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Abstract
The focus of this work is sign spotting–given a video of an isolated sign, our task is to identify whether and where it has
been signed in a continuous, co-articulated sign language video. To achieve this sign spotting task, we train a model using
multiple types of available supervision by: (1) watching existing footage which is sparsely labelled using mouthing cues; (2)
reading associated subtitles (readily available translations of the signed content) which provide additional weak-supervision;
(3) looking up words (for which no co-articulated labelled examples are available) in visual sign language dictionaries to
enable novel sign spotting. These three tasks are integrated into a unified learning framework using the principles of Noise
Contrastive Estimation andMultiple InstanceLearning.Wevalidate the effectiveness of our approach on low-shot sign spotting
benchmarks. In addition, we contribute a machine-readable British Sign Language (BSL) dictionary dataset of isolated signs,
BslDict, to facilitate study of this task. The dataset, models and code are available at our project page.

Keywords Sign language recognition · Sign spotting · Few-shot learning

1 Introduction

The objective of this work is to develop a sign spotting
model that can identify and localise instances of signs within
sequences of continuous sign language (see Fig. 1). Sign
languages represent the natural means of communication for
deaf communities (Sutton-Spence and Woll 1999) and sign
spotting has a broad range of practical applications. Exam-
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ples include: indexing videos of signing content by keyword
to enable content-based search; gathering diverse dictionar-
ies of sign exemplars from unlabelled footage for linguistic
study; automatic feedback for language students via an “auto-
correct” tool (e.g. “did you mean this sign?”); making voice
activated wake word devices available to deaf communi-
ties; and building sign language datasets by automatically
labelling examples of signs.

Recently, deep neural networks, equipped with large-
scale, labelled datasets produced considerable progress in
audio (Coucke et al. 2019; Véniat et al. 2019) and visual
(Momeni et al. 2020; Stafylakis and Tzimiropoulos 2018)
keyword spotting in spoken languages. However, a direct
replication of these keyword spotting successes in sign
language requires a commensurate quantity of labelled
data [(note that modern audiovisual spoken keyword spot-
ting datasets contain millions of densely labelled examples
(Chung et al. 2017; Afouras et al. 2018)], but such datasets
are not available for sign language.

It might be thought that a sign language dictionary would
offer a relatively straightforward solution to the sign spotting
task, particularly to the problem of covering only a limited
vocabulary in existing large-scale corpora. But, unfortu-
nately, this is not the case due to the severedomain differences
between dictionaries and continuous signing in the wild. The
challenges are that sign language dictionaries typically: (1)
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consist of isolated signs which differ in appearance from the
co-articulated1 sequences of continuous signs (for which
we ultimately wish to perform spotting); and (2) differ in
speed (are performed more slowly) relative to co-articulated
signing. Furthermore, (3) dictionaries only possess a few
examples of each sign (so learning must be low shot); and
as one more challenge, (4) there can be multiple signs cor-
responding to a single keyword, for example due to regional
variations of the sign language (Schembri et al. 2017). We
show through experiments in Sect. 4, that directly training a
sign spotter for continuous signing on dictionary examples,
obtained from an internet-sourced sign language dictionary,
does indeed perform poorly.

To address these challenges, we propose a unified frame-
work in which sign spotting embeddings are learned from
the dictionary (to provide broad coverage of the lexicon)
in combination with two additional sources of supervision.
In aggregate, these multiple types of supervision include:
(1)watching sign language and learning from existing sparse
annotations obtained from mouthing cues (Albanie et al.
2020); (2) exploiting weak-supervision by reading the subti-
tles that accompany the footage and extracting candidates
for signs that we expect to be present; (3) looking up
words (for which we do not have labelled examples) in
a sign language dictionary. The recent development of a
large-scale, subtitled dataset of continuous signing providing
sparse annotations (Albanie et al. 2020) allows us to study
this problem setting directly. We formulate our approach
as a Multiple Instance Learning problem in which posi-
tive samples may arise from any of the three sources and
employ Noise Contrastive Estimation (Gutmann andHyväri-
nen 2010) to learn a domain-invariant (valid across both
isolated and co-articulated signing) representation of sign-
ing content.

Our loss formulation is an extension of InfoNCE (Oord
et al. 2018; Wu et al. 2018) [and in particular the multiple
instance variant MIL-NCE (Miech et al. 2020)]. The novelty
of our method lies in the batch formulation that leverages
the mouthing annotations, subtitles, and visual dictionaries
to define positive and negative bags. Moreover, this work
specifically focuses on computing similarities across two
different domains to learn matching between isolated and
co-articulated signing.

We make the following contributions, originally intro-
duced in Momeni et al. (2020): (1) We provide a machine
readable British Sign Language (BSL) dictionary dataset
of isolated signs, BslDict, to facilitate study of the sign
spotting task; (2) We propose a unified Multiple Instance
Learning framework for learning sign embeddings suitable
for spotting from three supervisory sources; (3) We vali-

1 Co-articulation refers to changes in the appearance of the current sign
due to neighbouring signs.

date the effectiveness of our approach on a co-articulated
sign spotting benchmark for which only a small number
(low-shot) of isolated signs are provided as labelled training
examples, and (4) achieve state-of-the-art performance on
the BSL-1K sign spotting benchmark (Albanie et al. 2020)
(closed vocabulary). We show qualitatively that the learned
embeddings can be used to (5) automatically mine new sign-
ing examples, and (6) discover “faux amis” (false friends)
between sign languages. In addition, we extend these contri-
butions with (7) the demonstration that our framework can be
effectively deployed to obtain large numbers of sign exam-
ples, enabling state-of-the-art performance to be reached
on the BSL-1K sign recognition benchmark (Albanie et al.
2020), and on the recently released BOBSL dataset (Albanie
et al. 2021).

2 RelatedWork

Our work relates to several themes in the literature: sign lan-
guage recognition (and more specifically sign spotting), sign
language datasets, multiple instance learning and low-shot
action localization. We discuss each of these themes next.

Sign language recognition. The study of automatic sign
recognition has a rich history in the computer vision com-
munity stretching back over 30 years, with early methods
developing carefully engineered features to model trajec-
tories and shape (Kadir et al. 2004; Tamura and Kawasaki
1988; Starner 1995; Fillbrandt et al. 2003). A series of tech-
niques then emerged which made effective use of hand and
body pose cues through robust keypoint estimation encod-
ings (Buehler et al. 2009; Cooper et al. 2011; Ong et al.
2012; Pfister et al. 2014). Sign language recognition also
has been considered in the context of sequence prediction,
with HMMs (Agris et al. 2008; Forster et al. 2013; Starner
1995; Kadir et al. 2004), LSTMs (Camgoz et al. 2017;
Huang et al. 2018; Ye and Tian 2018; Zhou et al. 2020),
and Transformers (Camgoz et al. 2020) proving to be effec-
tive mechanisms for this task. Recently, convolutional neural
networks have emerged as the dominant approach for appear-
ancemodelling (Camgoz et al. 2017), and in particular, action
recognitionmodels using spatio-temporal convolutions (Car-
reira and Zisserman 2017) have proven very well-suited for
video-based sign recognition (Joze and Koller 2019; Li et
al. 2019; Albanie et al. 2020). We adopt the I3D architec-
ture (Carreira andZisserman2017) as a foundational building
block in our studies.

Sign language spotting. The sign language spotting
problem—in which the objective is to find performances of a
sign (or sign sequence) in a longer sequence of signing—
has been studied with Dynamic Time Warping and skin
colour histograms (Viitaniemi et al. 2014) and with Hier-
archical Sequential Patterns (Eng-Jon et al. 2014). Different
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from our work which learns representations from multiple
weak supervisory cues, these approaches consider a fully-
supervised setting with a single source of supervision and
use hand-crafted features to represent signs (Farhadi et al.
2007). Our proposed use of a dictionary is also closely tied to
one-shot/few-shot learning, in which the learner is assumed
to have access to only a handful of annotated examples of
the target category. One-shot dictionary learning was stud-
ied by Pfister et al. (2014)—different to their approach, we
explicitly account for variations in the dictionary for a given
word (and validate the improvements brought by doing so
in Sect. 4). Textual descriptions from a dictionary of 250
signs were used to study zero-shot learning by Bilge et al.
(2019)—we instead consider the practical setting in which a
handful of video examples are available per-sign and work
with a much larger vocabulary (9K words and phrases).

The use of dictionaries to locate signs in subtitled video
also shares commonalitieswith domain adaptation, since our
method must bridge differences between the dictionary and
the target continuous signing distribution. A vast number of
techniques have been proposed to tackle distribution shift,
including several adversarial feature alignment methods that
are specialised for the few-shot setting (Motiian et al. 2017;
Zhang et al. 2019). In our work, we explore the domain-
specific batch normalization (DSBN) method of Chang et
al. (2019), finding ultimately that simple batch normaliza-
tion parameter re-initialization is insteadmost effectivewhen
jointly training on two domains after pre-training on the big-
ger domain. The concurrent work of Li et al. (2020) also
seeks to align representation of isolated and continuous signs.
However, our work differs from theirs in several key aspects:
(1) rather than assuming access to a large-scale labelled
dataset of isolated signs, we consider the setting in which
only a handful of dictionary examples may be used to repre-
sent a word; (2) we develop a generalised Multiple Instance
Learning frameworkwhich allows the learning of representa-
tions from weakly-aligned subtitles whilst exploiting sparse
labels from mouthings (Albanie et al. 2020) and dictionaries
(this integrates cues beyond the learning formulation in Li
et al. (2020)); (3) we seek to label and improve performance
on co-articulated signing (rather than improving recognition
performance on isolated signing). Also related to our work,
(Pfister et al. 2014) uses a “reservoir” of weakly labelled
sign footage to improve the performance of a sign classifier
learned from a small number of examples. Different to Pfister
et al. (2014), we propose a multiple instance learning formu-
lation that explicitly accounts for signing variations that are
present in the dictionary (Fig. 2).

Sign language datasets. A number of sign language
datasets have been proposed for studying Finnish (Viitaniemi
et al. 2014), German (Koller et al. 2015; Agris et al. 2008),
American (Athitsos et al. 2008; Joze and Koller 2019; Li
et al. 2019; Wilbur and Kak 2006) and Chinese (Chai et al.

2014; Huang et al. 2018) sign recognition. For British Sign
Language (BSL), (Schembri et al. 2013) gathered the BSL
Corpus which represents continuous signing, labelled with
fine-grained linguistic annotations. More recently (Albanie
et al. 2020) collected BSL-1K, a large-scale dataset of
BSL signs that were obtained using a mouthing-based key-
word spotting model. Further details on this method are
given in Sect. 3.1. In this work, we contribute BslDict, a
dictionary-style dataset that is complementary to the datasets
of Schembri et al. (2013), Albanie et al. (2020)—it contains
only a handful of instances of each sign, but achieves a com-
prehensive coverage of the BSL lexicon with a 9K English
vocabulary (vs a 1K vocabulary in Albanie et al. (2020)). As
we show in the sequel, this dataset enables a number of sign
spotting applications. While BslDict does not represent a
linguistic corpus, as the correspondences to English words
and phrases are not carefully annotated with glosses2, it is
significantly larger than its linguistic counterparts (e.g., 4K
videos corresponding to 2K words in BSL SignBank (Fen-
lon et al. 2014), as opposed to 14K videos of 9K words in
BslDict), therefore BslDict is particularly suitable to be
used in conjunction with subtitles.

Multiple instance learning. Motivated by the readily
available sign language footage that is accompanied by subti-
tles, a number ofmethods have been proposed for learning the
association between signs andwords that occur in the subtitle
text (Buehler et al. 2009; Cooper andBowden 2009; Pfister et
al. 2014; Chung and Zisserman 2016). In this work, we adopt
the framework of Multiple Instance Learning (MIL) (Diet-
terich et al. 1997) to tackle this problem, previously explored
by Buehler et al. (2009), Pfister et al. (2013). Our work
differs from these works through the incorporation of a dic-
tionary, and a principled mechanism for explicitly handling
sign variants, to guide the learning process. Furthermore, we
generalise the MIL framework so that it can learn to further
exploit sparse labels. We also conduct experiments at signif-
icantly greater scale to make use of the full potential of MIL,
consideringmore than two orders of magnitude more weakly
supervised data than (Buehler et al. 2009; Pfister et al. 2013).

Low-shot action localization. This theme investigates
semantic video localization: given one or more query videos
the objective is to localize the segment in an untrimmed video
that corresponds semantically to the query video (Feng et al.
2018; Yang et al. 2018; Cao et al. 2020). Semantic matching
is too general for the sign-spotting considered in this paper.
However, we build on the temporal ordering ideas explored
in this theme.

2 Glosses are atomic lexical units used to annotate sign languages.
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Fig. 1 We consider the task of sign spotting in co-articulated, contin-
uous signing. Given a query dictionary video of an isolated sign (e.g.,
“apple”), we aim to identify whether and where it appears in videos of

continuous signing. The wide domain gap between dictionary examples
of isolated signs and target sequences of continuous signing makes the
task extremely challenging (Color figure online)

Fig. 2 The proposed Watch, Read and Lookup framework trains sign
spotting embeddings with three cues: (1) watching videos and learn-
ing from sparse annotation in the form of localised signs obtained from
mouthings (Albanie et al. 2020) (lower-left); (2) reading subtitles to find

candidate signs that may appear in the source footage (top); (3) look-
ing up corresponding visual examples in a sign language dictionary
and aligning the representation against the embedded source segment
(lower-right) (Color figure online)

3 Learning Sign Spotting Embeddings from
Multiple Supervisors

In this section, we describe the task of sign spotting and
the three forms of supervision we assume access to. Let XL

denote the space ofRGBvideo segments containing a frontal-
facing individual communicating in sign language L and
denote byX single

L its restriction to the set of segments contain-
ing a single sign. Further, let T denote the space of subtitle
sentences and VL = {1, . . . , V } denote the vocabulary—an

index set corresponding to an enumeration of written words
that are equivalent to signs that can be performed in L3.

Our objective, illustrated in Fig. 1, is to discover all occur-
rences of a given keyword in a collection of continuous
signing sequences. To do so, we assume access to: (i) a
subtitled collection of videos containing continuous sign-

3 Sign language dictionaries provide a word-level or phrase-level cor-
respondence (between sign language and spoken language) for many
signs but no universally accepted glossing scheme exists for transcribing
languages such as BSL (Sutton-Spence and Woll 1999).
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Fig. 3 Mouthing-based sign annotation from (Albanie et al. 2020):
(Left, the annotation pipeline): Stage 1: for a given sign (e.g. “happy”),
each instance of the word in the subtitles provides a candidate tem-
poral segment where the sign may occur (the subtitle timestamps are
padded by several seconds to account for the asynchrony between audio-
aligned subtitles and signing interpretation); Stage 2: a mouthing visual

keyword spotter uses the lip movements of the signer to perform pre-
cise localisation of the sign within this window. (Right): Examples of
localised signs through mouthings from the BSL-1K dataset- produced
by applying keyword spotting for a vocabulary of 1K words (Color
figure online)

ing, S = {(xi , si ) : i ∈ {1, . . . , I }, xi ∈ XL, si ∈ T };
(ii) a sparse collection of temporal sub-segments of these
videos that have been annotated with their corresponding
word, M = {(xk, vk) : k ∈ {1, . . . , K }, vk ∈ VL, xk ∈
X single
L , ∃(xi , si ) ∈ S s.t . xk ⊆ xi }; (iii) a curated dictionary

of signing instances D = {(x j , v j ) : j ∈ {1, . . . , J }, x j ∈
X single
L , v j ∈ VL}. To address the sign spotting task, we

propose to learn a data representation f : XL → R
d

that maps video segments to vectors such that they are dis-
criminative for sign spotting and invariant to other factors
of variation. Formally, for any labelled pair of video seg-
ments (x, v), (x ′, v′) with x, x ′ ∈ XL and v, v′ ∈ VL, we
seek a data representation, f , that satisfies the constraint
δ f (x) f (x ′) = δvv′ , where δ represents the Kronecker delta.

3.1 Sparse Annotations fromMouthing Cues

As the source of temporal video segmentswith corresponding
word annotations, M, we make use of automatic anno-
tations that were collected as part of our prior work on
visual keyword spotting with mouthing cues (Albanie et
al. 2020), which we briefly recap here. Signers sometimes
mouth a word while simultaneously signing it, as an addi-
tional signal (Bank et al. 2011; Sutton-Spence andWoll 1999;
Sutton-Spence 2007), performing similar lip patterns as for
the spoken word. Figure 3 presents an overview of how we
use such mouthings to spot signs.

As a starting point for this approach, we assume access
to TV footage that is accompanied by: (i) a frontal facing
sign language interpreter, who provides a translation of the
spoken content of the video, and (ii) a subtitle track, rep-
resenting a direct transcription of the spoken content. The
method of Albanie et al. (2020) first searches among the
subtitles for any occurrences of “keywords” from a given
vocabulary. Subtitles containing these keywords provide a
set of candidate temporal windows in which the interpreter
may have produced the sign corresponding to the keyword
(see Fig. 3, Left, Stage 1). However, these temporal windows
are difficult to make use of directly since: (1) the occurrence
of a keyword in a subtitle does not ensure the presence of
the corresponding sign in the signing sequence, (2) the sub-
titles themselves are not precisely aligned with the signing,
and can differ in time by several seconds. To address these
issues, (Albanie et al. 2020) demonstrated that the sign cor-
responding to a particular keyword can be localised within
a candidate temporal window—given by the padded subtitle
timings to account for the asynchrony between the audio-
aligned subtitles and signing interpretation—by searching
for its spoken components (Sutton-Spence and Woll 1999)
amongst themouthmovements of the interpreter.While there
are challenges associated with using spoken components as
a cue [signers do not typically mouth continuously and may
only produce mouthing patterns that correspond to a portion
of the keyword (Sutton-Spence and Woll 1999)], it has the
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significant advantage of transforming the general annotation
problem from classification (i.e., “which sign is this?”) into
the much easier problem of localisation (i.e., “find a given
token amongst a short sequence”). In Albanie et al. (2020),
the visual keyword spotter uses the candidate temporal win-
dow with the target keyword to estimate the probability that
the signwasmouthed at each time step. If the peakprobability
over time is above a threshold parameter, the predicted loca-
tion of the sign is taken as the 0.6 swindow starting before the
position of the peak probability (see Fig. 3, Left, Stage 2). For
building theBSL-1Kdataset,Albanie et al. (2020) use a prob-
ability threshold of 0.5 and runs the visual keyword spotter
with a vocabulary of 1350 keywords across 1000h of sign-
ing. A further filtering step is performed on the vocabulary to
ensure that each word included in the dataset is represented
with high confidence (at least one instance with confidence
0.8) in the training partition, which produces a final dataset
vocabulary of 1064words. The resulting BSL-1K dataset has
273Kmouthing annotations, some of which are illustrated in
Fig. 3 (right). We employ these annotations directly to form
the setM in this work.

3.2 Integrating Cues ThroughMultiple Instance
Learning

To learn f , we must address several challenges. First,
as noted in Sect. 1, there may be a considerable distribu-
tion shift between the dictionary videos of isolated signs in
D and the co-articulated signing videos in S. Second, sign
languages often contain multiple sign variants for a single
written word (e.g., resulting from regional variations and
synonyms). Third, since the subtitles in S are only weakly
aligned with the sign sequence, we must learn to associate
signs andwords from a noisy signal that lacks temporal local-
isation. Fourth, the localised annotations provided byM are
sparse, and therefore we must make good use of the remain-
ing segments of subtitled videos in S if we are to learn an
effective representation.

Given full supervision, we could simply adopt a pairwise
metric learning approach to align segments from the videos
in S with dictionary videos fromD by requiring that f maps
a pair of isolated and co-articulated signing segments to the
same point in the embedding space if they correspond to the
same sign (positive pairs) and apart if they do not (negative
pairs). As noted above, in practice we do not have access
to positive pairs because: (1) for any annotated segment
(xk, vk) ∈ M, we have a set of potential sign variations rep-
resented in the dictionary (annotated with the common label
vk), rather than a single unique sign; (2) since S provides
only weak supervision, even when a word is mentioned in
the subtitles we do not know where it appears in the continu-
ous signing sequence (if it appears at all). These ambiguities
motivate aMultiple InstanceLearning (Dietterich et al. 1997)

(MIL) objective. Rather than forming positive and negative
pairs, we instead form positive bags of pairs,Pbags, in which
we expect at least one pairing between a segment fromavideo
in S and a dictionary video fromD to contain the same sign,
and negative bags of pairs, N bags, in which we expect no
(video segment, dictionary video) pair to contain the same
sign. To incorporate the available sources of supervision into
this formulation, we consider two categories of positive and
negative bag formations, described next ( a formalmathemat-
ical description of the positive and negative bags described
below is deferred to

Watch and Lookup: Using Sparse Annotations and
Dictionaries Here, we describe a baseline where we assume
no subtitles are available. To learn f from M and D, we
define each positive bag as the set of possible pairs between
a labelled (foreground) temporal segment of a continuous
video from M and the examples of the corresponding sign
in the dictionary (green regions in The key assumption here
is that each labelled sign segment from M matches at least
one sign variation in the dictionary. Negative bags are con-
structed by (i) anchoring on a continuous foreground segment
and selecting dictionary examples corresponding to different
words from other batch items; (ii) anchoring on a dictio-
nary foreground set and selecting continuous foreground
segments from other batch items (red regions in Tomaximize
the number of negatives within one minibatch, we sample a
different word per batch item.

Watch, Read and Lookup: Using Sparse Annotations,
Subtitles and Dictionaries. Using just the labelled sign seg-
ments fromM to construct bags has a significant limitation:
f is not encouraged to represent signs beyond the initial
vocabulary represented inM. We therefore look at the subti-
tles (which contain words beyondM) to construct additional
bags. We determine more positive bags between the set of
unlabelled (background) segments in the continuous footage
and the set of dictionaries corresponding to the background
words in the subtitle (green regions in Fig. 4, right-bottom).
Negatives (red regions in Fig. 4) are formed as the com-
plements to these sets by (i) pairing continuous background
segments with dictionary samples that can be excluded as
matches (through subtitles) and (ii) pairing background dic-
tionary entries with the foreground continuous segment. In
both cases, we also define negatives from other batch items
by selecting pairs where the word(s) have no overlap, e.g.,
in Fig. 4, the dictionary examples for the background word
‘speak’ from the second batch item are negatives for the
background continuous segments from the first batch item,
corresponding to the unlabelled words ‘name’ and ‘what’ in
the subtitle.

To assess the similarity of two embedded video segments,
we employ a similarity function ψ : Rd × R

d → R whose
value increases as its arguments becomemore similar (in this
work, we use cosine similarity). For notational convenience
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Fig. 4 Batch sampling and positive/negative pairs We illustrate the for-
mation of a batch when jointly training on continuous signing video
(squares) and dictionaries of isolated signing (circles). Left For each
continuous video, we sample the dictionaries corresponding to the
labelled word (foreground), as well as to the rest of the subtitles (back-
ground). Right:We construct positive/negative pairs by anchoring at 4

different portions of a batch item: continuous foreground/background
and dictionary foreground/background. Positives and negatives (defined
across continuous and dictionary domains) are green and red, respec-
tively; anchors have a dashed border (see Appendix C.2 for details)
(Color figure online)

below, we write ψi j as shorthand for ψ( f (xi ), f (x j )). To
learn f , we consider a generalization of the InfoNCE loss
(Oord et al. 2018; Wu et al. 2018) (a non-parametric softmax
loss formulation of Noise Contrastive Estimation Gutmann
and Hyvärinen 2010) recently proposed by Miech et al.
(2020) as MIL-NCE loss:

L = −Ei

[
log

∑
( j,k)∈P(i)

eψ jk/τ

∑
( j,k)∈P(i)

eψ jk/τ + ∑
(l,m)∈N (i)

eψlm/τ

]
, (1)

where P(i) ∈ Pbags, N (i) ∈ N bags, τ , often referred to
as the temperature, is set as a hyperparameter (we explore
the effect of its value in Sect. 4).

3.3 Implementation Details

In this section, we provide details for the learning framework
covering the embedding architecture, sampling protocol and
optimization procedure.

Embedding architecture. The architecture comprises an
I3D spatio-temporal trunk network (Carreira and Zisserman
2017) to which we attach an MLP consisting of three linear
layers separated by leaky ReLU activations (with negative
slope 0.2) and a skip connection. The trunk network takes
as input 16 frames from a 224 × 224 resolution video clip
and produces 1024-dimensional embeddings which are then
projected to 256-dimensional sign spotting embeddings by
the MLP. More details about the embedding architecture can
be found in.

Joint pretraining. The I3D trunk parameters are ini-
tialised by pretraining for sign classification jointly over
the sparse annotations M of a continuous signing dataset
(BSL-1K Albanie et al. 2020) and examples from a sign dic-

tionary dataset (BslDict) which fall within their common
vocabulary. Since we find that dictionary videos of isolated
signs tend to be performed more slowly, we uniformly sam-
ple 16 frames from each dictionary video with a random
shift and random frame rate n times, where n is propor-
tional to the length of the video, and pass these clips through
the I3D trunk then average the resulting vectors before they
are processed by the MLP to produce the final dictionary
embeddings. We find that this form of random sampling per-
forms better than sampling 16 consecutive frames from the
isolated signing videos (see for more details). During pre-
training, minibatches of size 4 are used; and colour, scale
and horizontal flip augmentations are applied to the input
video, following the procedure described in Albanie et al.
(2020). The trunk parameters are then frozen and the MLP
outputs are used as embeddings. Both datasets are described
in detail in Sect. 4.1.

Minibatch sampling. To train the MLP given the pre-
trained I3D features, we sample data by first iterating over
the set of labelled segments comprising the sparse annota-
tions,M, that accompany the dataset of continuous, subtitled
sampling to formminibatches. For each continuous video,we
sample 16 consecutive frames around the annotated times-
tamp (more precisely a random offset within 20 frames
before, 5 frames after, following the timing study in Albanie
et al. (2020)). We randomly sample 10 additional 16-frame
clips from this video outside of the labelledwindow, i.e., con-
tinuous background segments. For each subtitled sequence,
we sample the dictionary entries for all subtitle words that
appear in VL (see Fig. 4 for a sample batch formation).

Our minibatch comprises 128 sequences of continuous
signing and their corresponding dictionary entries (we inves-
tigate the impact of batch size in Sect. 4.4). The embeddings
are then trained by minimising the loss defined in Eq. (1)
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in conjunction with positive bags, Pbags, and negative bags,
N bags, which are constructed on-the-fly for each minibatch
(see Fig. 4).

Optimization. We use a SGD optimizer with an initial
learning rate of 10−2 to train the embedding architecture. The
learning rate is decayed twice by a factor of 10 (at epochs 40
and 45).We train all models, including baselines and ablation
studies, for 50 epochs at which point we find that learning
has always converged.

Test time. To perform spotting, we obtain the embed-
dings learned with the MLP. For the dictionary, we have
a single embedding averaged over the video. Continuous
video embeddings are obtained with sliding window (stride
1) on the entire sequence. We show the importance of using
such a dense stride for a precise localisation in our ablations
(Sect. 4.4). However, for simplicity, all qualitative visual-
isations are performed with continuous video embeddings
obtained with a sliding window of stride 8.

We calculate the cosine similarity score between the con-
tinuous signing sequence embeddings and the embedding for
a given dictionary video. We determine the location with the
maximum similarity as the location of the queried sign. We
maintain embedding sets of all variants of dictionary videos
for a given word and choose the best match as the one with
the highest similarity.

4 Experiments

In this section, we first present the datasets used in
this work (including the contributed BslDict dataset) in
Sect. 4.1, followed by the evaluation protocol in Sect. 4.2.
We then illustrate the benefits of theWatch, Read and Lookup
learning framework for sign spotting against several base-
lines (Sect. 4.3) with a comprehensive ablation study that
validates our design choices (Sect. 4.4). Next, we investigate
three applications of our method in Sect. 4.5, showing that
it can be used to (i) not only spot signs, but also identify the
specific sign variant that was used, (ii) label sign instances in
continuous signing footage given the associated subtitles, and
(iii) discover “faux amis” between different sign languages.
We then provide experiments on sign language recognition,
significantly improving the state of the art by applying our
labelling technique to obtain more training examples auto-
matically (Sects. 4.6 and 4.7). Finally, we discuss limitations
of our sign spotting technique using dictionaries (Sect. 4.8).

4.1 Datasets

Although our method is conceptually applicable to a num-
ber of sign languages, in this work we focus primarily on
BSL, the sign language of British deaf communities. We use
BSL-1K (Albanie et al. 2020), a large-scale, subtitled and

sparsely annotated dataset of more than 1000h of continuous
signing which offers an ideal setting in which to evaluate the
effectiveness of the Watch, Read and Lookup sign spotting
framework. To provide dictionary data for the lookup compo-
nent of our approach, we also contribute BslDict, a diverse
visual dictionary of signs. These twodatasets are summarised
in Table 1 and described in more detail below. We further
include experiments on a new dataset, BOBSL (Albanie et
al. 2021),whichwedescribe in Sect. 4.7 togetherwith results.
The BOBSL dataset has similar properties to BSL-1K.

BSL-1K comprises over 1000 hours of video of contin-
uous sign-language-interpreted television broadcasts, with
accompanying subtitles of the audio content (Albanie et al.
2020). In Albanie et al. (2020), this data is processed for the
task of individual sign recognition: a visual keyword spotter
is applied to signer mouthings giving a total of 273K sparsely
localised sign annotations from a vocabulary of 1064 signs
(169K in the training partition as shown in Table 1). Please
refer to Sect. 3.1 and (Albanie et al. 2020) for more details
on the automatic annotation pipeline. We refer to Sect. 4.6
for a description of the BSL-1K sign recognition benchmark
(TestRec2K and TestRec37K in Table 1).

In this work, we process this data for the task of retrieval,
extracting long videos with associated subtitles. In partic-
ular, we pad ±2 s around the subtitle timestamps and we
add the corresponding video to our training set if there is
a sparse annotation from mouthing falling within this time
window—weassume this constraint indicates that the signing
is reasonably well-aligned with its subtitles. We further con-
sider only the videos whose subtitle duration is longer than
2s. For testing, we use the automatic test set (corresponding
to mouthing locations with confidences above 0.9). Thus we
obtain 78K training (TrainReT) and 2K test (TestReT) videos
as shown in Table 1, each of which has a subtitle of 8 words
on average and 1 sparse mouthing annotation.

BSLDICT. BSL dictionary videos are collected from a
BSL sign aggregation platform signbsl.com (British 1999),
givingus a total of 14,210video clips for a vocabulary of 9283
signs. Each sign is typically performed several times by dif-
ferent signers, often in different ways. The dictionary videos
are linked from 28 known website sources and each source
has at least 1 signer. We used face embeddings computed
with SENet-50 (Hu et al. 2019) (trained on VGGFace2 Cao
et al. 2018) to cluster signer identities and manually verified
that there are a total of 124 different signers. The dictionary
videos are of isolated signs (as opposed to co-articulated in
BSL-1K): this means (i) the start and end of the video clips
usually consist of a still signer pausing, and (ii) the sign is
performed at a much slower rate for clarity. We first trim
the sign dictionary videos, using body keypoints estimated
with OpenPose (Cao et al. 2018) which indicate the start and
end of wrist motion, to discard frames where the signer is
still. With this process, the average number of frames per
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video drops from 78 to 56 (still significantly larger than co-
articulated signs). To the best of our knowledge, BslDict is
the first curated, BSL sign dictionary dataset for computer
vision research. A collection of metadata associated for the
BslDict dataset is made publicly available, as well as our
pre-computed video embeddings from this work.

For the experiments in which BslDict is filtered to the
1064 vocabulary of BSL-1K, we have 3K videos as shown
in Table 1. Within this subset, each sign has between 1 and
10 examples (average of 3).

4.2 Evaluation Protocols

Protocols. We define two settings: (i) training with the entire
1064 vocabulary of annotations in BSL-1K; and (ii) training
on a subset with 800 signs. The latter is needed to assess the
performance on novel signs, for which we do not have access
to co-articulated labels at training.We thus use the remaining
264 words for testing. This test set is therefore common to
both training settings, it is either ‘seen’ or ‘unseen’ at training.
However, we do not limit the vocabulary of the dictionary as
a practical assumption, for which we show benefits.

Metrics. The performance is evaluated based on ranking
metrics as in retrieval. For every sign si in the test vocab-
ulary, we first select the BSL-1K test set clips which have
a mouthing annotation of si and then record the percent-
age of times that a dictionary clip of si appears in the first
5 retrieved results, this is the “Recall at 5” (R@5). This is
motivated by the fact that different English words can corre-
spond to the same sign, and vice versa. We also report mean
average precision (mAP). For each video pair, the match is
considered correct if (i) the dictionary clip corresponds to si
and the BSL-1K video clip has a mouthing annotation of si ,
and (ii) if the predicted location of the sign in the BSL-1K
video clip, i.e., the time frame where the maximum simi-
larity occurs, lies within certain frames around the ground
truth mouthing timing. In particular, we determine the cor-
rect interval to be defined between 20 frames before and 5
frames after the labelled time (based on the study in Albanie
et al. (2020)). Finally, because the BSL-1K test set is class-
unbalanced, we report performances averaged over the test
classes.

4.3 Comparison to Baselines

In this section, we evaluate different components of our
approach.Wefirst compare our contrastive learning approach
with classification baselines. Then, we investigate the effect
of our multiple-instance loss formulation. Finally, we report
performance on a sign spotting benchmark.

I3D baselines. We start by evaluating baseline I3D mod-
els trained with classification on the task of spotting, using
the embeddings before the classification layer.We have three

variants in Table 2: (i) I3DBSL-1K provided by Albanie et al.
(2020) which is trained only on the BSL-1K dataset, and we
also train (ii) I3DBslDict and (iii) I3DBSL-1K,BslDict. Train-
ing only on BslDict (I3DBslDict) performs significantly
worse due to the few examples available per class and the
domain gap that must be bridged to spot co-articulated signs,
suggesting that dictionary samples alone do not suffice to
solve the task. We observe improvements with fine-tuning
I3DBSL-1K jointly on the two datasets (I3DBSL-1K,BslDict),
which becomes our base feature extractor for the remaining
experiments to train a shallow MLP.

Loss formulation. We first train the MLP parameters on
top of the frozen I3D trunk with classification to establish a
baseline in a comparable setup. Note that, this shallow archi-
tecture can be trained with larger batches than I3D. Next, we
investigate variants of our loss to learn a joint sign embedding
between BSL-1K and BslDict video domains: (i) standard
single-instance InfoNCE (Oord et al. 2018; Wu et al. 2018)
loss which pairs each BSL-1K video clip with one positive
BslDict clip of the same sign, (ii)Watch-Lookupwhich con-
siders multiple positive dictionary candidates, but does not
consider subtitles (therefore limited to the annotated video
clips). Table 2 summarises the results. Our Watch-Read-
Lookup formulation which effectively combines multiple
sources of supervision in a multiple-instance framework
outperforms the other baselines in both seen and unseen pro-
tocols.

Extending the vocabulary. The results presented so far
were using the same vocabulary for both continuous and dic-
tionary datasets. In reality, one can assume access to the entire
vocabulary in the dictionary, but obtaining annotations for the
continuous videos is prohibitive. Table 3 investigates remov-
ing the vocabulary limit on the dictionary side, but keeping
the continuous annotations vocabulary at 800 signs.We show
that using the full 9k vocabulary from BslDict improves the
results on the unseen setting.

BSL-1K sign spotting benchmark. Although our learn-
ing framework primarily targets good performance on unseen
continuous signs, it can also be naively applied to the (closed-
vocabulary) sign spotting benchmark proposed by Albanie et
al. (2020). The sign spotting benchmark requires a model to
localise every instance belonging to a given set of sign classes
(334 in total) within long sequences of untrimmed footage.
The benchmark is challenging because each sign appears
infrequently (corresponding to approximately one positive
instance in every 90minutes of continuous signing).We eval-
uate the performance of our Watch-Read-Lookup model and
achieve a score of 0.170 mAP, outperforming the previous
state-of-the-art performance of 0.160 mAP (Albanie et al.
2020).
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Table 2 The effect of the loss formulation: Embeddings learned with the classification loss are suboptimal since they are not trained for matching
the two domains.

Train (1064) Train (800)
Seen (264) Unseen (264)

Embedding arch. Supervision mAP R@5 mAP R@5

I3DBslDict Classification 2.68 3.57 1.21 1.29

I3DBSL-1K Albanie et al. (2020) Classification 13.09 17.25 6.74 8.94

I3DBSL-1K,BslDict Classification 19.81 25.57 4.81 6.89

I3DBSL-1K,BslDict+MLP Classification 37.13 ± 0.29 39.68 ± 0.57 10.33 ± 0.43 13.33 ± 1.11

I3DBSL-1K,BslDict+MLP InfoNCE 43.59 ± 0.76 52.59 ± 0.75 11.40 ± 0.42 14.76 ± 0.40

I3DBSL-1K,BslDict+MLP Watch-Lookup 44.72 ± 0.85 55.51 ± 2.17 11.02 ± 0.27 15.03 ± 0.45

I3DBSL-1K,BslDict+MLP Watch-Read-Lookup 47.93 ± 0.20 60.76 ± 1.45 14.86 ± 1.29 19.85 ± 1.94

Contrastive-based loss formulations (NCE) significantly improve, particularly whenwe adopt themultiple-instance variant introduced as ourWatch-
Read-Lookup framework of multiple supervisory signals. We report the relatively cheaper MLP-based models with three random seeds for each
model and report the mean and the standard deviation
Best performances are highlighted in bold following standard practice

Table 3 Extending the
dictionary vocabulary We show
the benefits of sampling
dictionary videos outside of the
sparse annotations, using
subtitles.

Supervision Dictionary Vocab mAP R@5

Watch-Read-Lookup 800 training vocab 14.86 ± 1.29 19.85 ± 1.94

Watch-Read-Lookup 9K full vocab 15.82 ± 0.48 21.67 ± 0.72

Extending the lookup to the dictionary from the subtitles to the full vocabulary of BslDict brings significant
improvements for novel signs (the training uses sparse annotations for the 800 words, and the remaining 264
for test)
Best performances are highlighted in bold following standard practice

Fig. 5 The effect of a the batch size that determines the number of negatives across sign classes and b the temperature hyper-parameter for the
MIL-NCE loss in Watch-Lookup against mAP and R@5 (trained on the full 1064 vocab.) (Color figure online)

4.4 Ablation Study

We provide ablations for the learning hyperparameters, such
as the batch size and the temperature; the mouthing confi-
dence threshold as the training data selection parameter; and
the stride parameter of the sliding window at test time.

Batch size. Next, we investigate the effect of increas-
ing the number of negative pairs by increasing the batch
size when training with Watch-Lookup on 1064 categories.
We observe in Fig. 5a an improvement in performance with
a greater number of negatives before saturating. Our final
Watch-Read-Lookup model has high memory requirements,

for which we use 128 batch size. Note that the effective size
of the batch with our sampling is larger due to sampling extra
video clips corresponding to subtitles.

Temperature. Finally, we analyze the impact of the
temperature hyperparameter τ on the performance ofWatch-
Lookup. We conclude from Fig. 5b that setting τ to values
between [0.04–0.10] does not impact the performance sig-
nificantly; therefore, we keep τ = 0.07 following the
previous work (Wu et al. 2018; He et al. 2020) for all
other experiments. However, values outside this range nega-
tively impact the performance, especially for high values, i.e.,
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Table 4 Mouthing confidence threshold the results suggest that lower
confidence automatic annotations of BSL-1K provide better training,
by increasing the amount of data (training on the full 1064 vocabulary
with Watch-Lookup)

Mouthing confidence Training size mAP R@5

0.9 10K 37.55 47.54

0.8 21K 39.49 48.84

0.7 33K 41.87 51.15

0.6 49K 42.44 52.42

0.5 78K 43.65 53.03

{0.50, 1.00}; we observe a major decrease in performance
when τ approaches 1.

Mouthingconfidence thresholdat training.As explained
in Sect. 3.1, the sparse annotations from the BSL-1K dataset
are obtained automatically by running a visual keyword spot-
ting method based on mouthing cues. The dataset provides a
confidence value associated with each label ranging between
0.5 and 1.0. Similar to Albanie et al. (2020), we experiment
with different thresholds to determine the training set. Lower
thresholds result in a noisier but larger training set. From
Table 4, we conclude that 0.5mouthing confidence threshold
performs the best. This is in accordance with the conclusion
from Albanie et al. (2020).

Effect of the sliding window stride. As explained in
Sect. 3.3, at test time, we extract features from the continu-
ous signing sequence using a sliding window approach with
1 frame as the stride parameter. In Table 5, we investigate the
effect of the stride parameter. Our window size is 16 frames,
i.e., the number of input frames for the I3D feature extractor.
A standard approach when extracting features from longer
videos is to use a sliding window with 50% overlap (i.e.,
stride of 8 frames). However, this means the temporal reso-
lution of the search space is reduced by a factor of 8, and a
stride of 8 may skip the most discriminative moment since
a sign duration is typically between 7-13 frames (but can be
shorter) (Pfister et al. 2013) in continuous signing video. In
Table 5, we see that we can gain a significant localisation
improvement by computing the similarities more densely,
e.g., stride of 4 frames may be sufficiently dense. In our
experiments, we use stride 1.

We refer to for additional ablations.

4.5 Applications

In this section, we investigate three applications of our sign
spotting method.

Sign variant identification. We show the ability of our
model to spot specifically which variant of the sign was used.
In Fig. 6, we observe high similarity scores when the vari-
ant of the signmatches in both BSL-1K and BslDict videos.

Table 5 Stride parameter of
sliding window A small stride at
test time, when extracting
embeddings from the
continuous signing video,
allows us to temporally localise
the signs more precisely

Stride mAP R@5

16 31.96 38.98

8 38.46 47.38

4 44.92 54.65

2 45.39 55.63

1 43.65 53.03

Thewindow size is 16 frames and
the typical co-articulated sign
duration is 7–13 frames at 25 fps.
(testing 1064-classmodel trained
with Watch-Lookup)

Identifying such sign variations allows a better understanding
of regional differences and can potentially help standardisa-
tion efforts of BSL.

Dense annotations. We demonstrate the potential of our
model to obtain dense annotations on continuous sign lan-
guage video data. Sign spotting through the use of sign
dictionaries is not limited to mouthings as in Albanie et
al. (2020) and therefore is of great importance to scale up
datasets for learning more robust sign language models. In
Fig. 7, we show qualitative examples of localising multiple
signs in a given sentence in BSL-1K, where we only query
the words that occur in the subtitles, reducing the search
space. In fact, if we assume the word to be known, we obtain
83.08% sign localisation accuracy on BSL-1K with our best
model. This is defined as the number of times the maximum
similarity occurs within -20/+5 frames of the end label time
provided by Albanie et al. (2020).

“Faux Amis”. There are works investigating lexical sim-
ilarities between sign languages manually (SignumMcKee
andKennedy 2000;Aldersson andMcEntee-Atalianis 2007).
We show qualitatively the potential of our model to discover
similarities, as well as “faux-amis” between different sign
languages, in particular between British (BSL) and Amer-
ican (ASL) Sign Languages. We retrieve nearest neighbors
according to visual embedding similarities betweenBslDict
which has a 9K vocabulary and WLASL (Li et al. 2019), an
ASL isolated sign language dataset with a 2K vocabulary.
We provide some examples in Fig. 8. We automatically iden-
tify several signs with similar manual features some of which
correspond to different meanings in English (left), as well as
same meanings, such as “ball”, “stand”, “umbrella” (right).

4.6 Sign Language Recognition

As demonstrated qualitatively in Sect. 4.5, we can reliably
obtain automatic annotations using our sign spotting tech-
nique when the search space is reduced to candidate words
in the subtitle. A natural way to exploit ourmethod is to apply
it on the BSL-1K training set in conjunctionwith theweakly-
aligned subtitles to collect new localised sign instances. This
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Fig. 6 Sign variant identification:We plot the similarity scores between
BSL-1K test clips and BslDict variants of the sign “animal” (left) and
“before” (right) over time.Ahigh similarity occurs for the first two rows,
where the BslDict examples match the variant used in BSL-1K. The
labelled mouthing times from Albanie et al. (2020) are shown by red
vertical lines and approximate windows for signing times are shaded.

Note that neither the mouthing annotations (ground truth) nor the dic-
tionary spottings provide the duration of the sign, but only a point in
time where the response is highest. The mouthing peak (red vertical
line) tends to appear at the end of the sign (due to the use of LSTM
in visual keyword spotter). The dictionary peak (blue curve) tends to
appear in the middle of the sign (Color figure online)

Fig. 7 Densification: We plot the similarity scores between BSL-1K
test clips and BslDict examples over time, by querying only the words
in the subtitle. We visually inspect the quality of the dictionary spot-
tings with which we obtain cases of multiple words per subtitle spotted.
The predicted locations of the signs correspond to the peak similarity

scores. Note that unlike in Fig. 6, we cannot overlay the ground truth
since the annotations using the mouthing cues are not dense enough
to provide ground truth sign locations for 3 words per subtitle (Color
figure online)

allows us to train a sign recognition model: in this case, to
retrain the I3D architecture fromAlbanie et al. (2020) which
was previously supervised only with signs localised through
mouthings.

BSL-1K automatic annotation. Similar to our previous
work usingmouthing cues (Albanie et al. 2020), wherewords
in the subtitlewere queriedwithin a neighborhood around the
subtitle timestamps, we query each subtitle word if they fall
within a predefined set of vocabulary. In particular, we query
words and phrases from the 9K BslDict vocabulary if they

occur in the subtitles. To determine whether a query from the
dictionary occurs in the subtitle, we apply several checks.We
look for the original word or phrase as it appears in the dictio-
nary, as well as its text-normalised form (e.g., “20” becomes
“twenty”). For the subtitle, we look for its original, text-
normalised, and lemmatised forms. Once we find a match
between any form of the dictionary text and any form of the
subtitle text, we query the dictionary video feature within
the search window in the continuous video features. We use
search windows of ±4s padding around the subtitle times-
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Fig. 8 “Faux amis” in BSL/ASL: Same/similar manual features for different English words (left), as well as for the same English words (right),
are identified between BslDict and WLASL isolated sign language datasets (Color figure online)

Fig. 9 Statistics on the yield from the automatic annotations: We plot
the vocabulary size (left) and the number of localised sign instances
(middle) and (right) over several similarity thresholds for the new auto-
matic annotations in the training set that we obtain through dictionaries.
While we obtain a large number of localised signs (783K at 0.7 thresh-
old) for the full 9K vocabulary, in our recognition experiments we use

a subset of 510K annotations that correspond to the 1K vocabulary.
To approximately quantify the amount of annotations that represent
duplicates from those found through mouthing cues, we count those
localisations for which the same keyword exists for mouthing annota-
tions within the same search window. We observe that the majority of
the annotations are new (783K vs 122K) (Color figure online)

tamps. We compute the similarity between the continuous
signing search window and each of the dictionary variants
for a given word: we record the frame location of maxi-
mum similarity for all variants and choose the best match
as the one with highest similarity score. The final sign local-
isations are obtained by filtering the peak similarity scores
to those above 0.7 threshold—resulting in a vocabulary of
4K signs—and taking 32 frames centered around the peak
location. Fig. 9 summarises several statistics computed over
the training set. We note that sign spotting with dictionar-
ies (D) is more effective than with mouthing (M) in terms
of the yield (510K versus 169K localised signs). Since, D
can include duplicates from M, we further report the num-
ber of instances for which a mouthing spotting for the same
keyword query exists within the same search window. We
find that the majority of our D spottings represent new, not
previously localised instances (see Fig. 9 right).

BSL-1K sign recognition benchmark. We use the BSL-
1K manually verified recognition test set with 2K sam-
ples (Albanie et al. 2020), which we denote with TestRec2K and
significantly extend it to 37K samples as TestRec37K . We do this
by (a) running our dictionary-based sign spotting technique

on the BSL-1K test set and (b) verifying the predicted sign
instances with human annotators using the VIA tool (Dutta
and Zisserman 2019) as in Albanie et al. (2020). Our goal
in keeping these two divisions is three-fold: (i) TestRec2K is the
result of annotating “mouthing” spottings above 0.9 confi-
dence, which means the models can largely rely onmouthing
cues to recognise the signs. The new TestRec37K annotations
have both “mouthing” (10K) and “dictionary” (27K) spot-
tings. The dictionary annotations are the result of annotating
dictionary spottings above 0.7 confidence from this work;
therefore, models are required to recognise the signs even
in the absence of mouthing, reducing the bias towards signs
with easily spotted mouthing cues. (ii) TestRec37K spans a much
larger fraction of the training vocabulary as seen in Table 1,
with 950 out of 1064 sign classes (vs only 334 classes in
the original benchmark TestRec2K of Albanie et al. (2020)).
(iii) We wish to maintain direct comparison to our previ-
ous work (Albanie et al. 2020); therefore, we report on both
sets in this work.

Comparison to prior work. In Table 6, we compare three
I3Dmodels trained on mouthing annotations (M), dictionary
annotations (D) , and their combination (M+D). First, we
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Table 6 An improved I3D sign
recognition model We find signs
via automatic dictionary
spotting (D), significantly
expanding the training and
testing data obtained from
mouthing cues by Albanie et al.
(2020) (M).

TestRec2K Albanie et al. (2020) TestRec37K

2K inst. / 334 cls. 37K inst. / 950 cls.

per-instance per-class per-instance per-class

Training #ann. top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

M Albanie et al. (2020)§ 169K 76.6 89.2 54.6 71.8 26.4 41.3 19.4 33.2

D 510K 70.8 84.9 52.7 68.1 60.9 80.3 34.7 53.5

M+D 678K 80.8 92.1 60.5 79.9 62.3 81.3 40.2 60.1

We also significantly expand the test set by manually verifying these new automatic annotations from the
test partition (TestRec2K vs TestRec37K ). By training on the extended M+D data, we obtain state-of-the-art results,
outperforming the previous work of Albanie et al. (2020). §The slight improvement in the performance of
Albanie et al. (2020) over the original results reported in that work is due to our denser test-time averaging
when applying sliding windows (8-frame vs 1-frame stride)

observe that D-only model significantly outperformsM-only
model on TestRec37K (60.9% vs 26.4%), while resulting in lower
performance on TestRec2K (70.8% vs 76.6%). This may be due
to the strong bias towards mouthing cues in the small test set
TestRec2K . Second, the benefits of combining annotations from
both canbe seen in the sign classifier trainedusing678Kauto-
matic annotations. This obtains state-of-the-art performance
on TestRec2K , as well as the more challenging test set TestRec37K .
All three models in the table (M, D, M+D) are pretrained on
Kinetics (Carreira and Zisserman 2017), followed by video
pose distillation as described in Albanie et al. (2020). We
observed no improvements when initialising M+D training
from M-only pretraining.

Our results can be interpreted as bootstrapping from an
initial model, which has access to a large audio-visual train-
ing set with mouthing annotations. TheM recognition model
has distilled this informationwhile incorporatingmanual pat-
terns. TheWatch-Read-Lookup framework hasmainly relied
on these mouthing locations to learn matching with dictio-
nary samples. The D recognition model is the result of this
series of annotation expansion. The final recognition model
therefore exploitsmultiple sources of supervision.We refer to
our recent work (Varol et al. 2021) for a complementary way
of expanding the automatic annotations. There, we introduce
an attention-based sign localisation where the localisation
ability emerges from a sequence prediction task.

Sign recognition ablations. In Table 7 we provide fur-
ther ablations for training the recognition models based on
automatic dictionary spotting annotations. In particular, we
investigate (i) the similarity threshold that determines the
amount of training data, as well as the noise, and (ii) no
padding versus ±4-s padding to the subtitle locations when
defining the search window. We see in Table 7 that filter-
ing the sign annotations with a high threshold such as 0.9,
denoted with D.9, drastically reduces the training size (from
510K to 36K) which in return results in poor recognition
performance. The accuracy with D.7 is slightly above that of
D.8. Moreover, both the performance and the training size

Table 7 Recognition ablations We train on a portion of the automatic
annotations obtained through dictionaries

TestRec37K

Per-instance Per-class

Training #ann. Top-1 Top-5 Top-1 Top-5

D.9 (sim ≥ 0.9) 36K 28.4 44.8 15.8 28.8

D.8 (sim ≥ 0.8) 152K 60.6 78.0 35.6 52.6

D.7 (sim ≥ 0.7) 510K 60.9 80.3 34.7 53.5

D.7 (no padding) 236K 56.5 75.9 28.7 45.4

We filter the localisations which have more than a similarity threshold:
0.7, 0.8, 0.9. We find that lower threshold results in a larger training and
increased performance. On the other hand, restricting the annotations to
only those which fall within the subtitle timestamps without temporal
padding for the search window reduces the accuracy

Table 8 Recognition results on the BOBSL dataset We report 2281-
way classification performance on the 25,045 manually verified test
signs of BOBSL

BOBSL
Per-instance Per-class

Training #ann. top-1 top-5 top-1 top-5

M.8 154K 39.0 55.1 43.0 66.3

M.5 502K 39.6 55.2 44.3 66.3

D.9 9K 24.0 39.5 4.5 9.6

D.8 272K 63.2 79.0 25.7 41.2

D.75 727K 64.8 80.8 29.1 44.7

M.8+D.8 426K 75.8 92.4 50.5 77.6

M.5+D.75 1.2M 75.8 92.5 51.1 77.1

We train on different training sets obtained with automatic annota-
tions throughmouthing (M) and dictionaries (D) at different thresholds.
Combining two sets of annotations yields the best result, even without
lowering the thresholds

decreases if we restrict the sign annotations to those which
fall within the subtitle timestamps, i.e., no temporal padding
in the search windowwhen applying sign spotting. We retain
a similarity threshold of 0.7 and a ±4-s padding for our final
model.
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Fig. 10 Error analysis: We plot the per-word verification accuracies on
BOBSL for top- and bottom-40 words sorted according to accuracies.
Each bar also shows the total number of manual verifications performed
for the corresponding word. While many words have close to 100%
accuracy, certain words fail drastically such as ‘dvd’ and ‘dna’, mainly
due to being fingerspelled signs. Other words such as ‘even’ and ‘able’
may have different meanings depending on context. Note that the query
word here is obtained from subtitles (Color figure online)

4.7 Results on the BOBSL Dataset

BOBSL is a dataset similar to BSL-1K; however, unlike
BSL-1K, BOBSL is publicly available (Albanie et al. 2021).
The dataset consists of 1400h of BSL-interpreted BBC
broadcast footage accompanied by written English subti-
tles. We repeated our sign spotting techniques on this data
using mouthing and dictionary cues in combination with
subtitles. Keyword spotting with mouthing follows our pre-
vious work (Albanie et al. 2020) and obtains 502K sign

Fig. 11 Qualitative analysis: We visualise sample spotting results from
the manually verified set of BOBSL that obtain the highest simi-
larity scores (overlaid on the spotted frame). Note that the query
word is obtained from the subtitles. Top and bottom blocks repre-
sent success and failure cases, respectively. We notice weak hand
shape and motion similarities in the failing examples. The figure only
shows the middle frame for each video; therefore, we provide video
visualisations at https://www.robots.ox.ac.uk/~vgg/research/bsldict/
viz/viz_bobsl_dicts.html (Color figure online)

localisations over 0.5 confidence (M0.5). Sign spotting with
dictionaries is similar to the procedure described in Sect. 4.6,
resulting in 727K sign localisations over 0.75 similarity
(D0.75).

In Table 8, we present sign recognition results using
these automatic annotations for classification training over
a vocabulary of 2281 categories. The BOBSL test set con-
tains 25,045 manually verified signs obtained through both
types of spotting techniques. We experiment with various
sets of annotations for training. We observe that mouthing
(M) and dictionary (D) spottings are complementary. Simi-
lar to Table 7, we find that lowering the similarity threshold
improves the performance for D-only training. However,
when combined into a significantly larger training set (i.e., a
total of 1.2 million clips with low thresholds), this improve-
ment disappears (75.8% top-1 accuracy for both).
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4.8 Limitations

In this section, we investigate failure modes of our sign spot-
ting mechanism, in particular by using the data obtained
through manual verifications. More specifically, we make
statistics from 10K annotations on the BOBSL test set that
were obtained via dictionary spotting through subtitles. From
these, 76% were marked as correct. In Fig. 10, we present
a breakdown for per-word accuracy to check whether cer-
tain signs fail more than others. We note two main failure
modes: (i) fingerspelled words (e.g., ‘dvd’, ‘dna’) are diffi-
cult for themodel, perhaps due to sparse frame sampling from
long dictionary videos, (ii) commonwords such as ‘even’ and
‘able’mayhave context-dependentmeanings; querying these
words due to occurrence in subtitles lead to false positives.

In Fig. 11,we further visualise samples from thismanually
verified set of spottings. We focus on cases where high simi-
larities occur and group the examples into success (top) and
failure (bottom) cases.Within failures,weobserveweakhand
shape and motion similarities. As previously mentioned, this
might be due to querying a word for which a sign corre-
spondence does not exist within the temporal search window.
Future work may develop a mechanism to determine which
words to query from the subtitle to ensure correspondence
with a sign, so that the problem only becomes localisation.

5 Conclusions

We have presented an approach to spot signs in continuous
sign language videos using visual sign dictionary videos, and
have shown the benefits of leveraging multiple supervisory
signals available in a realistic setting: (i) sparse annotations in
continuous signing (in our case, frommouthings), (ii) accom-
panied with subtitles, and (iii) a few dictionary samples per
word from a large vocabulary. We employ multiple-instance
contrastive learning to incorporate these signals into a unified
framework.We finally propose several potential applications
of sign spotting and demonstrate its ability to scale up sign
language datasets for training strong sign language recogni-
tion models.
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Appendix

This appendix provides additional qualitative (Sect. A) and
experimental results (Sect. B), as well as detailed explana-
tions of the training of our Watch-Read-Lookup framework
(Sect. C).

A Qualitative Results

Please watch our video in the project webpage4 to see qual-
itative results of our model in action. We illustrate the sign
spotting task, as well as the specific applications considered
in the main paper: sign variant identification, densification
of annotations, and “faux amis” identification between lan-
guages.

B Additional Experiments

In this section, we present complementary experimental
results to the main paper. We report the effect of class-
balancing (Sect. B.1), domain-specific layers (Sect. B.2),
language-aware negative sampling (Sect. B.3), and the trunk
network architecture (Sect. B.4).

B.1 Class-Balanced Sampling

As described in the main paper, we construct each batch
by maximizing the number of negative pairs. To this end,
we include one labelled sample per word when sampling
continuous sequences, i.e., class-balancing the minibatches.
Thus, all but one of the labelled samples in the batch can
be used as negatives for a given dictionary bag correspond-
ing to a labelled sample. Note that this approach limits the
batch size to be less than or equal to the number of sign
classes. Table A.1 experiments with the sampling strategy.
We observe that the performance is not significantly differ-
ent with/without class-balanced sampling for various batch
sizes.

4 https://www.robots.ox.ac.uk/~vgg/research/bsldict/.
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Table A.1 Class-balancing In the main paper, we class-balance our
minibatches by including one sample per word from the labelled con-
tinuous sequences, thus maximizing the number of negatives within a
batch

Class-balancing Batch size mAP R@5

✗ 512 41.65 54.73

✗ 1024 42.07 54.25

✗ 2048 43.14 54.28

✓ 512 43.65 53.03

✓ 1024 43.55 54.20

Here, we investigate removing such class-balancing constraint. In that
case, wemake sure we do not mark samples with the same labels as neg-
atives, insteadwe discard them.We experimentwith various batch sizes,
also going beyond the total number of classes (2048). We observe that
the performance is not significantly affected by these changes. (training
on the full 1064 vocabulary with Watch-Lookup)

Table A.2 Domain-specific layers We experiment with separating the
MLP layers to be specific to the continuous and isolated domains

Domain-specific layers mAP R@5

✓ 43.58 53.54

✗ 43.65 53.03

We do not observe any significant difference in performance and there-
fore adopt a shared MLP for simplicity in all experiments. (Training on
the full 1064 vocabulary with Watch-Lookup)

B.2 Domain-Specific Layers

As noted in the main paper, the videos from the continuous
signing and from the dictionaries differ significantly, e.g.,
continuous signing data is faster than the dictionary sign-
ing, and is co-articulated whereas the dictionary has isolated
signs. Given such a domain gap, we explore whether it is
beneficial to learn domain-specific MLP layers: one for the
continuous, and one for the dictionary. Table A.2 presents
a comparison between domain-specific layers versus shared
parameters. We do not observe any gains from such separa-
tion. Therefore, we keep a single MLP for both domains for
simplicity.

B.3 Language-Aware Negative Sampling

Working with a large vocabulary of words brings the addi-
tional challenge of handling synonyms. We consider two
types of similarities. First, two different categories in the
BslDict sign dictionary may belong to the same sign cat-
egory if the corresponding English words are synonyms.
Second, the meta-data we have collected with the BslDict
dataset provides similarity labels between sign categories,
which may be used to group certain signs. In this work, we
have largely ignored this issue by associating each sign to a
single word. This results in constructing negative pairs for

Table A.3 Language-aware negative sampling We explore the use of
external knowledge such as English synonyms or the meta-data of the
dictionary denoting similar sign categories

Negative sampling mAP R@5

Discarding English synonyms 43.27 54.24

Discarding Sign synonyms 45.03 54.19

Keeping all 43.65 53.03

We experiment with discarding such similar word pairs, excluding them
from both positive and negative pairs. The last row instead marks
any pair as negative if their corresponding words are not identical.
We observe only marginal gains with the use of external knowledge
about the languages. (Training on the full 1064 vocabulary withWatch-
Lookup)

Table A.4 Trunk network architecture We compare I3D (Carreira and
Zisserman 2017) with the S3D (Xie et al. 2018) architecture for the task
of sign language recognition, in a comparable setup to Albanie et al.
(2020)

Per-instance Per-class
Training data Top-1 Top-5 Top-1 Top-5

S3D 64.76 81.88 46.27 63.71

I3D Albanie et al. (2020) 75.51 88.83 52.76 72.14

We use the last 20 frames before the mouthing annotations with con-
fidence above 0.5. We do not obtain gains with the S3D architecture;
therefore, we use I3D in all the experiments to compute video features

two identical signs such as ‘happy’ and ‘content’. Here, we
explore whether it is beneficial to discard such pairs during
training, instead of marking them as negatives. Table A.3
reports the results. We observe marginal gains with discard-
ing synonyms. However, given the insignificant difference,
we do not make such separation in other experiments for
simplicity.

B.4 Trunk Network Architecture: S3D versus I3D

As shown in Table A.4, we compare two popular architec-
tures for computing video representations. We have used
I3D (Carreira and Zisserman 2017) in all our experiments.
Here, we also train a 1064-way classification with the S3D
architecture (Xie et al. 2018) on BSL-1K as in Albanie et
al. (2020) for sign language recognition. We do not observe
improvements with S3D (in practice we found that it overfit
the training set to a greater degree); therefore, we use an I3D
trunk. Note that the hyperparameters (e.g., learning rate) are
tuned for I3D and kept the same for S3D.

C Training Details

In this section, we cover architectural details (Sect. C.1), a
detailed formulation of our positive/negative bag sampling
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strategy (Sect. C.2) and a brief description of the infras-
tructure used to perform the experiments in the main paper
(Sect. C.3).

C.1 Architectural Details

As explained in the main paper, our sign embeddings corre-
spond to the output of a two-stage architecture: (i) an I3D
trunk, and (ii) a three-layer MLP. We first train the I3D on
both labelled continuous video clips and thedictionaryvideos
jointly. We then freeze the I3D trunk and use it as a feature
extractor. We only train the MLP layers with our loss formu-
lation in the Watch-Read-Lookup framework.

I3D trunk. We first train the I3D parameters only with
the BSL-1K annotated clips that have mouthing confidences
more than 0.5. For 1064-class training, we use the publicly
available model from Albanie et al. (2020); for 800-class
training, we perform our own training, also first pretraining
with pose distillation.

We then re-initialise the batch normalization layers (as
noted in We fine-tune the model jointly on BSL-1K anno-
tated clips (the ones with mouthing confidence more than
0.8) and BslDict samples. The sampling frequency for the
two data sources are balanced. In the I3D classification pre-
training phase, we treat each dictionary video independently
with its corresponding label. We observe that the 1064-way
classification performance on the training dictionary videos
remain at 48.09% per-instance top-1 accuracy without the
batch normalization re-initialization, as opposed to 78.94%.
We also experimented with domain-specific batch normal-

Fig. 12 MLP architecture:We detail the layers of our embedding archi-
tecture. We freeze the I3D trunk and use it as a feature extractor. We
only train the MLP layers with our loss formulation in the proposed
framework. The same layers (and parameters) are used both for the
dictionary video inputs and the continuous signing video inputs (Color
figure online)

ization layers (Chang et al. 2019), but the training accuracy
for the dictionary videos was still low (62.73%).

As detailed in we subsample the dictionary videos to
roughly match their speed to the continuous signing videos.
This subsampling includes a random shift and a random fps.
We observe a decrease of 6.68% in the training dictionary
classification accuracy if we instead sample 16 consecutive
frames from the original temporal resolution, which is not
sufficient to capture the full extent of a sign because one
dictionary video is 56 frames on average.

MLP Fig. 12 illustrates the layers considered for our
MLP architecture. It consists of 3 fully connected layers with
LeakyRelu activations between them. The first linear layer
also has a residual connection on the 1024-dimensional input
features. We then reduce the dimensionality gradually to 512
and 256 for efficient training and testing.

C.2 Positive/Negative Bag Sampling Formulations

In the main paper, we described two approaches for sam-
pling positive/negativeMIL bags in Due to space constraints,
the sampling mechanisms were described at a high-level.
Here, we provide more precise definitions of each bag. In
addition to the set notation below, we include in the code
release, the loss implementation as a PyTorch (Paszke et al.
2019) function in loss/loss.py, together with a sample
input (loss/sample_inputs.pkl) comprising embed-
ding outputs from the MLP for continuous and dictionary
videos.

As noted in the main paper, we do not have access to posi-
tive pairs because: (1) for the segments of videos inS that are
annotated (i.e. (xk, vk) ∈ M), we have a set of potential sign
variations represented in the dictionary (annotated with the
common label vk), rather than a single unique sign; (2) since
S provides only weak supervision, even when a word is men-
tioned in the subtitles we do not know where it appears in the
continuous signing sequence (if it appears at all). These ambi-
guities motivate a Multiple Instance Learning (Dietterich et
al. 1997) (MIL) objective. Rather than forming positive and
negative pairs, we instead form positive bags of pairs, Pbags,
in which we expect at least one segment from a video from S
(or a video fromMwhen labels are available) and a videoD
to contain the same sign, and negative bags of pairs, N bags,
in which we expect no pair of video segments from S (orM)
and D to contain the same sign. To incorporate the available
sources of supervision into this formulation, we consider two
categories of positive and negative bag formations, described
next. Each bag is formulated as a set of paired indices—the
first value indexes into the collections of continuous signing
videos (either S orM, depending on context) and the second
value indexes into the set of dictionary videos contained in
D.
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Watch and Lookup: using sparse annotations and dic-
tionaries. In the first formulation, Watch-Lookup, we only
make use of D and M (and not S) to learn the data rep-
resentation f . We define positive bags in two ways: (1) by
anchoring on the labelled segment

Pbags(seg)
watch,lookup ={{i} × Bi : (xMi , vMi ) ∈ M,

(xDj , vDj ) ∈ D, Bi = { j : vDj = vMi }} (2)

i.e. each bag consists of a labelled temporal segment and
the set of sign variations of the correspondingword in the dic-
tionary (illustrated in Fig. 13 (i), top row), or by (2) anchoring
on the dictionary samples that correspond to the labelled
segment, to define a second set Pbags(dict)

watch,lookup, which takes a

mathematically identical form to Pbags(seg)
watch,lookup (i.e. each bag

consists of the set of sign variations of the word in the dictio-
nary that corresponds to a given labelled temporal segment,
illustrated inFig. 13 (ii), top row). Thekey assumption in both
cases is that each labelled segment matches at least one sign
variation in the dictionary. Negative bags can be constructed
by (1) anchoring on labelled segments and selecting dictio-
nary examples corresponding to different words (Fig. 13 (i),
red examples); (2) anchoring on the dictionary set for a given
word and selecting labelled segments of a different word
(Fig. 13 (ii), red example). These sets manifest as

N bags(seg)
watch,lookup ={{i} × Bi : (xMi , vMi ) ∈ M,

(xDj , vDj ) ∈ D, Bi = { j : vDj 	= vMi }} (3)

for the former and as

N bags(dict)
watch,lookup = {Ai × Bi :

Ai = {l : xl , xi ⊆ xk, (xk, sk) ∈ S, xl ∩ xi = ∅},
Bi = { j : vDj 	= vMi }, (xMi , vMi ) ∈ M, (xDj , vDj ) ∈ D}}.

(4)

for the latter. The complete set of positive and negative
bags is formed via the unions of these collections:

Pbags
watch,lookup � Pbags(seg)

watch,lookup ∪ Pbags(dict)
watch,lookup (5)

and

N bags
watch,lookup � N bags(seg)

watch,lookup ∪ N bags(dict)
watch,lookup. (6)

Watch, Read and Lookup. The Watch-Lookup bag for-
mulation defined above has a significant limitation: the
data representation, f , is not encouraged to represent signs
beyond the initial vocabulary represented inM.We therefore
look at the subtitles present inS (which containwords beyond
M) in addition toM to construct bags.Todo so,we introduce

an additional piece of terminology—when considering a sub-
titled video for which only one segment is labelled, we use
the term “foreground” to refer to the subtitle word that corre-
sponds to the label, and “background” forwordswhich do not
possess labelled segments in the video. Similarly to Watch-
Lookup, we can construct positive bags,Pbags

watch,lookup (Fig. 14
(i) and (ii), top rows) which correspond to the use of fore-
ground subtitle words. However, these can now by extended
by (a) anchoring on a background segment in the continuous
footage and find candidate matches in the dictionary among
all possible matches for the subtitles words (Fig. 14 (iii),
top row) and (b) anchoring on dictionary entries for back-
ground subtitle words (Fig. 14 (iv), top row). Formally, let
Tokenize(·) : S → VL denote the function which extracts
words from the subtitle that are present in the vocabulary:
Tokenize(s) � {w ∈ s : w ∈ VL}. Then define background
segment-anchored positive bags as:

Pbags(seg-back)
watch,read,lookup = {{i} × Bi :

∃(xk, sk) ∈ S s.t xi ⊆ xk, (x
D
j , vDj ) ∈ D,

Bi = { j : vDj ∈ Tokenize(sk)}, (xi , vi ) /∈ M}} (7)

i.e. each bag contains a background segment from the con-
tinuous signing which is paired with all dictionary segments
whose labels match any token from the corresponding subti-
tle sentence (visualised as the top row of Fig. 14 (iii)). Next,
we define dictionary-anchored positive background bags as
follows:

Pbags(dict-back)
watch,read,lookup = {Ai × Bi : (xDi , vDi ) ∈ D,

Ai = { j : vDi ∈ Tokenize(sk), (xk, sk) ∈ S, x j ⊆ xk,

(x j , v j ) /∈ M}, Bi = {l : vDl = vDi }} (8)

i.e. the bags contain all pairwise combinations of dictio-
nary entries for a given word and segments in continuous
signing whose subtitle contains that background word (visu-
alised as top row of Fig. 14 (iv)). We combine these bags
with the Watch-Lookup positive bags to maximally exploit
the available supervisory signal for positives:

Pbags
watch,read,lookup = Pbags

watch,lookup ∪ Pbags(seg-back)
watch,read,lookup

∪ Pbags(dict-back)
watch,read,lookup. (9)

To counterbalance the positives, we use S in combination
with M and D to create four kinds of negative bags. Dif-
ferently to positive sampling, negatives can be constructed
across the full minibatch rather than solely from the current
(subtitled video, dictionary) pairing. We first anchor nega-
tives bags on foreground segments:

N bags(seg-fore)
watch,read,lookup = {{i} × Bi : (xMi , vMi ) ∈ M,
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Fig. 13 Watch-Lookup We illustrate the batch formation and posi-
tive/negative sampling for the simplified version of our framework
which is not using the subtitles, but only performing Watch-Lookup.
We define two sets of positive/negative pairs, anchoring at a different
position in each case. Anchor is denoted with dashed lines, positive
samples with solid green, negative samples with solid red lines. Gray
samples are discarded. (i) anchors at a labelled continuous video, mak-

ing the dictionary samples for the labelled word a positive bag, and all
other dictionary samples in the batch a negative bag. (ii) anchors at a bag
of dictionary samples, making the corresponding continuous labelled
video positive, and all others in the batch negatives. We refer to Fig 14
for the illustration of our Watch-Read-Lookup extension (Color figure
online)

(xDj , vDj ) ∈ D, Bi = { j : vDj 	= vMi }} (10)

so that they contain pairs between a given foreground seg-
ment and all available dictionary videos whose label does not
match the segment (visualised in Fig. 14 (i), both rows). We
next anchor on the foreground dictionary videos:

N bags(dict-fore)
watch,read,lookup = {Ai × Bi : (xDi , vDi ) ∈ D,

Ai = { j : vDi ∈ Tokenize(sk), (xk, sk) ∈ S, x j ⊆ xk,

(x j , v j ) /∈ M} ∪ {(xm, vm) ∈ M, vm 	= vi },
Bi = {l : vDl = vDi }} (11)

comprising of pairings between the dictionary foreground
set and segments within the minibatch that are either labelled
with a different word, or can be excluded as a potential match
through the subtitles (Fig. 14 (ii), both rows).Next,we anchor
on the background continuous segments:

N bags(seg-back)
watch,read,lookup = {{i} × Bi : ∃(xk, sk) ∈ S, xi ⊆ xk,

(xDj , vDj ) ∈ D, Bi = { j : vDj /∈ Tokenize(sk)}} (12)

which amounts to the pairings between each background
segment and the set of dictionary videos which do not corre-
spond to any of thewords in the background subtitles (Fig. 14
(iii), both rows). The fourth negative bag set construction

anchors on the background dictionaries:

N bags(dict-back)
watch,read,lookup = {Ai × Bi : (xDi , vDi ) ∈ D,

Ai = { j : vDi /∈ Tokenize(sk), (xk, sk) ∈ S,

x j ⊆ xk, (x j , v j ) /∈ M} ∪ {(xm, vm) ∈ M, vm 	= vi },
Bi = {l : vDl = vDi }} (13)

and thus the pairings arise between dictionary examples
for a background segment and its corresponding foreground
segment, as well all segments from other batch elements
(Fig. 14 (iv), both rows). These four sets of bags are combined
to form the full negative bag set:

N bags
watch,read,lookup = N bags(seg-fore)

watch,read,lookup ∪ N bags(seg-dict)
watch,read,lookup

∪ N bags(seg-back)
watch,read,lookup ∪ N bags(dict-back)

watch,read,lookup. (14)

In the main paper, these bag formulations are used
through Eq. (1) (the MIL-NCE loss function) to guide
learning. Concretely, the Watch-Lookup framework defines
positive and negative bags via Pbags = Pbags

watch,lookup,

N bags = N bags
watch,lookup and the Watch-Read-Lookup formu-

lation instead defines the positive and negative bags via
Pbags = Pbags

watch,read,lookup, N bags = N bags
watch,read,lookup.
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(a)

(b)

Fig. 14 Watch-Read-Lookup in detail

C.3 Infrastructure and Runtime

Training. The I3D trunk BSL-1K pretraining experiments
were performed with four Nvidia M40 graphics cards and
took 2-3 days to complete. After freezing the I3D trunk, train-
ing the parameters of the MLP with theWatch-Read-Lookup

framework took approximately two hours on a single Nvidia
M40 graphics card.

Inference. Our sign spotting demo available online (link
at our project page) runs at real time in case of GPU avail-
ability. A single forward pass from the I3D and MLP layers
takes 0.016s to process 16 video frames on a single Nvidia
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M40 GPU, which is roughly 1000 frames per second (much
more than the 25 fps real time capture speed). However, our
current models (both for spotting and recognition) rely on the
I3Dmodel, which is a 3D convolutional neural network with
about 15M parameters. Future work can focus on compress-
ing these heavy models into more lightweight architectures
for mobile applications.
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