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Abstract
Long-tailed datasets are very frequently encountered in real-world use cases where few classes or categories (known as
majority or head classes) have higher number of data samples compared to the other classes (known as minority or tail
classes). Training deep neural networks on such datasets gives results biased towards the head classes. So far, researchers
have come up with multiple weighted loss and data re-sampling techniques in efforts to reduce the bias. However, most of
such techniques assume that the tail classes are always the most difficult classes to learn and therefore need more weightage
or attention. Here, we argue that the assumption might not always hold true. Therefore, we propose a novel approach to
dynamically measure the instantaneous difficulty of each class during the training phase of the model. Further, we use the
difficulty measures of each class to design a novel weighted loss technique called ‘class-wise difficulty based weighted (CDB-
W) loss’ and a novel data sampling technique called ‘class-wise difficulty based sampling (CDB-S)’. To verify the wide-scale
usability of our CDB methods, we conducted extensive experiments on multiple tasks such as image classification, object
detection, instance segmentation and video-action classification. Results verified that CDB-W loss and CDB-S could achieve
state-of-the-art results on many class-imbalanced datasets such as ImageNet-LT, LVIS and EGTEA, that resemble real-world
use cases.

Keywords Class-imbalance · Weighted-loss · Data re-sampling · Class-wise difficulty · Image classification · Object
detection · Instance segmentation · Video-action classification

1 Introduction

The rise of deep neural networks (DNN) has led to a phe-
nomenal progress in the field of computer vision in recent
years. There are many factors such as strong computational
resources and large vision datasets, that are responsible for
this immense success of DNN. Availability of the large-scale
public datasets such as ImageNet (Deng et al., 2009), LVIS
(Gupta et al., 2019) and Kinetics (Kay et al., 2017) is one
of the most important factors. DNN models trained on these
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public datasets are deployed to the real-world use-cases either
by fine-tuning or transfer-learning. However, the real-world
data are different from these public datasets in more than
one way, which causes performance drop of DNN in the
real world. One important difference lies in the fact that the
real-world datasets have a long-tailed (or class-imbalanced)
distribution of categories while the public datasets have a
more or less uniform distribution. In long-tailed datasets,
few categories (called majority or head categories/classes)
comprise larger number of training instances than the other
categories (called minority or tail categories/classes). Train-
ing or fine-tuning a DNN model on such skewed datasets
results in inference predictions biased towards the head
classes. This shortcoming has stirred up a research field pop-
ularly known as ‘long-tailed recognition’.

Most prior methods try to solve the issue of long-tail
by making the DNN model pay more attention to the tail
classes during training. The most popular ways of achiev-
ing that can be majorly classified as either sampling methods
or cost-sensitive learning techniques. In a training epoch,
sampling techniques such as (Chawla et al., 2002; Barua et
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Fig. 1 a Long-tailed distribution of ImageNet-LT dataset b Biased classification results of ResNet-10 on ImageNet-LT

al., 2014) sample instances from tail classes with higher fre-
quency compared to the head classes. Cost-sensitive learning
approaches such as (Cui et al., 2019; Tan et al., 2020; Cao et
al., 2019) penalize the DNN model higher for making mis-
takes on tail class instances by assigning higherweights to the
loss incurred on those samples during back-propagation. The
idea of giving more focus to the tail classes seems intuitive
as the general assumption is that the tail classes are always
the most difficult classes due to under-representation.

However, the above assumption might not always hold
true as certain classes might be well-represented even by
a small number of data. To support our claim, we conduct
a simple experiment, where we train a ResNet-10 model
on a long-tailed dataset (ImageNet-LT (Deng et al., 2009))
in the conventional manner (cross-entropy loss) and then
test the model’s class-wise performance on the test set. The
result is shown in Fig 1. Although the accuracy of different
classes tends to decrease as the number of training sam-
ples decreases, it does not monotonically decrease at all and
there is significant fluctuation: there are many classes with
less training samples that have higher accuracy than some
classes with much more samples. For example, the accu-
racy of class#2 (1246 training samples) is 0.45 while that of
class#239 (150 training samples) is 0.95. This implies that
not all tail classes are necessarily difficult and therefore do
not obviously require high focus. This makes us rethink if
the class-wise frequency is actually the best clue to tackle
the long-tail problem.

We believe it is more reasonable to use difficulty instead
of the frequency as a clue to determine the weights. There
are some previous researches that have proposed to use dif-
ficulty such as Focal loss (Lin et al., 2017). Focal loss is
a cost-sensitive learning strategy that measures instance-
level difficulty (also known as hard-mining) and accordingly
assigns higher weights to harder samples. Researchers have
widely used focal loss for long-tailed recognition problems

as tail classes have higher proportion of hard instances,
and therefore giving more weight to such instances should
presumably give more weight to the tail classes. But, unfor-
tunately, that does not hold true because even though the
proportion of hard instances in tail classes is higher than that
in head classes, the absolute number of hard instances in
the tail classes is still lower. We provide more evidence and
in-depth analysis in Sect. 4.1.6.

Therefore, we think it is more sound to use class-level dif-
ficulty instead of instance-level. Recently, we (Sinha et al.,
2020) proposed a simple yet effective method for measuring
the class-wise difficulty. We used the difficulty measure for
dynamically assigningweights to the loss of training samples
and showed the effectiveness of the weighted loss in mitigat-
ing the class-imbalance problem in classification tasks.

This paper extends the previous paper and provides more
through analysis, extensive experimental results, and deeper
insights on the class-wise difficulty based method. The key
differences of this work with the previous work (Sinha et al.,
2020) and the contributions of this work is four-fold.

First, we extended the experiments to include long-tailed
object detection and instance segmentation on LVIS. This
makes the evaluation more complete, showing that the pro-
posed difficulty measure thoroughly applies to a variety of
computer vision tasks including image classification, object
detection, instance segmentation, and video action recogni-
tion.

Second, we provide detailed analysis on the behavior of
the class-wise method in comparison to focal loss (a typical
example of instance-level method) to better understand the
characteristics of these methods (in Sect. 4.1.6). We argued
why the proposed class-level difficulty empirically performs
better in the experiments. To the best of our knowledge, this
is the first work to deeply analyze the different behavior of
class-difficulty-based methods and instance-difficulty-based
methods.

123



International Journal of Computer Vision (2022) 130:2517–2531 2519

Third, we show that the class-wise difficulty measure can
be also applicable to sampling technique, which is another
most popular strategy inmitigating the class-imbalance prob-
lem along with weighted loss. This is important because
weighting and sampling are the two most popular technique
for mitigating class imbalance, and they are sometimes used
in different contexts. For example, different sampling tech-
niques are employed in the decoupled learning (Kang et al.,
2020). We show the effectiveness of CDB-S in this frame-
work as well as in the end-to-end training framework in
Sects. 4.1.3 and 4.1.5.

Finally, we provide more justification and reasoning on
the way of dynamical update of the focusing parameter τ

presented in (Sinha et al., 2020). We pay attention to the
growth speed of τ in relation to the imbalance in performance
which we call bias. We designed four different variants to
represent different growth speed and empirically tested their
performance. As a consequence of experiments, we found
the preferable growth rate of τ has some relationship with
the imbalance injected in training data.

2 RelatedWorks

Long-tail in datasets is a very fundamental problem that is
encountered quite frequently, especially when the final goal
is real-world deployment. Most prior researches in this field
can be fairly categorized into three domains: (1) Data re-
sampling techniques (Chawla et al., 2002; Barua et al., 2014;
Liu et al., 2009), (2) Cost-sensitive learning methods (Lin et
al., 2017; Cui et al., 2019; Tan et al., 2020; Cao et al., 2019;
Sinha et al., 2020) and (3) Metric learning and knowledge
transfer (Liu et al., 2019; Song et al., 2016; Huang et al.,
2020).

Data re-sampling techniques try to create balance among
the classes during the data pre-processing step. Such bal-
ance is created by oversampling from the tail classes or
under-sampling from the head classes. Oversampling meth-
ods generally generate newdata samples for the classes either
by replication or synthetic approaches (Chawla et al., 2002;
Han et al., 2005). Naive oversampling by data replication
tends to cause overfitting (He & Garcia, 2009; Fernández
Hilario et al., 2018), while synthetic generation must ensure
that distinct features of the tail classes reflect in the gen-
erated data. Under-sampling methods (Liu et al., 2009), on
the other hand, reduce data from the head classes by various
approaches. However, random undersampling might cause
the model to miss significant concepts related to the head
classes (He & Garcia, 2009; Fernández Hilario et al., 2018).
Therefore, both oversampling and undersampling need to be
employed carefully to be effective.

Cost-sensitive learning penalizes the DNN model dif-
ferently for different training samples. This is achieved by

assigningweight values to each sample, which is then used to
scale the penalty incurred for predictionmistakes on the sam-
ples. Themainmotivation of this researchfield is to search for
an efficient and effective weight assignment system. To solve
class-imbalance, the typical approach is to assign higher
weights to the samples of the tail classes while lowering
weights for the head class samples. The most common and
simple weighting strategies involve weight assignment by
inverse of class frequencies or a smoothedversionof the func-
tion. Recently, Yin et al. (Cui et al., 2019) proposed a weight
assignment strategy that uses the effective number of samples
for each class. Jamal et al. (Jamal et al., 2020) claimed that
class-imbalanced recognition problem can be considered a
special case of domain adaptation and therefore, proposed a
weighting strategymotivated from domain adaptation. Many
other works such as balanced group softmax (Li et al., 2020)
and equalization loss (Tan et al., 2020) try to provide bet-
ter weight assignment systems, and the primary attribute
used for deciding the weights is the class-wise frequency.
For many real datasets, it has been seen that the state-of-the-
art (SOTA) cost-sensitive learning techniques outperform the
SOTA sampling techniques. However, Kang et al. (Kang et
al., 2020) shows that by decouplingDNN learning into repre-
sentation learning and classification, it is possible to improve
the performance of the sampling techniques but such a proce-
dure becomes time-consuming due to use ofmultiple training
stages. Most of the above-mentioned sampling and weight-
assignment techniques assume that the tail classes are always
under-represented and therefore, the most difficult classes
to be learned by the DNN. However, such an assumption
might not hold true in cases, where a class is sufficiently
well-represented even with a small number of samples.

An alternate way of weighing samples is to assign weights
to each sample based on it’s difficulty. Samples with higher
difficulty are weighed higher compared to the easier ones.
Such an approach was initially proposed for the task of dense
object detection in form of focal loss (Lin et al., 2017), how-
ever recent works have extended it to long-tailed recognition
problems as well. As the tail class samples are expected to be
themost difficult samples, it is assumed that such a difficulty-
basedweightingwould eventually putmoreweight on the tail
classes. But due to the relatively large population of the head
classes, they tend to have higher absolute number of hard
(high difficulty) samples than the tail classes. As a result,
the above approach ends up putting more weight on the head
classes, resulting in biased results, evidence of which will be
shown in Sect. 4.1.6. However, such an approach interests us
due to the novel concept of using difficulty over frequency
for weight assignment. Therefore, in this work, we propose
to use the class-wise difficulty for balancing the data distri-
bution, while addressing the shortcoming of focal loss.

Recently metric learning and knowledge transfer
s approaches have become popular in the field of long-tail
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recognition. Metric learning (Huang et al., 2020; Song et al.,
2016) approaches try to find an appropriate embedding func-
tion that embeds data into the feature space, while preserving
certain inter-data relationships. Contrastive embedding uses
pairs of data samples to minimize the intra-class feature
distance, while maximizing the inter-class distance. Triplet
loss (Huang et al., 2020) uses triplets of data samples for
similar purpose, where one of the sample is considered an
anchor. However, for large datasets, it is computationally
inefficient to select all possible pairs or triplets for train-
ing. In such cases, the performance of these metric learning
approaches depends largely on the choice of pair or triplet
selection procedure, which is a different research domain.
Some works (Liu et al., 2019; Wang et al., 2020, 2017) have
proposed the knowledge transfer from head classes to tail
classes either using meta learning or an external memory
module. Though an effective approach, such modules are
generally not end-to-end trainable and designing themmight
be a time-consuming, expensive and non-trivial task. That
is why, this work focuses mainly on data re-sampling and
cost-sensitive learning approaches.

3 ProposedMethod

3.1 Class-wise Difficulty

Human beings use the metric ‘difficulty’ to provide qualita-
tive descriptions of tasks e.g., “this home-work is difficult”
or “playing soccer is easy”. DNN models behave quite simi-
larly, where they find some tasks harder to perform compared
to others. Likewise, in long-tailed recognition problems, the
models find some classes relatively easier to learn. As stated
in Sect. 2, most prior works assume that the head classes
are always easier to learn for the model than the tail classes,
which might not always hold true. Such assumptions can be
avoided, if we can find a way to quantitatively determine
the metric difficulty. However, adding a quantitative value to
a qualitative metric is one issue. Lin et al. (Lin et al., 2017)
tried to solve that by proposing a cost-sensitive learning using
‘focal loss’, where each training instance is assigned aweight
based on its difficulty. Focal loss calculates the difficulty of
an instance using the DNNmodel’s prediction output for the
instance. If an instance s belongs to class yc among a given set
of class labels Y = {y1, y2, . . . , yN }, then the DNN model’s
output for s can be represented as {py1,s, py2,s, . . . , pyN ,s}
where pyn ,s is themodel’s prediction confidence correspond-
ing to the class yn for sample s. Focal loss calculates the
difficulty of instance s as ds = (1− pyc,s) and computes the
weight for sample s as dγ

s , where γ is a hyper-parameter
called ‘focusing parameter’. Higher value of ds signifies
higher sample difficulty and leads to higher sample weight.

Even though focal loss successfully added quantitative
value to the metric ‘difficulty’, it fails to solve long-tailed
recognition problems due to reasons stated in Sect. 2. Evi-
dence of this will be presented in Sect. 4.1.6.We hypothesize
that the drawback of focal loss appears because it uses the
difficulty of each instance. However, for long-tailed prob-
lems, it is more important to determine the difficulty of the
classes than that of the instances. Therefore, we propose to
use the class-wise difficulty to solve the imbalance. But as
stated before, there is no direct way to add a quantitative
value to such qualitative metric. Hence, we find a novel way
to do so.

Humans tend to call a task difficult if they perform poorly
in it. For example, Mom : “Son, why did you get only 30
in Mathematics?”; Son : “Because the paper was very dif-
ficult”. We use a similar concept to quantify the class-wise
difficulty as perceived by the DNN model. We measure the
performance of the model for each class and use it to deter-
mine the perceived difficulty of each class. The performance
metric used can vary based on the tasks. For classification
tasks, the performance metric is the class-wise classification
accuracy while for object detection tasks, it can be average
precision. Our approach is proposed using performance met-
rics where higher means better, but it can be easily adapted
to other metrics as well. For simplicity, we limit our explana-
tion here to classification tasks. For multi-class classification
task with N classes and M data samples, the classification
accuracy of class c can be calculated as

Ac = mc

Mc
, (1)

where Mc is the total number of samples belonging to class c
andmc is the number of samples belonging to class c that have
been classified correctly. Therefore,

∑N
c′=1 Mc′ = M and

mc′ ≤ Mc′, ∀c′ ∈ 1, 2, . . . , N . We use the classification
accuracy of class c, Ac, for computing the difficulty of class
c using

dc = 1 − Ac. (2)

For computing the class-wise difficulty, we use a class-
balanced subset of the dataset, which is different from both
the train and test set. This is done to prevent over-fitting to
either train or test set. The separate subset used to measure
difficulty can also be used as validation or development set.
Another interesting observation about human learning and
DNN learning is that as the learning progresses, the difficulty
of a task or a class reduces gradually. That is why, we propose
to measure the class-wise difficulty dynamically during the
training period. For dynamic calculation, we compute the
difficulty scores after every t epochs. In our experiments, we
use t = 1. Therefore, the dynamic difficulty of a class c can
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Fig. 2 Effect of varying the value of τ on the class-difficulty based
weight assignment. Higher value of τ puts heavier weights on the sam-
ples of the harder classes, while relatively reducingweights on the easier
class samples

be computed using

dc,i t = 1 − Ac,i t , (3)

where Ac,i t is the model’s classification accuracy on class c
after i t epochs and i ∈ {1, 2, ..., Tmax

t }. Tmax is determined
by the total number of epochs used for training.

3.2 Difficulty-BasedWeight Assignment

We propose to use the computed class-wise dynamic diffi-
culty to dynamically assign weights to the different training
samples. The obvious way to do that is by assigning higher
weights to the samples of the class that have high difficulty
scores. Therefore, we propose a dynamic weight assignment
using

wc,i t = (dc,i t )
τ , (4)

wheredc,i t is computed fromEq. 3 and τ is a hyper-parameter
that controls how much we emphasize more difficult classes.
Using Eq. 4, if the minority class is actually a very difficult
class, then all the samples of that class will get high weights,
resulting in overall high weight for the minority class. There-
fore, this approach overcomes the drawback of focal loss.

The effect of changing the value of τ on the weight dis-
tribution is visualized in Fig. 2.

It is important to findout a reasonable value of τ for the fast
training convergence and balanced performance. As shown
in the figure, selecting too high value of τ (e.g., τ = 5) exces-
sively down-weights easier classes, which results in too slow
training progress or too skewed performance, while selecting

too low value for τ results in almost similar biased perfor-
mance as the unweighted case (τ=0 reduces to equal weights
for all samples).

It is difficult, however, to find out a perfect value for τ

because it may change according to the characteristics of
datasets such as the level of class-imbalance and the differ-
ence of each class’s ‘difficulty’. Moreover, the ‘difficulty’
of each class usually changes dynamically along with the
training progress as explained above.

That iswhywepropose an approach to automatically com-
pute the reasonable value of τ , taking the dynamic difficulties
in the training process into account. Based on the characteris-
tics of τ observed in Fig. 2, we think it is better to use bigger τ
if we need to emphasize the difficult classes more compared
to easy classes, and use smaller τ if we do not have to empha-
size the difficult classes verymuch. It is reasonable to assume
that we need to emphasize the difficult classes more when
there is severe imbalance in performance on different classes.
Therefore, it is necessary to quantify this imbalance in per-
formance.We call this imbalance in performance “bias”, and
design it such that it satisfies the following properties. (1)
It becomes bigger if certain class(es) performs significantly
better (or worse) than other classes. (2) It becomes 0 if the
performance is perfectly balanced, namely the accuracy of
all the classes are the same. (3) It does not become a negative
value. Mathematically, we define it as follows.

biasit = max(
maxNc=1 Ac,i t

minNc′=1 Ac′,i t + ε
− 1, 0). (5)

ε is a small positive value used to avoid errors in cases where
minc′=1,2,...,N Ac′,i t = 0. ε also helps to keep biasi t upper
bounded by ε−1 − 1, which might otherwise explode to ∞.
For our experiments, we use ε = 0.01.

Next, we define τ as a function of the bias as

τi t = f (biasit ). (6)

Note that the value of τ is computed and updated after
every t epochs using the model’s performance bias.

Now,wewant to design f such that the value of τ increases
when the bias in performance increases (imbalanced perfor-
mance), resulting in much heavier weights for the difficult
classes. To satisfy this, the function f should monotonically
increase with biasit . The question is how much the increase
speed should be. Here we design four different variants of
f that represent different growth speed of τ with respect to
bias as shown in Fig. 3, and give empirical analysis of these
variants in Sect. 4.1.4.
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Fig. 3 Four different variants for dynamic τ calculation

• Linear f : The linear variant of f computes the value of
τ as

τi t = biasit
BM

TM , (7)

where BM is the upper bound of bias computed by Eq. 5,
which is ε−1 − 1 and TM is the predefined upper bound
of the value of τ . For our experiments, we use TM = 5.
The linear variant maintains a uniform growth speed of
τ with respect to the bias.

• Polynomial f : The polynomial variant of f computes τ

using

τi t =
(
biasit
BM

)p

TM , (8)

where p can assume positive integers greater than 1. p =
1 gives the linear variant of f . The polynomial variant has
very slow increase of τ when the bias is low. Generally
in long-tailed learning, the bias is relatively low in the
early stages in the training, and it gradually increases as
the training progresses. Therefore, this variant tends to
emphasize all the classes almost uniformly in the initial
stages of the training, in which the bias tends to be small.
However, when the bias gets higher and higher in later
stage of training, the polynomial variant quickens the
pace of τ growth, resulting in faster increase of emphasis
on difficult classes.

• Logarithmic f : The logarithmic variant of f computes
τ using

τi t = − TM
log(BM + 1)

log(biasit + 1). (9)

The logarithmic variant set τ higher even when the bias
is lower, resulting in fast increase of emphasis on the hard
classes at the early stages of training.

• Sigmoidal f : This variant of f computes τ as

τi t = 2 · TM · sigmoid(biasit ) − TM

= TM (
2

1 + e−(biasit )
− 1). (10)

The sigmoidal variant follows a similar pattern as the
logarithmic one but increases τ much faster, resulting in
very early increase in emphasis on the difficult classes
and then maintaining the high emphasis unless the per-
formances on different classes are very-well balanced.

3.2.1 Class-wise Difficulty-BasedWeighted Loss

For explanation of class-wise difficulty-based weighted
(CDB-W) loss, we use the most conventional cross-entropy
loss function and focal loss.However, the application ofCDB
weighting is not limited to only these losses but can be easily
applied to other loss functions such as mean-squared error
loss, hinge loss etc.

Cross-entropy loss is used in most classification tasks. For
a N -class classification task, if a data sample s of a class c
is forward propagated through the classifier in kth epoch,
then the model outputs a probability distribution over the N
classes given as ps,k = {ps,1,k, ps,2,k, . . . , ps,N ,k}. ps,c′,k is
the prediction probability of sample s belonging to class c′
during kth epoch. The cross-entropy (CE) loss for sample s
during kth epoch is computed as

CEs,k = − log(ps,c,k), (11)

where sample s belongs to class c. In similar situation, class-
wise difficulty-based weighted cross-entropy (CDB-W-CE)
loss calculates the loss as

CDB-W-CEs,k = − wc,k−1 log(ps,c,k)

= − (dc,k−1)
τk−1 log(ps,c,k), (12)

where dc,k−1 is computed using Eq.3 before kth epoch and
τk−1 is the value of τ updated before kth epoch. Our CDB
weighting can be applied to focal loss as well. For the above
sample s, focal loss (FL) is computed as

FLs,k = −(1 − ps,c,k)
γ log(ps,c,k), (13)

and class-wise difficulty-balancedweighted focal loss (CDB-
W-FL) is computed as

CDB-W-FLs,k = −(dc,k−1)
τk−1(1 − ps,c,k)

γ log(ps,c,k).

(14)
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3.2.2 Class-wise Difficulty-Based Sampling Method

For long-tailed recognition, sampling methods aim to create
a balance in the data distribution during the pre-processing
step. Generally, they achieve this by sampling training data
from different classes using unequal probabilities. However,
all prior sampling methods assume that the tail classes are
always under-represented and difficult to be learned. As
argued before, that might not always hold true. That is why,
we propose a samplingmethod using our class-wise difficulty
scores called class-wise difficulty-based sampling method
(CDB-S). CDB-S samples a training data from class c in the
kth epoch using probability

pc,k = wc,k−1
∑N

c′=1 wc′,k−1
= (dc,k−1)

τk−1

∑N
c′=1(dc′,k−1)

τk−1
, (15)

where dc′,k−1 is the difficulty of class c′ computed using Eq.3
after k − 1 epochs. By this method, the sampler samples a
training data from a difficult class more frequently compared
to an easy class, helping the model to learn from both easy
and difficult classes in a balanced way.

4 Evaluation

Long-tail is a fundamental issue encountered in multiple
recognition tasks such as image classification, object detec-
tion, instance segmentation, video action classification etc.
We believe that our proposed CDB weighted loss and sam-
pling method will be effective for any such tasks. Therefore,
to verify the task-agnostic performance of the proposed
method, we conduct experiments on 4 different tasks namely
image classification, object detection, instance segmentation
and video-action classification. For each of these tasks, we
compare our methods with various SOTA methods.

4.1 Image Classification

4.1.1 Datasets

MNISTMNIST (LeCun, 1998) is a popular image classifica-
tion dataset, where the task is to classify gray-scale images of
hand-written digits into one of the ten classes of digits (0-9).
There is no inherent class-imbalance in this dataset. How-
ever, we generate a class-imbalanced subset of the dataset
following same setup as (Ren et al., 2018). We build a train-
ing subset by using only 5000 samples from 2 classes (4 and
9). The imbalance was injected into the subset by selecting
unequal number of training samples for the classes. The num-
ber of samples for each class was determined by the value
of ‘head class ratio’. If ‘head class ratio’ is x , then number
of training samples in the head class is x ∗ 5000 and that

in tail class is (1 − x) ∗ 5000. This procedure is same as
Ren et al. (2018). For our experiments, we choose the class
‘4’ as our head class and the ‘head class ratio’ is selected as
0.99 or 0.995. To facilitate class-wise difficulty calculation,
we build a balanced subset from the data using 500 samples
for both class ‘4’ and ‘9’. This subset is different from the
training subset and can also be used for validation purposes.
For testing, we also create a balanced test subset using 800
samples for both the classes, which is different from the 2
above-mentioned subsets. For various values of ‘head class
ratio’, we compare the performance of our proposedmethods
with other SOTA methods.

CIFAR100-LT CIFAR100 (Krizhevsky, 2009) is another
popular image classification dataset, where there are 100 dif-
ferent classes such as beaver, shark, roses etc. and the task is
to classify tiny RGB images into the corresponding correct
classes. Similar to MNIST, this is also an inherently class-
balanced dataset. However, long-tail can be injected into the
dataset using techniques as proposed in (Cui et al., 2019), to
create a long-tailed version popularly called CIFAR100-LT.
The balanced dataset has 500 training images and 100 testing
images for each of the 100 classes. We create a small valida-
tion subset using only 50 samples per class from the training
set for difficulty calculation. The remaining 450 images per
class are used to build an imbalanced training set. In the
imbalanced training set, the number of selected training sam-

ples for a class c is determined as nc = nmaxμ
c−1
N−1 , where

nmax = 450 and N is total number of classes, which is equal
to 100. For testing, we use the same balanced test set as
provided. We vary the value of μ to increase or decrease
class-imbalance in training set and evaluate the performance
of our proposed methods for various μ.

ImageNet-LT ImageNet is a large-scale image classifi-
cation dataset, which comprises of 1000 image categories
or classes. This dataset is not inherently class-imbalanced.
However, a long-tailed version of the dataset has been con-
structed in (Liu et al., 2019). It comprises a long-tailed
training set of 115,800 images, where the number of samples
per class varies from 5 to 1280. Separate balanced validation
and test sets are also provided. We use the validation set for
difficulty calculation and the test set for evaluation.

4.1.2 Implementation Details

For MNIST (LeCun, 1998), we train a LeNet-5 (LeCun et
al., 1998) on imbalanced training set for 100 epochs using a
batch size of 100. LeNet-5 is used to keep the experimental
setup exactly same as (Ren et al., 2018). SGD optimizer is
used with a weight decay of 0.0005, momentum of 0.9 and
an initial learning rate of 0.001. The training is done on a
single NVIDIA GeForce GTX 1080 GPU.
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For CIFAR100-LT, we follow similar training strategy as
(Cui et al., 2019). We train a ResNet-32 (He et al., 2015) for
200 epochs using a batch size of 128 on 4 NVIDIA Titan X
GPUs. We use SGD optimizer with momentum 0.9, weight
decay 0.0001 and an initial learning rate of 0.1, which is
scaled down after 160 and 180 epochs.

For ImageNet-LT, we use a ResNet-10 and train it for 100
epochs using batch size 512. As before, SGD optimizer is
used with momentum 0.9, weight decay 0.0005 and an ini-
tial learning rate of 0.2, which is subjected to cosine decay.
We used two NVIDIA GeForce GTX 1080 Ti GPUs for
ImageNet-LT experiments.

For each of the datasets, we use a balanced validation
dataset for calculating the class-wise difficulty scores, which
is important for our proposed CDB methods. The trained
models are evaluated on the balanced test sets. All imple-
mentations are done in PyTorch.

4.1.3 Comparison with SOTA

To evaluate the effectiveness of our proposed methods, we
compare its performancewith variousmethods i.e., (1)Cross-
entropy (CE) loss, (2)Class-frequency based sampling (CFS)
(Mikolov et al., 2013), (3) Focal loss (Lin et al., 2017), (4)
Class-balanced (CB) loss (Cui et al., 2019), (5) Equalization
loss (EQL) (Tan et al., 2020), (6) Learning to reweighting
(L2RW) (Ren et al., 2018), (7) Meta-weight Net (Shu et al.,
2019), (8) LDAM-DRW (Cao et al., 2019), (9) OLTR (Liu
et al., 2019), and (10) Class-aware sampling (Kang et al.,
2020). Recently (Kang et al., 2020) showed that it is effective
to decouple representation learning and classifier learning.
However, we do not employ this 2-stage training strategy in
this section in order to assess the pure effectiveness of the
class-wise difficulty idea in end-to-end training. As such, we
compare the proposed method with only end-to-end single-
stage training methods. The effectiveness of CDB methods
in decoupled learning is assessed later in Sect. 4.1.5. The
comparison is done over 3 image datasets and in each case
the results were calculated on a balanced test set. For each
of the datasets, we report the results of CDB methods using
sigmoidal variant of dynamic τ calculation becausewe found
it performs reasonably well in most cases as we will show in
Sect. 4.1.4.

As can be seen from Table 1, our CDB weighted loss
and sampling methods perform better than most other SOTA
methods for all the datasets. The results show that the CDB
weight assignment is an effective way to design a weighted
loss or samplingmethod for solving class-imbalance. Inmost
cases, sampling techniques give lower performance than
most weighted loss approaches, which is evident from the
results of class-frequency based sampling (CFS) in Table 1.
But, CDB-S sampling not only outperforms class-frequency
based sampling (e.g., by 3.04% for CIFAR100-LT imbalance

100) but also consistently provides better results than many
SOTA weighted loss techniques such as CB loss, L2RW,
EQL (e.g., 1.43% better than EQL (Tan et al., 2020) for
CIFAR100-LT imbalance 100). Another interesting thing is
that using our CDB weight assignment with focal loss helps
to improve the performance of focal loss significantly (e.g.,
3.20% for ImageNet-LT).

4.1.4 Effect of �

We conduct an experiment to study the effect of τ on the
performance of our proposed method. For the experiment,
we train a ResNet-32 on CIFAR100-LT using both CDB-W-
CE loss and CDB-S sampling with different formulations for
τ . We use both fixed value as well as dynamic calculation for
τ . For fixed value τ , we increase τ in the range of [0.5, 5]
and study the corresponding changes in the performance. For
dynamic calculation, we experiment with all the 4 proposed
variants. The results are listed in Tables 2 and 3.

Tables 2 and 3 show that, given a fixed imbalance value,
as we increase the value of τ , the performance of both CDB-
W-CE and CDB-S initially improves, however after a certain
point it starts to drop. For higher imbalance, the best per-
forming τ for both CDB-W-CE and CDB-S is generally
higher than that for low imbalance, which is reasonable con-
sequence. The important observation is that the optimal value
for fixed τ varies with both the amount of imbalance and
the dataset. For example, CDB-W-CE with τ = 1.5 per-
forms best for CIFAR-LT with imbalance 50, while τ = 1.0
performs best for imbalance 200. Also, for imbalance 99 in
MNIST, CDB-W-CE with τ = 2.0 works best while for
CIFAR-LT with imbalance 100, τ = 1.5 works best. As eas-
ily imagined, it is time-consuming to manually find out the
reasonable value of τ .

Due to the difficulty in searching for a single optimum τ ,
we proposed 4 different variants to dynamically calculate τ .
Evidently for both CDB-W-CE and CDB-S, the sigmoidal
variant performs better than the others in most cases and its
performance is almost always close to the best of fixed τ or
sometimes even better than the best fixed τ because these
variants can dynamically change the value of τ in accor-
dance with the training progress. This signifies that giving
high emphasis on difficult classes from as early stage of
training as possible benefits the model especially when train-
ing data is highly imbalanced. It is also seen that slower
increase in emphasis can sometimes give comparable per-
formance in low-imbalance situations (CDB-S with linear τ

for CIFAR100-LT imbalance=10), which supports that hav-
ing moderate focus on the hard classes can be enough when
the imbalance in data is not high. Considering the consis-
tently good performance of the sigmoidal variant in various
settings, we use it in the remainder of the experiments unless
otherwise stated.
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Table 1 Classification errors (%) of different methods for solving class-imbalance in 3 different image datasets

Dataset MNIST CIFAR100-LT ImageNet-LT

Imbalance 99 199 10 100 256

CE loss 8.59 ± 0.41 14.35 ± 1.10 44.35 61.79 65.20

Focal loss (Lin et al., 2017) 6.57 ± 0.61 11.45 ± 0.74 48.05 61.59 69.50

CFS (Mikolov et al., 2013) 6.10 ± 0.46 10.59 ± 0.65 42.66 61.07 –

CB loss (Cui et al., 2019) 5.88 ± 1.20 8.61 ± 1.11 42.11 60.40 –

EQL (Tan et al., 2020) 2.60 ± 0.33 3.71 ± 0.41 41.68 59.46 63.56

L2RW (Ren et al., 2018) 2.63 ± 0.65 3.94 ± 1.23 46.27 59.77 -

LDAM-DRW (Cao et al., 2019) – – 41.29 57.96 –

Meta-weight Net (Shu et al., 2019) – – 41.54 57.91 –

OLTR (Liu et al., 2019) – – – – 64.40

Class-aware sampling (Kang et al., 2020) – – – – 63.00

CDB-S (Ours) 2.80 ± 0.35 3.93 ± 0.65 41.39 58.03 62.30

CDB-W-FL (Ours) 4.12 ± 0.32 5.64 ± 0.51 42.58 59.69 66.30

CDB-W-CE (Ours) 2.39 ± 0.41 3.71 ± 0.27 41.26 57.41 61.50

The best results for each dataset and each imbalance values are highlighted in bold
Note that the imbalance values are computed as the ratio of the number of training samples in the most frequent class to that of the least frequent
class

Table 2 Classification error (%) on 3 image datasets using CDB-W-CE loss with different values of τ

MNIST CIFAR100-LT ImageNet-LT
Imbalance 99 199 10 20 50 100 200 256

Fixed τ 0.5 2.59 ± 0.44 4.03 ± 0.41 41.71 45.40 53.87 58.74 62.79 63.00

1.0 2.49 ± 0.57 3.94 ± 0.36 40.53 46.52 53.55 58.33 62.01 62.90

1.5 2.31 ± 0.38 3.54 ± 0.25 41.32 47.26 52.91 57.30 62.37 62.70

2.0 2.23 ± 0.34 3.65 ± 0.41 41.35 47.00 53.06 57.56 62.97 62.30

5.0 2.51 ± 0.41 3.78 ± 0.43 45.52 48.33 54.55 59.38 63.19 63.50

Dynamic τ Linear 3.06 ± 0.32 3.56 ± 0.45 42.16 46.68 54.32 58.40 62.24 62.80

Poly 3.25 ± 0.43 3.51 ± 0.46 42.15 47.64 54.55 58.59 62.66 62.60

Log 2.75 ± 0.37 3.37 ± 0.36 42.32 47.73 54.70 58.77 63.39 62.10

Sigmoid 2.39 ± 0.41 3.71 ± 0.27 41.26 44.94 53.18 57.41 62.28 61.50

For this experiment, we used both fixed τ and dynamic τ . For each imbalance values, we have emboldened the best results for both fixed τ and
dynamic τ

4.1.5 Results in Decoupled-Learning

RecentlyKang et. al. (Kang et al., 2020) proposed that decou-
pling the representation and classifier learning can be very
effective for long-tailed recognition. For that they introduced
2-stage training procedure, where the first stage learns a
powerful feature extractor and the latter stage balances the
classifier. For the second stage, class-aware sampling is gen-
erally used. In class-aware sampling, each class is assigned
a fixed and equal sampling probability.

We investigated the effect of our proposed class-difficulty
based methods in both stages of decoupled learning. Table 4
shows the results for 2 classifier balancingmethods in the 2nd
stage of the decoupled learning - classifier retraining (cRT)
and learnable weight scaling (LWS).

As seen in the table, for the 1st stage training, CDB-based
methods (both CDB-W-CE and CDB-S) are clearly better
than vanilla cross entropy loss. This indicates that the pro-
posed CDB-basedmethods are effective in learning powerful
representation.

For the 2nd stage, the sampling-based methods (CDB-S
and Class-aware sampling) are better than weighting-based
method (CDB-W-CE). Among the sampling-based meth-
ods, CDB-S is better than Class-aware sampling because it
reflects the performance of the classifier on-the-fly, which
can dynamically change as the training progresses.

Based on these observations, we conclude that the best
choice in the decoupled learning is to use CDB-based meth-
ods in the 1st stage to learn better representations, and to use
CDB-S in the 2nd stage to better re-balance the classifier.
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Table 3 Classification error (%) on 3 image datasets using CDB-S loss with different values of τ

MNIST CIFAR100-LT ImageNet-LT
Imbalance 99 199 10 20 50 100 200 256

Fixed τ 0.5 3.24 ± 0.37 5.11 ± 0.56 41.96 47.59 53.95 59.26 63.17 63.30

1.0 2.71 ± 0.34 4.56 ± 0.48 41.63 47.37 54.81 59.54 63.20 63.10

1.5 2.88 ± 0.56 4.17 ± 0.46 42.32 47.41 54.41 59.12 63.87 62.70

2.0 3.03 ± 0.44 3.86 ± 0.43 42.09 47.30 54.83 59.31 63.52 62.70

5.0 3.43 ± 0.43 4.24 ± 0.58 46.29 49.33 54.37 58.70 62.55 65.50

Dynamic τ Linear 2.97 ± 0.24 4.19 ± 0.51 41.51 47.05 53.58 58.94 63.19 62.80

Poly 3.12 ± 0.26 4.11 ± 0.34 42.40 48.53 54.13 59.31 62.71 62.30

Log 2.91 ± 0.34 4.00 ± 0.36 42.65 47.10 53.74 57.79 63.00 62.70

Sigmoid 2.80 ± 0.35 3.93 ± 0.65 41.39 46.08 53.37 58.03 62.26 62.30

For each imbalance values, we have emboldened the best results for both fixed τ and dynamic τ

Table 4 Classification error (%) on CIFAR100-LT for decoupled learning

Imbalance: 10 Imbalance: 100
1st stage training methods 1st stage training methods

2nd stage training methods CE loss CDB-W-CE CDB-S CE loss CDB-W-CE CDB-S

cRT Class-aware sampling 41.28 40.99 40.97 57.06 56.74 56.87

CDB-W-CE 41.47 41.33 41.35 57.44 57.38 57.36

CDB-S 41.05 40.89 40.92 56.49 56.24 56.29

LWS Class-aware sampling 40.64 40.42 40.48 56.68 56.41 56.45

CDB-W-CE 41.11 41.02 41.06 57.20 56.88 56.99

CDB-S 40.44 40.16 40.21 56.26 56.11 56.12

The second row corresponds to the stage-1 learning methods while the second column lists the second stage learning methods. Within each block,
the results of best 1st stage methods (the best in each row) are highlighted with underline, and the results of best 2nd stage methods (the best in
each column) are highlighted with bold. The best in each block is shown in italic

Overall, the result supports the effectiveness of the newly
proposed CDB-S especially in the decoupled learning sce-
nario.

4.1.6 Comparison to Focal Loss

Here we make a detailed analysis of how CDB-W-CE helps
to solve the drawbacks of the focal loss.

First, we provide evidence for the drawbacks of focal loss
as stated in Sect. 2 by conducting a simple experiment. Based
on the number of training instances of each class (Nc), we
divide the classes of CIFAR100-LT (imbalance=200) into
many-shot (Nc > 100), medium-shot (100 ≥ Nc > 20) and
few-shot (20 ≥ Nc) classes. While training a ResNet-32 on
CIFAR100-LT using focal loss, we track the average num-
ber of hard instances in each of the three subsets of classes
as shown in Fig. 4. We classify an instance as hard if it is
assigned a weight > 0.8 by focal loss.

As expected, the many-shot classes had much more hard
instances than few-shot or medium-shot classes for almost
entire training. As focal loss gives high weights to the hard

instances irrespective of their classes, it results in giving
more weights to the many-shot classes. As a result, the final
result of focal loss is extremely biased towards the many-
shot classes as shown in Fig. 5 and the accuracy gap between
many-shot and few-shot is > 60%.

Next, we conduct an analysis on how our proposed solu-
tion behaves under similar situation. For the analysis, we
use the sigmoidal variant of dynamically calculated τ . As
our method focuses on class-level difficulty, we classify an
instance as hard only if it belongs to a hard class (weight
> 0.8) and as shown in Fig. 4, we track the average num-
ber of hard instances for each subset of classes over the
training process. We find that as the training progresses, our
method learns to give higher weights to the few-shot and
medium-shot classes because the model performs poorly for
them. As a result, the average number of instances in many-
shot classes that get high weights, gradually becomes lesser
than that of medium and few-shot classes leading to bet-
ter balanced results than focal loss as shown in Fig. 5. For
medium-shot and few-shot classes, CDB-W-CE outperforms
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Fig. 4 Average number of hard
instances in many-shot,
medium-shot and few-shot
classes at various stages of the
training for Focal loss and
CDB-W-CE (Ours)

focal loss (Lin et al., 2017) by 5.11% and 7.26% in classifica-
tion accuracy respectively. This helps CDB-W-CE to achieve
an overall gain in accuracy of 1.74%.

Note that we do not claim that class-level weighting is
always better than instance-level weighting. Instance-level
weighting is expected to perform better for datasets with low
imbalance and high intra-class variability. For example, if a
class ‘car’ in a dataset hasmany training samples for blue cars
but very few samples for red and green ones, then the model
is likely to get biased to blue cars. In such case, instance-
level weighting will give high weights to the red and green
car samples and try to balance the learning. However, class-
level weighting will give same weights to all ‘car’ samples,
still causing bias. In the datasets used in our experiments,
we think the intra-class variability is not that high, while
the imbalance is extreme causing class-level weighting to
perform better.

4.2 Object Detection and Instance Segmentation

4.2.1 Datasets

LVIS To provide evidence of the effectiveness of our pro-
posedmethods on various tasks,we also conduct experiments
on the object detection and instance segmentation task. For
the purpose, we use the Large Vocabulary Instance Segmen-
tation (LVIS v0.5) (Gupta et al., 2019) due to the long-tailed
nature of the dataset. The dataset contains 1,230 categories
along with bounding box and instance segmentation anno-
tations. For object detection task, we only use the bounding
box annotations but for the instance segmentation task, we
use the segmentation mask annotations as well . Gupta et al.
(Gupta et al., 2019) proposed a further classification of the
categories into three groups based on the number of training
images they appear in - frequent (> 100 images), common

Fig. 5 Shot-wise accuracy (%) of focal loss v/s CDB-W-CE

(11-100 images) and rare (1-10 images). We use the same 3
classes to report our evaluation results.

4.2.2 Implementation Details

We keep the implementation setup same as (Li et al., 2020).
WeuseFasterR-CNNwithResNet-50-FPN(Renet al., 2015)
for the purpose of object detection. For instance segmenta-
tion, we use Mask R-CNN framework with ResNet-50-FPN
backbone. The models are trained on four NVIDIA Titan X
GPUs for 12 epochs using a SGD optimizer with an initial
learning rate of 0.01, momentum of 0.9 and weight decay
of 0.0001. The learning rate is decayed by 0.1 after 8 and
11 epochs for both tasks. Gradient clipping and learning rate
warm-up are also used.
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Table 5 Object detection results on LVIS v0.5 val set. † means that the results have been copied from the origin paper (Li et al., 2020; Tan et al.,
2020)

Method Pretrained model mAP APr APc AP f

CE trained on MS-COCO 21.19 3.05 20.38 29.44

CDB-W-CE (Ours) trained on MS-COCO 23.37 9.83 22.89 29.53

RFS † (Gupta et al., 2019) trained on MS-COCO 23.41 14.59 22.74 27.77

EQL † (Tan et al., 2020) trained on MS-COCO 22.80 11.30 24.70 25.10

Focal loss-cls † (Lin et al., 2017) trained with CE on LVIS 19.29 6.60 19.81 23.71

LRW-cls † (Li et al., 2020) trained with CE on LVIS 24.66 14.16 23.51 30.28

LRW-cls trained with CDB-W-CE on LVIS 25.52 13.35 25.65 30.22

BAGS-cls † (Li et al., 2020) trained with CE on LVIS 25.96 17.65 25.75 29.54

BAGS-cls trained with CDB-W-CE on LVIS 26.01 15.47 26.52 29.58

CDB-W-CE-cls (Ours) trained with CE on LVIS 25.40 15.54 25.50 29.21

CDB-W-CE-cls (Ours) trained with CDB-W-CE on LVIS 26.31 18.15 26.37 29.52

The best results are highlighted in bold
For our method, we use the sigmoidalvariant for dynamic calculation of τ . “-cls”denotes that only the final classification layer is retrained after
freezing the other layers using weights from the given pretrained model. To obtain the pretrained model trained with CE or CDB-W-CE on LVIS,
we follow exactly the same procedure as Li et al. (2020) i.e., start from a model pretrained on MS-COCO and finetune it on LVIS

Table 6 Bounding box AP and
mask AP (APm ) for image
segmentation on LVIS v0.5 val
set

Method mAP APr APc AP f mAPm APmr APmc APmf

Mask R-CNN † 20.78 3.28 18.99 30.00 20.68 3.73 19.95 28.37

Mask-RFS † (Gupta et al., 2019) – – – – 24.40 14.50 24.30 28.40

Mask-Calib † (Wang et al., 2019) – – – – 21.10 – – –

SimCal † (Wang et al., 2020) 22.60 13.70 20.60 28.70 23.40 16.40 22.50 27.20

EQL † (Tan et al., 2020) 23.30 11.30 24.70 25.10 – – – –

BAGS † (Li et al., 2020) 25.76 15.03 25.45 30.42 26.25 17.97 26.91 28.74

Ours 26.12 16.97 25.55 30.49 26.74 20.22 27.21 28.75

The best results are highlighted in bold
† denotes that the results have beencopied from the origin paper (Li et al., 2020; Gupta et al., 2019; Wang et
al., 2019; Tan et al., 2020; Wang et al., 2020)

4.2.3 Results

Object Detection For comparison with prior methods, we
use 4 evaluation metrics namely mAP (mean average pre-
cision over all the classes), APr (average precision for rare
classes), APc (average precision for common classes) and
AP f (average precision for frequent classes). We compare
our CDB method with (1) Cross-entropy loss (CE), (2)
Repeat factor sampling (RFS) (Gupta et al., 2019), (3) Equal-
ization loss (EQL) (Tan et al., 2020), (4) Focal loss (Lin et
al., 2017), (5) Class-wise loss re-weighting (LRW) (Li et
al., 2020) and (6) Balanced Group Softmax (BAGS) (Li et
al., 2020). We train the detector using different methods and
report the results in Table 5.

From Table 5, it can be seen that our CDB-W-CE method
outperforms the SOTAmethods in mAP and APr . Evidently,
the average precision for the rare classes is significantly
boosted by 0.5% using CDB-W-CE. Other than that, we
find that our CDB-W-CEmethod helps to provide better pre-

trained models than the normal cross-entropy loss. Using our
pretrained model for weight initialization gives a boost in the
performance of the SOTAmethods such as BAGS and LRW,
which is majorly accounted for by a significant improvement
for the common classes (APc). However, in that case we find
a drop in performance for the rare classes. But as there are
much more common classes than rare classes, the overall
performance (mAP) improves.

Instance Segmentation: For this task, we compared the
performance of CDB-W-CE against that of SOTA methods
such as (1) Repeat Factor Sampling (Mask-RFS) (Gupta et
al., 2019), (2) ClassificationCalibration (Mask-Calib) (Wang
et al., 2019), (3) SimCal (Wang et al., 2020), (4) Equalization
loss (EQL) (Tan et al., 2020) (5) Balanced Group Softmax
(BAGS) (Li et al., 2020). The results are tabulated in Table
6.

From Table 6, we can see that CDB-W-CE outperforms
all previous SOTAmethods. Even thoughCDB-W-CE shows
an improvement in all of the metrics, the most significant
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improvements in performance can be seen for rare classes.
The bounding box and mask AP for the rare classes are
improved by 1.94% and 2.25% respectively. For the com-
mon classes, the improvements are comparatively smaller
(0.10% for APc and 0.30% for APmc ). However, there are at
least 3 times more common classes than rare ones, result-
ing the average improvement for common classes to seem
small even though the total improvement might be similar
to the rare classes. For the frequent classes, even though the
improvement by CDB-W-CE is much smaller (0.07% for
AP f and 0.01% for APmf ), one important thing to note is that
we do not sacrifice the performance of the frequent classes
to gain for the rare and common classes.

4.3 Video-Action Classification

4.3.1 Datasets

EGTEA EGTEA (Lin et al., 2018) is an egocentric video
dataset that contains a number of trimmed video segments
containingmultiple kitchen-related actions. Thevideo-action
classification task aims to classify each of the video segments
to the corresponding action occurring in it. The action labels
are combinations of verbs (e.g., put, cut etc.) and nouns (e.g.,
plate, tomato etc.). Therefore, the action classification task
can be further divided into verb classification andnoun classi-
fication.As the noun classification is very similar to the image
classification task, we limit our focus here on the verb clas-
sification. EGTEA has 19 different verb classes. The dataset
is highly class-imbalanced with an average of 1216 train-
ing samples for the 5 most frequent classes and only 158.5
for the rest of the classes. The data distribution is shown in
Fig. 6. We conduct experiments on split1 of the dataset, that
comprises of 8299 training video segments and 2022 test-
ing video segments. We separate 1927 video clips from the
training data to create our validation data.

4.3.2 Implementation Details

For EGTEA, we train a 3D-ResNeXt101 (Hara et al., 2018)
for 100 epochs using batch size of 32 on 8 NVIDIA Titan X
GPU’s. We use SGD optimizer with momentum 0.9, weight
decay 0.0005 and an initial learning rate of 0.001 which is
decayed by 0.1 after 60 epochs. For training and testing, we
sample 10 RGB frames from each video segment. However,
for training, the sampling is done byfirst dividing the segment
into 10 equal sub-segments and then randomly selecting one
frame from each of those sub-segments. During testing, the
sampling is done at uniform intervals. We use various data
augmentation during training, such as random crop, random
rotation andhorizontal-flipping. ForCDBmethods, the class-
wise difficulty is computed using the validation set. The test
set is used only for evaluation.

Fig. 6 Data distribution of EGTEA verbs. The dataset is highly class-
imbalanced. For our experiments, we consider the 5 most frequent
classes as ‘majority classes’ and the rest as ‘minority classes’

4.3.3 Results on EGTEA

Comparison to SOTA We train 3D-ResNeXt on EGTEA
verb dataset using different methods e.g., (1) Cross-entropy
(CE) loss, (2) Focal loss (Lin et al., 2017), (3) Class-balanced
(CB) loss (Cui et al., 2019), (4) CDB-W-CE (Ours) and (5)
CDB-S (Ours).We evaluate each of the trainedmodels on the
test set and tabulate the results in Table 7. For comparison,
we use 4 different metrics. ‘Top-1 Acc’ and ‘Top-5 Acc’ are
the micro-averaged top-1 and top-5 accuracies for all the 19
classes. ‘Precision’ and ‘Recall’measure themacro-averaged
precision and recall for the classes. As the test data is not bal-
anced, the macro-averaged precision and recall values help
to verify if the model is biased to certain classes.

As seen from Table 7, our CDB-W-CE and CDB-S meth-
ods gives better and balanced performance compared to other
SOTA. To analyze further, we compare the performances
on the ‘head classes’ (5 most frequent classes) and the ‘tail
classes’ separately. This helps us to verify that our proposed
method causes improvement in the tail classes. The results
are tabulated in Table 8. Table 8 verifies that our proposed
CDB-W-CE and CDB-S provide an improvement in perfor-
mance for the tail classes, leading to an overall improvement
in performance.

5 Conclusion

This paper focuses on the use of class-wise difficulty scores
for long-tailed recognition problems. In (Sinha et al., 2020),
we proposed a novelway tomeasure class-wise difficulty and
designed a weighted loss function (CDB-W-CE) that deter-
mines the class weights from the class difficulty scores. In
this paper, we extend on the work and show that class-wise
difficulty-based weighting is not limited to only weighted
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Table 7 Results of 3D-ResNeXt101 trained on EGTEA using different methods

Top-1 Acc (%) Top-5 Acc (%) Precision (%) Recall (%)

CE loss 67.41 95.40 61.73 64.77

Focal loss (Lin et al., 2017) 67.46 95.66 61.94 65.12

CB loss (Cui et al., 2019) 66.86 95.69 63.39 63.26

Freq. based sampling Mikolov et al. (2013) 66.47 96.44 63.40 66.44

CDB-S (Ours) 67.85 94.51 63.59 66.56

CDB-W-CE (Ours) 68.30 97.03 68.23 66.41

The best results are highlighted in bold
For CDB-W-CE and CDB-S, we used sigmoidal variant of dynamic calculation for τ

Table 8 Results of trained 3D-ResNeXt101 on ‘head classes’ and ‘tail classes’

Head classes Tail classes
Precision (%) Recall (%) Precision (%) Recall (%)

CE loss 75.62 74.91 56.75 61.14

Focal loss (Lin et al., 2017) 75.00 70.27 53.40 55.21

CB loss (Cui et al., 2019) 73.75 75.95 59.68 58.72

Freq. based sampling (Mikolov et al., 2013) 74.69 75.66 59.37 63.14

CDB-S (Ours) 73.33 75.18 60.11 63.48

CDB-W-CE (Ours) 78.11 75.01 64.69 63.34

The best results are highlighted in bold
The five most frequent verb classes (i.e., ‘Take’,‘Put’, ‘Open’, ‘Cut’ and ‘Read’) are called the ‘head classes’, while the remaining 14 classes are
called the ‘tail classes’

loss methods. In that direction, we proposed a novel sam-
pling strategy called CDB-S, where samples from each class
is sampled with a probability proportional to the class diffi-
culty. Further, given the dependence of class-wise weighting
on τ , we proposed 4 different variants for dynamically updat-
ing τ and empirically found that the sigmoidal variant is
the reasonable choice irrespective of the dataset or imbal-
ance ratio. We conduct experiments on multiple tasks such
as image classification, object detection, instance segmenta-
tion and video- action classification. The results showed the
consistent effectiveness of CDB-S and CDB-W methods in
a wide variety of computer vision tasks.
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