
No CR 51.5 66.3

CutMix 52.1 67.4

LabelMix 47.7 69.3

Bold denotes the best performance

LabelMix respects the boundaries between semantic classes
in the label map. Table 11 compares the FID and mIoU
scores ofOASIS trainedwith bothmethods on theCityscapes
dataset. As seen from the table, LabelMix improves both
FID (51.5 vs. 47.7) and mIoU (66.3 vs. 69.3), in comparison
to OASIS without consistency regularization. CutMix-based
consistency regularization only improves the mIoU (66.3 vs.
67.4), but not as much as LabelMix (69.3). We suspect that
since the images are already partitioned through the label
map, an additional partition through CutMix results in a
dense patchwork of areas that differ by semantic class and
real/fake class identity. This may introduce additional label
noise during training for the discriminator. To avoid such
inconsistency between semantic classes and real/fake iden-
tity, the mask of LabelMix is generated according to the label
map, providing natural borders between semantic regions, so
that the real and fake objects are placed side-by-side without
interfering with each other. Under LabelMix regularization,
the generator is encouraged to respect the natural semantic
class boundaries, improving pixel-level realism while also
considering the class segment shapes.
Ablation on the feature matching loss. We measure the
effect of the discriminator feature matching loss (FM) in the
absence and presence of the perceptual loss (VGG). The dis-
criminator featurematching loss is used bydefault in SPADE.
Table 12 presents the results for OASIS and SPADE+ on
Cityscapes. For SPADE+, we observe that the feature match-
ing loss affects the metrics notably only when no perceptual
loss is used. In this case, the FM loss improves mIoU by
8.2 points. In contrast, the effect of the FM loss on the
mIoU is small when the perceptual loss is used (0.4 points).
Hence, the role of the FM loss in the training of SPADE+ is
to improve performance by stabilizing the training, similar
to the perceptual loss. This observation is in line with the
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Table 12 The effect of the discriminator feature matching loss (FM) in
the absence or presence of the perceptual loss (VGG)

VGG FM FID↓ mIoU↑
(a) OASIS on Cityscapes

✗ ✗ 47.7 69.3

✗ ✓ 48.5 69.1

✓ ✗ 46.1 72.0

✓ ✓ 46.5 70.9

(b) SPADE+ on Cityscapes

✗ ✗ 61.4 47.6

✗ ✓ 57.3 55.8

✓ ✗ 47.8 64.0

✓ ✓ 48.1 64.4

Bold denotes the best performance

general observation that SPADE and other semantic image
synthesis models require the help of additional loss functions
because the adversarial supervision through the discrimina-
tor is not strong enough. In comparison, we did not observe
any training collapses in OASIS, despite not using any extra
loss functions. For OASIS, the feature matching loss results
in a worse FID (by 0.8 points) in the absence of the percep-
tual loss. We also observe a degradation of 1.1 mIoU points
through the FM loss, in the case where the perceptual super-
vision is present. This indicates that the FM loss negatively
affects the strong supervision from the semantic segmenta-
tion adversarial loss of OASIS.

5 Conclusion

This work studies semantic image synthesis, the task of gen-
erating diverse and photorealistic images from semantic label
maps. Conventionally, semantic image synthesis GANmod-
els employed a perceptual VGG loss to overcome training
instabilities and improve the synthesis quality. In our experi-
ments we demonstrated that the VGG-based perceptual loss
imposes unnecessary constraints on the feature space of the
generator, significantly limiting its ability to produce diverse
samples from input noise, as well as the ability to produce
images with colors and textures closely matching the distri-
bution of real images. Therefore, in this work we propose
OASIS, a semantic image synthesis model that needs only
adversarial supervision to achieve high-quality results.

The improvement over the prior work in image synthesis
quality is achieved via the detailed spatial and semantic-
aware supervision from our novel segmentation-based dis-
criminator, which uses semantic label maps as ground truth
for training. With this powerful discriminator, OASIS can
easily generate diverse outputs from the same semantic
label map by resampling 3D noise, eliminating the need for

additional image encoders to achieve multi-modality. The
proposed 3Dnoise injection scheme canwork both in a global
and local regime, allowing to change the appearance of the
whole scene and of individual objects. With the proposed
modifications, OASIS significantly improves over previous
state-of-the-art models in terms of image synthesis quality.

Furthermore, we proposed to use the LVIS dataset to eval-
uate semantic image synthesis under severe class imbalance
and sparse label annotations. Thanks to the class balancing
mechanism enabled by its segmentation-based discriminator,
OASIS achievesmore realistic synthesis of underrepresented
classes, achieving pronounced gains on the extremely unbal-
ancedLVIS dataset. Lastly, the design ofOASIS can be better
suited for image editing applications compared to the SPADE
baseline, enabling diverse resampling of scenes from unla-
belled images, as well as for synthetic data augmentation,
improving the performance of a downstream segmentation
network by a larger margin.
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