
International Journal of Computer Vision (2022) 130:1583–1606
https://doi.org/10.1007/s11263-022-01599-4

4D Temporally Coherent Multi-Person Semantic Reconstruction and
Segmentation

Armin Mustafa1 · Chris Russell1 · Adrian Hilton1

Received: 11 December 2019 / Accepted: 2 February 2022 / Published online: 28 April 2022
© The Author(s) 2022

Abstract
We introduce the first approach to solve the challenging problem of automatic 4D visual scene understanding for complex
dynamic scenes with multiple interacting people from multi-view video. Our approach simultaneously estimates a detailed
model that includes a per-pixel semantically and temporally coherent reconstruction, togetherwith instance-level segmentation
exploiting photo-consistency, semantic and motion information. We further leverage recent advances in 3D pose estimation
to constrain the joint semantic instance segmentation and 4D temporally coherent reconstruction. This enables per person
semantic instance segmentation of multiple interacting people in complex dynamic scenes. Extensive evaluation of the
joint visual scene understanding framework against state-of-the-art methods on challenging indoor and outdoor sequences
demonstrates a significant (≈ 40%) improvement in semantic segmentation, reconstruction and scene flow accuracy. In
addition to the evaluation on several indoor and outdoor scenes, the proposed joint 4D scene understanding framework is
applied to challenging outdoor sports scenes in the wild captured with manually operated wide-baseline broadcast cameras.

Keywords Dynamic 4D reconstruction · Segmentation · Scene understanding · Sports

1 Introduction

With the advent of autonomous vehicles and rising demand
for immersive content in augmented and virtual reality,
understanding dynamic sceneswithmultiple interacting peo-
ple has become increasingly important. Understanding refers
to reconstructing, segmenting and temporally aligning the
reconstructions over time. In this paper we propose a frame-
work for 4D dynamic scene understanding with multiple
people in the scene from multi-view videos to address this
demand. By “4D Scene understanding” we refer to a unified
framework that describes: 3D modelling; motion/flow esti-
mation; and semantic instance segmentation on a per frame
basis for an entire sequence. Recent advances in pose esti-
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mation (Cao et al. 2017; Tome et al. 2017) and recognition
(He et al. 2017; Xie et al. 2016; Chen et al. 2016) using deep
learning have achieved excellent performance for complex
images. We exploit these advances to obtain 3D human-pose
and an initial semantic instance segmentation from multi-
ple view videos to bootstrap the detailed 4D understanding
and modelling of complex dynamic scenes captured with
multiple static or moving cameras (see Fig. 1). Joint 4D
reconstruction allows us to understand how people move and
interact, giving contextual information in general scenes.

Existing multi-task methods for scene understanding per-
form per frame joint reconstruction and semantic instance
segmentation from a single image (Kendall et al. 2017),
showing that joint estimation of both reconstruction and
segmentation can improve the quality of each task. Other
methods have fused semantic segmentation with reconstruc-
tion (Mustafa and Hilton 2017) or flow estimation (Sevilla-
Lara et al. 2016) demonstrating significant improvement in
both semantic segmentation and reconstruction/scene flow.
Hence, we exploit the advantages of performing joint opti-
mization in this paper to understand dynamic scenes with
multiple interacting people by simultaneous reconstruction,
flow and segmentation estimation from multiple view video.
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Fig. 1 Joint 4D semantic instance segmentation and reconstruction
exploiting 3D human-pose of interacting people in dynamic scenes.
Shades of pink in segmentation represents instances of people. Colour
assigned to reconstruction of frame 80 is reliably propagated to frame
120 using proposed temporal coherence (Color figure online)

The first category of methods in joint estimation for
dynamic scenes generate segmentation and reconstruction
from multi-view video (Mustafa et al. 2016) and monocular
video (Floros and Leibe 2016; Larsen et al. 2007) without
any output scene flow estimate. The second category ofmeth-
ods segment and estimates motion in 2D (Sevilla-Lara et al.
2016), or give spatio-temporal aligned segmentation (Chiu
and Fritz 2013; Luo et al. 2015; Djelouah et al. 2016) from
multiple views without inferring the shape of the objects.
The third category of methods in 4D temporally coher-
ent reconstruction either align meshes using correspondence
information between consecutive frames (Zanfir and Smin-
chisescu 2015) or extract the scene flow by estimating the
pairwise surface correspondence between reconstructions at
successive frames (Wedel et al. 2011; Basha et. 2010). How-
ever methods in all of these three categories do not exploit
semantic information of the scene, as seen in Table 1. The
fourth category of joint estimation methods exploit semantic
information by introducing joint semantic segmentation and
reconstruction for general dynamic scenes (Hane et al. 2016;
Xie et al. 2016;Kunduet al. 2014;Ulusoy et al. 2017;Mustafa
and Hilton 2017) and street scenes (Engelmann et al. 2016;
Vineet et al. 2015). However these methods give per-frame
semantic segmentation and reconstruction with no motion
estimate. This leads to unaligned geometry, pixel level inco-
herence in both segmentation and reconstruction for dynamic
sequences and does not work for complex scenes with multi-
ple interacting people such as stadium sports. Other methods
for semantic video segmentation classify objects exploit-
ing spatio-temporal semantic information (Tsai et al. 2016;
Luo et al. 2015; Chiu and Fritz 2013) but do not perform
reconstruction. Hence none of the existing methods in the
literature give 4D temporally coherent reconstruction and

instance segmentation on complex dynamic sceneswithmul-
tiple interacting people. We address this gap in the literature
by proposing a novel framework for joint multi-view 4D
temporally coherent reconstruction, semantic instance seg-
mentation and flow estimation for general dynamic scenes
automatically without any manual intervention.

Methods in the literature have exploited human-pose
information to improve results in semantic segmentation (Xia
et al. 2017) and reconstruction (Huang et al. 2017). However
existing joint estimation/ optimization methods for dynamic
scenes (with multiple people) do not exploit human-pose
information often detecting interacting people as a single
object (Mustafa and Hilton 2017). Table 1 shows a compari-
son between the tasks performed by state-of-the-art methods.
In addition to performing joint multi-person 4D temporally
coherent reconstruction and semantic instance segmentation,
we exploit advances in 3D human-pose estimation to pro-
pose the first approach for 4D (3D in time) human-pose based
scene understanding of general dynamic sceneswithmultiple
interacting dynamic objects (people) with complex non-rigid
motion. 3D human-pose estimation makes full use of multi-
view information and is used as a prior to constrain the shape,
segmentation and motion in space and time in the joint scene
understanding estimation to improve the results on challeng-
ing scenes in the wild including sports. Sports reconstruction
presents a challenging problem with a small number (6-12)
of independently manually operated panning and zooming
broadcast cameras, sparsely located around the stadium to
cover a large area with multiple players. This results in mul-
tiple view wide-baseline capture at different resolutions with
motion blur due to player and cameramotion. The framework
enables high-quality reconstruction and semantic instance
segmentation for multi-player occlusions in sports captured
from wide-baseline moving cameras, overcoming limitation
of previous multiple view reconstruction algorithms. The
contributions of the paper are:

– 4D scene understanding for multiple interacting people
in dynamic scenes from multi-view video.

– Joint instance-level segmentation, temporally coherent
reconstruction and scene flow with human-pose priors.

– Robust 4D temporal coherence and per-pixel semantic
coherence for dynamic scenes containing interactions.

– An extensive performance evaluation against 15 state-
of-the-art methods demonstrating improved semantic
segmentation, reconstruction and motion estimation.

This paper is an extended version of ICCV 2019 paper
(Mustafa et al. 2019), which includes detailed information
about the method, ablation studies, performance evalua-
tion on multi-person benchmarks and results on challenging
sports datasets.
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2 RelatedWork

Humans extract rich information from the world around
them, and for autonomous machines (self-driving cars,
robots) to navigate safely around people, machines must be
able to perceive the scenes as humans do. Scene understand-
ing refers to the simultaneous extraction of 3D reconstruc-
tion, semantic information of objects and motion estimation,
illustrated inFig. 1. Sceneunderstandinghas become increas-
ingly popular in the past 5 years and it brings machines one
step closer to understand the real to human level, machine
perception of the real-world. This section provides a review
of recent notable methods for scene understanding tasks
(individually and joint) for single-view (Table 2) and multi-
view (Table 3) video.

2.1 Scene Understanding for Single-View
Video-Table 2

Semantic segmentation Fully Convolutional Network (Shel-
hamer et al. 2015) extract deep per-pixel CNN features
followed by the classification of each pixel in the image for
semantic segmentation. Deeplabv3+ (Chen and Zhu 2018)
improved results by using an encoder-decoder architecture
with Resnet and atrous spatial pyramid pooling to classify
each pixel. Mask RCNN gives semantic instance segmenta-
tion on challenging scenes (He et al. 2017) by using a Region
Proposal Network that shares full-image convolutional fea-
tures with the detection network and adding a branch for
predicting an object mask in parallel with the existing branch
for bounding box recognition. An improved mask is pre-
dicted in Li et al. (2020) by effectively combining instance
level information with semantic information with lower level
fine-granularity. A flow alignment module is proposed in
Chen et al. (2020) to learn Semantic Flow between feature
maps of adjacent levels, and broadcast high-level features to
high resolution features for improved semantic segmentation.

Depth estimation Fusion4D (Dou et al. 2016) introduced
a method for real-time online reconstruction for a video
sequence from RGB image, depth and high-quality seg-
mentation as input (Dou et al. 2016) and is restricted to
relative simple indoor scenes. The proposed method only
need RGB images as input and works for crowded indoor
and outdoor scenes with multiple people. A single multi-
scale convolution network architecture was proposed for
depth prediction and semantic labelling in Eigen and Fer-
gus (2015). Unsupervised monocular depth estimation was
performed by learning depth from a stereo pair in Godard
et al. (2017). Traditional SFM was used in a self-supervised
method (Klodt and Vedaldi 2018) to learn and predict depth
from monocular video. A recent method (Wang et al. 2020)
decomposes a scene into semantic segments and then pre-
dicts a scale and shift invariant depth map for each semantic
segment in a canonical space from a single image (Wang
et al. 2020). An optimization based depth estimation method
was proposed in Rossi et al. (2020) exploiting the underly-
ing piece-wise planarity of scenes and other depth estimation
method (Rodriguez and Mikolajczyk 2020) from a single
image. This bridges the domain gap by leveraging semantic
predictions and low-level edge features to provide guidance
for the target domain.

Motion estimation One of the first methods to construct
CNNs capable of estimating optical flow as a supervised
learning task was introduced in Dosovitskiy et al. (2015).
CNNwas proposed to estimate humanflowfields specifically
from pairs of images in Ranjan et al. (2018). Deep Epipolar
Flow (Zhong et al. 2019) was used for unsupervised flow
estimation introducing global epipolar constraints into net-
work learning. A transformer encoder-decoder type network
was proposed along with a memory-based dictionary, which

Table 1 Comparison of tasks state-of-the-art methods are solving against the proposed method

Semantic Segment Instance 3D Motion Pose

Kendall et al. (2017); Ulusoy et al. (2017); Engelmann et al. (2016) � � � � × ×
Sevilla-Lara et al. (2016) � � � × � ×
Mustafa and Hilton (2017); Hane et al. (2016); Kundu et al. (2014) � � × � × ×
Xia et al. (2017) � � � × × �
Huang et al. (2017) × × × � � �
Floros and Leibe (2016) � � × � � ×
Larsen et al. (2007); Roussos et al. (2012) × × � � � ×
Mustafa et al. (2016) × � × � � ×
Tsai et al. (2016); Luo et al. (2015); Chiu and Fritz (2013) � � × × � ×
Proposed � � � � � �
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Table 2 Methods for scene understanding tasks for single-view video

Semantics Depth

Badrinarayanan et al. PAMI 2015 Shelhamer et al. (2015) Eigen & Fergus ICCV 2015 Eigen and Fergus (2015)

Chen et al. ECCV 2018 Chen and Zhu (2018) Godard et al. CVPR 2017 Godard et al. (2017)

He et al. CVPR 2018 He et al. (2017) Klodt and Vedaldi ECCV 2018 Klodt and Vedaldi (2018)

Motion Joint

Dosovitskiy et al. ICCV 2015 Dosovitskiy et al. (2015) Kendall et al. CVPR 2018 Kendall et al. (2018)

Ranjan et al. BMVC 2018 Ranjan et al. (2018) Ranjan et al. CVPR 2019 Ranjan et al. (2019)

Zhong et al. CVPR 2019 Zhong et al. (2019) Chen et al. CVPR 2019 Chen et al. (2019)

aims to preserve the global motion patterns in training data
to improve flow estimation for humans (Cai et al. 2020).

Scene understanding Simultaneous semantic instance seg-
mentation and depth estimation was proposed (Kendall et al.
2018) from a single view video exploiting uncertainties in
multi-task learning framework. Unsupervised methods for
joint depth, flow and motion segmentation; and joint depth
and semantic segmentation from a monocular video were
proposed in Ranjan et al. (2019) and Chen et al. (2019)
respectively. A recent method (Zeng and Gevers 2020)
reconstructs and semantically segments 3D indoor scenes
from a single panorama image, however this method only
works for static scenes.

All of these method either perform a single task (recon-
struction, segmentation or flow estimation) or the joint scene
understanding methods work for a single view video only.
However the proposed method solves multiple tasks together
giving a full scene understanding from multiple view videos
by jointly estimating semantic instance segmentation, depth
and motion exploiting human pose information.

2.2 Scene Understanding for Multi-View
Videos-Table 3

Segmentation Co-temporal multi-view segmentation was
proposed in Djelouah et al. (2016) with no semantic infor-

mation. A multi-view semantic segmentation network was
designed in Guerry et al. (2017) for the consistent labelling
of static scenes. Semantic information across space and time
was used in a joint framework (Mustafa and Hilton 2017)
for multi-view semantic reconstruction of dynamic scenes.
Abhijit et al. (2020) fuses features from multiple per view
predictions on 3D mesh vertices to predict mesh semantic
segmentation labels for 3D semantic segmentation, but this
method works only for static scenes.

Reconstruction Temporally coherent reconstruction was
obtained inMustafa et al. (2016) frommulti-view videos. An
end-to-end deep learning architecture was introduced in Yao
et al. (2018) for depthmap inference frommulti-view images.
Trager et al. (2019) defined a new characterization of multi-
view geometry by proposing a coordinate-free description
of Carlsson-Weinshall duality. A recent approach estimates
high fidelity 3D human pose and volumetric reconstruction
from multiple camera views by using a dual loss in a gen-
erative adversarial network (Gilbert et al. 2020). Another
deep learning approach (Bi et al. 2020) reconstructs scene
appearance from unstructured images captured under collo-
cated point lighting using reflectance volumes.However both
of these approaches give per frame reconstruction which are
unaligned in time without any semantic information.

Motion estimation Limited methods have been proposed
in multi-view motion estimation. The first-ever method to

Table 3 Methods for scene understanding tasks for multi-view video

Semantics Depth

Djelouah et al. 3DV 2016 Djelouah et al. (2016) Mustafa et al. CVPR 2016 Mustafa et al. (2016)

Guerry et al. ICCV 2017 Guerry et al. (2017) Yao et al. ECCV 2018 Yao et al. (2018)

Mustafa et al. CVPR 2017 Mustafa and Hilton (2017) Trager et al. CVPR 2019 Trager et al. (2019)

Motion Joint

Szeliski et al. CVPR 1999 Szeliski (1999) Hane et al. PAMI 2016 Hane et al. (2016)

Mustafa et al. 3DV 2017 Mustafa et al. (2017) Dai and Niesser ECCV 2018 Dai and Nießner (2018)

Lai et al. CVPR 2019 Lai et al. (2019) Mustafa et al. ICCV 2019 Mustafa et al. (2019)
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estimate motion and stereo frommulti-view images was pro-
posed by Szeliski (1999). Scene flow was obtained from
multiple light-field images in Mustafa et al. (2017) exploit-
ing epipolar constraints. Recently a network to jointly learn
spatio-temporal correspondence for stereomatching andflow
estimation was introduced (Lai et al. 2019).

Scene understanding Multi-view scene understanding for
static scenes was introduced in Hane et al. (2016) through a
joint formulation of depth and semantics. 3D semantic scene
segmentation of indoorRGB-Denvironmentswas performed
in Dai and Nießner (2018) using a joint 3D multi-view pre-
diction network.

All of the above methods either focus on a single task on
segmentation, reconstruction and flow estimation exploiting
multiple views or work for static scenes giving per frame
reconstructions and segmentation unaligned in time. The
proposed method performs joint semantic instance segmen-
tation, 4D reconstruction and motion estimation of dynamic
sceneswithmultiple interacting people in the scenes address-
ing the gap in the literature for full scene understanding from
multi-viewvideos.Alsomost of themethods explained above
use deep learning based approach to solve the reconstruction,
flowestimation and segmentation, but the proposedmethod is
an optimization framework which does not need any ground-
truth data for training or require no manual intervention for
4D temporally coherent semantic reconstruction of dynamic
scenes.

3 Joint 4D Dynamic Scene Understanding

Overview:
This section describes our approach to joint 4D scene under-
standing, with different stages shown in Fig. 2. The overview
of the proposed method is as follows:

– Input The input to the joint optimisation is multi-view
video. The proposed algorithm requires synchronised
cameras, however it works for all datasets the datasets
which are either synchronised through audio informa-
tion (Hasler et al. 2009) or time code generator. Slight
errors that are introduced through audio synchronisation
are handled well with the proposed method. More details
on the datasets are given in the Experiments section.

– Initial Semantic Instance Segmentation - Sect. 3.1:
Initial semantic labels are estimated for each pixel in the
image per-view using state-of-the-art semantic instance
segmentation (He et al. 2017).
An initial reconstruction is obtained for each object in the
scene combining the initial semantic instance segmenta-
tion with the sparse reconstruction (Mustafa and Hilton
2017). Semantic information for each view is combined

with sparse 3D feature correspondence between views
to obtain an initial semantic 3D reconstruction. This ini-
tial reconstruction is inaccurate due to the errors in the
per-view semantic information which is combined across
views.

– Key-frame Detection-Sect. 3.2: To achieve stable long-
term 4D understanding a set of unique key-frames
are detected exploiting multi-view informatio for final
temporally coherent 4D reconstruction, key-frames are
detected for the entire sequence exploiting shap, 3D pose
and semantic information.

– 3DHuman Pose Estimation and Estimation of Sparse
Temporal Tracks - Section 3.3: 3D human pose is
estimated for each person in the scene to constraint the
joint per-view optimization to estimate semantic instance
segmentation, motion and 3D reconstruction. Sparse
temporal feature tracks are obtained per view between
key-frames to initialise the joint estimation. This allows
robust 4D understanding in the presence of large non-
rigid motion between frames.

– Joint Estimation of Semantic Instance and Shape
- Section 3.3: The initial reconstruction and semantic
instance segmentation is refined for each object instance
per-view through novel joint optimisation of segmenta-
tion, shape, and motion constrained by 3D human-pose.
Key-frames are used to introduce robust temporal coher-
ence in the joint estimation across long-sequences with
large non-rigid deformation. Per-view information is
merged into a single 3D model using Poisson surface
reconstruction (Kazhdan et al. 2006).

– 4D Scene Understanding - Section 3.4: The process
is repeated for the entire sequence and is combined
across views and in time to obtain temporally coherent
4D semantic reconstruction for dynamic scenes. Depth,
motion and semantic instance segmentation is combined
across views between frames for 4D temporally coherent
reconstruction and dense per-pixel semantic coherence
for final 4D understanding of scenes. Figure 2 shows seg-
mentation, reconstruction and tracking of both static and
dynamic objects in the scene.

3.1 Initial Semantic Instance Segmentation

Existing methods for semantic segmentation do not give
instance level segmentationof the scene. Previous approaches
for semantic segmentation either segment the image followed
by a per-segment object category classification (Mostajabi
et al. 2015; Gupta et al. 2014), which can lead to propa-
gation of errors from segmentation or give deep per-pixel
CNN features followed by per-pixel classification in the
image (Farabet et al. 2013; Hariharan et al. 2015), lead-
ing to segmentations with fuzzy boundaries and spatially
disjointed regions or predict semantic segmentation from
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Fig. 2 4D dynamic scene understanding framework for multiple interacting people in the scene from multi-view video

raw pixels (Shelhamer et al. 2015) followed by conditional
random fields (Kundu et al. 2016; Zheng et al. 2015). To
address these issues, methods proposed semantic segmenta-
tion prediction from the raw pixels (Shelhamer et al. 2015)
followed by conditional random fields (Kundu et al. 2016;
Zheng et al. 2015) to improve segmentation. However none
of these methods give instance segmentation of the scene.
A recent state-of-the-art method (He et al. 2017) gives
a good estimate of initial semantic instance segmentation
masks (probability estimates of various classes at each pixel)
from complex single images. We employ this state-of-the-
art semantic instance segmentation method (He et al. 2017)
to predict initial semantic unary potentials using pre-trained
parameters on MS-COCO(Lin et al. 2014) and PASCAL
VOC12 (Everingham et al. 2012) for each view. However
this pre-segmentation can be replaced with any state-of-the-
art methods as the framework refines the semantic labels and
it is not sensitive to errors in the initialisation. Poor quality
of initial semantics will increase computation cost.

3.2 Key-Frame Detection

Previous work (Newcombe et al. 2015; Mustafa et al. 2017)
showed that sparse key-frames allow robust long-term corre-
spondence for 4D reconstruction. In this work we introduce
the additional use of pose in the detection and sparse tem-
poral feature correspondence across key-frames to prevent
the accumulation of errors in long sequences. Key-frame
detection is used to improve the long term temporal coher-
ence in the proposed joint semantic instance segmentation
and 4D reconstruction. The 3D meshes are aligned for
frames in between two key-frames Ki and Ki+1 and between
key-frames NK to obtain full 4D scene reconstruction for
the sequence. NK is the total number of key-frames in
the sequence. 4D scene alignment between key-frames is
explained in Sect. 3.4.

Key-frames are detected exploiting similarity between
frames, 3D pose and shape. Distance between 2 frames is
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also taken into account to estimate key-frames. All the met-
rics used to estimate key-frames are defined below:

3.2.1 Sparse Correspondence Metric (Mc
i,j )

Thismeasures appearance similarity between frames for each
object, defined as the ratio of the number of sparse temporal
correspondences Q to the total number of features R. SFD
features are detected for each temporal frame and brute force
matching (Mustafa et al. 2019) is performed to estimate the
correspondences. The term is defined below:

Mc
i, j = 2Qc

i, j

Rc
i + Rc

j

where Qc
i, j are the number of sparse temporal correspon-

dences between frame i and j for view c, Rc
i are the number

of total features for frame i , view c and Rc
j are the number

of total features for frame j , view c.

3.2.2 3D Pose Metric (Pci,j )

3D human poses are estimated for each time frame (Tomè
et. 2018) and this metric measures the distance between the
regularised human-pose:

Pc
i, j =

∥
∥Pi − Pj

∥
∥

Pc
max

where j > i and Pc
max is the maximum change of pose

between frames for view c. Pc
max is calculated by measur-

ing the distance between regularised poses for 20 frames and
choosing the maximum value. This term ensures that the dis-
tance of poses between key-frames is limited.

3.2.3 Semantic Metric (Lci,j )

This term checks the semantic similarity between two frames
by comparing the number of pixels with the same semantic
labels. An affine warp (Evangelidis and Psarakis 2008) is
used to align semantic regions tomeasure semantic similarity
between two frames. The metric is defined as the ratio of the
number of pixels with the same class label zci, j to the pixels
in the segmented region yci, j :

Lc
i, j = zci, j

yci, j

3.2.4 Distance Metric (Dc
i,j )

Thismetricmeasures the distance between frames andmakes
sure that the distance between two key-frames is not large as

Fig. 3 An illustration of key-frame detection and matching across a
short sequence for stable long-term temporal coherence

it will introduce errors in the final reconstruction and seg-
mentation. The term is defined as:

Dc
i, j = j − i

Dc
max

where j > i and Dc
max is the maximum number of frames

between key-frames for view c. This term ensures that the
distance between twokey-frames does not exceed Dc

max . This
is set to 100 throughout this work.

3.2.5 Shape Metric (Ici,j )

It is defined as the ratio of the intersection of the aligned
segmentation or silhouette (Evangelidis and Psarakis 2008)
(h) to the union of the area (a):

I ci, j = hci, j
aci, j

This give a measure of shape or silhouette overlap for an
object between frames i and j for view c. The silhouette are
projection of initial coarse 3D reconstruction in each view.

All these metrics defined above are combined to estimate
keyframes using the Key-frame similarity metric, which is
defined as:

K Si, j = 1 − 1

5Nv

Nv∑

c=1

(Mc
i, j + Lc

i, j + Dc
i, j + Pc

i, j + I ci, j )

(1)

Key-frame detection exploits sparse correspondence (Mc
i, j ),

pose (Pc
i, j ), shape (I ci, j ), semantic label (I ci, j ) and distance

(Dc
i, j ) information across views Nv between frame i and j

for each object in view c, to improve the long-term tempo-
ral coherence of the proposed method, using similar frames
across the sequence, illustrated inFig. 3. All frameswith sim-
ilarity K Si, j > 0.75 in a sequence are selected as key-frames
defined as K = {K 1, K 2, ..., K NK } where Nk is the number
of key-frames. We also define another term Ni

f , which is the
number of frames between Ki and Ki+1.
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3.3 Joint Per-View Optimisation

Sparse reconstruction is obtained for each frame from mul-
tiple views using Colmap (Schönberger and Frahm 2016;
Schönberger et al. 2016). The multi-view cameras are syn-
chronised either directly or in post-processing using the
audio information. The sparse point cloud is clustered in 3D
(Rusu 2009) with each cluster representing a unique fore-
ground object. The per-view semantic instance segmentation
obtained in the previous step is combined across views with
sparse reconstruction to obtain an initial coarse reconstruc-
tion R for each person in the frame, where i represents
different number of objects for each frame (Mustafa and
Hilton 2017). This initial semantic coarse reconstructionR is
refined througha joint sceneunderstandingoptimization.The
optimization is performed per-view to obtain depth, semantic
segmentation and flow for each view.

3.3.1 Spatio-Temporal Coherence in the Optimisation

Constraints are applied on the spatial and temporal neigh-
borhood to enforce consistency in the appearance, semantic
label, 3D human pose and motion across views and time.
Spatial coherenceMulti-view spatial coherence is enforced
in the optimisation such that the motion, shape, appearance,
3D pose and class labels are consistent across views using
an 8-connected spatial neighbourhood ψS for each camera
view such that the set of pixel pairs (p; q) belong to the same
frame.
Temporal coherence Temporal coherence is enforced in
the joint optimisation by enforcing coherence across key-
frames (Sect. 3.2) to handle large non-rigid motion and to
reduce errors in sequential alignment for long sequences in
the 4D scene understanding. Sparse temporal feature cor-
respondences are used for key-frame detection and robust
initialisation of the joint optimisation. Theymeasure the sim-
ilarity between frames and unlike optical flow are robust to
largemotions and visual ambiguity. To achieve robust tempo-
ral coherence in the 4D scene understanding framework for
large non-rigid motion, sparse temporal feature correspon-
dences in 3D are obtained across the sequence.

The temporal neighbourhood is defined for each frame
between its respective key-frames. Sparse temporal corre-
spondence tracks define the temporal neighbourhood ψT =
{

(p, q) | q = p + ei, j
}

; where j = {t − 1, t + 1}, ei, j is the
displacement vector from image i to j , p and q are pixels in
the image.

3.3.2 Joint Optimisation

The goal of the joint estimation is to refine initial seman-
tic instance segmentation and reconstruction by assigning
a label from a set of classes obtained from initial seman-

Fig. 4 Comparison of reconstruction without pose and motion in the
optimisation framework, proposed result is best

tic instance segmentation L =
{

l1, ..., l|L |
}

(|L | is the

total number of classes), a depth value from a set of depth

values D =
{

d1, ..., d|D|−1,U
}

(each depth value is sam-

pled on the ray from camera and U is an unknown depth
value to handle occlusions), and a motion flow field M =
{

m1, ...,m|M |
}

simultaneously for the region R of each

object per view. |M | is the set of pre-defined discrete flow-
fields for pixel p = (x, y) in image I by m = (δx, δy) in
time and for each view.

Joint semantic instance segmentation, reconstruction and
motion estimation is achieved by global optimisation of a
cost function over unary Eunary and pairwise Epair terms,
defined as:

E(l, d,m) = Eunary(l, d,m) + Epair (l, d,m)

Eunary = λd Ed (d) + λa Ea(l) + λsem Esem(l) + λ f E f (m)

Epair = λs Es(l, d) + λcEc(l) + λr Er (l,m) + λp Ep(l, d,m)

(2)

where, d is the depth, l is the class label, andm is the motion
at pixel p. Novel terms are introduced for flow E f , motion
regularisation Er and human-pose Ep costs, explained in
Sects. 3.3.4 and 3.3.3 respectively. Results of the joint opti-
misation with and without pose (Ep) and motion (E f , Er )
information are presented in Fig. 4, showing the improve-
ment in results. Ablation analysis on individual costs in Sect.
4 demonstrates the improvement in performance with the
novel introduction of motion and pose constraints in the joint
optimisation. Standard unary terms for depth (Ed ), semantic
(Esem), and appearance (Ea) costs, explained in Sect. 3.3.6.
Standard pairwise terms colour contrast (Ec) is used to assist
segmentation and smoothness (Es) cost ensures that depth
varies smoothly in a neighbourhood.

3.3.3 Human-Pose Constraints Ep(l, d,m)

We use 3D human-pose to constrain joint optimisation and
improve the flow, reconstruction and instance segmentation,
in both 2D and 3D for dynamic scenes with multiple inter-
acting people (see Fig. 1). 3D human-pose is used as it is
consistent across multiple views unlike 2D human-pose. A
state-of-the-art method for 3D human-pose estimation from
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multiple cameras (Tomè et. 2018) is used in the paper. Previ-
ouswork on 3Dpose estimation (Tome et al. 2017) iteratively
builds a 3D model of human-pose consistent with 2D esti-
mates of joint locations and prior knowledge of natural body
pose. In Tomè et. (2018), multiple cameras are used when
estimating the 3D model; this then feeds back into new esti-
mates of the 2D joint locations in each image. This approach
allows us to take full advantage of 3D estimates of pose,
consistent across all cameras when finding fine grained 2D
correspondences between images, and leading to more life-
like, vivid human reconstructions.

Initial semantic reconstruction is updated if the 3D pose of
the person lies outside the regionR by dilating the boundary
to include the missing joints. This allows for more robust and
complete reconstruction and segmentation.Weuse a standard
set of 17 joints (Tomè et. 2018) defined as B. A circle Ci

is placed around the joint position in 2D and a sphere Si is
placed around the joint position in3Dbasedon the confidence
map to identify the nearest neighbour vertices for every joint
bi .

Ep(l, d,m) =
∑

bi∈B
λ2de2d(l,m) + λ3de3d(d) (3)

e2d(l,m) = eL2d(l) + eS2d(l) + eM2d(m)

e3d(d) = eM3d(d) + eS3d(d), if dp �= U else 0

where e2d enforces pose constraint in 2D domain and e3d
enforces human pose constrain in 3Ddomain andλ2d andλ3d
are weighting terms. e2d comprises of semantic eS2d , motion
eM2d and segmentation eL2d constraints and e3d includesmotion
eM3d and semantic eS2d constraint.
3D shape term This term constrains the reconstruction in
3D such that the neighbourhood points around the joints do
not move far from the respective joints, and is defined as:

eS3d(d) = exp(− 1
∣
∣σSD

∣
∣

∑

�(p)∈Si

‖O‖2F )

where �(p) is the 3D projection of pixel p. The Frobenius
norm ‖O‖F = ∥∥[�(p) bi

]∥
∥
F is applied on the 3D points in

all directions to obtain the ‘net’ motion at each pixel within
Si (sphere around the joint position in 3D) and σSD =
〈

‖O‖2F
ϑ�(p),bi

〉

, with the operator
〈〉

denoting the mean computed

inSi .

3D motion term This enforces as rigid as possible (Sorkine
and Alexa 2007) constraints on 3D points in the neighbour-
hood of each joint bi in space and time. An optimal rotation
matrix Ri is estimated for each bi by minimising the energy
defined as:

eM3d(d) =
∑

�(p)∈Si

∥
∥
∥
∥

(

bt+1
i − �(p)t+1

)

−Ri
(

bti − �(p)t
)
∥
∥
∥
∥

2

2
+ λ

p
3d

∥
∥
∥p − eM3d

∥
∥
∥

2

2

λ
p
3d is the weighing constant. This term ensures that each

joint does not move too far away from the original position.
2D term 3D poses are back-projected in each view to con-
strain per view appearance (eL2d ), semantic segmentation
(eS2d ) and motion estimation (eM2d ) in 2D. If p ∈ Ci ,

eL2d (l) = exp

⎛

⎝−
∑

p∈ψS

∑

p∈ψT

‖I (�(bi )) − I (p)‖2
∣
∣σSL

∣
∣

⎞

⎠

eS2d (l) = exp

⎛

⎝−
∑

p∈ψS

∑

p∈ψT

‖�(bi ) − p‖2
∣
∣σSS

∣
∣

⎞

⎠

eM2d (m) = exp

⎛

⎜
⎝−

∑

p∈ψS

∑

k∈ψT

∥
∥
∥ϑp,�(bki )

− ϑp+mp ,�(bk+1
i )

∥
∥
∥

2

∣
∣σSM

∣
∣

⎞

⎟
⎠

where, � is the back-projection of 3D poses to 2D, Npose is

the number of nearest neighbours, σSL =
〈 ‖�(bi )−q‖2

ϑ�(bi ),q

〉

and,

σSS andσSM is defined similarly, andϑ�(bi ),q is theEuclidean
distance between pixel�(bi ) and q. Similarly other ϑp,�(bki )
and ϑp+mp,�(bk+1

i )
denotes the Euclidean distances between

other pixels in 2D. eL2d(l) and eS2d(l) ensures that the pixels
aroundprojected 3Dpose�(bi )have the same semantic label
and appearance across views (ψS) and time (ψT ) thereby
ensuring spatio-temporal appearance and semantic consis-
tency respectively.

3.3.4 Motion Constraints- Ef (m) and Er(l,m)

Flow term This term is obtained by integrating the sum of
three penalisers over the reference image domain inspired
from (Tao et al. 2012), defined as:

E f (p,mp) = eTF (p,mp) + eVF (p,mp) + eSF (p,mp)

where, eTF (p,mp) = ∑Nv

i=1 ‖(Ii (p, t) − Ii (p + mp,

t + 1))‖2 penalises deviation from the brightness constancy
assumption in a temporal neighbourhood for the same view;
eVF (p,mp) = ∑

t∈ψT

∑Nv

i=2

∥
∥(I1(p, t) − Ii (p + mp, t))

∥
∥2

penalises deviation in appearance from the brightness con-
stancy assumption between the reference view and other
views at other time instants; and eSF (p,mp) = 0 if p ∈
N otherwise ∞ which forces the flow to be close to nearby
sparse temporal correspondences. Ii (p, t) is the intensity at
point p at time t in camera i . The flow vector m is located
within a window from a sparse constraint at p and it forces
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the flow to approximate the sparse 2D temporal correspon-
dences.
Motion regularisation term This penalises the absolute dif-
ference of the flow field to enforce motion smoothness and
handle occlusions in areas with low confidence (Tao et al.
2012).

Er (l,m) =
∑

p,q∈Np

‖	m‖2 λL
r e

L
r (p, q,mp,mq , l p, lq) +

λA
r e

A
r (p, q,mp,mq , l p, lq)

where 	m = mp − mq and;

eXr =
⎧

⎨

⎩

mean
q∈Np

EX (q,mq) − min
q∈Np

EX (q,mq), if ∀
l p=lq

0, otherwise

Wecompute eLR (semantic regularisation) and eAR (appearance
regularisation) as the minimum subtracted from the mean
energywithin the neighbourhood searchwindow Np for each
pixel p. λL

r and λA
r are constants, computed empirically.

The motion term in the proposed framework is not tai-
lored to human motion. Results are shown for human motion
because of its higher complexity, which makes the method
more generalizable to different types of motion. We can eas-
ily handle linear motion of rigid objects (like cars).

3.3.5 Long-term Temporal Coherence

Sparse temporal correspondences The sparse 3D points
projected in all views are matched between frames Ni

f and
key-frames across the sequence using nearest neighbour
matching (Mustafa et al. 2019) followed by a symmetry test
which employs forward and backward match consistency
by performing two-way matching to remove the inconsis-
tent correspondences. This gives sparse temporal feature
correspondence tracks per frame for each object: Fc

i =
{ f c1 , f c2 , ..., f cRc

i
}, where c = 1 to Nv . Rc

i are the 3D points

visible at each frame i . Exhaustive matching is performed,
such that each frame is matched to every other frame to han-
dle appearance, reappearance and disappearance of points
between frames.
Key-frame detection Features at view c frame i , Fc

i are
matched to features at view c to frames j = {i + 1, ..., Ni

f }
to give correspondences for all the frames Ni

f with key-
frame Ki . The corresponding joint locations from the 3D
pose are back-projected in each view and added to sparse
temporal tracks in betweenkey-frames.Anynewpoint-tracks
are added to the list of point tracks for key-frame Ki . More
details on key-frame detection are provided in Sect. 3.2.

3.3.6 Unary Terms - Eunary(l, d,m)

Depth term This gives a measure of photo-consistency
between views Ed(d) =∑p∈ψS

ed(p, dp), defined as:

ed(p, dp) =
{

M(p, q) =∑i∈Ok
m(p, q), if dp �= U

MU , if dp = U

where MU is the fixed cost of labelling pixel unknown and
q denotes the projection of the hypothesised point P (3D
point along the optical ray passing through pixel p located
at a distance dp from the camera) in an auxiliary camera. Ok

is the set of the k most photo-consistent pairs with reference
camera and m(p, q) is inspired from (Mustafa et al. 2016).
Appearance term This term is computed using the negative
log likelihood (Boykov and Kolmogorov 2004) of the colour
models (GMMswith 10 components) learned from the initial
semantic mask in the temporal neighbourhood ψT and the
foreground markers obtained from the sparse 3D features for
the dynamic objects. It is defined as:

Ea(l) =
∑

p∈ψT

∑

p∈ψS

− log P(Ip|l p)

where P(Ip|l p = li ) denotes the probability of pixel p
belonging to layer li .
Semantic term This term is based on the probability of the
class labels at each pixel based on Chen et al. (2016), defined
as:

Esem(l) =
∑

p∈ψT

∑

p∈ψS

− log Psem(Ip|l p)

where Psem(Ip|l p = li ) denotes the probability of pixel p
being in layer li in the reference image obtained from initial
semantic instance segmentation (He et al. 2017).

3.3.7 Pairwise Terms - Epair(l, d,m)

There are two pairwise terms in the joint per-view optimiza-
tion - smoothness and contrast. These terms are inspired
from Guillemaut and Hilton (2010), which includes a proof
as to how these pairwise terms satisfy the regularity condi-
tion required for graph-cut optimisation via alpha-expansion
(Boykov and Kolmogorov 2004).
Smoothness term This term ensures that depth labels vary
smoothly within a neighbourhood and is defined as:

Es(l, d) = λts

∑

p,q∈ψT

es(l p, dp, lq , dq , d
t
max ) +

λss

∑

p,q∈ψS

es(l p, dp, lq , dq , d
s
max )
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es(l p, dp, lq , dq , dmax ) =
⎧

⎪⎨

⎪⎩

min(
∣
∣dp − dq

∣
∣ , dmax ), if l p = lq and dp, dq �= U

0, if l p = lq and dp, dq = U

dmax , otherwise

where, dsmax avoids over-penalising large discontinuities for
spatial smoothness and is set to 50 times the size of the depth
sampling step. dtmax ensures smoothness in time over the
temporal neighbourhood and is twice the value of dsmax to
allow large movement in the object.
Contrast term This term is defined as:

Ec(l) =
∑

p,q∈ψT

ec(p, q, l p, lq , σ
t
α, ϑ t

p,q , σ
t
β) +

∑

p,q∈ψS

ec(p, q, l p, lq , , σ
s
α, ϑ s

p,q , σ
s
β)

ec(p, q, l p, lq , σα, ϑ, σβ) = μ
(

l p, lq
)×

⎛

⎝λcae
−(

‖B(p)−B(q)‖2
2(σα)2(ϑ)2

) + λcle
−(

‖L(p)−L(q)‖2
2(σβ)

2 )

⎞

⎠

where μ
(

l p, lq
) = 1 if (l p = lq) otherwise 0 and ϑp,q is

the euclidean distance between p and q. ‘Bilateral’ kernel B
forces pixels with similar colour and position to have similar
labels and the Gaussian kernel L enforces spatial smooth-

ness, with σα =
〈

‖B(p)−B(p)‖2
ϑ2
p,q

〉

and σβ controlling the scale

of these kernels, where the operator
〈〉

denotes the mean com-
puted across the neighbourhoods ψS and ψT for spatial and
temporal contrast respectively.

The proposed joint optimization is inspired from pre-
vious work (Guillemaut and Hilton 2010) which perform
joint segmentation and reconstruction to achieve a globally
consistent solution by performing the joint optimization per-
view and by initializing the reconstruction with a reliable
visual hull which is obtained using per-view segmentation
which is taken as input. In the proposed method we obtain
a globally consistent solution by performing joint per-view
optimization on a reliable initial coarse reconstruction which
is obtained by combining semantic instance segmentation
with sparse reconstruction. Global optimisation of Equation
2 is performed per-view over all terms simultaneously, sub-
ject to each pixel p in the region R using the α-expansion
algorithmby iterating through the set of labels inL ×D×M
Boykov et al. (2001). Each label L ,D,M is initialised
before: L is initialised using the initial semantic segmen-
tation obtained in Sect. 3.1; D is initialised using the depth
of the initial coarse reconstruction estimateR, such that the
each di is obtained by sampling the optical ray from the cam-
erawithin the regionR. The ray is sampledby a factor of 50 to
calculate each di as inMustafa et al. (2016); andM is initial-

ized using discrete flow fields as in Tao et al. (2012); Menze
et al. (2015). Each iteration is solved by graph-cut using
the min-cut/max-flow algorithm (Boykov and Kolmogorov
2004). Convergence is achieved in 7-8 iterations.

3.4 4D Scene Understanding

The final 4D scene model fuses the semantic instance seg-
mentation, depth information and dense flow across views
and in time between frames (Ni

f ) and key-frames (Ki ). The
initial instance segmentation, human pose and motion infor-
mation for each object is combined to obtain final instance
segmentation of the scene. The per-viewdepthmaps obtained
by optimizing Equation 2 for each camera view are combined
across views using Poisson surface reconstruction (Kazhdan
et al. 2006) to obtain a mesh for each object in the scene.
For sports sequence with large calibration errors (1-2 pixels)
each view-dependent 2.5D foreground scene representation
is converted into a regular mesh with vertices defined by
image pixel locations. Vertex connectivity is decided based
on the layer segmentation and thresholding of the angle sepa-
rating the line segment connecting 3D surface points defined
by pairs of neighbouring pixels and the optical ray passing
through the midpoint of the pixel pair (a threshold of 80 deg
is used). This allows pixel belonging to different layers or
located at a depth discontinuity to be correctly converted
into separate mesh components.

The 3D meshes for each object per frame are com-
binedwith per-viewmotion estimates obtained by optimizing
Equation 2 to get 4D temporally coherent meshes for each
person in the scene. The most consistent motion informa-
tion from all views for each 3D point is used to estimate
correspondences between two frames. This is combined
with spatial semantic instance information to give per-pixel
semantic and temporal coherence. Appearing, disappearing,
and reappearing regions are handled by using the sparse tem-
poral tracks and their respective motion estimate. The dense
flow and semantic instance segmentation together with 3D
models of each object in the scene gives the final 4D under-
standing of the scenes. Examples are shown in Figs. 1 and 5
on two datasets, where objects are coloured in one key-frame
and colours are propagated reliably between frames and key-
frames across the sequence for robust 4D scene modelling.

The proposed method handles multiple people, appear-
ing, disappearing and re-appearing in the scene. The method
labels and tracks all static and dynamic objects in the scene.
Multiple people and objects are identified using the initial
semantic instance segmentation together with the clustering
of the sparse reconstruction at each time frame. Object track-
ing and re-appearance is handled using the sparse temporal
feature tracks and proposed dense flow. Exhaustive match-
ing between all frames enables object re-identification. The
pose constraints are only used for the human class and for
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Fig. 5 Example of 4D scene reconstruction for one indoor and one
outdoor dataset. The first frame is uniquely coloured for each dataset
and the colours are propagated using proposed motion estimation

Fig. 6 Proposed semantic instance segmentation for Juggler2 outdoor
dataset with three people

other classes E − Ep is minimized allowing us to work with
different objects. An example is shown for Juggler2 dataset
in Fig. 6 with 3 humans and an object entering the scene.

4 Results and Evaluation

Joint semantic instance segmentation, reconstruction and
flow estimation (Sect. 3) is evaluated quantitatively and qual-
itatively against 15 state-of-the-art methods on a variety of

publically available multi-view indoor and outdoor dynamic
scene datasets, detailed in Table 4. Juggler2 and Magician
datasets are synchronised using audio information and the
rest of the datasets are synchronised using time code genera-
tor. A list of tasks performed by each state-of-the-art method
is illustrated in Table 5.

Algorithm parameters listed in Table 6 are the same for all
outdoor datasets, and for indoor datasets parameters depend
on the number of cameras (Nv). Pairwise costs are constant
λp = 0.9, λc = λs = λr = 0.5 for all datasets. The param-
eters defined in Table 6 cover all possibilities of datasets
(indoor, outdoor, different number of views). The change in
parameters does not drastically affect the performance. We
used indoor parameters (row 2 in table) for outdoor dataset
Juggler2. This reduces the reconstruction performance by
3%, segmentation by 4% and motion performance by 2%.

Due to the low resolution of objects in the sports dataset
(people are only 30-70 pixel in height) and high the calibra-
tion errors (1-2 pixels), the parameters above could not be
used for the proposed framework. The pairwise costs are as
follows: λp = 2, λc = λs = λr = 1.1 and the unary costs
are shown in the bottom row of Table 6.

4.1 Reconstruction Evaluation

The proposed approach is compared against state-of-the-art
approaches for semantic co-segmentation and reconstruc-
tion (SCSR) Mustafa and Hilton (2017), piecewise scene
flow (PRSM) Vogel et al. (2015), multi-view stereo (SMVS)
Langguth et al. (2016), and deep learning based stereo
approaches (LocalStereo) Taniai et al. (2018). Since PRSM

Table 4 Properties of all datasets: Nv is the number of views, L is the
sequence length, KF gives number of key-frames, and Tracks gives the
number of sparse temporal correspondence tracks averaged over the

entire sequence for each object (S stands for static cameras and M for
moving cameras)

Datasets Resolution Nv Baseline L KF Tracks

Handshake Kim et al. (2012) 1920 × 1080 8(all S) 15◦ − 30◦ 125 15 1945

Meetup Guillemaut and Hilton (2010) 1920 × 1080 16(all S) 25◦ − 35◦ 100 9 1341

Juggler2 Ballan et al. (2010) 960 × 544 6(all M) 15◦ − 45◦ 300 16 1278

Handstand Vlasic et al. (2008) 1600 × 1200 8(all S) 25◦ − 45◦ 174 12 1056

Rachel yyy (xxx) 3840 × 2160 16(all S) 20◦ − 30◦ 270 15 1978

Juggler1 yyy (xxx) 1920 × 1080 8(2 M) 15◦ − 30◦ 253 17 2083

Dance xxx (yyy) 780 × 582 8(all S) 35◦ − 45◦ 60 7 732

Magician Ballan et al. (2010) 960 × 544 6(all M) 15◦ − 45◦ 300 10 1312

Human3.6 Ionescu et al. (2014) 1000 × 1000 4(all S) 25◦ − 30◦ 250 14 994

MagicianLF Mustafa et al. (2017) 2048 × 2048 25(all S) 5◦ − 8◦ 350 5 1312

WalkLF Mustafa et al. (2017) 2048 × 2048 20(all S) 5◦ − 8◦ 221 7 1934

Football yyy (xxx) 1920 × 1080 8(4 S) 15◦ − 40◦ 200 8 1443

Wembley Guillemaut and Hilton (2010) 1920 × 1080 5(4 S) 25◦ − 45◦ 100 6 1885

Soccer yyy (xxx) 720 × 288 15(all S) 20◦ − 30◦ 100 5 1767
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Table 5 Illustration of tasks
performed by state-of-the-art
methods which are evaluated in
Sect. 4 for segmentation,
reconstruction and motion
estimation against the proposed
method

Semantic Segment Instance 3D Motion

SCV Tsai et al. (2016) � � × × �
SCSR Mustafa and Hilton (2017) � � × � ×
JSR Guillemaut and Hilton (2010) × � × � ×
Dv3+ Chen and Zhu (2018) � � × × ×
MRCNN He et al. (2017) � � � × ×
PSP Zhao et al. (2017) � � × × ×
CRF RNN Zheng et al. (2015) � � × × ×
Segnet Badrinarayanan et al. (2017) � � × × ×
RTSeg Siam et al. (2018) � � × × ×
PRSM Vogel et al. (2015) × × × � �
LocalStereo Taniai et al. (2018) × × × � ×
SMVS Langguth et al. (2016) × × × � ×
DCflow Xu et al. (2017) × × × × �
Deepflow Weinzaepfel et al. (2013) × × × × �
4DMatch Mustafa et al. (2016) × × × × �
Proposed � � � � �

Table 6 Parameters for all
datasets. I is Indoor

λd λa λsem λ f λts/λ
s
s λca/λcl λL

r /λCr λ2d/λ3d

Outdoor 1.2 0.5 0.5 0.4 1.0 5.0 0.6 7.5

I,Nv < 6 1.0 0.7 0.5 0.6 0.4 5.0 0.4 7.5

I,6 ≤ Nv < 20 1.0 0.7 0.2 0.4 0.4 5.0 0.4 5.0

I,Nv ≥ 20 1.0 1.0 0.5 0.5 0.2 5.0 0.4 5.0

Sports 2.5 0.8 0.5 0.8 2.0 6.0 0.3 10

Vogel et al. (2015) and LocalStereo Taniai et al. (2018) meth-
ods only work for 2 views/stereo pair of images, we divide
the cameras in pairs and stereo is estimated for each pair.

The per-view depth maps for each camera view are com-
bined across views using Poisson surface reconstruction
(Kazhdan et al. 2006) to obtain a mesh for each object in
the scene in a similar way to the proposed method. Default
parameters are used to run both of these methods. The other
state-of-the-art methods SMVS (Langguth et al. 2016) and
SCSR (Mustafa andHilton 2017) aremulti-view approaches,
where code available online is used to estimate the per-frame
reconstruction using default parameters. Qualitative compar-
ison with proposed method is shown in Fig. 7.

Pre-trained parameters were used for LocalStereo and
per-view depth maps were fused using Poisson reconstruc-
tion. The quality of surface obtained using proposed method
is improved compared to state-of-the-art methods. In con-
trast to previous approaches, limbs of people are reliably
reconstructed because of the exploitation of human-pose and
temporal information (motion) in the joint optimisation.

For quantitative comparison to state-of-the-art methods,
we project the reconstruction onto different views and com-
pute the projection errors shown in Table 7. A significant

improvement is obtained in projected surface completeness
with the proposed approach. Further quantitative evalua-
tion of the surface obtained using state-of-the-art methods
is shown in Fig. 8. The reconstructions shown for Handstand
are compared against the proposed method and the errors are
colour coded, with red showing the maximum error.

4.2 Segmentation Evaluation

Our approach is evaluated against a variety of state-of-
the-art multi-view (SCV Tsai et al. (2016), SCSR Mustafa
and Hilton (2017), and JSR Guillemaut and Hilton (2010))
and single-view (Dv3+ Chen and Zhu (2018), MRCNN He
et al. (2017), PSP Zhao et al. (2017), CRF RNN Zheng
et al. (2015), and Segnet Badrinarayanan et al. (2017)) seg-
mentation methods, shown in Fig. 9. For fair evaluation
against single-view semantic segmentation methods, multi-
view consistency is applied for segmentation estimated from
each view to obtain multi-view consistent semantic segmen-
tation using dense multi-view correspondence. Colour and
visualizations in the results are kept from the original papers
and default parameters are used for state-of-the-art methods.

123



1596 International Journal of Computer Vision (2022) 130:1583–1606

Ta
bl
e
7

R
ec
on

st
ru
ct
io
n
ev
al
ua
tio

n:
Pr
oj
ec
tio

n
er
ro
ra
cr
os
sv

ie
w
sa
ga
in
st
st
at
e-
of
-t
he
-a
rt
m
et
ho

ds
,L

S
is
L
oc
al
St
er
eo
.P

P
=

E
−E

p
,
P
M

=
E

−E
f
−E

r
,
P
P
M

=
E

−E
f
−E

r
−E

p
,
P
S

=
E

−E
se
m

an
d
P
P
S

=
E

−
E
se
m

−
E
p
,w

he
re

E
is
de
fin

ed
in

E
qu

at
io
n
2

M
et
ho
ds

H
an
ds
ha
ke

H
an
ds
ta
nd

R
ac
he
l

Ju
gg
le
r1

Ju
gg
le
r2

M
ag
ic
ia
n

D
an
ce

M
ee
tu
p

H
um

an
3.
6

M
ag
ic
ia
nL

F
W
al
kL

F

PR
SM

V
og

el
et
al
.(
20
15
)

1.
56

1.
79

1.
51

1.
57

1.
68

1.
72

1.
79

1.
98

2.
01

1.
59

1.
41

L
S
Ta
ni
ai
et
al
.(
20
18
)

1.
24

1.
38

1.
15

1.
21

1.
18

1.
33

1.
46

1.
47

1.
64

1.
20

1.
23

SM
V
S
L
an
gg
ut
h
et
al
.(
20
16
)

0.
84

0.
97

0.
73

0.
75

0.
85

0.
92

0.
85

0.
96

1.
19

0.
94

0.
88

SC
SR

M
us
ta
fa

an
d
H
ilt
on

(2
01
7)

0.
70

0.
84

0.
67

0.
69

0.
73

0.
78

0.
77

0.
87

0.
92

0.
77

0.
71

P
P
S

0.
73

0.
87

0.
65

0.
70

0.
71

0.
75

0.
74

0.
88

0.
90

0.
78

0.
70

P
P
M

0.
71

0.
85

0.
64

0.
68

0.
69

0.
73

0.
72

0.
85

0.
87

0.
75

0.
68

P
P

0.
57

0.
71

0.
56

0.
59

0.
61

0.
64

0.
62

0.
75

0.
77

0.
67

0.
63

P
S

0.
59

0.
69

0.
59

0.
57

0.
63

0.
66

0.
60

0.
73

0.
76

0.
65

0.
60

P
M

0.
55

0.
68

0.
55

0.
54

0.
59

0.
61

0.
59

0.
74

0.
73

0.
62

0.
59

Pr
op
os
ed

0.
46

0.
55

0.
47

0.
49

0.
51

0.
53

0.
55

0.
57

0.
60

0.
49

0.
44

B
ol
d
va
lu
es

in
di
ca
te
be
st
pe
rf
or
m
in
g
m
et
ho

d

Ta
bl
e
8

Se
gm

en
ta
tio

n
co
m
pa
ri
so
n
ag
ai
ns
ts
ta
te
-o
f-
th
e-
ar
tm

et
ho
ds

us
in
g
th
e
In
te
rs
ec
ti
on

-o
ve
r-
U
ni
on

m
et
ri
c

M
et
ho
ds

H
an
ds
ha
ke

H
an
ds
ta
nd

R
ac
he
l

Ju
gg
le
r1

Ju
gg
le
r2

M
ag
ic
ia
n

D
an
ce

M
ee
tu
p

H
um

an
3.
6

M
ag
ic
ia
nL

F
W
al
kL

F

C
R
FR

N
N
Z
he
ng

et
al
.(
20
15
)

62
.7

55
.8

61
.6

40
.5

68
.7

52
.4

49
.3

41
.1

42
.9

60
.8

63
.6

Se
gn
et
B
ad
ri
na
ra
ya
na
n
et
al
.(
20
17
)

47
.9

51
.1

55
.2

45
.1

61
.9

55
.3

53
.9

43
.9

49
.4

59
.3

65
.9

JS
R
G
ui
lle

m
au
ta
nd

H
ilt
on

(2
01
0)

67
.8

58
.7

58
.4

56
.2

66
.0

61
.3

57
.9

50
.2

53
.4

62
.3

68
.9

SC
V
T
sa
ie
ta
l.
(2
01
6)

56
.4

52
.6

48
.8

49
.5

59
.1

59
.2

56
.7

42
.0

49
.1

58
.2

65
.7

D
v3
+
C
he
n
an
d
Z
hu

(2
01
8)

63
.8

58
.9

64
.0

48
.8

69
.7

58
.9

57
.6

48
.4

54
.8

69
.6

69
.1

M
R
C
N
N
H
e
et
al
.(
20
17
)

65
.2

59
.6

67
.4

50
.3

70
.5

60
.5

58
.7

47
.2

53
.4

69
.5

70
.2

PS
P
Z
ha
o
et
al
.(
20
17
)

74
.7

64
.5

75
.5

67
.9

81
.2

73
.4

71
.5

62
.6

65
.3

74
.6

82
.5

SC
SR

M
us
ta
fa

an
d
H
ilt
on

(2
01
7)

81
.8

75
.2

78
.4

81
.4

89
.3

88
.2

85
.1

78
.9

70
.4

82
.2

86
.7

P
P
M

85
.7

75
.9

78
.6

81
.8

89
.6

88
.5

85
.5

79
.2

70
.6

82
.9

87
.5

P
P

86
.3

77
.4

80
.7

82
.6

90
.1

89
.1

87
.6

80
.8

76
.3

86
.1

89
.3

P
M

87
.6

79
.1

81
.7

83
.5

90
.5

89
.6

86
.4

81
.9

75
.4

85
.2

88
.1

Pr
op
os
ed

89
.6

83
.3

85
.8

88
.2

91
.1

90
.9

88
.5

84
.7

81
.1

89
.4

91
.8

B
ol
d
va
lu
es

in
di
ca
te
be
st
pe
rf
or
m
in
g
m
et
ho

d

123



International Journal of Computer Vision (2022) 130:1583–1606 1597

Fig. 7 Reconstruction evaluation against existing methods. Two differ-
ent views of 3D model are shown for proposed method

OnlyMRCNNand the proposed approach gives instance seg-
mentation.

Quantitative evaluation against state-of-the-art methods
is measured by Intersection-over-Union with ground-truth,
shown in Table 8. Ground-truth is available on-line for most
of the datasets and obtained by manual labelling for other
datasets. Pre-trained parameters were used for semantic seg-
mentation methods. The semantic instance segmentation
results from the joint optimisation are significantly better
compared to the state-of-the-art methods (≈ 20 − 40%).

Semantic segmentation comparison results against CRF
RNN (Zheng et al. 2015), Segnet (Badrinarayanan et al.
2017), PSP (Zhao et al. 2017) are shown in Fig. 10 on four
datasets. Ground-truth segmentation comparison is shown in
Fig. 11 against JSR (Guillemaut and Hilton 2010) and SCSR
Mustafa and Hilton (2017). The red and green regions high-
light the error, green regions are present in segmentation but
not ground-truth and red regions are present in ground-truth
but not the segmentation.

4.3 Motion Evaluation

Flow from the joint estimation is evaluated against state-of-
the-art methods: (a) Dense flow algorithmsDCflow (Xu et al.

Fig. 8 Comparison of reconstruction obtained using state-of-the-art
methods against proposed method

2017) andDeepflowWeinzaepfel et al. (2013); (b) Sceneflow
methods PRSM (Vogel et al. 2015); and (c) Non-sequential
alignment of partial surfaces 4DMatch (Mustafa et al. 2016)
(requires a prior 3Dmesh of the object as input for 4D recon-
struction).

Per-view motion estimate from the proposed method is
comparedwith each of the state-of-the-artmethods.All of the
methods we have compared with DCflow, Deepflow, PRSM
and 4DMatch estimate flow for each camera which makes a
fair comparison and default parameters are used for all state-
of-the-art methods.

The key-frames of sequences are coloured using the
unique color scheme shown in Fig. 12 and the colour is prop-
agated using the motion estimate from the joint optimisation
throughout the sequence.With accurate motion estimates the
colors should propagate reliably across the sequence. The
red regions in 2D dense flow in Fig. 12 are the regions for
which reliable correspondences are not found. This demon-
strates improved performance using the proposed method.
The colours in the 4D alignment in Fig. 13 are not reliably
propagated by DCFlow for limbs.

We also compare the silhouette overlap error (Se) across
frames, key-frames and views to evaluate long-term tempo-
ral coherence in Table 9 for all datasets. This is defined as

Se = 1
NvNk Ni

f

∑Nk
i=1

∑Ni
f

j=1

∑Nv

c=1
Area of intersection

Area of semantic segmentation .

Dense flow in time is used to obtain the propagated mask
for each image. The propagated mask is overlapped with
semantic segmentation at each time instant to evaluate the
accuracy of the propagated mask. The lower the Se the bet-
ter. Our approach gives the lowest error demonstrating higher
accuracy compared to the state-of-the-art methods.

We evaluate the temporal coherence across the Meetup
sequence, by evaluating the variation in appearance for each
scene point between frames and between key-frames and
frames for state-of-the-art methods. The metric is defined as:√

	r2+	g2+	b2

3 , where 	 is the difference operator. Eval-
uation shown in Table 10 against state-of-the-art methods
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demonstrates the stability of long term temporal tracking for
proposed method (the lower the error the better).

4.4 Ablation Study on Equation 2

We perform an ablation study on Equation 2, such that we
remove motion E f , Er , pose Ep and semantic Esem con-
straints from the equation, defining PM = E − E f −

Er , PP = E − Ep, PPM = E − E f − Er − Ep, PS =
E − Esem and PPS = E − Esem − Ep. Reconstruction,
flow and semantic segmentation is obtained with removed
constraints, and the results are shown in Tables 7, 9 and 8
respectively. The proposed approach gives best performance
with joint pose, motion and semantic constraints.

Based on this ablation analysis, it is shown that the contri-
bution of each term is task dependent. Reconstruction Pose

Fig. 9 Semantic segmentation comparison against state-of-the-art methods. In the proposed method shades of pink depicts instances of humans
and shades of yellow depict instances of cars (Color figure online)

Fig. 10 Semantic segmentation comparison against state-of-the-art methods. In the proposed method shades of pink depicts instances of humans
and shades of yellow depict instances of cars (Color figure online)
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Fig. 11 Ground-truth semantic segmentation comparison against state-
of-the-art methods JSR and SCSR

Fig. 12 Temporal coherence evaluation against existing methods

Fig. 13 4D alignment evaluation against DCFlow Xu et al. (2017)

and semantic constraints play an equal role in reconstruction
and the motion term contributes less to this task. Semantics
Pose constraints contribute more to the performance than
the motion term. Flow Pose constraints contribute more than
semantics to the performance. To sum up, the motion term
gives proposed 4D flow, however it contributes least to the
overall performance, followed by semantic, pose then depth.
Also, the terms in Equation 2 are chosen based on a series of
experiments to achieve optimal performance.
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Table 10 Temporal coherence
evaluation for Meetup dataset
against existing methods

Frame-to-frame Keyframe-to-frame
Methods Mean S.D. Mean S.D.

Proposed 3.604 1.653 4.181 2.317

4DMatch 5.896 2.513 8.344 5.006

DCflow 6.085 3.314 16.673 8.55

Deepflow 7.525 4.179 18.115 9.052

PRSM 8.794 4.908 20.876 11.493

Bold values indicate best performing method
S.D. is the standard deviation

Table 11 Silhouette overlap
error for multi-view datasets for
evaluation of long-term
temporal coherence

Datasets Proposed without key-frame detection Proposed

Handshake 0.60 0.51

Handstand 0.71 0.61

Juggler1 0.57 0.49

Juggler2 0.59 0.52

Magician 0.67 0.58

Meetup 0.72 0.63

Human3.6 0.78 0.68

WalkLF 0.51 0.44

Bold values indicate best performing method

The method requires pose as prior for human recon-
struction, however Table 7, 8 and 9 demonstrate results
without pose constraints (PP ). The performance is reduced
but themethod still performs better than other state-of-the-art
approaches.

4.5 Ablation StudyWithout Key-Frame Detection

The higher the number of key-frames the better the quality
of alignment. However if no key-frames are detected for a
sequence, it will degrade the performance of 4D long-term
scene flow. To evaluate the effect of key-frame detection we
evaluate the performance of 4D scene flow for proposed joint
optimization with and without key-frames in Table 11. The
results show an≈ 15% improvement in scene flowwith key-
frame detection.

4.6 Computation Time Comparison

Computation times for the proposed approach vs other meth-
ods that perform joint estimation are presented in Table 12.
The proposed approach to reconstruct temporally coherent
4D models is comparable in computation time to per-frame
multiple view reconstruction and gives a ∼50% reduction in
computation cost compared to previous joint segmentation
and reconstruction approaches using a known background.
This efficiency is achieved through improved per-frame
initialisation based on temporal propagation and the intro-
duction of the geodesic star constraint in joint optimisation.

4.7 Results on Sports Data in theWild

Qualitative results using the proposed 4D scene understand-
ing framework on three sports sequences Football, Wembley
and Soccer with multiple people are shown in Figs. 14, 15
and 16. Football sequence is a synthetic dataset, Wembley
and Soccer are real datasets. Properties of the sports datasets
are listed in Table 4.

The proposed method obtains robust semantic instance
segmentation on Football and Wembley sequences demon-
strating the generalizing capability of the method for in
the wild datasets, illustrated in Fig. 14. 4D Reconstruc-
tion obtained using the proposed 4D scene understanding
framework is shown in Fig. 15. Reconstruction is shown
from different viewpoints demonstrating the applicability of
automatic scene understanding framework for in the wild
data. Proposed long term temporal coherence is shown in
Fig. 16. Each player is uniquely coloured and the colours
are propagated using proposed motion estimate from the 4D
scene understanding framework. In spite of the low resolu-
tion (≈ 12X30 px) of each player the colours are reliably
propagated across the sequence.

For comparative evaluation on sports datasets, majority
of the state-of-the-art methods are unable to obtain a reliable
segmentation, mesh and flow for the players. Hence we have
evaluated on the selected methods that work, and compara-
tive evaluation of segmentation, reconstruction and motion
estimation is shown in Table 13. The results demonstrate
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Fig. 14 Semantic instance segmentation on two sports sequences with multiple people

Table 12 Comparison of computational efficiency for a few dynamic sequences against state-of-the-art methods (time in seconds)

Dataset PRSM Xu et al. (2017) JSR Guillemaut and Hilton (2010) SCSR Mustafa and Hilton (2017) Proposed

Magician 342 s 608 s 362 s 353 s

Rachel 397 s 582 s 379 s 362 s

Handstand 348 s 566 s 353 s 325 s

Juggler2 413 s 621 s 405 s 421 s

MagicianLF 659 s 1227 s 622 s 611 s

Bold values indicate best performing method

that proposed method achieves significant improvement over
existing methods for all tasks.

4.8 Complexity Analysis on Synthetic Multi-Veiw
Data

To evaluate how proposed method works with crowded
scenes we use a multi-view synthetic dataset with multiple
people in the scene ranging from 2–10 people at each time
instant (Caliskan et al. 2020). Qualitative results are shown
in Fig. 17.

We also perform complexity analysis for the proposed
method through a quantitative evaluation on the synthetic
dataset. The number of people are increased in the scene

and reconstruction and segmentation accuracy is calculated
for different number of people in the scene as seen in
Table 14. The reconstruction and segmentation accuracy
slightly decreases with the increase in the number of peo-
ple in the scene, due to increased occlusion and clutter in the
scene.

4.9 Limitations

Gross errors in initial semantic instance segmentation and 3D
pose estimation lead to degradation in the quality of results
(e.g. the cars in Juggler2 - Fig. 9).

Small errors in semantic segmentation, initial coarse
reconstruction and 3D pose are handled gracefully by the
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Fig. 15 4DReconstruction demonstrated onWembley dataset. Top row shows different cameras for Frame 105 and bottom rows show reconstruction
from 3 different randomly picked viewpoints

Fig. 16 4D Reconstruction demonstrated on Soccer dataset for frame 40, 50 and 60. Unique colours are assigned to the reconstruction of each
player in the cropped image for frame 1 and the colours are reliably propagated across the sequence

proposed method. This is evident from Fig. 9 where the ini-
tial semantic segmentationMRCNN has small errors and the
final result of the proposed method improves the semantic
segmentation. However, large errors over successive frames
in semantic segmentation propagate through the optimiza-
tion, which reduces the quality of the final segmentation and
reconstruction as seen is Fig. 16.The final reconstructions
look incomplete because of large errors in initial semantic
segmentation.

Also errors in the initial coarse reconstruction, for exam-
ple an incomplete initial coarse reconstruction with missing
human limb will lead to incomplete final reconstruction.
Gross errors in 3D pose estimation for crowded scenes may
lead to errors in the final reconstruction. Failure or errors
in key-frame detection only slightly degrades the quality of
the flow estimate from the proposed approach. Although 3D
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Table 13 Quantitative
comparison of segmentation,
reconstruction and motion
estimation obtained from
proposed 4D scene
understanding framework on
sports datasets

Segmentation results

Dataset Football Wembley Soccer

Dv3+ Chen and Zhu (2018) 49.9 46.5 39.8

MRCNN He et al. (2017) 50.4 46.7 40.2

SCSR Mustafa and Hilton (2017) 58.1 51.6 43.4

Proposed 71.7 68.5 65.3

Reconstruction results

Dataset Football Wembley Soccer

SCSR Mustafa and Hilton (2017) 1.19 1.36 1.62

Proposed 0.70 0.79 0.82

Motion estimation results

Dataset Football Wembley Soccer

Deepflow Weinzaepfel et al. (2013) 1.98 2.21 2.43

4DMatch Mustafa et al. (2016) 1.66 1.89 2.05

Proposed 0.91 1.02 1.15

Bold values indicate best performing method

Fig. 17 Reconstruction Results on the Multi-view Synthetic Dataset

human pose helps in robust 4D reconstruction of interact-
ing people in dynamic scenes, current 3D pose estimation
is unreliable for highly crowded environments resulting in
degradation of the proposed approach.

Table 14 Quantitative comparison of segmentation and reconstruction
accuracy on multi-view synthetic multiple people dataset

Reconstruction results Segmentation results

2 people 0.45 91.7

4 people 0.45 91.5

6 people 0.47 91.1

8 people 0.48 90.8

10 people 0.51 90.4

For reconstruction evaluation, projection error across views is shown
and for segmentation evaluation Intersection-of-union metric is shown

5 Conclusions

This paper introduced the first automatic method for 4D
dynamic scene understanding of multiple interacting people
from multi-view video that does not need any ground-truth
data for training or manual intervention. A novel joint flow,
reconstruction and semantic instance segmentation estima-
tion framework is introduced exploiting 2D/3D human-pose,
motion, semantic, shape and appearance information in space
and time. Ablation study on the joint optimisation demon-
strates the effectiveness of the proposed scene understanding
framework for general scenes with multiple interacting peo-
ple. The semantic, motion and depth information per view is
fused spatially across views for 4D semantically and tempo-
rally coherent scene understanding. A fully automatic system
is presented for multiple view semantic instance segmenta-
tion, 4D reconstruction and motion estimation from moving
broadcast cameras to allow full 4D scene understanding of
in the wild sports data such as soccer. Extensive evalua-
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tion against state-of-the-art methods on a variety of complex
indoor and outdoor datasets with large non-rigid deforma-
tions demonstrates a significant improvement in the accuracy
in semantic segmentation, reconstruction, motion estimation
and 4D alignment.
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