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Abstract
We present 3DPointCaps++ for learning robust, flexible and generalizable 3D object representations without requiring heavy
annotation efforts or supervision. Unlike conventional 3D generative models, our algorithm aims for building a structured
latent space where certain factors of shape variations, such as object parts, can be disentangled into independent sub-spaces.
Our novel decoder then acts on these individual latent sub-spaces (i.e. capsules) using deconvolution operators to reconstruct
3D points in a self-supervised manner. We further introduce a cluster loss ensuring that the points reconstructed by a single
capsule remain local and do not spread across the object uncontrollably. These contributions allow our network to tackle the
challenging tasks of part segmentation, part interpolation/replacement as well as correspondence estimation across rigid /
non-rigid shape, and across / within category. Our extensive evaluations on ShapeNet objects and human scans demonstrate
that our network can learn generic representations that are robust and useful in many applications.
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1 Introduction

Differently from appearance-based cues as the ones pro-
vided by images, 3D data supplies information concerning
the structure and shape of the physical environment, thus
widening our capabilities for modeling the world around us.
The richness of the information provided by 3D cues allows
us to reason both at a high, abstract level (e.g. in terms of
semantics, affordances, functions) as well as at a low level,
closer to data (e.g. geometry, flow, reflectance). For this rea-
son, recent years have witnessed a significant leap forward
in the amount of 3D data acquired, processed and generated
especially in the fields of robotics, autonomous driving and
computer graphics applications (Sun et al. 2019; Caesar et al.
2019).However, the extent atwhichwecanharness the power
of 3D depends largely upon the specific data-driven repre-
sentations that we are able to learn through the algorithms
which are taskedwith the analysis of 3Ddata.A good 3Ddata
representation is interpretable and can disentangle the under-
lying data generation mechanisms while paving the way for
several relevant applications, such as reconstruction, classi-
fication, generative modeling among many others (Rempe
et al. 2020; Quessard et al. 2020). In the 3D domain, an addi-
tional challenge towards accomplishment of these tasks is
posed by the non-standard, often non-regular structure of the
input data, as well as the complexity of transformations that
the scene undergoes, i.e. the curse of dimensionality ’causes
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an exponential growth in the number of parameters used to
represent transformations.

To address this challenge, we extend upon our earlier work
on 3D point capsule networks (3DCapsNets) Zhao et al.
(2019) and propose 3DCapsNets++. Our pursuit is to learn
an object-specific structured latent representation decom-
posed into several subspaces, each ofwhich is responsible for
a degree of freedom that, when changed, independently and
tractably, modifies the generated 3D data. We consume the
3D input in the form of a point cloud to introduce flexibility
in the input modality i.e. point sets can explain a variety of
modalities such as depth maps, CAD-meshes, fusion models
or laser scans. To natively operate on the point clouds we
utilize the prevalent PointNets Qi et al. (2017a), whereas to
create a rich latent space we make use of the popular capsule
networks. To facilitate unsupervised learning of these repre-
sentations, we propose a deep encoder-decoder architecture,
where the encoder involves generating an intermediary over-
parameterized set of latent features, primary capsules, using
several PointNets initialized randomly.Weemploy adynamic
routing Sabour et al. (2017) algorithm to cluster these cap-
sules into their latent counterparts. To ensure that each latent
subspace instantiates a particular object property, we pro-
pose novel Deconvolutional (Deconv) layers in addition to
the multi-layer perceptrons (MLPs) employed in previous
work such as AtlasNet Groueix et al. (2018a) or 3DCap-
sNets Zhao et al. (2019). We show that these Deconv layers,
when trainedwith our novel unsupervised clustering loss, not
only yield better reconstruction accuracy, but also distribute
themselves in a conglomerated fashion across the object as
shown in Fig. 1a.

Our extensive experimental evaluation demonstrates that,
in the quest of learning expressive, distinctive and flexi-
ble representations, our 3D capsule network takes important
steps: (i) We are able to achieve state-of-the-art reconstruc-
tion accuracy both on rigid and non-rigid shapes using a
fraction of the training data; (ii) The structure of the latent
space enables novel applications, such as 3D part interpo-
lation (Fig. 1c) and replacement on both rigid and non-rigid
shapeswithout data specific customizations, i.e. our architec-
ture remains identical for both kinds of input; (iii) Thanks to
the local spatial attention of each capsule, our model allows
for part segmentation (Fig. 1) using a very limited amount of
training data.

Disembarking from our previous work Zhao et al. (2019),
we set forth the following contributions:

– We present a new Deconvolutional capsule decoder that
shows better specialization properties compared to the
state of the art.

– We introduce a new initialization procedure through a
cluster loss to ensure the desired diversity and clustering
in the generative direction.

(a
)

(b
)

(c
)

Fig. 1 3DPointCaps++ can learn representations of 3Dobjects that sup-
portmultiple desirable properties such as a disentangled latent space and
local spatial attention (a). These properties enable different interesting
applications such as part segmentation (b) or non-rigid part interpola-
tion/replacement (c)

– We show, for the first time, how this architecture
can learn non-rigid representations besides the rigid
ones, and demonstrate this ability on the human body
models.

2 RelatedWork

Point clouds in deep networks. Thanks to their apability of
efficiently explaining 3D data without making assumptions
on the modality, point clouds are the preferred containers
for many 3D applications (Zhou and Tuzel 2018; Naseer et
al. 2019). Due to this widespread use, recent works such as
PointNet Qi et al. (2017a), PointNet++ Qi et al. (2017b), SO-
Net Li et al. (2018), spherical convolutions Lei et al. (2018),
Monte Carlo convolutions Hermosilla et al. (2018) dynamic
graph networks Wang et al. (2019), KPConv Thomas et al.
(2019), MinkowskiNet Gojcic et al. (2021); Choy et al.
(2019) or relation-shape (RS) CNN Liu et al. (2019) have
all devised point cloud-specific architectures that exploited
the sparsity and permutation-invariant properties of 3D point
sets. A parallel track of works processed point sets by using
local projections reducing the convolution operation down to
two dimensions (Tatarchenko et al. 2018; Huang et al. 2018).
Additionally, there is a large body of works that exploit local-
ity in amore explicitway, such asPPFNetDenget al. (2018b),
PPF-FoldNet (Deng et al. 2018a, 2019), FCGF (Choy et al.
2019; Gojcic et al. 2020). Similar to our work, recent meth-
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ods extended the point cloud networks that operate on rigid
shapes or 3D scenes to the case of deformable bodies (Poule-
nard and Ovsjanikov 2018; Uy et al. 2020).

Recently, unsupervised architectures followed up on their
supervised counterparts. PU-Net Yu et al. (2018) proposed
better upsampling schemes to be used in decoding. Fold-
ingNet Yang et al. (2018) introduced the idea of deforming
a 2D grid to decode a 3D surface as a point set. PPF-
FoldNet Deng et al. (2018a) improved upon the supervised
PPFNet Deng et al. (2018b) in local feature extraction by
benefiting from FoldingNet’s decoder Yang et al. (2018).
AtlasNetGroueix et al. (2018a) can be seen as an extension of
FoldingNet to multiple grid patches and provided extended
capabilities in data representation. 3D-Coded Deprelle et al.
(2019) has also proposed to learn those patches called
templates. PointGrow Sun et al. (2018) devised an auto-
regressive model for both unconditional and conditional
point cloud generation leading to effective unsupervised fea-
ture learning. Achlioptas et al. (2018) adapted GANs to 3D
point sets, paving the way to enhanced generative learning.
Both CaSPR Rempe et al. (2020) and PointFlow Yang et al.
(2019) used normalizing flows for learning invertible repre-
sentations. Yet, it is known that such strict invertibility might
harm universal approximation capabilities Kong and Chaud-
huri (2020).

2D capsule networks. Thanks to their general applicabil-
ity, capsule networks (CNs) have found tremendous use in
2D deep learning. LaLonde and Bagci LaLonde and Bagci
(2018) developed a deconvolutional capsule network, called
SegCaps, tackling object segmentation. Duarte et al. (2018)
extended CNs to action segmentation and classification by
introducing capsule-pooling. Jaiswal et al. (2018), Saqur and
Vivona (2018) and Upadhyay and Schrater (2018) proposed
Capsule-GANs, i.e. capsule network variants of the standard
generative adversarial networks (GAN) Goodfellow et al.
(2014). These have shownbetter 2D image generation perfor-
mance. Lin et al. (2018) showed that capsule representations
learn more meaningful 2D manifold embeddings than neu-
rons in a standard CNN do.

Kosiorek et al. proposed an unsupervised capsule autoen-
coder (SCAE), which explicitly uses geometric relationships
between parts to reason about objects in a viewpoint inde-
pendent fashionKosiorek et al. (2019). Sabour et al.exploited
the fact that regions of the image that move together often
belong together and introduced flow capsules Sabour et al.
(2020). Ramirez et al.devised Bayesian capsule networks
for estimating 3D human poses from 2D images Ramirez
et al. (2020). Afshar et al.proposed Covid-Caps Afshar et
al. (2020) for identifying positive COVID-19 cases based on
X-Ray images.

After the original dynamic routing (DR) Sabour et al.
(2017) has beenwidely adopted, scholars questionedwhether
this DR is the optimal routing strategy. This motivated sev-
eralworks dedicated to improve upon the initial CNproposal.
Hinton et al.improved the routing by the EM algorithm Hin-
ton et al. (2018). Wang and Liu considered the routing as
an optimization minimizing a combination of clustering-like
loss and aKL regularization termWang andLiu (2018). Chen
and Crandall Chen and Crandall (2018) suggested trainable
routing for better clustering of capsules. Zhang et al. (2018)
unified the existing routing methods under one umbrella
and proposed weighted kernel density estimation based rout-
ing methods. Zhang et al. (2018) chose to use the norm to
explain the existence of an entity and proposed to learn a
group of capsule subspaces onto which an input feature vec-
tor is projected. Lenssen et al. (2018) introduced guaranteed
equivariance and invariance properties to capsule networks
by the use of group convolutions. Ribeiro et al.successfully
identified the drawbacks of current capsule networks and
proposed a globally aware routing algorithm that represents
the inherent uncertainty in part-object relationships Ribeiro
et al. (2020). A recent study which analyzes different routing
methods, concludes that capsule networks need an improved
routing algorithm Paik et al. (2019). Nevertheless, in our
work we stick with the original dynamic routing as proposed
by Sabour et al. (2017).

3D capsule networks. Following the advances in 2D domain,
numerous 3D vision algorithms employed capsule networks
to achieve either more accurate or more capable methods.
Weiler et al. (2018) rigorously formalized the convolu-
tional capsules and presented a convolutional neural network
(CNN) equivariant to rigid motions. Jiménez-Sánchez et al.
(2018) as well as Mobniy and Mobiny and Van Nguyen
(2018) extended capsules to deal with volumetric medical
data. VideoCapsuleNet Duarte et al. (2018) also used a volu-
metric representation to handle temporal frames of the video.
Our 3DPointCapsNets Zhao et al. (2019) was the first to
extend the capsule networks to consider 3D point clouds in
their raw form inspiring a new frontier in capsule networks.
Point2SpatialCapsuleWen et al. (2020) further improved the
ability to learn local spatial relationships. Geometric capsule
networks Srivastava et al. (2019) used a multi-view agree-
ment voting mechanism to discover an object’s canonical
pose and its pose-invariant feature vector. Zhao et al. (2020)
proposed quaternion equivariant capsulemodules formaking
the capsule networks truly equivariant to the SO(3) rotations
of point clouds, thanks to the use of local reference frames.
Similar to CaSPR Rempe et al. (2020), Sun et al. (2020)
learned canonical representations for 3D shapes via capsule
networks.
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3 Method

We now explain the specifics of our method. We start with
defining formally the terms used in the rest of the paper
while providing the theoretical motivation and background
(§ 3.1). We then proceed to the specifics of our architecture
(c.f. Fig. 2) delving into the encoder and decoder, subse-
quently in § 3.2. We finally explain the unsupervised and
(optionally) supervised cues used to train our network.

3.1 Formulation

We first follow the AtlasNet convention Groueix et al.
(2018a) and present a unified view of some of the com-
mon 3D auto-encoders. Then, we explain both our MLP and
Deconv based 3d point capsule networkswithin this geomet-
ric perspective and justify their superiority compared to their
predecessors. We will start by recalling the basic concepts:

Definition 1 (Surface andPointCloud) A3Dsurface (shape)
is a differentiable 2-manifold embedded in the ambient 3D
Euclidean space: M2 ∈ R

3. We approximate a point cloud
as a sampled discrete subset of the surface X = {xi ∈ M2 ∩
R
3}.

Definition 2 (Diffeomorphism) A diffeomorphism is a con-
tinuous, invertible, structure-preserving map between two
differentiable surfaces.

Definition 3 (Chart and Parametrization) We admit an open
setU ∈ R

2 and a diffeomorphismC : M2 �→ U ∈ R
2 map-

ping an open neighborhood in 3D to its 2D local coordinates.
C is called a chart. Its inverse, � ≡ C−1 : R

2 �→ M2 is
called a parameterization.

Definition 4 (Atlas) A set of charts with images covering
the 2-manifold is called an atlas: A = ∪iCi (xi ).

A 3Dauto-encoder learns to generate a 3D surfaceX ∈ M2∩
R

N×3. By virtue of Definition 3 � deforms a 2D point set
to a surface. The goal of the generative models that are of
interest here is to learn � to best reconstruct X̂ ≈ X:

Definition 5 (Problem) Learning togenerate the2-manifolds
is defined as finding function(s) �(U | θ) : �(U | θ) ≈
X Groueix et al. (2018a). θ is a lower dimensional parame-
terization of these functions: |θ | < |X|.
Theorem 1 Given that C−1 exists, �, chosen to be a 3-layer
MLP, can reconstruct arbitrary 3D surfaces.

Proof The proof is given in Yang et al. (2018) and follows
from the universal approximation theorem (UAT).

Theorem 2 There exists an integer K s.t. an MLP with K
hidden units universally reconstruct X up to a precision ε.

Proof The proof follows trivially from Theorem 1 and UAT
Groueix et al. (2018a).

Given these definitions, some of the typical 3D point
decoders differentiate by making four choices (Qi et al.
2017a; Groueix et al. 2018a; Yang et al. 2018):

1. An open set U or discrete grid U ≡ P = {pi ∈ R
2}.

2. Distance function d(X, X̂) between the reconstruction X̂
and the input shape X.

3. Parameterization function(s) �.
4. Parameters (θ) of �: �(U | θ).

One of the first works in this field, PointNet Qi et al.
(2017a) is extended naturally to an AE by Achlioptas et al.
(2018) making arguably the simplest choice. It lacks the grid
structureU = ∅ and functions � only depend upon a single
latent feature: �(U | θ) = �(θ) = MLP(· | f ∈ R

k). Fold-
ingNet uses a two-stageMLP as� to warp a fixed gridP onto
X. A transition from FoldingNet to AtlasNet requires having
multiple MLP networks operating on multiple 2D sets {Pi }
constructed randomly on the domain ]0, 1[2: U(0, 1). These
explain the improved learning capacity of AtlasNet: different
MLPs learn to reconstruct distinct local surface patches by
learning different charts.

Unfortunately, while numerous charts can be defined in
the case of AtlasNet, all the methods above still rely on a

Fig. 2 Proposed
3DPointCaps++ architecture
based on the 3D
Capsule-encoder and
Deconvolution decoder
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Fig. 3 Well known 3D auto-encoders vs. the proposed formulations

(a) (b) (c)

(d) (e)

Fig. 4 Comparison of four different state-of-the-art 3D point decoders.
PointNet uses a single latent vector, and no surface assumption. Thus,
θpointnet = f . FoldingNet Yang et al. (2018) learns a 1D latent vector
along with a fixed 2D grid θ folding = {f, P}. The advanced Atlas-
Net Groueix et al. (2018a) learns to deform multiple 2D configurations
onto local 2-manifolds: θatlas = {f, {Pi }}. Our point-capsule-network

is capable of learning multiple latent representations each of which can
fold a distinct 2D grid onto a specific local patch, θours = {{fi }, {Pi }}.
Note that both of the MLP and Deconv variants have similar latent rep-
resentations with different parameterization functions, i.e. the way the
grid points are deformed

single latent feature vector, replicated and concatenated with
U to create the input to the decoders. However, point clouds
are found to consist of multiple basis functions Sung et al.
(2018) and having a single representation governing them
all is not optimal. We opt to go beyond this restriction and
choose to have a set of latent features {fi } to capture dif-
ferent, meaningful basis functions. With the aforementioned
observations we can now re-write the well known 3D auto-
encoders and introduce two decoder formulations (MLP and
Deconv) as shown in Fig. 3. Note the difference between
these two variants lies in the choice of parameterizations and
will be made clearer when discussing the specifics of the
architectures (§ 3.2). In the figure, dEMD refers to the Earth
Mover distance Rubner et al. (2000) and dCH is the Chamfer
distance.GM×M = {(i ⊗ j) : ∀i, j ∈ [0, . . . , M−1

M ]} depicts
a 2D uniform grid. f ∈ R

k represents a k-dimensional latent
vector. U(a, b) denotes an open set defined by a uniform
random distribution in the interval ]a, b[2.

Note that it is possible to easily mix these choices to
create variations1. Though, many interesting architectures
only optimize for a single latent feature f . To the best of our
knowledge, one promising direction is taken by the capsule
networks Hinton et al. (2011), where multitudes of convolu-
tional filters enable the learning of a collection of capsules
{fi } thanks to the dynamic routing Sabour et al. (2017).
Hence, our earlierworkZhao et al. (2019) and this paper com-
bined, we learn the parameters {θ i } by devising a new point
cloud capsule decoder that we coin 3D-PointCapsNet. In
addition to Zhao et al. (2019) we also present theDeconv ver-
sion with improved parameterizations. We further illustrate
the choices made by four AEs under this unifying umbrella
in Fig. 4.

1 For instance, FoldingNet presents evaluations with random grids in
their appendix.
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Rationale for Different Parameterization Functions: Unsu-
pervised autoencoders for shape generation suffer from the
lack of control in the distribution, smoothness or overlap
of the reconstructed points. In fact, Groueix et al. (2018a)
explain the spatial attention of the patches by the laziness
of the neural network, as a specific mechanism to regularize
the reconstructions is missing. However, an explicit control
either in the formof spatial spread or patch stitching is helpful
in multiple fronts such as correspondence estimation or part
manipulation. In our view of the problem, such capability
can be injected into the parameterization functions � such
that the reconstructions follow certain desirable properties.
To this end, besides the MLP based methods like Atlas-
Net Groueix et al. (2018a) or 3DPointCapsNets Zhao et al.
(2019), we also introduce deconvolutional decoders. In the
sequel, we will explain the specifics of these contributions.

3.2 3D-PointCapsNet Architecture

Our descriptions here will follow Fig. 2 where our pipeline
is illustrated.

3.2.1 Encoder

The Input to our network is an N × d point cloud, where
we fix N = 2048 for 3D object and N = 4096 for 3D
human body, and for typical point sets d = 3. Similarly to
PointNet Qi et al. (2017a), we use a point-wise Multi-Layer
Perceptron (MLP) (3−64−128−1024) to extract individual
local feature maps. In order to diversify the learning as sug-
gested by capsule networks (Sabour et al. 2017; Hinton et al.
2011), we feed these feature maps into multiple independent
convolutional layers with different weights, each with a dis-
tinct summary of the input shape with diversified attention.
We then max-pool their responses to obtain a global latent
representation. These descriptors are then concatenated into
a set of vectors termed primary point capsules (PPC), F.
Size of F depends upon the size Sc := 1024 and the number
K := 16 of independent kernels at the last layer of MLP.
While many other mechanisms can be used for generating
PPC, we found this simple procedure to work well also for
3D point networks. We then use the dynamic routing Sabour
et al. (2017) to embed the primary point capsules into higher
level latent capsules. Each capsule is independent and can be
considered as a cluster centroid (codeword) of the primary
point capsules. The total size of the latent capsules is fixed to
64×64 (i.e. , 64 vectors each sized 64). Essentially, dynamic
routing acts like a soft-kmeans clustering algorithm (Ren
and Lu 2018; Malmgren 2019) simultaneously determining
the centroids and the assigments from primary to the latent
capsules.

3.2.2 Decoder

To endow our network with the reconstruction capability, we
propose twodecoder architectures based upon: (i)multi-layer
perceptron (MLP) and (ii) Deconvolution (Deconv).

MLPDecoder: OurMLP-based decoder treats the latent cap-
sules as a featuremap and uses anMLP(64−64−32−16−3)
to reconstruct a patch of points X̂i , where |X̂i | = 64. Instead
of replicating a single latent vector as in (Yang et al. 2018;
Groueix et al. 2018a), we replicate the entire capsule m
times and to each replica we append a unique randomly
synthesized grid Pi specializing it to a region on the out-
put shape. This further stimulates the diversity. We arrive at
the final shape X̂i by propagating the replicas through a final
MLP for each patch and gluing the output patches together.
We choose m = 32 (the number of patches) to reconstruct
|X̂| = 32 × 64 = 2048 points for the rigid objects and
m = 64 to reconstruct |X̂| = 64 × 64 = 4096 points for
the non-rigid shapes. Note that the number of points recon-
structed is always the same as the cardinality of the input
input.

Lack of Local Attention in MLP-Decoder: Unfortunately, as
demonstrated in (Zhao et al. 2019) and as we will further
show in § 4, such an MLP decoder cannot ensure that indi-
vidual capsules reconstruct particular patches of the shape,
unless supervised. We now explain the reason behind this.
During learning, the dynamic routing algorithm can learn
geometric information from the training data, and thus guides
the capsules to focus on certain parts. Meanwhile, the cor-
respondences between capsules and reconstructed points are
weak and highly dependent upon the global object shape and
the dataset. For instance, some capsules can be split into two
parts. This is mainly due to the symmetry property of CAD
models in the ShapeNet dataset. Besides, when the size and
the training data is not rich in terms of geometric complexity,
it is difficult for capsules to concentrate on local areas and
hence on certain object parts (Fig. 1a). Consequently, points
tend to spread over the reconstructed shape.

To tackle this problem, we: (i) introduce a Deconvolution
(Deconv) structure into the decoder and (ii) develop an auxil-
iary cluster loss function to improve the local spatial attention
capability of the 3D point capsule networks.

Deconvolutional Decoder (Deconv): Our Deconv decoder
takes one latent capsule as its input and similar to Fan et al.
(2017) uses a deconvolutional layer, Deconv(64× 1− 32×
2 − 16× 4 − 4 × 16− 3 × |X̂i |) to generate a set of points.
Deconvolution is used to upsample latent capsules as well
as for feature extraction. For the former, we concatenate
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a single grid point to a capsule and deconvolve it to yield
|X̂i | = 32 points for the rigid objects and |X̂i | = 64 for the
human body. This operation changes the feature channels
from 64 to 3 (spatial location of reconstructed points). This
way, the upsampling stage gathers the nearby feature vectors
resulting in continuous and smooth maps unlike our MLP
parameterization. This directly links the latent capsules to the
reconstructed patches. A neighborhood around a single grid
point in the 2D local coordinates should be lifted to a region
in 3D. As we will empirically demonstrate later in § 4, such
design will yield inherently smooth reconstructions since
input feature vectors are overlapped and summed up during
the Deconv operation. This is also confirmed by Fan et al.
(2017) and attributed to the spatial continuity of the decon-
volution.

Note that our Deconv based decoder is not a drop-in
replacement for the MLP-decoder across all applications.
The latent feature learnt from our deconvolutional archi-
tecture focuses on local parts of an input point cloud. This
may be helpful in learning local information, resulting in the
improvement of the capsule classification (part segmenta-
tion). However, it may not benefit the learning of a global
object context. Hence, these different decoders have differ-
ent performances across different tasks, i.e. features learned
fromMLP-based decoder show higher discriminative power
and performs better on classification task whereas Deconv
has better performance e.g. in correspondence estimation and
part segmentation.

3.2.3 Training Losses

Similar to other autoencoders, we train our deep network
using a distance metric on the original and the reconstructed
point clouds. In addition, we also regularize the training to
allow for a control over the distribution of the reconstructed
points. Optionally, we could incorporate task dependent
supervision cues depending upon their availability.

Chamfer Loss Our autoencoder is guided in a self supervised
manner by the discrete Chamfer metric, which approximates
the similarity of 2-manifolds:

LCH (X, X̂)

= 1

|X|
∑

x∈X
min
x̂∈X̂

‖x − x̂‖2 + 1

|X̂|
∑

x̂∈X̂
min
x∈X ‖x − x̂‖2 (1)

where X̂ follows from the parameterization acting on cap-
sules: X̂ = ∪i�i (Pi |{fi }).

Cluster Loss For 3D shapes, locality is a desirable prop-
erty. For instance, CaSPR Rempe et al. (2020) demonstrated
that representations learned without locality, i.e. using Point-

Net Qi et al. (2017a) instead of PointNet++ Qi et al. (2017b),
cannot support pose canonicalization even under heavy
supervision. Hence, to enhance the learned representations
and to allow for applications such as part segmentation or
part replacement (see § 4.3), we seek to encourage certain
locally specialized spatial attention. Unfortunately, neither
AtlasNet Groueix et al. (2018a) nor 3DPointCapsNets Zhao
et al. (2019) have an explicit mechanism to this end. Both
works rely upon locality being an emergent property rather
than a built-in one. To go beyond that, we softly impose a
clustering loss so as to concentrate the points reconstructed
by a single capsule on a single local region, making those
points as close and grouped as possible. With that aim, we
develop a cluster loss and constrain the point reconstruction
of each capsule. In other words, such cluster loss minimizes
the inter-point distance between per each point set recon-
structed from a single capsule:

Lcluster (C) = 1

N

∑

Cn∈C
max

xi ,x j∈Cn
‖xi − x j‖2 (2)

Here Cn and C denote the reconstruction obtained from the
nth latent capsule and from all the capsules, respectively. By
minimizing this term, we minimize the squared distance to
the farthest point in the local patch, similar to that of Point-
CleanNet Rakotosaona et al. (2020).

Note that such a loss would degenerate immediately to
a single point if not used in conjunction with a data term.
Hence, our final training loss is a combination of reconstruc-
tion and cluster losses weighted by a balancing scalar λ:

L(X, X̂,C) = LCH (X, X̂) + αLcluster (C) (3)

Note that the constraint imposed by the cluster losswill effect
the convergence and thus the reconstruction accuracy, unless
relaxed. To ensure that both points are reconstructed accu-
rately and local spatial attention is attained, we follow an
adaptive strategy in choosing λ. In the first 10-epochs, we set
it to a relatively high value λ = 0.1 and gradually decrease
in the following epochs.

Incorporating Optional Supervision We now demonstrate
how additional supervision signals can be used within the
context of capsules. While the aforementioned losses can
attain local attention without supervision, learning seman-
tically meaningful information such as rigid or non-rigid
part segmentation might still need supervision. Thus, we use
capsule-level part associations as particular cues for showing
how add additional, optional supervision structure into our
network.

Motivated by the regularity of capsule distribution over the
2-manifold, we propose a capsule-part network that spatially
segments the object by associating capsules to parts. The goal
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here is to assign each capsule to a single part of the object.
Hence, we treat this part-segmentation task as a per-capsule
classification problem, rather than a per-point one as done in
various preceding algorithms (Qi et al. 2017a, b). This is only
possible due to the spatial attention of the capsule networks.
Note, our algorithm can theoretically use a single capsule to
represent each part. In practice, this can lead to two prob-
lems: (i) the boundary of capsules may be inconsistent with
the ground truth due to the reduction of annotation and the
flexibility to represent the transitions; (ii) more importantly,
capsules with a constant number of points is hard to represent
parts at various scales (e.g hand and leg). For these reasons,
we choose to use different number of capsules to represent
one part. Investigating with dynamically assigned number of
points during inference is an interesting research direction
and we leave it for a future study.

The input of our capsule-part network are the latent-
capsules obtained from the pre-trained encoder. The output
is the part label for each capsule. The ground truth (GT) cap-
sule labeling is obtained from the ShapeNet-Part dataset Yi
et al. (2016) in three steps: 1) reconstructing the local part
given the capsule and a pre-trained decoder, 2) retrieving the
label of the nearest neighbor (NN) GT point for each recon-
structed point, 3) computing the most frequent one (mode)
among the retrieved labels.

To associate a part to a capsule, we use a shared MLP
with a cross entropy loss classifying the latent capsules into
parts. This network is trained independently from the 3D-
PointCapsNet AE for part supervision.

The pipeline of our propose part segmentation algorithm
is demonstrated in Fig. 5. First, we assign the GT part label
of each point (e.g. right wing of the airplane on the bot-
tom) to the corresponding capsule. The label of the capsule
is determined as the mode of the labels assigned to it. The
reconstruction with spatial attention (airplane on the top) is
used as a bridge or proxy to get such part-label to capsule cor-
respondence. Then, on the right side of the figure, we show a
simple network which is used to predict part labels for each

Fig. 5 Capsule-Part Association. Supervising the 3d point capsule
networks for part prediction. Instead of performing a point-wise part
labeling, we use a capsule-wise association requiring less data annota-
tion efforts

capsule. The input to this one-layer architecture are the latent
capsules combined with a one-hot vector of the object cate-
gory. The output is the part prediction of each capsule.Weuse
the cross entropy loss as our loss function and Adam as the
optimizer with a learning rate of 0.01. Finally, the predicted
part label of each capsule will be passed to its reconstructed
points. Through a nearest neighbour search, we can finally
classify each input point and endow it with part information.

4 Experiments

The proposed 3D capsule autoencoder can learn data driven
representations with novel functionalities such as part inter-
polation and replacement, while attaining higher perfor-
mance in conventional 3D tasks such as shape classification,
3D reconstruction and part segmentation. In the sequel, we
first assess the performance in object classification (§ 4.1) and
follow onto 3D reconstruction and correspondence estima-
tion (§ 4.2) without supervision where we ablate on different
aspects of our architecture, before evaluating our network
with task specific supervision signals such as part segmenta-
tion (§ 4.3), interpolation and replacement (§ 4.3). Note that,
in each of those evaluations we use both rigid and non-rigid
shape datasets.

Datasets To demonstrate the flexibility and applicability of
our network we use both rigid and non-rigid shape recon-
struction, segmentation and classification benchmarks. For
the former (rigid case),weuse thewidely acceptedShapeNet-
Core Chang et al. (2015), Shapenet Part Yi et al. (2016),
ModelNet40 Wu et al. (2015) datasets. For the latter, we
use the 3D-Coded Groueix et al. (2018b) and Dynamic
Faust (Bogo et al. 2017; Yang et al. 2021) datasets for
quantitative and qualitative evaluations, respectively. This is
because 3D Coded provides the necessary ground truth (GT)
information required for the quantitative analysis. We addi-
tionally use the human segmentation benchmark introduced
byMaron et al. (2017), Poulenard and Ovsjanikov (2018) for
evaluations considering body part segmentation. The specific
details of these datasets aswell as our evaluation schemeswill
be provided in the respective subsections.

Inwhat follows,Ours-MLP depicts a capsule-MLP struc-
ture, whileOurs-Deconv represents a capsule deconvolution
architecture with the cluster loss activated. We also present
the Parts variant, which corresponds to a decoder trained on
ShapeNet Part dataset.

4.1 3D Object Classification

We start by investigating the efficiency of the learned repre-
sentations by evaluating the classification accuracy obtained
byperforming transfer learning. Identical toWuet al. (2016);
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Table 1 Accuracy of classification by transfer learning on the ModelNet40 dataset

Latent-GAN
(Achlioptas et al. 2018)

FoldingNet
(Yang et al. 2018)

Ours-MLP-Parts Ours-Deconv-Parts Ours-MLP
(Zhao et al. 2019)

Acc. 85.7% 88.4% 88.9% 86.8% 89.3%

Latent-GANAchlioptas et al. (2018), FoldingnetYang et al. (2018) and Ours-MLPZhao et al. (2019)) are trained on ShapeNet55 while the Parts
variants are trained on the smaller ShapeNet-Parts dataset

Achlioptas et al. (2018); Yang et al. (2018), we use a linear
support vector machine (SVM) classifier in order to regress
the shape class given the latent features. To do that, we
reshape our latent capsules into a one dimensional feature
and apply the SVM-loss. The rationale here is that each of the
capsules which instantiates for a local region on the shape is
informative about the object category. Combined, they form
a global code. To obtain the features required for classifica-
tion we pre-train our auto-encoder using the reconstruction
loss. To obtain the class labels, we train our SVM on Mod-
elnet40 Wu et al. (2015) using the same train/test split sets
as Yang et al. (2018). In addition, we train our decoders on
the ShapeNet Part dataset Yi et al. (2016) where the training
data has 14,000models subdivided into 16 categories. At this
stage, we do not use the part information.

All the evaluation results on the classification are shown
in Table 1, where our AE, trained on the smallerParts dataset
compared to the ShapeNet55 of Achlioptas et al. (2018);
Yang et al. (2018) is capable of performing at least on par or
better. This aligns with our intuition that capsules and spatial
attention are useful inductive biases allowing for generaliza-
tion and learning with limited data. Our capsule network can
handle smaller datasets and generalize better to new tasks.

It is also noteworthy that compared to our Deconv lay-
ers, the less constrained MLP decoder Zhao et al. (2019)
is more suited for such classification tasks where capturing
fine-grained details are less critical.With that observation,we
further evaluate the classification performance of the MLP
decoder when the training data is scarce. Results presented
in Table 2 indicate that even when ∼ 20% of training data

Table 2 Classification accuracy on ShapeNet-Part by learning on lim-
ited training data

1% 2% 5% 20% 100%

FoldingNet 56.15 67.05 75.97 84.06 88.41

Ours-mlp 59.24 67.67 76.49 84.48 89.31

The table shows the accuracies (in percentages) obtained by Fold-
ingNet Yang et al. (2018) and our approach for different amounts of
training data

is used we can still attain ∼ 85% accuracy and consistently
outperform FoldingNet Yang et al. (2018) across different
cardinalities of training split.

4.2 Unsupervised 3D Reconstruction

In this section, we first provide the implementation details
of our auto encoder. Then we evaluate the reconstruction
performance both quantitatively and qualitatively. During the
qualitative evaluation, we also highlight and analysis of the
spatial attention of capsules on the reconstructed point set.

Implementation Details and Datasets. Prior to training,
the input point clouds are aligned to a common reference
frame and size normalized. Note that, the dataset at hand
is already canonicalized, so we do not apply any additional
pre-processing. Chang et al. (2015) To train our AE, we use
an ADAM optimizer with an initial learning rate of 0.0001
and a batch size of 8. We also employ batch normalization
(BN) andRELUactivation units at the point of feature extrac-
tion to generate primary capsules. Similarly, the multi-stage
MLP decoder also uses BN and RELU units except for the
last layer, where the activations are scaled by a tanh(·). Dur-
ing dynamic routing, we use the squash activation function
as proposed in Sabour et al. (2017), Hinton et al. (2011).
Note that we use the same training strategy for both MLP
and Deconv decoders.

4.2.1 Quantitative Evaluations

Reconstruction Accuracy on Rigid Shapes. In a further
experiment, we assess the quality of our architectures with
and without cluster loss in point generation. We measure
the reconstruction performance by the standard Chamfer
metric and base our comparisons on the state of the art auto-
encoder AtlasNet and its baselines (point-MLP) Groueix
et al. (2018a).We rely on theShapeNetCorev2datasetChang
et al. (2015), using the same training and testing splits as well
as the same evaluation metric as those in AtlasNet’s Groueix
et al. (2018a). We show in Table 3 the Chamfer distances
averaged over all categories and for N > 2K points. In the
first row (rigid shape) of Table 3, it is observed that all of
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Table 3 Evaluating reconstruction quality on the non-rigid human bodies

Oracle PB AtlasNet-25 AtlasNet-125 Ours-MLP Ours-Deconv

Rigid Shape 0.85 1.91 1.56 1.51 1.46 1.46

Human 0.406 5.472 0.558 0.538 0.611 0.436

Oracle refers to a random sampling of the input 3D shape and constitutes an lower bound on what is achievable. The Chamfer Distance (CD) is
multiplied by 103 for ease of perception. PB refers to PointNet Baseline. AtlasNet-K uses K charts (patches) for reconstruction

our capsule AEs result in lower reconstruction error even
when a large number of patches (125) is used in favor of
AtlasNet. This justifies that the proposed networks has a bet-
ter summarization capability and can result in higher fidelity
reconstructions.

Reconstruction Accuracy on 3D Humans. In order to eval-
uate the reconstruction accuracy on the non-rigid shapes,
we use the synthetic Human dataset released by 3D-
Coded Groueix et al. (2018b). This dataset is built upon
the SMPL models with 200,000 parameters estimated in the
SURREAL dataset Varol et al. (2017). There is also an added
30,000 shapes for covering edge cases such as bending over.
The second row of Table 3 makes it obvious that our pro-
posed AE has the best performance on human reconstruction
and is well applicable to both rigid and non-rigid cases. For
non-rigid models, it is visible that Ours-Deconv yields better
results, as handling deformations requires improved ability
to capture local details.

4.2.2 Qualitative Evaluations

In the sequel, for our qualitative evaluations on the recon-
struction we will be using models from the ShapeNet dataset
for the rigid case and real scans from the Dynamic Faust
dataset Bogo et al. (2017) for the non-rigid. Dynamic
Faust Bogo et al. (2017) contains motion sequences of 10
people, each performing a set of (maximum) 14 actions.
For the sake of clarity of illustration, we use a subset of
Dynamic Faust with a single human subject observed in three
motion sequences. In particular, we use a subset where three
common motions of a single human subject are captured,
namely shaking arms, jumping on one leg and running on
spot. The resulting dataset contains 1102 samples and a ran-
dom train-test split of [70%, 30%] is used. During training
and testing, humanbodypoint cloudswith 4096points are fed
to our network. Only qualitative results are presented in this
experiment.

Reconstruction with Spatial Attention. We now visualize
the distribution of the points reconstructed from different
capsules using the deconvolutional decoder and cluster loss.
To this end, we assign a color per capsule identifying the
corresponding part / region. Our results are shown in Fig. 6.

It can be observed that the points reconstructed from a single
capsule are spatially clustered, and that this capsule focuses
its attention to reconstruct similar spatial regions. Thus we
refer to this property as spatial attention of the feature repre-
sentation. Note that our architecture is agnostic to the input
being rigid or non-rigid.

Effectiveness of Deconv Decoder: It is of interest to see
howour deconvolutional decoder influences the spatial atten-
tion property of reconstruction. For a fair comparison to
the MLP decoder, we first fix the encoder of our capsule
network, and solely change the decoder architecture. For
both decoders, we use the cluster loss for 10 epochs and
later release it. Fig. 7 illustrates the point clustering behav-
ior on several reconstructed shapes from the ShapeNet Part
dataset, where results achieved by (i) using MLP decoder;
(ii) using Deconv decoder with cluster loss, are provided.

Fig. 6 Spatial attention in 3D reconstruction. Different colored points
are reconstructed from different latent capsules with our deconvolution
decoder

Fig. 7 Comparison of the spatial attention in 3D reconstruction with
two decoders. It is obvious that the deconvolutional decoder proposed
in this paper could attain reconstructions with better clustering (local
grouping) performance while the MLP-decoder suffers when part sym-
metries are present
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Fig. 8 Visualizing the iterations of unsupervised AE training on the
airplane object. For clear visualization, we fetch the colors belonging
to the ∼20 capsules of the wing-part from our part predictions trained
with part supervision (Color figure online)

Note that, the improvement on point grouping obtained by the
Deconv decoder is significant. For (i), reconstructed points
distribute over the whole shape with less locality, while for
(ii), points coming from each latent capsule only focus on
certain regions. It is important to note that we do not use
supervision for that to emerge. There are two reasons for this
improvement. First, feature vectors generated byDeconv lay-
ers enjoy more continuity compared to those generated by
MLP. This is also observed by Fan et al. (2017). Second,
the 3D reconstruction loss (CD) has many undesirable local
optima, resulting in failures of point clustering. Our clus-
ter loss helps our model to get rid of such local optima by
gathering points during initialization.

Monitoring Model Evolution: Next, we observe that, as
training iterations progress, the randomly initialized cap-
sules specialize to parts, achieving a good part segmentation
at the point of convergence. We visualize this phenomenon
in Fig. 8, where the capsules that have captured the wings
of the airplane are monitored throughout the optimization
procedure. Even though the initial random distribution is
spatially spread out, the resulting configuration is still part
specific. This is a natural consequence of our capsule-wise
part semi supervision.

Due to its category specific nature, monitoring the evolu-
tion on human body reconstruction is more interesting and
informative as we show in Fig. 9. As explained in the imple-
mentation details, during the first 10 epochs we apply our
clustering loss to promote local grouping. The weight of the
cluster loss then vanishes and points spread around the object.
After this point, the cluster loss is released and the network
aims to maximize the reconstruction accuracy. Finally, we
observe the best of bothworlds: the local attention is achieved
and reconstructions are high-fidelity.

Patch-Wise Correspondence Estimation: As shown earlier,
regardless whether we train on a single class or an entire
category, the capsules succeed to specialize on parts. This
motivates us to investigate if our network can be used for
regional correspondence estimation.

First, Fig. 10 visualizes the correspondences on the single
instance case of humanbodies. The local patches correspond-
ing to each of the 64 capsules are drawn with a unique
color. Hence, corresponding points should take the same
color without explicit supervision. It is seen that the regions
reconstructed by different capsules are consistent across dif-
ferent poses indicating that capsules learn interesting regions
rather than trying to partition the ambient space. We also
present a similar evaluation of patch correspondence for dif-
ferent instances of rigid bodies taken from the same category
in Fig. 11. It can be seen that while the correct regions mostly
coincide for both the airplane and the car, variations in the
different instances make the fine-grained specialization hard
to infer.

Effectiveness of Dynamic Routing: It is of interest to
see whether the original argument of the capsule net-
works (Sabour et al. 2017; Hinton et al. 2011) claiming to
better capture the intrinsic geometric properties of the object
still holds in the case of our unsupervised 3D-AE. To this
aim, we first show qualitative results of Ours-MLP architec-

Fig. 9 Visualizing the iterations of unsupervised AE training on the
Human dataset. 64 colored points are reconstructed from correspond-
ing 64 capsules. Before 10 epochs, the reconstruction of an capsule is
clustered during training, though the cluster loss constrains the recon-

struction convergence. After 10 epochs, the cluster loss is released and
the reconstruction accuracy gets higher during the following training
process
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Fig. 10 Correspondence estimation over deforming shapes. The 64
colored local patches reconstructed from 64 capsules are shown as cor-
respondences. Our network can identify the part correspondence over
a motion sequence in a fully self-supervised manner

ture. Chair and car objects shown in Fig. 12 show that even
with the lack of supervision, capsules tend to specialize on
local parts of the model. While these parts may sometimes
not correspond to the manually annotated part segmentation
of the model, we still expect them to concentrate on seman-
tically similar regions of the 2-manifold. Fig. 12 visualizes
the distribution of 10 capsules by coloring them individually
and validates our argument.

To test our second hypothesis, i.e. that a clustering arises
thanks to DR, we replace the DR part of the AEwith standard
PointNet-like layers projecting the 1024 × 64 PPC to 642

capsules and repeat the experiment. Fig. 12 depicts the spread
of the latent vectors over the point set when such layer is
employed as opposed to DR. Note that using this simple
layer instead of DR both harms the reconstruction quality
and yields an undesired spread of the capsules across the
shape.

4.3 Part Interpolation and Replacement

After conducting the experiment of shape part segmentation,
we explore the rather uncommon but particularly interesting
application of interpolating, exchanging or switching object
parts via latent-space manipulation.

Thanks to the fact that 3D-PointCapsNet discovers multi-
ple latent vectors specific to object attributes/shape parts, our
network is capable of performing per-part processing in the

Fig. 11 Rigid inter-class (within category) regional shape correspon-
dence. Correspondences on 64 local patches reconstructed from 64
different capsules are visualized with color coding. Regions under cor-
respondence are assigned identical colors. No supervision signal is
utilized for correspondence estimation

Fig. 12 Distribution of 10 randomly selected capsules on the recon-
structed shape after unsupervised autoencoder training with dynamic
routing and with a simple convolutional layer

latent space. To do that, we first spot a set of latent capsule
pairs belonging to the same parts of two 3D point shapes
and intersect them. Because these capsules explain the same
part in multiple shapes, we assume that they are specific to
the part under consideration and nothing else. Note that, as
we have seen earlier, this assumption is better satisfied by
the deconvolutional decoder. Acknowledging that isolating
and interpolating parts in the physical space might be chal-
lenging, we then linearly interpolate between the selected
capsules in the latent space. The overview of the part inter-
polation / replacement process is shown in Fig. 14.

Rigid Part Editing: Shown in Fig. 13 the reconstruction of
intermediate shapes vary only at a single part, the one being
interpolated. It is important that the rest of the object remains
unchanged even when the part is modified in the latent space.
This induces promising part disentanglement ability. When
the interpolator reaches the target shape it replaces the source
part with the target one, enabling part-exchange. Fig. 15
further shows this in action. Given two shapes and latent

Table 4 Part segmentation on ShapeNet-Part by learning only on the x% of the training data

Metric SONet-1% Ours-MLP-1% Ours-Deconv-1% SONet-5% Ours-MLP-5% Ours-Deconv-5%

Accuracy (%) 0.78 0.85 0.86 0.84 0.86 0.88

IoU 0.64 0.67 0.68 0.69 0.70 0.70

123



International Journal of Computer Vision (2022) 130:2321–2336 2333

Fig. 13 Part interpolation on the ShapeNet Part Yi et al. (2016) dataset.
(left) The source point cloud. (right) Target shape. (middle) Part inter-
polation. Fixed part is marked in light blue and the interpolated part
is highlighted. Capsules are capable of performing part interpolation
purely via latent space arithmetic (Color figure online)

Table 5 Runtime and memory consumption of our method as well as
AtlasNet

Methods Atlas-25 Atlas-125 Ours-MLP Ours-Deconv

Runtime (ms) 31.57 160.56 46.54 62.64

RAM (MB) 759 1573 839 841

capsules of the related parts, we perform a part exchange by
simply switching some of the latent capsules and reconstruct-
ing them. Notably, conducting a part exchange directly on
the input space by a cut-and-place would yield inconsistent
shapes as the replaced parts would have no global coherence.

Non-Rigid Part Editing: We additionally explore how blend-
ing parts of two non-rigid humans behaves within our
framework. We use the identical settings and techniques as
in the rigid case and interpolate the parts corresponding to a
source and a target human model from the Dynamic Faust
dataset Bogo et al. (2017) in the latent space of capsules.
The results in Fig. 16 show the interpolation of hands and

Fig. 15 Part replacement on two rigid objects. Performing replacement
in the latent space rather than Euclidean space of 3D points (cut& paste)
leads to a coherent outcome

Fig. 16 Latent interpolation in the arm&leg sub-spaces between source
and target human models. Note that the unseen latent models are recon-
structed accurately

legs between two body poses in order to generate a new
pose of the same person. The red arm is interpolated form
the source body to the target arm while the yellow leg is
interpolated from the source body to the target leg. The gen-
erated blended body shows the movement or deformation
from one pose to another. Note that the interpolated body is
accurately reconstructed and contains rich and fine-grained
details.

Fig. 14 Our interpolation /
replacement pipeline. Both
source and target are fed to our
3D point capsule network. We
then manually identify the
capsules belonging to a specific
part. Once the corresponding
capsules are determined, they
are either linearly interpolated
for the purpose of part morphing
or swapped for part
replacement. Thanks to the fact
that the entirety of the latent
capsules describe the shape
globally, this leads to better
blending of the modified parts

123



2334 International Journal of Computer Vision (2022) 130:2321–2336

5 Conclusion

We presented 3DPointCaps++, improving upon our previous
3D point capsule networks Zhao et al. (2019) via deconvo-
lution decoding layers and clustering loss. Our contributions
enhance the spatial attention and local focus of the cap-
sule networks better capturing the fine grained details during
reconstruction. In return, these made it possible to apply
the 3D capsule networks on the perception of non-rigid 3D
human bodies without any changes to the architecture or the
algorithm. Our extensive evaluations also demonstrated that
these new architectures excel at handling small data regimes.

Limitations & Future Work Despite all the improvements,
our algorithm is limited in several aspects:

– Currently, all the capsules reconstruct the same amount
of points. Moreover, a single capsule can specialize on
two different parts. For these reasons, our method fails
to capture very fine-grained details of the objects. As a
remedy, possible future study can explore capsules with
dynamically assigned number of points.

– Rotated objects pose a severe challenge for our work.
To process objects with arbitrarily orientations, We can
benefit from the recent rotation equivariant network
design literature, e.g.quaternion equivariant capsule net-
works Zhao et al. (2020), tensor field networks Thomas
et al. (2018) or canonical capsules Sun et al. (2020).

– If two shapes from the same category undergo significant
topological changes, our part interpolation scheme can-
not produce desirable results. Incorporating topological
awareness into capsule networks is still an active field of
research.

– While we explicitly consider point-representations, the
literature is also rich in the sparse convolutional net-
works, which could be well benefit from our capsule
paradigm. We leave this for future research.

Besides, in the future, we also plan to devise a routing algo-
rithm better suited to the needs of 3D applications and will
broaden our scope to scene level analysis.
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