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Abstract
Semantic segmentation of parts of objects is a marginally explored and challenging task in which multiple instances of objects
andmultiple parts within those objects must be recognized in an image.We introduce a novel approach (GMENet) for this task
combining object-level context conditioning, part-level spatial relationships, and shape contour information. The first target
is achieved by introducing a class-conditioning module that enforces class-level semantics when learning the part-level ones.
Thus, intermediate-level features carry object-level prior to the decoding stage. To tackle part-level ambiguity and spatial
relationships among parts we exploit an adjacency graph-basedmodule that aims at matching the spatial relationships between
parts in the ground truth and predicted maps. Last, we introduce an additional module to further leverage edges localization.
Besides testing our framework on the already used Pascal-Part-58 and Pascal-Person-Part benchmarks, we further introduce
two novel benchmarks for large-scale part parsing, i.e., a more challenging version of Pascal-Part with 108 classes and the
ADE20K-Part benchmark with 544 parts. GMENet achieves state-of-the-art results in all the considered tasks and furthermore
allows to improve object-level segmentation accuracy.

Keywords Part parsing · Semantic segmentation · Graph matching · Edge localization · Coarse-to-fine learning

1 Introduction

In recent years, many different approaches for semantic seg-
mentation (Chen et al., 2018; Zhao et al., 2017a; Long et al.,
2015) havebeendeveloped, however state-of-the-artmethod-
ologies focus on object-level semantic segmentation without
addressing in any way the internal decomposition of the var-
ious object into their parts. The fine-grained decomposition
into the different parts of each object in the image provides
a richer representation for many challenging tasks, includ-
ing pose estimation (Dong et al., 2014; Yang & Ramanan,
2011), category detection (Chen et al., 2014; Azizpour &
Laptev, 2012; Zhang et al., 2014), fine-grained action detec-
tion (Wang et al., 2012) and image classification (Sun &
Ponce, 2013; Krause et al., 2015). Even if in principle it
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is possible to train a generic semantic segmentation model
using part-level annotations, current semantic segmentation
approaches are not optimal for the task of distinguishing
between different semantic parts, i.e., they do not account for
the fact that corresponding parts in different semantic classes
often share similar appearance and they typically capture
limited local context. As exemplified in Fig. 1, accounting
for the spatial relationships between semantic parts and for
their interactions require additional provisions. As in the two
examples reported in the figure, seeing only a limited portion
of the image (e.g., the regions highlighted by the ovals) pre-
vents a proper understanding of the overall scene and consists
in a major source of errors during semantic segmentation.
Thus, training a state-of-the-art semantic segmentation archi-
tecture by treating each part as an independent class without
accounting for how they are arranged into the correspond-
ing object, leads to sub-optimal performance as we show in
Sect. 7.

While object-level semantic segmentationhas beenwidely
explored, part parsing has only been marginally addressed,
and mostly in the context of a single specific type of object.
The most explored task is human part parsing (Liang et al.,
2015; Yamaguchi et al., 2012; Zhu et al., 2011; Eslami &
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Cow legs 
Sheep legs ?

Dog head
Dog tail ?

Fig. 1 Left: corresponding parts in different semantic classes
often share similar appearance (cow legs and sheep legs are
almost indistinguishable without larger object-level context).
Right: sometimes semantic localization of parts within objects is

challenging due to their similar appearance (the highlighted oval could
be both dog head or dog tail without additional awareness of reciprocal
spatial localization)

Williams, 2012), since it represents a key step for the pose
estimation task. A few works explored the part parsing of
cars (Song et al., 2017; Lu et al., 2014) or animals (Wang &
Yuille, 2015; Wang et al., 2015; Haggag et al., 2016).

The only works dealing with the challenging scenario of
multi-class part-based semantic segmentation where part-
level as well as object-level ambiguities are present, are
BSANet (Zhao et al., 2019) and the conference version of
this work (Michieli et al., 2020). BSANet (Zhao et al., 2019)
was the first work to investigate the problem of multi-object
part parsing even if it addressed a single task with 58 parts.
In the previous version of this work (Michieli et al., 2020)
we introduced a more advanced learning architecture able to
tackle a more challenging experimental setup with a large
number of parts contained in the scenes (up to 108 parts).

The exploitation of object-level information in part pars-
ing is strictly related to a very active research direction that
is the transfer of previous knowledge, acquired on a different
but related task, to a new setting. Different interpretations
may exist to this regard. In the class-incremental learning
task, the learned model is updated to perform a new task
whilst preserving previous knowledge: many methods have
been proposed for image classification (Dhar et al., 2019;
Rebuffi et al., 2017; Li & Hoiem, 2018), object detection
(Shmelkov et al., 2017) and semantic segmentation (Michieli
& Zanuttigh, 2019; Cermelli et al., 2020; Michieli & Zanut-
tigh, 2021a; Douillard et al., 2021; Michieli & Zanuttigh,
2021b; Maracani et al., 2021). In semantic-level coarse-to-
fine learning, previous knowledge acquired on a coarser task
is exploited to perform a finer-grained segmentation task
(Hariharan et al., 2015;Xia et al., 2017;Mel et al., 2020).Dif-
ferently, in this work we analyze coarse-to-fine refinement at
the spatial level, where part-level classes are hierarchically
derived from the object-level classes (Wang et al., 2015; Xia
et al., 2016; Zhao et al., 2019).

More precisely, we investigate the multi-object and multi-
part parsing in the wild, where different semantic objects and
multiple parts within each object are present in the scene.
Current state-of-the-art architectures designed for classical
object-level semantic segmentation, both based on thewidely
used encoder-decoder architecture (Long et al., 2015; Badri-
narayanan et al., 2017; Zhao et al., 2017a; Chen et al.,
2017, 2018) and onmore recent vision transformers schemes
(Dosovitskiy et al., 2021; Zheng et al., 2021; Liu et al., 2021;
Strudel et al., 2021; Xie et al., 2021), face additional chal-
lenges when dealing with this task, as preliminarily shown in
Zhao et al. (2019). In particular, the simultaneous appearance
of multiple objects and the inter-class ambiguity may cause
inaccurate edge localization and severe classification errors.
For instance, animals often have homogeneous appearance
due to furs on the whole body. Additionally, the appearance
of some parts over multiple object classes may be visually
similar, such as cow legs and sheep legs in Fig. 1. Stan-
dard semantic segmentationmodels heavily suffer from these
aspects. In this work we propose an object-level condition-
ing module to address object-level ambiguity, acting as a
guidance for part parsing within the object. An auxiliary
reconstruction module matching the part-level predictions
with the object-level ones further penalizes predictions of
parts in regions occupied by an object to which the predicted
parts do not belong. Thus, predicting awrong part of the same
object-level class is treated as a less severe type of error. To
address part-level ambiguity, we design a graph-matching
module able to preserve the relative spatial relationships
between ground truth and predicted parts. Finally, contours
are further preserved through a separate edge module.

When humans look at scenes, they tend to first locate
the objects and then to refine the understanding by ana-
lyzing the parts composing the objects (Xia et al., 2016).
Similarly, our class-conditioning approach refines part-level
localization, by enforcing object-level semantics. In partic-
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ular, object-level predictions of an off-the-shelf architecture
serve as a conditioning term to guide the part-level decod-
ing stage. The predictions are processed via an object-level
semantic embedding CNN, whose features are concate-
nated with those produced by the encoder designated to
tackle part-level recognition. Therefore, part-level extracted
features are enriched with object-level information prior,
bringing object-level awareness at the part-level decoding
stage. Furthermore, we address part-level ambiguity via a
graph-matching technique computed over the segmentation
maps. In order to model vicinity among parts, we build a
couple of weighted adjacency graphs from both the ground
truth and the predicted segmentation maps, where the weight
is given by the normalized number of adjacent pixels to rep-
resent the strength of connection between the parts. Then, an
ad-hoc loss function enforces their similarity during train-
ing. Finally, to further improve the accuracy of contours of
the part shapes, enhanced edge-related awareness is brought
directly to the encoding layers via an auxiliary branch forcing
the matching of the edge information with the ground truth
one. These provisions allow the architecture (1) to discover
the differences in appearance between different partswithin a
single object, (2) to avoid the ambiguity across similar object
categories, and (3) to improve segmentation of classes close
to the contours.

Compared to the conference version (Michieli et al.,
2020), the main contributions of this paper are:

• we extended our approach (now called GMENet) to give
more importance to edges localization, since the regions
close to the edges account for most of the errors in the
predicted segmentation map;

• we introduced an additional large-scale benchmark (ADE
20K-Part) containing 544 parts originating from 150
objects of the ADE20K dataset (Zhou et al., 2017);

• we included a new experimental evaluation on stan-
dard (object-level) semantic segmentation (on Pascal
VOC2012 (Everingham et al., 2010) and on Cityscapes
(Cordts et al., 2016)), showing how the providedmethods
could improve the results on both part-level and object-
level semantic segmentation;

• we includedmore comparisonswith existing state-of-the-
art segmentation methods and more qualitative results on
all the scenarios;

• our complete approach (GMENet) outperforms the pre-
vious version and achieves new state-of-the-art perfor-
mance on part parsing, especially when multiple small
parts are present.

2 RelatedWork

Semantic Segmentation is a long-standing problem towards
detailed scene understanding (recent reviews on the topic
are (Liu et al., 2019a; Guo et al., 2018)). The Fully Con-
volutional Network (FCN) framework (Long et al., 2015)
firstly enabled accurate and end-to-end semantic segmen-
tation, introducing the basic encoder-decoder model that
has then been extended in many following works. Widely
used approaches building on top of this scheme include
SegNet (Badrinarayanan et al., 2017), PSPNet (Zhao et al.,
2017a), DRN (Yu et al., 2017), UNet (Ronneberger et al.,
2015) and BiSeNet (Yu et al., 2018, 2021). The DeepLab
(Chen et al., 2017, 2018) family of architectures is typically
regarded as the state-of-the-art encoder-decoder architecture
for semantic segmentation. Following recent progresses in
Natural Language Processing (Vaswani et al., 2017), sev-
eral segmentation methods couple convolutional backbones
with alternative aggregation schemes based on channel, spa-
tial (Fu et al., 2019; Yuan et al., 2018; Huang et al., 2019,
2020) or point-wise (Fu et al., 2019) attention to better cap-
ture contextual information. Recently, Vision Transformers
(ViT) (Dosovitskiy et al., 2021) introduced a convolution-
free transformer architecture for downstream vision tasks.
SETR (Zheng et al., 2021) uses a ViT backbone and a stan-
dard CNN decoder. Swin (Liu et al., 2021) and Twins (Chu
et al., 2021) transformers compute self-attention within a
local (windowed) region. The Segmenter work (Strudel et al.,
2021) proposes a transformer encoder-decoder architecture.
TopFormer (Zhang et al., 2022) exploits tokens from differ-
ent scales and pools them efficiently. SegFormer (Xie et al.,
2021) focus on removing positional encoding at the encoder
and designs the decoder as a multilayer perceptron. TrSeg
(Jin et al., 2021) adaptively captures multi-scale information
with the dependencies on original contextual information.

Single-Object Part Parsing has been actively researched
in the recent literature. However, the vast majority of previ-
ous works deals with images containing only the considered
object, well-localized beforehand and without occlusions.
Recent works tackled this problem for animals (Wang &
Yuille, 2015), cars (Eslami&Williams, 2012; Lu et al., 2014;
Song et al., 2017) and especially humans (Liang et al., 2015;
Yamaguchi et al., 2012; Zhu et al., 2011; Eslami &Williams,
2012; Yin et al., 2021; He et al., 2021a; Li et al., 2017).

Standard deep networks regarding each semantic part as
a separate class label are inadequate to solve the task. There-
fore, some coarse-to-fine strategies have been proposed.
Hariharan et al. (2015) propose to sequentially perform
object detection, object segmentation and part segmentation
with different architectures. However, there are some limita-
tions, in particular the complexity of the training and the error
propagation throughout the pipeline. An upgraded version of
the framework has been presented in Xia et al. (2016), where
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the same structure is employed for the three networks and an
automatic adaptation to the size of the object is introduced.
In Wang et al. (2015) a two-channels FCN is employed to
jointly infer object and part segmentation for animals. How-
ever, it uses only a single-scale network not capturing small
parts and uses a post-processing based on a fully connected
CRF to explore the relationship between parts and body in
order to make the final prediction. An attention mechanism
that learns to softly weight the multi-scale features at each
location is proposed in Chen et al. (2016).

Some approaches resort to structure-based methodolo-
gies, e.g., compositional, to model part relations (Wang &
Yuille, 2015; Wang et al., 2015; Liang et al., 2018, 2017,
2016; Fang et al., 2018). Wang & Yuille (2015) propose a
model to learn a mixture of compositional models under var-
ious poses and viewpoints for certain animal classes. In Liang
et al. (2018) a self-supervised structure-sensitive learning
approach is proposed to constrain human pose structures into
parsing results. In (Liang et al., 2016, 2017) graph LSTMs
are employed to refine the parsing results of initial over-
segmented superpixel maps. Pose estimation is also useful
for part parsing task (Xia et al., 2017; Nie et al., 2018; Fang
et al., 2018;Liang et al., 2018;Zhao et al., 2017b). InXia et al.
(2017), the authors refine the segmentation maps by super-
vised pose estimation. In Nie et al. (2018) a mutual learning
model is built for pose estimation and part segmentation. In
Fang et al. (2018), the authors exploit anatomical similar-
ity among humans to transfer the parsing results of a person
to another person with similar pose. In Zhao et al. (2017b)
multi-scale features aggregation at each pixel is combined
with a self-supervised joint loss to further improve the feature
discriminative capacity. Other approaches utilize tree-based
structures to hierarchically partition the parts (Lu et al., 2014;
Xia et al., 2015). Lu et al. (2014) propose a method based on
tree-structured graphical models from different viewpoints
combinedwith segment appearance consistency for part pars-
ing. Xia et al. (2015) firstly generate part segment proposals
and then infer the best ensemble of parts-segment through
and-or graphs. Recently, some approaches have considered
attention-based transformer architectures (Yuan et al., 2018)
or part-aware panoptic segmentation schemes (deGeus et al.,
2021).

Multi-Object and Multi-Part Parsing has been consid-
ered only recently in Zhao et al. (2019) and Michieli et al.
(2020). Most of the previous techniques fails in addressing
this task due to the presence of simultaneous objects in the
scene that were not previously well-localized nor isolated.
Zhao et al. (2019) tackle this task via a joint parsing frame-
work with boundary and semantic awareness for enhanced
part localization and object-level guidance. Part boundaries
are detected at early stages of feature extraction and then
used in an attention mechanism to emphasize the features
along the boundaries at the decoding stage. An additional

attention module is employed to perform channel selection
and is supervised by a supplementary branch predicting the
semantic object classes. In the conference version of this
work (Michieli et al., 2020) we introduced a graph matching
module and an object-level segmentation to aid learning of
different parts in the scene.

3 Method

When humans look at images, they often firstly locate the
objects and then they decompose them into the various parts
using mainly two priors: (1) object-level information and (2)
relative spatial relationships among parts. In our approach
we replicate a similar behavior: an initial object-level predic-
tion supports semantic parts parsing. Furthermore, part-level
predictions are reinforced via a graph-matching strategy to
match neighboring parts, and via an auxiliary edge branch to
refine the contour edges.

An outlook of the proposed framework is shown in Fig. 2:
there are two semantic segmentation networks Ao, trained
for the objects-level task, and Ap, trained for the parts-level
one. Furthermore, a semantic embedding network S takes
care of processing and transferring the information of the
first network to the second to address the object-level prior.
This novel coarse-to-fine strategy is the main focus of this
section. We account for the second clue by introducing an
adjacency graph structure to mimic the spatial relationship
between neighboring parts. This module will be detailed in
Sect. 4. Finally, an edgemodule Eed brings part-level contour
awareness at the encoding stage, as detailed in Sect. 5.

The contributions from all these components compose the
overall training objective of our framework, leading to the
minimization of:

L = LCE + λ1Lrec + λ2LGM + λ3Led (1)

where LCE is the standard cross entropy loss at part-level,
Lrec forces the consistency of the object-level and part-level
segmentations,LGM is the contribution from the graph mod-
ule capturing the spatial arrangement of parts and Led forces
the proper contours localization. The hyper-parameters λ1,
λ2 and λ3 are used to control the relative contribution of the
losses to the overall objective function.

Most state-of-the-art semantic segmentation networks
have an encoder-decoder structure and they can be repre-
sented as the composition of an encoder and a decoder,
i.e., as Ao = {Eo,Do} for the object-level network and
Ap = {Ep,Dp} for the part-level one, respectively. In our
experiments, we employ the DeepLab-v3 (Chen et al., 2017)
segmentation network with ResNet-101 (He et al., 2016) as
encoder since it achieves state-of-the-art results; however,
the proposed approach is network agnostic and can be added
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Fig. 2 Architecture of the proposed Graph Matching and Edge Net-
work (GMENet) approach. A semantic embedding network S takes as
input the object-level segmentation map and acts as high-level con-
ditioning when learning the semantic segmentation of parts. On the
right, a reconstruction loss function rearranges parts into objects and the

graphmatchingmodule aligns the relative spatial relationships between
ground truth and predicted parts. At the bottom, an auxiliary branch pre-
dicts precise edge localization even within parts of the same semantic
object-level class to bring more contour-aware encoded feature maps

on top of any encoder-decoder segmentation network. The
module Ao is pre-trained for object-level semantic segmen-
tation and then its weights are frozen.Ao outputs object-level
segmentation maps Ŷo which are employed by the part-level
decoder Dp, to correct the predictions of parts Ŷp which
are similar across different objects. Indeed, we fed Ŷo to an
object-level semantic embedding CNN, S, formed by a cas-
cade of 4 convolutional layers with stride 2, square kernel
sizes of 7, 5, 3, 3, and channel sizes of 128, 256, 512, 1024.

The part-level semantic segmentation networkAp has the
same encoder architecture of Ao. Its decoder Dp, instead,
merges the features computed from the input sample (the
output of Ep) and the ones computed on the object-level
predicted map, S(Ŷo), via multiple channel-wise concate-
nations. More in detail, each layer of the decoder considers
a different resolution and its feature maps are concatenated
with the layer at corresponding resolution of S. Therefore,
the combination is performed at multiple resolutions in the
feature space to achieve higher scale invariance as visible in
Fig. 2.

Formally, given an input sampleX ∈ R
W×H , the concate-

nation between part- and object-level aware features is given
by

Fi (X) = Dp,i (X) ⊕ Sk+1−i (Ao(X)) i = 1, . . . , k (2)

whereDp,i is the i-th decoding layer of the part segmentation
network, Si indicates the i-th layer of S, k is the number of
layers and it matches the number of upsampling stages of the
decoder (e.g., k = 4 in the DeepLab-v3), Fi is the input of
Dp,i+1. We remark that the performed object-level segmen-
tation can be different from the ground truth one, depending
on the accuracy of the prediction. Therefore, errors from the
predicted class in the object segmentation may propagate to
the part-level prediction stage. To alleviate this circumstance,
similarly to Xia et al. (2016), here we do not make early
decisions and the channel-wise concatenation leaves the final
labeling decision to the part-level decoder. We will analyze
the impact of such aspect in the ablation studies (Sect. 7.6).

As anticipated in Eq. 1, the training ofAp and S (note that
Ao is frozen after the initial training) is driven by multiple
constraints. The first is a standard cross-entropy loss LCE to
learn the part-level semantic segmentation task:

LCE =
Np∑

cp=1

Yp[cp] · log
(
Ŷp[cp]

)
(3)

where Yp is the one-hot encoded ground truth map, Ŷp is
the predicted map, cp is the part-level index and Np is the
number of parts.
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The object-level semantic embedding network is further
guided by a reconstruction module that rearranges parts into
objects. This is achieved by means of a cross-entropy loss
between the object-level one-hot encoded ground truth maps
Yo and the cumulative probabilities Ŷp→o derived from
the part-level predictions. Let us define l as the parts-to-
objects mapping such that object j contains parts from index
l[ j−1]+1 to l[ j], thus we can write the summed probability
as:

Ŷp→o[ j] =
∑

i=l[ j−1]+1,...,l[ j]
Ŷp[i] j = 1, . . . , No (4)

where No is the number of object-level classes and l is ini-
tialized as l[0] = 0. Then, we define the reconstruction loss
as:

Lrec =
No∑

co=1

Yo[co] · log
(
Ŷp→o[co]

)
(5)

The auxiliary reconstruction function Lrec acts differently
from the usual cross-entropy loss on the parts LCE . While
LCE penalizes wrong predictions of parts in all the portions
of the image, Lrec only penalizes for part-level predictions
located outside the respective object-level class. In other
words, the event of predicting parts outside the respective
object-level class is penalized by bothLCE andLrec. Instead,
parts predicted within the object class are penalized exclu-
sively by LCE , i.e., they are considered as a less severe type
of error since, in this case, parts only need to be properly
localized inside the object-level class.

4 Graph-Matching for Semantic Parts
Localization

Moving from previous considerations, both providing
global context information and disentangling relationships is
useful to distinguish fine-grained parts. For instance, upper
and lower arms share highly similar appearance. To differen-
tiate between them, both global and reciprocal information,
like the relationship with contiguous parts, provide an effec-
tive context prior. In the previous section, we have already
addressed global context conditioning through the semantic
embedding network and the reconstruction constraint. In this
sectionwe further enhance the accuracy of part parsing, tack-
ling part-level ambiguity and localization via a graph-based
module to match part-level spatial relationships between
ground truth and predicted maps. More in detail, the graphs
capture the adjacency relationships between each couple of
parts, then we enforce the matching between the ground
truth and predicted graphs through an additional loss term.

Althoughgraphmatching is awell studied problem (Emmert-
Streib et al., 2016; Livi & Rizzi, 2013), to the best of our
knowledge it has not been applied to this task before, i.e., to
constraint deep learning architectures for semantic segmen-
tation. The only attempt to design a graph-matching loss is
Das & Lee (2018), which deals with the completely differ-
ent task of domain adaptation in image classification, and
has a different interpretation of the graph, that measures the
similitude between the source and the target domains.

An overview of the proposed graph matching module is
shown in Fig. 3. We represent the graphs using a couple of
(square) weighted adjacency matrices of size Np:

M̃GT =
{
m̃GT

i, j

}
i=1,...,Np
j=1,...,Np

(6)

M̃pred =
{
m̃ pred

i, j

}
i=1,...,Np
j=1,...,Np

(7)

The matrix M̃GT contains the adjacency information com-
puted over the ground truth maps, while M̃pred contains the
same information computed over the predicted maps. Each
element of the matrices provides a measure of closeness
between parts pi and p j in the respective segmentation map
(either ground truth or predicted). Self-connections are clue-
less, hence m̃GT

i,i = m̃ pred
i,i = 0 for i = 1, . . . , Np. The

weight between couples of parts represents the strength of
connection between them: each entry m̃i, j of the matrices
depends on the length of the contour in common between the
two parts. Additionally, to cope for imprecise parts localiza-
tion implicitly present in the dataset, where some adjacent
parts are separated by thin background regions, the entries
m̃i, j are the counts of pixels belonging to one part with a
distance less or equal than 2T from a sample belonging to
the other part. In other words, m̃GT

i, j represents the number of
pixels in pi whose distance from a pixel in p j is less than 2T .
Empirically, we set T = 2 pixels. Since the matrix M̃pred

needs to be recomputed at each training step, we approximate
this operation by dilating the two masks of T and computing
the size of the intersecting region. Formally, defining with
pGT
i := Yp[i] the i-th part in the ground truth map Yp, we

compute the intersecting area between parts i and j as:

m̃GT
i, j =

∑
�T

(
pGT
i

)
· �T

(
pGT
j

)
, (8)

where �T (·) is the morphological 2D dilation operator
parametrized by T . The sum is computed over the spatial
locations and the multiplication sign computes the intersec-
tion between the two parts. Then, we obtain a matrix of
proximity ratios by applying a row-wise L2 normalization
MGT

[i, j] = M̃GT
[i, j]/||M̃GT

[i,:]||2 to measure the flow from the con-
sidered part i to all the others (indexed by j).
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Fig. 3 Overview of the graph-matching module. The morphological dilation over the parts is needed to account for imprecise part localization in
the ground truth maps (e.g., cat head and cat body would be considered as detached without the dilation)

According to the above definition, non-adjacent parts will
have 0 as entry. Similarly, we compute the adjacency matrix
over the predicted segmentation map Mpred by substituting
pGT
i with ppred

i := Ŷp[i].
Finally, we define the Graph-Matching loss as the Frobe-

nius norm between the two adjacency matrices:

LGM = ||MGT − Mpred ||F (9)

The aim of this loss function is to faithfully maintain the
reciprocal relationships between parts. On one hand, dis-
joint parts are enforced to be predicted as disjoint; on the
other hand, neighboring parts are enforced to be predicted as
neighboring and to match the proximity ratios (i.e., the same
contour length).

5 EdgeModule for Parts Contour Detection

As we have already observed, the contours of the classes
are the most difficult regions to be properly detected. Pre-
cisely understanding the location of the boundary between
classes is an extremely non-trivial task due to many factors:
sometimes, the edge region is set as unlabeled by the dataset
itself; other times, images present blurring or zooming arti-
facts; some other times, especially in case of parts, there is a
labeling ambiguity onwhere the boundary is located between
two adjacent parts within the same object. Examples of this
last aspect are reported in Fig. 4 for parts of the horse class.

We appreciate how the boundary between adjacent parts
can be ambiguous as the upper part of the thigh, delimited
by a yellow marker, is sometimes labeled as leg (top left
image) or as body (all other images) or the mane, delimited
by a pink marker, is sometimes included as part of the head
(top right corner of top right image) or as body (all other
cases). Finally, we observe that inaccurate labeling of parts,
and therefore of edges, are implicitly present in the dataset
(light blue marker).

In light of such issues, computer vision algorithms have
always faced increased difficulty in determining precise seg-
mented regions. Therefore, edge localization attempts have
started to emerge either by building separate branches (Zhang
& Pang, 2020; Han et al., 2020; Li et al., 2020b; Ruan et al.,
2019; Li et al., 2020a) or with attention schemes (Zhao et al.,
2019; Zhang et al., 2019). Indeed, standard segmentation
models fail to properly localize edges even in simple cases
where adjacent classes belong to different object classes. We
can appreciate this from Fig. 5, where we show the entropy
maps of the softmax probabilities Ŷ, i.e., H(Ŷ), with H(·)
being the pixel-wise Shannon entropy (Wan et al., 2019; Vu
et al., 2019;Michieli&Ozay, 2021). Lowentropy (dark blue)
indicates a peaked distribution which is the reflection of high
confidence of the network on its prediction, and vice-versa.
Ideally, the entropy should be low for every pixel. However,
as we can observe even from object-level predictions, the
contours of objects have high entropy due to uncertainty on
the precise edge localization of the objects. The issue even
worsen when considering predictions over the parts, which
consist of within-objects edges whose precise localization is
even more challenging.

In this work, we tackle this problem by building an aux-
iliary branch to bring more edge-related awareness at the
encoding layers of the segmentation architecture, aswe antic-
ipated inFig. 2.Thismodule canhelpboth recognition among
different object-level classes and recognition ofwithin-object
parts, as we will discuss in Sect. 7.

The edge module is designed by taking the three central
blocks of our encoder (i.e., a ResNet-101) and giving same
importance to each edge feature map independently of the
different resolutions by setting the same number of channels
(i.e., applying three 1×1 convolutional layers with 256 chan-
nels). Then, we compute three different edge maps (via three
3 × 3 convolutional layers with 2 channels) which are later
upsampled, concatenated and combined into a single edge
map (via a final 1×1 convolutional layer with 2 output chan-
nels). The complete flow is shown in the bottompart of Fig. 2.
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Fig. 4 Precise edge localization is even harder due to imprecise or inconsistent labeling across the dataset (best viewed in colors)

Fig. 5 Entropy maps computed from predicted softmax probabilites show greater uncertainty close to the edges even in simple cases where adjacent
classes belong to different object-level classes (best viewed in colors)

We train this module to produce output edge maps close to
the ground truth ones (which have been obtained from the
segmentation maps) using a weighted binary cross entropy
loss. The objective is weighted according to the inverse fre-
quency of the two classes (respectively, edge and not edge)
to handle the intrinsic class imbalance (there are much more
non-edge pixels than edge ones, i.e., edges only account for
a small percentage of the pixels in the training set). More
formally, the edge loss is defined by:

Led =
1∑

c=0

ωcYed [c] · log
(
Ŷed [c]

)
(10)

where Yed and Ŷed are the ground truth and predicted edge
maps, ωc represent the class weights that are set as equal to
the inverse frequency of occurrences of the classes over the
entire training set T , i.e., for c ∈ {0, 1}:

ωc = |{Yn
ed for n = 1, . . . , |T |}|

|{Yn
ed [c] for n = 1, . . . , |T |}| (11)
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where n iterates over the training set samples T and |·| rep-
resents the cardinality operator of the enclosed set.

6 Training of the Deep Learning Architecture

6.1 Part Parsing Datasets with Multiple Objects

For the experimental evaluation of the proposed multi-class
part-parsing framework we employ benchmarks exploiting
the Pascal-Part (Chen et al., 2014) and the ADE20K (Zhou
et al., 2017) datasets.

Pascal-Part. From the Pascal-Part we consider two differ-
ent grouping of labels leading to two different benchmarks:
namely, the Pascal-Part-58 and the Pascal-Part-108. Both of
them contain a total of 10103 variable-sized images with
pixel-level annotation of parts derived from the 20 Pascal
VOC2010 (Everingham et al., 2010) semantic object classes
(plus the background class). We use the split into train and
test sets of Chen et al. (2014) that uses the trainset (4998 sam-
ples) for training and the valset (5105 samples) for testing.
We consider two different sets of labels for this dataset. The
Pascal-Part-58 was proposed by Zhao et al. (2019), which
is the first work dealing with the multi-class part parsing
problem. In the Pascal-Part-58 the original semantic classes
of the Pascal-Part have been grouped into 58 part classes in
total. Additionally, we further test our method on an even
more challenging scenario that we name Pascal-Part-108
(Michieli et al., 2020). To build it, we consider the grouping
rules proposed by Gonzalez-Garcia et al. (2018), that lead to
a larger set of 108 parts (103 actual parts and 5 classes with a
single part inside).We also tested our approach on thePascal-
Person-Part dataset, which is another subset of the Pascal-
Part, containing multiple people within the same scene. This
dataset is interesting since it is widely used even if it is
designed for a slightly different task, i.e., it deals only with
single-object part parsing. We follow the annotations from
Chen et al. (2016);Xia et al. (2017), leading to 3533 (1716 for
training and 1817 for testing) images of 7 human body parts.

ADE20K-Part. From the ADE20K dataset (Zhou et al.,
2017) we followed the same rules proposed in Gonzalez-
Garcia et al. (2018) yielding 544 part-level classes belonging
to 150 object- and stuff-level categories. Therefore, this split,
similarly to the recent released PartImageNet (He et al.,
2021b) dataset, includes a high number of part-level classes
in a multi-object benchmark, facilitating future research on
large-scale semantic segmentation in the wild. We use the
original split (Zhou et al., 2017) to divide between 20210
training samples and 2000 validation samples. A summary
of statistics for this dataset is shown in Fig. 6. We verify that
the label distribution follows a neat power-law rule, both at
the pixel level (top plots) and at the image-level (bottom left
plot), as many real-world data often show (Liu et al., 2019b;

Kang et al., 2019; Cao et al., 2019). This translates in a heav-
ily class imbalanced dataset with few frequent parts (with
many pixels belonging to them and many images containing
them) and many rare ones (with few pixels and/or contained
in few images). Last, we show the occurrence of parts within
each image in the bottom right plot of Fig. 6. We observe
that the number of parts per each class ranges from 1 (i.e., no
parts) to 36 (in case of the building edifice class), thus mak-
ing the dataset highly imbalanced also with this regard. All
together,ADE20K-Part is an extremely diverse, yet challeng-
ing, dataset with a large variety of visual domains (containing
both indoor and outdoor scenes).

6.2 Training Details

The modules of this work are agnostic to the underlying net-
work architecture and can be extended to other scenarios.We
employ a DeepLab-v3 (Chen et al., 2017) architecture with
ResNet101 (He et al., 2016) as the backbone for two main
reasons: it allows a fair comparison with the only previous
work in multi-object part parsing (Zhao et al., 2019) and it
surpassed competing segmentation architectures in part seg-
mentation. We follow the same training schemes of Chen
et al. (2018, 2017) and Zhao et al. (2019) and we added
our modules on top of the official TensorFlow (Abadi et al.,
2016) implementation of DeepLab-v3 (Chen et al., 2017;
Chen, 2020). We used the ResNet101 weights pre-trained on
ImageNet (Deng et al., 2009) available at (Chen, 2020). To
perform data augmentation images are randomly left-right
flipped and rescaled with bilinear interpolation (from 0.5 to
2 times the original size). The results in the testing stage
are reported at the original image resolution. The model is
trained for N steps with the base learning rate set to 5 · 10−3

and decreased with a polynomial decay rule with power 0.9
(N = 50K for Pascal-Part, N = 80K for ADE20K-Part).
We employ weight decay regularization of 10−4. The atrous
rate in the Atrous Spatial Pyramid Poooling (ASPP) is set
to (6, 12, 18) as in Chen et al. (2018); Zhao et al. (2019).
We set λ1 = 10−3, λ2 = 10−1 and λ3 = 10−3 to balance
the contributions of proposed modules and we found these
parameters to perform well across different datasets. We use
a batch size of 10 images for Pascal-Part datasets and a batch
size of 5 for ADE20K-Part. All the compared approaches are
trained for the samenumber of epochs.As evaluationmetrics,
we employ the mean Intersection over Union (mIoU) across
all the parts, the average IoU for all the parts belonging to
each single object, and the mean of these values (denoted
as Avg). Notice that in this latter case, differently from the
mIoU, each object has the same weight independently of the
number of parts. As in previous approaches, pixel accuracy
is not shown since it is strongly dependent on performance
on (a few) large parts and does not capture the results in the
segmentation of many small parts, which are the main target
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Fig. 6 Distributions of classes computed over the ADE20K-Part
dataset. Top left: sorted pixel-level distribution of parts (i.e., the bars
show many pixels belong to each part). Top right: quantized occur-
rences of the sorted pixel-level distribution of parts. Bottom left: sorted

image-level distribution of parts (i.e., each bar shows howmany images
contain the corresponding part). Bottom right: distribution of parts
within classes (i.e., the bars show how many parts each macro class
has)

of our work (Zhao et al., 2019; Csurka et al., 2013). The part
labels and the code are publicly available at https://lttm.dei.
unipd.it/paper_data/GMENet.

7 Experimental Results

In this section we show the experimental results on the
multi-class part-parsing task on the Pascal-Part-58 and 108
and on the ADE20K-Parts. Then, we move to analyse how
the proposed module could boost the performance of stan-
dard training on object-level semantic segmentation.We also
present some ablation studies to verify the effectiveness of
the proposed methodologies.

7.1 Pascal-Part-58

To evaluate our framework we start from the scenario with
58 parts, i.e., the same experimental setting used in Zhao
et al. (2019). In Table 1 we compare the proposed model
with existing semantic segmentation schemes. As expected,
standard semantic segmentation architectures such as FCN
(Long et al., 2015), SegNet (Badrinarayanan et al., 2017),
DeepLab (Chen et al., 2018),DRN-D38 andDRN-D105 (Yu
et al., 2017) are unable to provide very good results on part
parsing. We adopt as our baseline network the DeepLab-v3
architecture (Chen et al., 2017), that is the best perform-
ing among the compared convolutional-based approaches
achieving 54.4% of mIoU. The recent Vision Transformers
show promising results, often outperforming convolutional-
based approaches. The first method specifically addressing
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Fig. 7 Segmentation results from the Pascal-Part-58 dataset (best
viewed in colors). The examples in the first two rows mainly show
the effect of the semantic embedding network, the ones in rows 3 and 4

mainly show the effect of the graph matching module (yellow boxes),
the last two rows mainly show the improvement due to the edge module
(pink boxes)

part-based semantic segmentation is BSANet (Zhao et al.,
2019), which achieves a mIoU of 58.2% gaining about
4% compared to the baseline. Our previous work, GMNet
(Michieli et al., 2020), combining both object-level semantic
embedding and graph matching achieves a higher accuracy
of 59.0% of mIoU. Finally, the edge refinement module
introduced in this extension of the work (GMENet) further
improves the final mIoU score to 59.6%, significantly out-
performing every competing method. In particular, GMENet
shows the highest per-part-classes IoU result on 11 out of
21 classes. Compared to GMNet, our full method with the
edge module improves the performances in terms of per-
part-class IoU on 17 out of 21 classes, demonstrating the
robustness of the improvement. The gain is experienced on
both classes with many parts (like cow, dog and sheep) and
with no or few parts (like boat, bottle, chair, dining table and
tv). Therefore, we remark that the 1.1% relative improvement

from 59.0% of GMNet to 59.6% of our approach is spread
among the different categories, contributing to the overall
accuracy improvement. As it is possible to see from the last
column of Table 1, the number of trainable parameters of our
approach is comparable to recent competing architectures.
On the other side, we remark that the total number of param-
eters of our approach is higher than the baseline model due to
the frozen object-level segmentation network, as we discuss
in detail at the end of Sect. 7.6.

We report qualitative results in Fig. 7, wherewe appreciate
the effects of the three main contributions of our work: the
semantic embedding, the graphmatching and the edge-aware
modules.

First, the object-level semantic embedding network brings
useful additional information prior to the part-level decoding
stage, thus enriching the extracted features to be discrimina-
tive of the object. We can appreciate this aspect from the first
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two rows. In the first row, the baseline completely misleads
a dog with a cat (light green is the cat head while green is
cat torso). The dog head is partially recovered by BSANet
(amaranth corresponds to the correct labeling). Our method,
instead, is able to accurately detect and segment the dog parts
(doghead in amaranth anddog torso in blue) thanks to object-
level priors coming from the semantic embedding module.
The second image confirms these findings: the baseline con-
fuses car parts (green corresponds to window, aquamarine
to body and light green to wheel) with bus parts (pink is
the window, brown the body and dark green the wheel) and
also BSANet made the same errors. Our method, instead,
can recognize the correct object-level class and the respec-
tive parts (excluding the car wheels that are very small and
challenging), while also improving the segmentation of the
bus window.

Furthermore, the graph-matching module helps in the
mutual localization of parts within the same object-level
class. The effect of the graph-matching module is more evi-
dent in the third and fourth row, as highlighted by the yellow
boxes in the second-last column. In the third image, we can
verify how both the baseline and BSANet are not able to cor-
rectly place the dog tail (in yellow) misleading it with the
dog head (in red), recall the example in Fig. 1. Thanks to
the graph-matching module, our approach can disambiguate
these parts and correctly exploit their spatial relationshipwith
respect to the dog body. In the fourth image, both the base-
line and BSANet tend to overestimate the presence of the cat
legs (in dark green) and theymiss one cat tail. The constraints
on the relative position among the various parts enforced by
the graph-matching module allow our approach to properly
recognize the cat tail and to improve the estimate of the cat
legs.

Finally, the auxiliary edge branch successfully improves
boundary localization with respect to GMNet, as we can
observe from the last two rows and highlighted by the pink
boxes in the last column. In the fifth row all competing
approaches are unable to properly detect the edges of all the
parts, while GMENet greatly improves contour localization,
as can be seen in the dog legs and dog body. Similarly, in
the last row GMENet better shapes the contours of the car
window, wheel and body.

7.2 Pascal-Part-108

To further verify the robustness and the scalability of the
proposed methodology we perform a second set of experi-
ments using an even larger number of parts. The results on
the Pascal-Part-108 benchmark are reported in Table 2. As
expected, since the task is more complex with respect to the
previous scenario with an almost double number of parts, we
can immediately verify a drop in the overall performance for
all methods. However, we can appreciate that our framework

better scales to larger numbers of parts and is able to largely
surpass both the baseline and Zhao et al. (2019). It achieves
a mIoU of 45.8%, outperforming the baseline by 5% and the
other compared standard segmentation networks by an even
larger margin. GMENet shows a remarkable relative gain
with respect to the main competitor (Zhao et al., 2019) of
6.8%, while it shows a relative increase of 1.1%with respect
to the previous version (GMNet). In this scenario, indeed,
most of the previous considerations holds and are even more
evident from the results. In particular, GMENet shows the
highest per-part-classes IoU result on 7 out of 21 classes.
Compared to the previous version (GMNet), our full method
ranks first in terms of per-part-class IoU on 15 out of 21
classes, demonstrating a robust performance improvement.
Once more, the gain in accuracy is stable across the various
classes and parts: the proposed framework significantly wins
by large margins on almost every per-object-class mIoU.

Thanks to the object-level semantic embedding network
our model is able to accuratey segment all the objects with
few or no parts inside, such as boat, bottle, chair, plant and
sofa. On these classes, the gain with respect to BSANet
(Zhao et al., 2019) ranges from 6.4% for the bottle class to
an impressive 14.3% on the chair class. On the other hand,
thanks to the graph matching module, our framework is also
able to correctly understand the spatial relationships between
small parts, as for example the ones contained in cat, cow,
horse and sheep. Although many objects are composed by
tiny and difficult parts, the gain with respect to Zhao et al.
(2019) is still significant and ranges between 1.1% on horse
parts to 12.4% on cow ones.

Figure 8 shows some sample visual results and confirms
thenumerical evaluation.Wecan appreciate that the proposed
method produces accurate segmentation maps both when a
few elements are present or many parts coexist in the scene.
In the first row we can verify the effectiveness of the object-
level semantic embedding in conditioning part parsing. The
baseline is not able to localize and segment the body and
the neck of the sheep. On this sample BSANet (Zhao et al.,
2019) achieves even worse segmentation and labeling per-
formance. Both methods confuse the sheep with a dog (light
blue denotes dog head, light purple dog neck, brown dog
muzzle and yellow dog torso) or with a cat (purple denotes
cat torso). Thanks to the object-level priors, our method is
able to associate the correct label to each of the parts cor-
rectly identifying the sheep as the macro class. In the second
row, the effect of the graph matching procedure is evident.
The baseline approach tends to overestimate and badly local-
ize the cow horns (in brown) and BSANet confuses the cow
horns with the cow ears (in pink). Our approach, instead,
achieves better results thanks to the graph matching module
which allows for proper localization and contour shaping of
the various parts. In the third row, a scenario with two object-
level classes having no sub-parts is presented. Again, we can
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Fig. 8 Segmentation results from the Pascal-Part-108 dataset (best viewed in colors). The effect of the graph matching module is highlighted via
yellow boxes, whilst the effect of the edge module is highlighted via pink boxes

check howour approach is able to discriminate between chair
(in pink) and sofa (in light brown). Then, we can appreciate
how the two parts of the potted plant in the fourth row and
the parts of the cat (such as eyes and paws) in the last row
are correctly segmented by our approach. This is due to the
semantic embedding module for what concerns object iden-
tification and to the graph matching one for the localization
of small parts. Finally, the edge module allows to further
improve contour localization as can be seen from the sepa-
ration between cow horns and ears in the second row, from
the armchair edge in the third row and from the separation
of the vehicle body and window in the fifth row.

7.3 ADE20K-Part

We also introduce in this work a large-scale multi-object part
parsing dataset built from the ADE20K dataset (Zhou et al.,
2017) (see Sect. 6).

Table 3 IoU results on the ADE20K-Part benchmark

Baseline
(Chen et al.,
2017)

BSANet
(Zhao et al.,
2019)

GMNet
(Michieli
et al., 2020)

GMENet
(ours)

mIoU 8.9 9.7 10.6 12.9

Avg 17.6 19.6 21.3 23.6

mIoUs wo
p : IoUp = 0 in
baseline

23.4 25.1 27.5 31.3

mIoUs of single
parts from
classes

23.1 26.1 28.4 30.4

mIoUs of non-
single parts from
classes

6.0 6.6 7.2 9.5

“mIoUs wo p : IoUp = 0 in baseline”: mIoU computed over parts that have
IoU greater than 0% in the baseline approach. “mIoUs of single parts from
classes”: mIoU computed only over classes which are not splitted into parts
(i.e., only one part from the macro class). “mIoUs of non-single parts from
classes”: mIoU computed only over parts which are not single parts of the
macro class. Avg: average per-object-class mIoU
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Fig. 9 Segmentation results from the ADE20K-Part dataset (best viewed in colors). The effect of the edge module is highlighted via pink boxes

In Table 3 we report the quantitative results for each
competing approach. BSANet (Zhao et al., 2019) could
improve the final accuracy results obtained with the baseline
approach.However, in this dataset, where amuch larger num-
ber of edges exists with respect to previous benchmarks, both
GMNet (Michieli et al., 2020) and the edge-related constraint
are able to greatly improve the results compared to BSANet,
which achieves 9.7%. Indeed, GMNet raised the mIoU from
8.9 to 10.6%, with respect to the baseline, while our full
approach reaches a mIoU of 12.9% (with a relative gain of
44.2% with respect to the baseline). The average per-object-
class mIoU is dramatically higher than the mIoU, almost

doubling it. The high number of extremely difficult under-
represented classes, having IoU close to zero, significantly
hinders the mIoU results. Indeed, removing from the compu-
tation all such parts having IoU equal to 0% for the baseline
approach, the mIoU results significantly raised reaching the
values reported in the third row of Table 3, i.e., 31.3% for
our approach.

To evaluate the effect on accuracy on actual parts of classes
(i.e., multiple parts inherited from the same macro class) and
on classes not spilitted into parts (i.e., only one part from
the macro class) we computed the average IoU results of all
the approaches for the two types of classes, respectively in
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fourth and fifth rowof Table 3.Our approach could especially
improve in presence of multiple parts from each macro class:
in fact GMENet raises the mIoU from 6.0 to 9.5% (a relative
gain of 53.5% with respect to the baseline) when computing
the mIoU of non-single parts from classes; while it raises
the mIoU from 23.1 to 30.4% (relative gain of 31.3% with
respect to the baseline) when computing the mIoU of single
parts from classes.

Somequalitative results are shown inFig. 9 for both indoor
and outdoor scenes. While the resulting mIoUs appear to be
quite low, the visual quality on most of the images is quite
satisfactory as many parts penalizing the mIoU scores are
rare throughout the dataset. To guide the reader, we high-
light the improvements due to the edge module via pink
boxes. In the first row, the baseline approach is not able to
correctly segment the scene; our approach, instead, is able
to produce much more reliable segmentation maps of the
baggage carousel and the screen with respect to the com-
petitors. In the second row, edges of the bed frame and the
drawer are more clearly segmented by our method. In the
third row, GMENet is the only approach able to reliably seg-
ment the windows of the building. Furthermore, In the fourth
and fifth rows the seats and the aisle in between are better
identified by our approach. In the sixth row, GMENet can
properly segment the road, the sidewalk and the street light.
Finally, in the last row our method could recognize the bell
tower with the respective clock.

7.4 Single-Object Part Parsing

To further validate our approach, we verify that GMENet
could also target the simpler case of single-object part-
parsing on the widely-used Pascal-Person-Part benchmark.
The results are summarized in Table 4 where we compare
with 12 state-of-the-art approaches. Some of them e.g., Nie
et al. (2018), Xia et al. (2017) and Fang et al. (2018) make
use of auxiliary pose annotation ground truth to improve part-
level segmentation accuracy. We can appreciate that we can
achieve competitive results improving the performance of the
baseline DeepLab-v3 model (Chen et al., 2017), while using
only pixel-level supervision. Furthermore, themain competi-
tor BSANet-101 shows a lower accuracy, while employing
the same backbone.

7.5 Object-Level Semantic Segmentation

Although the original target application is part parsing, we
argue that the proposed strategy could be seamlessly applied
to other scenarios where reciprocal relationship among cat-
egories are relevant. In this section, we investigate the effect
of the proposed modules evaluated on standard object-level
semantic segmentation benchmarks. The per-class and mean
IoU results on the Pascal VOC2012 (Everingham et al.,

Table 4 mIoU results on the Pascal-Person-Part benchmark

Method Pose Annotation mIoU

HAZN (Xia et al., 2016) × 56.1

Attention (Chen et al., 2016) × 56.4

LG-LSTM (Liang et al., 2016) × 58.0

SS-JPPNet (Liang et al., 2018) × 59.4

G-LSTM (Liang et al., 2016) × 60.2

SS-NAN (Zhao et al., 2017b) × 62.4

S-LSTM (Liang et al., 2017) × 63.6

Joint (Xia et al., 2017) � 64.4

CDCL (Fang et al., 2018) × 65.0

MuLA (Nie et al., 2018) � 65.1

BSANet-101 (Zhao et al., 2019) × 67.4

WSHP (Fang et al., 2018) � 67.6

Baseline (Chen et al., 2017) × 65.3

GMNet (Michieli et al., 2020) × 67.5

GMENet × 68.4

2010) and on the Cityscapes (Cordts et al., 2016) datasets
are reported in Tables 5 and 6, respectively. Graph matching
alone improves the finalmIoUby 0.3%onVOC2012 (raising
the IoU on 14 out of 21 classes) and by 0.7% on Cityscapes,
notice how the improvement is quite stable raising or match-
ing the IoU on 14 out of 19 classes. Finally, edge refinement
further leverages previous accuracy scores by 0.5% on the
Pascal VOC2012 (with a total improvement of 0.8% with
respect to the baseline) and by 1.2% on the Cityscapes (with
a total of 1.9% with respect to the baseline).

In this case, the improvements are generally smaller than
in part-level semantic segmentation. An explanation for this
is that some of the original assumptions are not as strong as
before. In particular, in part-level segmentation the different
parts of an object are always connected together in the same
way (e.g., person arm is always connected to person torso),
while in object-level segmentation the learned spatial rela-
tionships can be less consistent (e.g., a car typically runs on
the road but could be parked on the sidewalk or over a grass
field that correspond to the vegetation class). Therefore, the
relationship between the objects are not so strong and fixed as
the ones between the parts. Additionally, object-level classes
are on average, by definition, larger than parts: therefore,
there is a more limited set of edges across different classes to
be exploited by the edge module. For such reasons, the gains
derived from the graph and edge modules are reduced with
respect to the original setting.

We report qualitative results on object-level semantic seg-
mentation on the Pascal VOC2012 in Fig. 10, where we
observe that our approaches better recognize the semantics
of the objects (table in the second row, sofa in the third row,
cat in the seventh row), while at the same time refining the
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contour shapes of the objects (dog leg in the first row, bike
in the fourth row, bottle in the fifth row, and tail of bird in
the sixth row). In all these samples, our proposed approach
significantly outperforms both GMNet (Michieli et al., 2020)
and the baseline (Chen et al., 2017).

Similarly, we show qualitative results on object-level
Cityscapes sample scenes in Fig. 11. We observe that both
our approaches improve the segmentedmaps compared to the
baseline (fence in the second row, traffic sign in the last row).
On the other side, our approach further improves compared
to GMNet achieving both more accurate class semantics
(motorbike in the third row, bus in the fourth row, truck in
the sixth row) and more precise class contours (person and
poles in the first row, pole in the fifth row).

7.6 Ablation Studies

In this section we conduct an accurate investigation of the
effectiveness of the various modules of the proposed work
on the Pascal-Part-58 dataset.

Impact of Modules In Table 7 we evaluate the individ-
ual impact of each module. Let us recall that the baseline
architecture (i.e., the DeepLab-v3 network trained directly
on the 58 parts with only the standard cross-entropy loss
enabled) achieves a mIoU of 54.4%. The reconstruction loss
on the object-level segmentationmaps helps in preserving the
object-level shapes rearranging parts into object-level classes
and allows to improve the mIoU to 55.2%. The semantic
embedding network S acts as a powerful class-conditioning
module to retain object-level semantics when learning parts
and allows to obtain a large performance gain. By combin-
ing it with the reconstruction loss we achieve a mIoU of
58.4%.The addition of the graph-matching procedure further
boost the final accuracy to 59.0% of mIoU. To better under-
stand the contribution of this module we also tried a simpler
unweighted graphmodel whose entries are just binary values
representing whether two parts are adjacent or not (denoted
withLu

GM in the table). This simplified graph leads to amIoU
of 58.7%, lacking some information about the closeness of
adjacent parts. Finally, the edge branch brings contour aware-
ness and further leverage the mIoU to 59.6%.

Design of S Then, we present a more accurate analysis of
the impact of the semantic embedding module S the results
are summarized in Table 8. First of all, the exploitation of
the multiple concatenation between features computed by S
and features ofDp at different resolutions allows object-level
embedding at different scales and enhances the scale invari-
ance. Concatenating only the output of S with the output of
Ep (we refer to this approach with “single concatenation”),
the final mIoU slightly decreases to 58.7%.

In order to evaluate the usefulness of exploiting features
extracted from a CNN, we compared the proposed frame-
work with a variation directly concatenating the output of Ep

with the object-level predicted segmentation maps Ŷo after
a proper rescaling (“without S”). This approach leads to a
quite low mIoU of 55.7%, thus outlining that the embed-
ding network S is very effective and that simply stacking the
object-level and part-level architectures is not sufficient for
the considered task. Indeed, simply stacking the same archi-
tecture twice (“stacking DeepLab”) without considering any
additional provision, shows onlyminimal gainwith respect to
the baseline (54.8% versus 54.4%). Additionally, we consid-
ered also the optionof directly feedingobject-level features to
the part parsing decoder, i.e., we tried to concatenate the out-
put of Eo with the output of Ep and feed these features toDp

(“Eo conditioning”). Conditioning the part parsing with this
approach does not bring in sufficient object-level indication
and it leads to a mIoU of 55.7%, which is significantly lower
than GMNet (59.0%) and GMENet (59.6%). Finally, to esti-
mate an upper limit of the performance gain coming from the
semantic embeddingmodulewe fed the object-level semantic
embedding network S with object-level ground truth anno-
tationsYo (“with objects GT”), instead of the predictions Ŷo

(notice that the network Ao has good performance but it is
far from perfect accuracy, as it has 71.5% of mIoU at object-
level). In this case, a mIoU of 65.6% is achieved, showing
that there is still room for improvement.

Model complexity Finally, we analyze the computational
complexity of the proposed method and find ways to relieve
it from different perspectives. For benchmarking, we use a
workstation with 32GB RAM, an Intel(R) Xeon(R) Gold
5118 CPU @ 2.30/3.20GHz processor, and one NVIDIA
Titan RTX GPU card. We evaluate the statistics assuming
input size of 513×513 and the frames per seconds (FPS) are
computed as the average inference time across all the images
of the test set. Table 9 summarizes the performed analyses.
Our approach improves the final accuracy via an auxiliary
off-the-shelf object-level pre-trained network which is not
updated during training of the part-level branch. Therefore,
the number of trainable parameters of our approach (75M)
remains close to the number of trainable parameters of the
baseline approach (70M): about 4M extra parameters are
needed for the semantic embedding network S and about
1M for the edge module. However, GFLOPs and FPS are
affected by the double inference pass we should carry on
both branches, resulting in an roughly double computation
time compared to the baseline (from 6.3 to 3.1 FPS). To
alleviate the increased computational burden, however, some
optimizations can be applied to the inference pipeline.Onone
side, the inference passes across the twoResNet architectures
could be largely parallelized, bringing a 78%relative speedup
from 3.1 FPS to 5.5 FPS, with no accuracy drop but with the
assumption of a stronger hardware. On the other side, recent
works (Jiang et al., 2019; Chang et al., 2019; Maracani et al.,
2021) have highlighted that the encoder extracts general fea-
tures from the input samples, which can be shared across
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Fig. 10 Segmentation results on Pascal VOC2012 object-level semantic segmentation benchmark (best viewed in colors)

different tasks and datasets, and are later interpreted by the
specific decoding architecture. Motivated by these findings,
it is possible to share the encoders of the object-level and
part-level architectures, i.e., freezing Ep and setting it equal
to Eo. Such approach results in a slight mIoU drop from 59.6
to 58.1% (in our scenario, the visual domain distributions are
unchanged, further promoting features shareability), which
remains significantly above the baseline mIoU of 54.4. This
provision allows to reduce the number of trainable parame-

ters by about a factor 7 and the GFLOPs by about a factor 2,
thus increasing the FPS of 68% from 3.1 FPS to 5.2 on the
same hardware, thus being a valuable option when computa-
tion time is the critical requirement.We remark, however, that
the increase of the number of parameters alone is not suffi-
cient to achieve the attained performance gain: as an example,
theDeeplab-v3modelwith theResNet152backbone requires
50% more training steps to reach good performances and
achieves only a small gain of 0.4% with respect to the base-
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Fig. 11 Segmentation results on Cityscapes object-level semantic segmentation benchmark (best viewed in colors)

Table 7 mIoU ablation results on Pascal-Part-58

LCE Lrec S Lu
GM LGM Led mIoU

� 54.4

� � 55.2

� � � 58.4

� � � � 58.7

� � � � 59.0

� � � � � 59.6

Lu
GM : graph matching with unweighted graph

line, compared to more than 5% of our approach. Finally, we
note that recent research directions in model compression,
such as pruning (Liang et al., 2021) or quantization (Gho-
lami et al., 2021), have shown remarkable results in terms of
FPS increase and reduced model size, while maintaining the
final precision practically unchanged. An extensive analyses
on these aspects is left as a future study.

Table 8 mIoU on Pascal-Part-58 with different configurations for the
object-level semantic embedding

Method mIoU

Single concatenation 58.7

Without S 55.7

Stacking DeepLab 54.8

Eo conditioning 55.7

GMNet (Michieli et al., 2020) 59.0

GMENet (ours) 59.6

With objects GT 65.6

8 Conclusion

In this paper, we tackled the emerging task of multi-class
semantic part segmentation. We propose a novel coarse-to-
fine strategy where the features extracted from a semantic
segmentation network are enriched with object-level seman-
tics when learning part-level segmentation. Furthermore, an
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Table 9 Model complexity
analysis on Pascal-Part-58

Method Trainable Params GFLOPs FPS mIoU

Deeplab-v3 ResNet101 (Chen et al., 2017) 70M 132.2 6.3 54.4

Deeplab-v3 ResNet152 (Chen et al., 2017) 85M 161.9 5.0 51.6

Deeplab-v3 ResNet152a (Chen et al., 2017) 85M 161.9 5.0 54.8

GMNet (Michieli et al., 2020) 74M 259.8 3.1 59.0

GMENet (ours) 75M 263.2 3.1 59.6

GMENet parallel (ours) 75M 263.2 5.5 59.6

GMENet E shared (ours) 11M 181.6 5.3 58.1

aTrained for 50% more steps, up to convergence

adjacency graph-based module aims at matching the rela-
tive spatial relationships between ground truth and predicted
partswhich leads to large improvements particularly on small
parts. Additionally, an auxiliary edge module improves the
localization of class borders.

The proposed approach is able to achieve state-of-the-art
results in the challenging task of multi-object part parsing.
To prove it, we employ the Pascal-Part-58 benchmark andwe
propose the more challenging scenarios of Pascal-Part-108
and ADE20K-Part. Finally, we test our approach on classi-
cal object-level semantic segmentation benchmarks, showing
that our techniques can generalize also to other scenarios.

Further research will aim at improving the graph model
accounting for the relations between parts and to the exploita-
tion of the proposed framework in more complex scenarios
including domain adaption tasks or multiple levels of hierar-
chical part splitting.Additionally, the proposed strategieswill
be applied on top of recent vision transformers for semantic
segmentation.
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