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Abstract
The unsupervised detection and localization of anomalies in natural images is an intriguing and challenging problem. Anoma-
lies manifest themselves in very different ways and an ideal benchmark dataset for this task should contain representative
examples for all of them. We find that existing datasets are biased towards local structural anomalies such as scratches, dents,
or contaminations. In particular, they lack anomalies in the form of violations of logical constraints, e.g., permissible objects
occurring in invalid locations. We contribute a new dataset based on industrial inspection scenarios that evenly covers both
types of anomalies. We provide pixel-precise ground truth data for each anomalous region and define a generalized evaluation
metric that addresses localization ambiguities that can arise for logical anomalies. Furthermore, we propose a novel algorithm
that improves over the state of the art in the joint detection of structural and logical anomalies. It consists of a local and
a global network branch. The first one inspects confined regions independent of their spatial locations in the input image
and is primarily responsible for the detection of entirely new local structures. The second one learns a globally consistent
representation of the training data through a bottleneck that enables the detection of violations of long-range dependencies, a
key characteristic of many logical anomalies. We perform extensive evaluations on our new dataset to corroborate our claims.

Keywords Anomaly detection · Novelty detection · Datasets · Unsupervised learning · Defect segmentation · Performance
metrics

1 Introduction

The abundance and availability of unlabeled image data both
enables and encourages the development of unsupervised
methods in many areas of computer vision. In this paper,
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we address the problem of detecting and localizing anoma-
lous regions in natural images without any prior knowledge
of the nature and appearance of potential anomalies.

This problem has attracted increased attention from the
research community and has applications in numerous fields,
including active learning (Mackowiak et al. 2018; Yoo and
Kweon 2019), medical imaging (Baur et al. 2019; Zhou et al.
2020; Schlegl et al. 2019), autonomous driving (Blum et al.
2019; Lis et al. 2019), and industrial inspection (Bergmann
et al. 2021, 2019b; Cohen and Hoshen 2020).

The present work builds on the observation that deviations
from the anomaly-free training data can manifest themselves
in very different ways. On the one hand, entirely new local
structures can occur that are not present during training. On
the other hand, an image can also be considered anomalous
if certain underlying logical or geometrical constraints of
the training data are violated. To illustrate the difference
between these two, we created a synthetic toy dataset. All
anomaly-free images display exactly one black circle at a
random location on a flat white background. We introduced
two different types of anomalies. The first one is a simple
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color variation. The second type of anomaly is characterized
by the fact that there are two black circles in a single image
instead of one. Detailed information on the creation of the
toy dataset is found in Appendix 1.

Anumber of existing state-of-the-art unsupervised anomaly
detection methods model the distribution of local features
extracted from pretrained networks (Bergmann et al. 2020;
Burlina et al. 2019). They excel at the detection of anoma-
lies such as the color defect in our toy dataset. They are,
however, inherently limited to the information inside the
receptive field of their descriptors. This makes it difficult
to detect anomalies that violate long-range dependencies. In
Fig. 1, we demonstrate this by considering three test images
of our toy dataset, one of which is anomaly-free, one shows a
color defect, and one contains an additional circle. The center
row shows anomaly maps calculated by the Student–Teacher
method (Bergmann et al. 2020). This method clearly identi-
fies and localizes the color defect. The two circles, however,
are not predicted as anomalous because each individual cir-
cle does not constitute an anomaly and the receptive field of
the method is not large enough to understand the long-range
relationships in the image.

Autoencoders (VAEs) (An and Cho 2015; Vasilev et al.
2019) or Generative Adversarial Networks (GANs) (Good-
fellow et al. 2014; Schlegl et al. 2017) have the potential to
capture information from the entire image (Liu et al. 2020).
Consequently, they are potentially able to detect anomalies
such as the extra black circle in our toy dataset. However, they
also tend to produce blurry and inaccurate reconstructions,
which leads to an increase in false positives, and are often
outperformed by the local methods mentioned above. The
bottom row of Fig. 1 shows anomaly maps calculated by a
VAE on our toy dataset. This method accomplishes to iden-
tify the two circles as anomalous but produces many false
positives in the anomaly-free test image.

Motivated by these observations, we classify an anomaly
as either a structural anomaly or a logical anomaly and
demonstrate that existing methods indeed perform very dif-
ferently on these two classes. We define structural anomalies
as new visual structures that occur in locally confined regions
and that do not exist in the anomaly-free data. Logical anoma-
lies, on the other hand, violate underlying logical constraints
in the data and potentially require a method to capture long-
range dependencies. In our toy example, we would classify
the color defect as a structural anomaly since the yellow
color adds a local structure that has never been observed
during training. The additional circle in the top right corner
of Fig. 1 does not introduce any new local structure. The
anomaly manifests itself through the violation of the logical
constraint that there should always be exactly one circle in the
image. Hence, we classify it as a logical anomaly. Note that
it is not always straightforward to make a clear distinction

Fig. 1 Qualitative results of the Student–Teacher (S–T) method and a
variational autoencoder (VAE) on a simple toy dataset. Anomaly maps
are shown for an anomaly-free image, an image containing a struc-
tural anomaly (a color defect), and a logical anomaly (two circles being
present instead of one). S–T inspects local image regions and therefore
only detects the color defect. The VAE captures the global context of
images in its bottleneck. It finds both anomalies, but also producesmany
false positives due to its inaccurate reconstructions

between structural and logical anomalies and corner cases
may exist.

Existing datasets (Bergmann et al. 2021; Carrera et al.
2017;Huang et al. 2018; Song andYan2013) identify the task
of visual inspection of industrially manufactured products
as a typical real-world example for unsupervised anomaly
detection. Nevertheless, all of them focus on the detection
of structural anomalies and therefore favor methods that
perform well on this type of anomaly. Logical anomalies,
however, do occur in manufacturing processes, e.g., as an
incorrect wiring of a circuit, a shift in the fill level of a vial,
or the absence of an essential component. The development
of methods that are capable of detecting logical anomalies
is hindered by the availability of suitable data. This creates
the need for a dataset that takes both structural and logical
anomalies into account with equal importance. We intend to
alleviate this need by introducing a new dataset that is also
inspired by industrial inspection scenarios but balances the
number of logical and structural anomalies. An illustrative
example is portrayed in Fig. 2.

This new dataset has enabled us to develop a new method
that is capable of detecting both types of anomalies. In sum-
mary, we make three key contributions:
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Fig. 2 Difference between structural (left) and logical anomalies
(right). While the former introduce novel local structures (i.e., the metal
piece on the left), the latter violate logical constraints of the training data
(i.e., the additional pushpin in the top right compartment). Our proposed
method successfully localizes the anomaly in both images

• We introduce a new dataset for the evaluation of unsu-
pervised anomaly localization algorithms that covers
both structural and logical anomalies. It contains 3644
images of five distinct object categories inspired by real-
world industrial inspection scenarios. Structural anoma-
lies occur as scratches, dents, or contaminations in the
manufactured products. Logical anomalies violate under-
lying constraints, e.g., a permissible object being present
in an invalid location or a required object not being
present at all. We hope that this dataset will help the
research community to develop and test their own algo-
rithms in the future.

• In order to compare the performance of different meth-
ods on our dataset, a suitable performance measure is
needed. We find that commonly used metrics are not
directly applicable to assess the capability of methods
to detect logical anomalies. To this end, we introduce a
performance metric that takes the different modalities of
the defects present in our dataset into account. This per-
formance measure is a generalization of an established
measure for unsupervised anomaly detection.

• We propose a new method for the unsupervised pixel-
precise localization of anomalies. It improves the results
of the joint detection of structural and logical anomalies
compared to existing methods. Our method consists of a
local and a global branch, each of which we show to be
primarily responsible for the detection of structural and
logical anomalies, respectively. Motivated by the recent

success of using local features of pretrained networks for
anomaly detection, our local branch contains a regression
network that matches such local descriptors. The global
branch of our method intends to overcome the difficulty
to capture the entire context of an input image by learn-
ing a globally consistent representation of the training
data through a bottleneck. During inference, regression
errors in the two branches indicate anomalies. Exten-
sive evaluations against state-of-the-art methods show
the superiority of our approach in the detection of logi-
cal anomalies, as well as in the combined localization of
both anomaly types.

2 RelatedWork

We first discuss existing datasets for unsupervised anomaly
localization and show the need for our newly introduced
dataset. We then give an overview of relevant approaches to
unsupervised anomaly localization. Pang et al. (2020) pro-
vide a more comprehensive review of both subjects.

2.1 Datasets

The availability of challenging datasets such as ImageNet
(Krizhevsky et al. 2012), MS-COCO (Lin et al. 2014), or
Cityscapes (Cordts et al. 2016) has largely contributed to
recent successes in various fields of computer vision. For the
task of unsupervised anomaly localization, however, com-
paratively few datasets exist and all of them are primarily
designed for the detection of what we refer to as structural
anomalies.

Huang et al. (2018) introduce a surface inspection dataset
of magnetic tiles. It contains 1344 grayscale images of a sin-
gle texture. Test images contain various structural anomalies
such as cracks or uneven areas. Similarly,Carrera et al. (2017)
present NanoTWICE, a dataset of 45 grayscale images of a
nanofibrous material acquired by a scanning electron micro-
scope. Anomalies occur in the form of flattened areas or
specks of dust. Both datasets only provide textured images,
which require a method to focus on local repetitive patterns.
Hence, these datasets are inherently unsuited for assessing
the ability of a method to capture long-range dependencies
and logical constraints.

The Fishyscapes dataset (Blum et al. 2019) is intended to
assess the anomaly detection performance of semantic seg-
mentation algorithms for autonomous driving. The task is
to train a supervised model on the Cityscapes dataset and,
during inference, to localize anomalous objects that were
inserted artificially into the test images. The anomalies only
consist of objects not present in the training set. This enables
their detection based on local, patch-based visual features.
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The MVTec Anomaly Detection dataset (MVTec AD)
comprises five texture and ten object categories from indus-
trial inspection scenarios (Bergmann et al. 2021). The 1258
test images contain 73 types of anomalies, such as contami-
nations or scratches on the manufactured products. The vast
majority (97%) of anomalies in the dataset matches our def-
inition of structural anomalies. Hence, an evaluation on this
dataset alone does not give sufficient insight into how well a
method detects logical anomalies.

To date, there exists no comprehensive dataset that explic-
itly focuses on the detection of structural as well as logical
anomalies and that requires a model to understand the under-
lying logical or geometrical relationships in the anomaly-free
data. To fill this void, we introduce the Logical Constraints
Anomaly Detection dataset. It represents industrial inspec-
tion scenarios and equally covers both types of anomalies.

2.2 Methods

The diversity ofmethods for unsupervised anomaly detection
and localization is high. Numerous approaches have been
introduced to tackle the problem. Ehret et al. (2019) give a
comprehensive reviewof existingwork.Here,we restrict our-
selves to a brief overviewofmethods.Weonly covermethods
that are capable of performing a pixel-precise localization of
anomalies in natural images.

Autoencoder-based methods attempt to reconstruct input
images through a low-dimensional bottleneck. They rely
on the assumption that anomalies cannot be reconstructed
during inference. Pixelwise anomaly scores are derived by
comparing the input to the reconstruction. While their latent
representations have the potential to capture the global con-
text of the training data, autoencoders tend to produce blurry
and inaccurate reconstructions. This leads to an increase in
false positives. They might also learn to simply copy parts of
the input data,whichwould allow them to reconstruct anoma-
lous features during inference. To discourage this behavior,
Park et al. (2020) introduce MNAD, an autoencoder with
an integrated memory module. It selects numerous latent
features during training that need to be reused for recon-
struction during inference. In our experiments, we observed
that this indeed helps in the detection of structural anomalies
but impairs the detection of logical ones (see Fig. 8).

Similar to autoencoders, GAN-based methods attempt to
reconstruct anomaly-free images by finding suitable latent
representations as input for the generator network. Schlegl et
al. (2019) propose f-AnoGAN, forwhich an encoder network
is trained to output the latent vectors that best reconstruct the
training data. A pixelwise comparison of the input image
and the reconstruction yields an anomaly score. Since GAN-
basedmethods are difficult to train on high-resolution images
(Gulrajani et al. 2017), f-AnoGAN processes images at a

resolution of 64 × 64 pixels, which results in very coarse
anomaly maps.

Methods that leverage features of pretrained networks
tend to outperform autoencoder- or GAN-based methods
that are trained from scratch (Burlina et al. 2019). They
achieve this by modeling the distribution of local features
obtained from spatially resolved activation layers of a pre-
trained network. Cohen and Hoshen (2020) introduce the
SPADE method which utilizes the feature space of a deep
CNN. During inference, the method first identifies a certain
number of anomaly-free training images that are closest to
the test image. A separate 1-NN classifier is then introduced
for each pixel in the feature maps extracted from the selected
training images. This makes the algorithm computationally
expensive, which might prevent it from being used in practi-
cal applications.

Bergmann et al. (2020) propose a Student–Teacher frame-
work inwhich an ensemble of student networksmatches local
descriptors of pretrained teacher networks on anomaly-free
data. Anomalies are detected by increased regression errors
and predictive variances in the students’ predictions. The
networks employed exhibit a limited receptive field, which
prevents this method from detecting global inconsistencies
that fall outside the receptive field’s range.

3 The Logical Constraints Anomaly
Detection Dataset

To be able to compare the ability of anomaly detection
methods to understand logical constraints, we need suitable
datasets. As discussed in Sect. 2.1, very few datasets exist
for unsupervised anomaly detection in general. Industrial
inspection scenarios have been identified as a prime example
for unsupervised anomaly detection tasks. This is under-
lined by the fact that the majority of the existing datasets
(Bergmann et al. 2019a, b; Carrera et al. 2017; Huang et al.
2018; Song and Yan 2013) are inspired by such applications.

None of them, however, set an explicit focus on the joint
detection of structural and logical anomalies. To this end, we
introduce theMVTecLogicalCostraintsAnomalyDetection
(MVTec LOCO AD) dataset.1

3.1 Description of the Dataset

MVTec LOCO AD consists of five object categories from
industrial inspection scenarios. We have selected the objects
and designed our acquisition setup in such a way that they
are as close as possible to real-world applications. Inmachine
vision applications, an object is usually located in a defined

1 The dataset and evaluation code is publicly available at: www.mvtec.
com/company/research/datasets/.
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position. This is often realized by a mechanical alignment
system. The illumination is chosen to best suit the task or is
specifically designed for it. The same is true for the employed
camera and lens. For more details on typical machine vision
setups, we refer to Steger et al. (2018).

We provide a total of 1772 images for training, 304 for val-
idation, and 1568 for testing. Figure 3 shows example images
for each of the dataset categories. The training sets consists of
only anomaly-free images. Machine learning methods typ-
ically require data for validating their performance during
training or for adjusting hyperparameters. To ensure that the
choice of the validation data does not add a bias to evaluations
and benchmarks, we define a specific validation set. Like the
training images, the validation images are free of any anoma-
lies. The test set contains anomaly-free images and images
with various types of logical and structural anomalies. All
three sets are independent of each other in the sense that they
consist of images of distinct physical objects and that there
is no overlap between them. An overview of the image statis-
tics of our dataset is shown in Table 1, including the number
and size of training, validation, and test images as well as the
number of different defect types for each category.

Each dataset category possesses certain logical con-
straints. Anomaly-free images of the category breakfast box
always contain exactly two tangerines and one nectarine that
are always located on the left-hand side of the box. Further-
more, the ratio and relative position of the cereals and themix
of banana chips and almonds on the right-hand side are fixed.
A screw bag contains exactly twowashers, two nuts, one long
screw, and one short screw. Each compartment of the box of
pushpins contains exactly one pushpin. Exactly two splicing
connectors with the same number of cable clamps are linked
by exactly one cable. In addition, the number of clamps has
a one-to-one correspondence to the color of the cable and the
cable has to terminate in the same relative position on its two
ends such that the whole construction exhibits a mirror sym-
metry. Each juice bottle is filled with one of three differently
colored liquids and carries exactly two labels. The first label
is attached to the center of the bottle and displays an icon that
determines the type of liquid. The second is attached to the
lower part of the bottle with the text “100% Juice” written
on it. The fill level is the same for each bottle. Violations to
any of these constraints constitute logical anomalies.

The third row of Fig. 3 shows examples of logical defects,
whichmanifest themselves in the followingways. The break-
fast box contains too many banana chips and almonds. The
screw bag contains two long screws and lacks a short one.
One compartment of the box of pushpins does not contain any
pushpin. For the splicing connectors, we show three different
types of defects. On the left, the two splicing connectors do
not have the same number of clamps, in the center, the color
of the cable does not match the number of clamps and, on
the right, the cable terminates in different positions. We also

present three different types of defects for the juice bottle.
On the left, the icon does not match the type of juice. In the
middle, the icon is slightly misplaced. Finally, on the right
the fill level of the bottle is too high.

The center row of Fig. 3 depicts examples of structural
anomalies. They manifest themselves as a damaged tanger-
ine, a broken screw, a bent pushpin, a corrupt insulation of a
cable, and a contamination inside a juice bottle.

3.2 Annotations and Labeling Policies

For all anomalies present in the dataset, we provide pixel-
precise ground-truth annotations.

Structural anomalies are typically straightforward to
annotate. Each pixel of an anomalous image that introduces
a local visual structure that is not present in the anomaly-
free images is marked as anomalous. In the example of the
damaged tangerine in Fig. 3, all pixels that fall into the dam-
aged region are annotated. Labeling logical defects, however,
proves to be a challenging task. As an example, Fig. 3 depicts
a pushpin missing in one of the compartments. Consider two
methods, one that marks the whole compartment as anoma-
lous, while the other one only marks a region with the size
and shape of a pushpin inside the compartment. In this case,
one would probably consider both methods as equally suc-
cessful.

Our labeling policy and the newly introduced evaluation
metric take such ambiguities into account. In our dataset,
the union of all areas of the image that could potentially
be the cause for the anomaly is labeled as anomalous. To
achieve a perfect score, however, a method is not necessarily
required to predict the whole ground truth area as anomalous.
To reflect this, we introduce a suitable performance metric.

It is a generalization to the per-region overlap (PRO), an
established metric for evaluating anomaly localization algo-
rithms (Bergmann et al. 2021; Cohen and Hoshen 2020;
Napoletano et al. 2018). To calculate the per-region overlap,
real-valued anomaly scores are thresholded to obtain a binary
prediction for each pixel in the test set. Then, the percentage
of correctly predicted pixels is computed for each annotated
defect region in the ground-truth. The average over all defects
yields the final PRO value. Note that PRO is very similar to
computing the average true positive rate (TPR) over all pix-
els. The advantage of PRO is that it weights defect regions
of different size as equally important.

In our dataset, we do not necessarily require a method
to segment all pixels of an annotated area. Continuing the
example of the missing pushpin, it is sufficient for a method
to segment an area the size of one pushpin within the empty
compartment. To meet this requirement, we propose a gen-
eralized version of the PRO metric that saturates once the
overlap with the ground truth exceeds a certain saturation
threshold.
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Table 1 Statistical overview of the MVTec LOCO AD dataset. For each category, the number of training, validation, and test images is given

Category # Training
images

# Validation
images

# Test images
(anomaly-free)

# Test images
(structural)

# Test images
(logical)

# Defect types Image
width

Image
height

Breakfast Box 351 62 102 90 83 22 1600 1280

Screw Bag 360 60 122 82 137 20 1600 1100

Pushpins 372 69 138 81 91 8 1700 1000

Splicing Connectors 354 59 119 85 108 21 1700 850

Juice Bottle 335 54 94 94 142 18 800 1600

Total 1772 304 575 432 561 89 – –

Test images are split into anomaly-free images and images that contain structural or logical anomalies. Additionally, the number of different defect
types and the image size is reported for each category

Fig. 3 Example images of the MVTec LOCO AD dataset for each of the five dataset categories. Each category contains anomaly-free train,
validation, and test images. Additional test images contain various structural and logical anomalies. Pixel-precise ground truth annotations are
provided for all anomalies

3.3 The Saturated Per-Region Overlap (sPRO)

Let {A1, . . . , Am} be the set of all defect ground truth regions
and {s1, . . . , sm} be a set of corresponding saturation thresh-
olds such that 0 < si ≤ |Ai | for all i ∈ {1, . . . ,m}. For a set
P of pixels in the dataset that are predicted as anomalous,
we define the saturated per-region overlap (sPRO) as

sPRO(P) = 1

m

m∑

i=1

min

( |Ai ∩ P|
si

, 1

)
. (1)

Note that this is indeed a generalization of the PRO met-
ric because sPRO(P) = PRO(P) if si = |Ai | for all
i ∈ {1, . . . ,m}. An illustrative example of the sPRO metric
with a single ground-truth region is shown in Fig. 4. Here,
one pushpin is missing in one of the box compartments. The
annotated area A comprises the entire compartment while
the saturation threshold s is set to the predetermined size of
a single pushpin, which is much smaller than |A|. Hence, all
predictions P for which the overlap with A exceeds s fully
solve the segmentation task, i.e., sPRO(P) = 1.

Similar to the TPR and PRO, sPRO does not take false
positive predictions into account. Hence, we report its value
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Fig. 4 Schematic illustration of the introduced sPRO evaluationmetric.
For an annotated anomaly A, a saturation threshold s is selected. Once
the overlap of the predicted region with the ground truth A exceeds s,
we consider the anomaly segmentation task solved

together with the associated false positive rate (FPR). False
positive predictions are defined as all pixels that are predicted
as anomalous but are not covered by any annotated region.
To obtain evaluation results that are independent of the bina-
rization value used to turn real-valued anomaly scores into
binary predictions, we make use of the sPRO curve. It is
created analogously to the common ROC curve by comput-
ing the sPRO value for various binarization thresholds and
plotting them against the corresponding FPR value. As our
main performance measure, we compute the area under the
sPRO curve up to a limited false positive rate and normalize
it to obtain a score between 0 and 1. This is motivated by the
fact that anomaly segmentation results at large false positive
rates are no longer meaningful. They should, therefore, be
excluded from the computation of a performance measure
such as the area under the sPRO curve.

3.4 Selection of Saturation Thresholds

We selected suitable saturation thresholds for each of the
89 individual defect types that occur in our dataset. They
are listed in Appendix D. The following paragraphs provide
further details on our labeling process and the selection of
saturation thresholds for various types of anomalies.

Structural anomalies. For structural anomalies, the
entire annotated area should be segmented. We therefore set
s = |A|, which yields the original PRO metric. An example
is the broken screw in the second row of Fig. 3, for which the
entire broken area should be segmented as anomalous.

Missing objects. For missing objects, we annotated the
entire area in which the object could potentially occur. The
corresponding saturation threshold is chosen to be equal to
the area of themissing object.We determined the distribution
of the area of an object in our dataset by manually annotating
numerous instances of the same object. We then selected a

value for s from the lower end of this distribution. In the
bottom row of Fig. 3, a pushpin is missing in one of the
compartments. Since pushpins can potentially occur at every
location in the compartment, its entire area is annotated. The
corresponding saturation threshold is set to the size of a single
pushpin.

Additional objects. Some test images contain too many
instances of anobject. In such cases, all instances of the object
are annotated. The saturation threshold is set to the area of
the extraneous objects. An example is shown in the second
row of Fig. 10, where an additional cable is present between
the two splicing connectors. Since it is not clear which of the
two cables represents the anomaly, we annotate both of them.
The corresponding saturation threshold is set to the area of
one cable, i.e., half of the annotated region. On the one hand,
this allows a method to obtain a perfect score even if it only
marks one of the two cables as an anomaly. On the other
hand, a method which marks both of them is not penalized.

Violation of other logical constraints. Besides the pres-
ence of additional or the absence of required objects, our
MVTec LOCO AD dataset contains various test images that
violate a different form of logical constraints. One example
is shown in the last row of Fig. 3, where the juice bottle filled
with orange juice carries the label of the cherry juice. Both
the orange juice and the label with the cherry are present
in the training set. The logical anomaly arises due to the
erroneous combination of the two in the same image. One
could either mark the area filled with juice or the cherry as
anomalous. Hence, our annotation is given by the union of
the two regions. Since the segmentation of the cherry within
the image is sufficient to solve the anomaly localization task,
s is selected as the area of the cherry.

4 Description of Our Method

In addition to the MVTec LOCO AD dataset, we introduce
GCAD (GlobalContext AnomalyDetection), a newmethod
for the unsupervised localization of anomalies that improves
the joint detection of structural and logical anomalies com-
pared to existing methods.

Given a training dataset of anomaly-free images, our
goal is to localize anomalies in test images by assigning a
real-valued anomaly score to each image pixel. All images
I ∈ R

w×h×n are of width w, height h, and possess the
same number of channels n. Our method consists of two
main branches, one of which is primarily responsible for the
localization of structural anomalies and the other one for
the localization of logical anomalies. The following para-
graphs give details about the two branches and highlight the
characteristics that enable them to detect the two different
anomaly types. A schematic overview of our approach is
given in Fig. 5.
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Fig. 5 Schematic overview of our approach. A global feature encoder
Eglo is trained against descriptors from a pretrained local feature
encoder Eloc through a bottleneck to capture the global context of the
anomaly-free training data. Each encoder is assigned a high-capacity

regression network Rglo and Rloc, respectively, that matches the out-
put of its respective feature encoder. The joint training of Eglo and Rglo
facilitates the accuratematching of higher-dimensional features through
a low-dimensional bottleneck

LocalModel Branch.Our first branch ismotivated by the
recent success of anomaly segmentation methods that model
the distribution of local features extracted from pretrained
CNNs. Such methods achieve state-of-the-art performance
on established anomaly localization benchmarks, in which
the majority of anomalies match our definition of structural
anomalies. In particular, we base this branch of our model
on the Student–Teacher method. Since this method computes
anomaly scores for locally confined image regions indepen-
dent of their spatial position in the input image, we refer to
this branch as the local branch of our model.

It consists of an encoder network Eloc which is pretrained
on a large number of image patches cropped from the Ima-
geNet dataset. During pretraining, Eloc is encouraged to
extract expressive descriptors for local image patches via
knowledge distillation from a pretrained classification net-
work. We distill the knowledge of a ResNet-18 (He et al.
2016) classifier trained on ImageNet into a dense patch
descriptor network via fast dense feature extraction (Bailer
et al. 2017). A detailed description of the network archi-
tecture of Eloc and the pretraining protocol on ImageNet
can be found in the original Student–Teacher paper. After
pretraining, the weights of Eloc remain fixed when optimiz-
ing our anomaly detection model. Formally, Eloc produces
a descriptor of dimension dloc at each pixel location, i.e.,
Eloc(I ) ∈ R

w×h×dloc . Each feature describes a local patch of
size p × p within the original input image. This is achieved

by choosing an architecture for Eloc with a limited receptive
field.

The local branch additionally contains a regression net-
work Rloc that is initialized with random weights and is
trained to match the output of Eloc on the anomaly-free train-
ing data. It outputs a feature map of a shape identical to the
one produced by Eloc, i.e., Rloc(I ) ∈ R

w×h×dloc . We use a
high-capacity networkwith skip connections for this task and
minimize the squared Frobenius norm

Lloc(I ) = ‖Eloc(I ) − Rloc(I )‖2F . (2)

If, during inference, an image contains novel local struc-
tures that have not been observed during training and that fall
within the receptive field of the pretrained feature extractor,
Eloc will produce novel local descriptors with which Rloc is
unfamiliar. This leads to large regression errors. Hence, we
expect the local branch of our model to perform well in the
detection of structural anomalies.

GlobalModelBranch. Eloc inspects only a limited recep-
tive field of size p × p pixels and, in particular, does not
encode the positional composition of the extracted training
features. Hence, our local branch is inherently ill-suited for
the detection of anomalies that violate long-range dependen-
cies, which is characteristic for many logical anomalies such
as missing or additional objects in the input image. To com-
pensate for this, we add a second branch to our model that

123



International Journal of Computer Vision (2022) 130:947–969 955

analyzes the global context of the entire input image. There-
fore, we refer to this branch as the global branch of our
model. Its design is inspired by the observation in Fig. 1 that
methods that compress the input data to a low-dimensional
bottleneck possess the ability to capture logical constraints
and fail to reproduce input images that violate them.

Our global branch consists of two networks, Eglo and Rglo.
The first is an encoder network that produces a descriptor of
dimension dglo at each pixel location, Eglo(I ) ∈ R

w×h×dglo .
Similar to an autoencoder, Eglo is encouraged to produce
feature maps that are globally consistent with the train-
ing data. To this end, Eglo produces its encoding over a
low-dimensional bottleneck of dimension g. Contrary to
autoencoders, Eglo does not reconstruct the input image. It
is trained by distilling the knowledge of the local feature
encoder Eloc into the global branch. In order to let the descrip-
tors of Eglo match the output dimension of Eloc, we introduce
an upsampling networkU that performs a series of 1×1 con-
volutions. For training, we minimize

Lkd(I ) = ∥∥Eloc(I ) −U (Eglo(I ))
∥∥2
F . (3)

In principle, anomaly scores could be computed by compar-
ing the features of Eloc directly to those ofU ◦Eglo. However,
our ablation studies show that the high-dimensional and
detailed feature maps of Eloc can only be approximately
reproduced by Eglo due to its low-dimensional bottleneck.
A direct comparison would lead to many false positives in
the anomaly images due to inaccurate feature reconstruc-
tions. To circumvent this problem, the second network of the
global branch, Rglo, is trained to match the output of Eglo

using the loss term

Lglo(I ) = ∥∥Eglo(I ) − Rglo(I )
∥∥2
F . (4)

Rglo is intended to accurately transform local image regions
into the corresponding feature vectors without taking into
account the underlying logical constraints of the training
data. To make this possible, Rglo does not contain any bot-
tleneck and is designed as a high-capacity network with skip
connections.

The difference in architecture between Eglo and Rglo is
crucial to our method. The high capacity of Rglo allows it
to accurately reproduce the features of Eglo, which reduces
the number of false positive detections compared to the
reconstruction error between Eglo and U ◦ Eglo. The skip
connections enable Rglo to solve the regression task without
capturing the global context of the training data. Thus, the
outputs of Eglo and Rglo differ for anomalous test images
that violate global constraints. This allows the localization
of logical anomalies that require the analysis of long-range
dependencies.

Fig. 6 Visualization of anomalymaps Aloc and Aglo for a structural and
a logical anomaly. The damaged label in the upper row is an example
of a structural anomaly. The local branch is able to detect this type of
anomaly while the global one does not contribute much information.
In the lower row, a wrong fill level constitutes a logical anomaly. The
local branch is not able to detect this because no new local structure
is present in the image. Since the global branch takes the entire image
content into account, it is able to successfully segment the anomalous
region

Combination of the Two Branches. We train the whole
model end-to-end using the sum of the individual loss terms
normalized by the respective depth of the matched features,
i.e.,

L(I ) = 1
dloc

Lkd(I ) + 1
dglo

Lglo(I ) + 1
dloc

Lloc(I ). (5)

Due to the joint optimization of Lkd and Lglo, the global fea-
ture encoder is encouraged to learn meaningful descriptors
for the training data and simultaneously output a represen-
tation that can be easily matched by the feature regression
network. Computing residuals in a learned feature space
facilitates the accurate matching of higher-dimensional fea-
tures through a low-dimensional bottleneck.

Scoring Functions for Anomaly Localization. During
inference, pixelwise anomaly scores for a test image J ∈
R

w×h×n can be computed by comparing the features of the
image encoder networks to the features of the respective
regression network, i.e., by computing Aloc = ||Eloc(J ) −
Rloc(J )||2 ∈ R

w×h and Aglo = ||Eglo(J ) − Rglo(J )||2 ∈
R

w×h , respectively. Here, the norm is taken over the respec-
tive feature dimension (dloc and dglo). Large regression errors
indicate anomalous pixels. Aloc is mainly responsible for
detecting structural anomalies, while Aglo enables the net-
work to detect logical anomalies, as illustrated in Fig. 6. Since
the weights of both Eglo and Rglo are randomly initialized,
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there exists no training incentive for the two networks to
behave differently for structural anomalies. Our experiments
show that the global branch is indeed mainly responsible for
the detection of logical anomalies, while the local branch per-
forms much better at the detection of structural anomalies.

In order to get an anomaly map for the entire model, we
calculate Aloc(I ) and Aglo(I ) for all images I in the val-
idation set after training the model. We then compute the
respective means, μloc and μglo, and standard deviations,
σloc and σglo, of all resulting scores. During inference, we
normalize the individual anomaly maps and define the com-
bined anomaly map by A = Aloc−μloc

σloc
+ Aglo−μglo

σglo
. Note that

the validation set of our dataset only contains anomaly-free
images.Here,weuse the corresponding anomaly images only
to adjust the scale of anomaly scores of the two network
branches.

Anomaly Detection on Multiple Scales. The choice of
the receptive field p for Eloc can have a significant impact
on the anomaly localization performance, especially when
anomalies vary greatly in size. To be less dependent on the
particular choice of the receptivefield,we trainmultiplemod-
elswith varying values of p. The anomalymaps of themodels
are combined by computing their pixelwise average. Let P
be the set of all evaluated receptive fields and A(p) be the
anomaly map obtained from a model with receptive field
p ∈ P . The maps of different receptive fields are combined
by computing 1

|P|
∑

p∈P A(p).

5 Experiments on the LOCODataset

We benchmarked our GCAD method against recently intro-
duced as well as established methods for anomaly localiza-
tion on the LOCO AD dataset and the MVTec AD dataset
(see Sect. 6). We compared our method against a determinis-
tic autoencoder (AE), a variational autoencoder (VAE), and
the memory-guided autoencoder (MNAD). All autoencoders
localize anomalies by an �2-comparison of the input with its
reconstruction. We further evaluated f-AnoGAN as a repre-
sentative for GAN-basedmethods. Formethods that leverage
features of pretrained networks, we evaluated SPADE aswell
as theStudent–Teacher anomaly detectionmodel.As an addi-
tional baseline,we included theVariationModel (Steger et al.
2018, Chapter 3.4.1.4), which computes a mean and a stan-
dard deviation for each image pixel and channel and detects
anomalies by strong deviations from the calculated pixelwise
statistics.

To facilitate the training of data-hungry deep learning
models, we designed the acquisition of our dataset in a way
that permits an easy augmentation of the images.

5.1 Dataset Augmentation

In our experiments, we used the following image augmenta-
tions:

• Vertical flip with probability 1
2 ,

• Horizontal flip with probability 1
2 ,• Random rotation by up to 3◦ around the center of the

image,
• Random jitter of brightness, contrast, and saturation of
the image.

Not all of these augmentations are suited for every type of
object in our dataset. We provide an overview of the aug-
mentations applied to each object in Table 2. The augmented
datasets were used for the training of our GCAD method, all
three autoencoders, and f-AnoGAN. SPADE, the Student–
Teacher model, and the Variation Model did not require
augmented data.

5.2 Training and Evaluation Protocols

We begin by giving detailed information on the training and
evaluation for each method.

Our Method (GCAD). All input images were zoomed
to w = h = 256 pixels. For optimization, we used Adam
(Kingma and Ba 2015) with an initial learning rate of 10−4

and a weight decay of 10−5. We trained our method on the
augmented training images for 500 epochs. Eglo outputs fea-
ture maps of depth dglo = 10 and the capacity of its global
context vector was set to g = 32. For Eloc, we used the same
network architecture and training protocol as in (Bergmann
et al. 2020). Its feature vectors are of depth dloc = 128.
We trained our method using two receptive fields of sizes
p ∈ {17, 33} and combined their outputs for multi-scale
anomaly detection.

Figure 7 shows the architecture of the global feature
encoder Eglo. We initialized the five skip weights u, v, w,
x , and y with a value of 1 prior to training. Then, we linearly
decreased the skip weights after each epoch, starting with the
upper levels. After 100 epochs, all skip weights were set to a
value of 0, meaning that information could only flow through
the g-dimensional bottleneck. We empirically observed that
progressively fading out the weights of the skip connections
facilitated the optimization, yielding lower values of Lkd on
the training and validation set.

The dglo-dimensional features output by Eglo are trans-
formed into dloc-dimensional features by an upsampling
network U . It consists of three 1×1 convolutions with non-
linearities in between. The output of U is matched with the
descriptors given by the pretrained network Eloc. Finally, the
two regression networks Rloc and Rglo have an architecture
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Table 2 Overview of the dataset
augmentation techniques
applied during training to each
of the object categories present
in our dataset

Category Vertical flip Horizontal flip Random rotation Color jitter

Breakfast Box ✗ ✗ ✓ ✓

Screw Bag ✓ ✓ ✓ ✓

Pushpins ✓ ✓ ✓ ✓

Splicing Connectors ✓ ✓ ✓ ✓

Juice Bottle ✗ ✗ ✓ ✓

Fig. 7 Architecture of Eglo with a g-dimensional bottleneck. Trans-
posed convolutions are denoted by “upconv.” All 4×4 convolutions use
a stride of 2 and are followed by a Leaky ReLU activation. The 1×1
convolutions in the skip connections have the same number of feature
maps in their output as in their input. Their outputs are scaled by the
respective skip weight. Then, they are added element-wise to the output
of the corresponding transposed convolution

similar to U-Net (Ronneberger et al. 2015).We use a publicly
accessible implementation2 with five downsampling blocks,
five upsampling blocks, and a bottleneck of size 16 × 16
×1024.

Prior to training, we normalize the features of the pre-
trained network Eloc. For each of the dloc feature dimensions,
we compute the mean and the standard deviation of all
descriptors on the training dataset. We then update the
weights in the final layer of Eloc to output normalized fea-
tures.

For the first 50 epochs, we only trained the global fea-
ture encoder Eglo, the upsampling network U , and the local

2 https://github.com/jvanvugt/pytorch-unet.

regression network Rloc. In the remaining 450 epochs, the
global regression network Rglo was optimized as well.

Deterministic and Variational Autoencoders. For both
autoencoders, we use the same base architecture as for our
global feature encoder Eglo, depicted in Fig. 7. An additional
batch normalization layer is inserted after each convolution
and transposed convolution layer, respectively, except after
the last one. For the VAE, the last convolution layer of the
encoder is duplicated to estimate the variance.

We trained for 500 epochs, gradually fading out the skip
connections over the first 100 epochs. For optimization, we
used Adam with an initial learning rate of 10−4, a weight
decay of 10−5, and a batch size of 16. The latent dimension
of the autoencoders was set to g = 32. During inference,
anomaly scores are derived by a pixelwise comparison of the
input images and their reconstructions.

f-AnoGAN. We used the publicly available implementa-
tion of the original authors.3 As required by their method,
we zoomed all images to size 64 × 64 pixels and converted
them to grayscale prior to training and evaluation.

For the training of the GAN, the dimension of the latent
space was set to 128. The optimization was done using Adam
with an initial learning rate of 10−4, no weight decay, and a
batch size of 64. The GANwas trained for 100 epochs. After
each training iteration of the generator, the discriminator was
trained for 5 iterations.

The training of the encoder network was done with the
RMSProp optimizer with an initial learning rate of 5×10−5,
no weight decay, and a batch size of 64 and runs for 5× 104

iterations. During inference, anomaly scores are derived by
a pixelwise comparison between the input and the recon-
structed image.

MNAD. We used the publicly available implementation
of the original authors4 with a small modification. Instead of
predicting a future video frame, we implemented the recon-
struction of the original input images. The memory module
was initialized with 10 memory items of dimension 512. The
output dimension of the image encoder was set to 32. For
optimization, we used Adam with an initial learning rate of
2×10−5, no weight decay, and a batch size of 4. The weights

3 https://github.com/tSchlegl/f-AnoGAN.
4 https://github.com/cvlab-yonsei/MNAD.
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for feature compactness and feature separateness were set to
λc = λs = 10−1. The training was run for 500 epochs in
reconstruction mode on images of size 256 × 256 pixels.

SPADE.We used our own implementation of the SPADE
method. As a feature extractor, we used a Wide ResNet50-
2 pretrained on ImageNet. The images were zoomed to a
size of 224 × 224. For feature extraction, we used the last
convolution layers of the first, second, and third block of the
network. For the image-level nearest-neighbor computation,
we used K = 50 nearest neighbors. On the pixel-level we
used κ = 1 nearest neighbors. The resulting anomaly maps
were smoothed using a Gaussian filter with σ = 4.

Student–Teacher. We used our own implementation of
the Student–Teacher method. All images were zoomed to a
size of 256× 256 pixels prior to training and evaluation. The
student networkswere trainedwith 3different receptivefields
of sizes p ∈ {17, 33, 65} pixels. For each receptive field, we
used an ensemble of 3 students, which resulted in a total
of 9 trained models per object category. For optimization,
we used Adam with an initial learning rate of 10−4, weight
decay of 10−5, and a batch size of 1. As anomaly score, we
evaluated the predictive variance of the student networks and
their regression errors with respect to the pretrained teacher
network.

VariationModel.TheVariationModel (Steger et al. 2018,
Chapter 3.4.1.4) calculates the mean and standard deviation
at eachpixel locationover the entire training set of eachobject
in our dataset. This works best if the images show aligned
objects. In theMVTecLOCOADdataset, thebreakfast boxes
are already aligned.We aligned the pushpins and juice bottles
using shape-based matching (Steger 2001, 2002). The screw
bags and splicing connectors were not transformed at all for
our experiments.

The pixels of the anomaly map show the absolute differ-
ence of the test image to the mean of the training images in
multiples of the standard deviation of the training images.
This is done separately for each channel and we obtained the
overall anomaly map as the average over all channels. If a

spatial transformation is applied during inference, some pix-
els might not overlap with the mean and deviation images.
For such pixels, no meaningful anomaly score can be com-
puted and we therefore set it to the minimum attainable value
of 0.

5.3 Experiment Results

To assess the difference in performance between the detec-
tion of structural and logical anomalies, we split the test set
into two subsets. Each subset exclusively contains defective
test images with structural or logical anomalies, respectively.
The anomaly-free test images are included in both sets. For
each subset, we computed the area under the sPRO curve
up to a false positive rate of 0.05. We chose this integration
limit because larger false positive rates yield segmentation
results that are not meaningful in practical applications. For
completeness, we report the values for several integration
limits in Table 7. The joint localization performance for both
types of anomalies was measured by the average of the two
individual areas.

Table 3 shows the results of all evaluated methods on
our dataset for each dataset category. Our method consis-
tently outperforms all other evaluated methods for all but
one of the dataset categories. We also observe that methods
that leverage feature descriptors from pretrained networks,
i.e., SPADE and Student–Teacher, outperform the generative
methods based on autoencoders or GANs.

Figure 8 displays the performance of the methods when
structural or logical anomalies are treated separately. The
corresponding numerical values can be found in Table 5.
All evaluated methods except ours show a bias towards the
detection of one type of anomaly. Our method significantly
outperforms all other approaches in the detection of logi-
cal anomalies, while maintaining a high performance at the
detection of structural anomalies. In particular, our method
performs best when considering the average performance for

Table 3 Quantitative results on the MVTec LOCO AD dataset

Method Breakfast Box Screw Bag Pushpins Splicing Connectors Juice Bottle Mean

VM 0.168 0.253 0.254 0.125 0.325 0.225

f-AnoGAN 0.223 0.348 0.336 0.195 0.569 0.334

MNAD 0.080 0.344 0.357 0.442 0.472 0.339

AE 0.189 0.289 0.327 0.479 0.605 0.378

VAE 0.165 0.302 0.311 0.496 0.636 0.382

SPADE 0.372 0.331 0.234 0.516 0.804 0.451

S–T 0.496 0.602 0.523 0.698 0.811 0.626

GCAD (Ours) 0.502 0.558 0.739 0.798 0.910 0.701

The normalized area under the sPRO curve up to an average false positive rate per pixel of 5% is computed separately for the structural and logical
anomalies. The table reports the mean of both values. The best-performing method is highlighted in boldface
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Fig. 8 Difference in anomaly localization performance for both struc-
tural and logical anomalies on the MVTec LOCO AD dataset

both anomaly types. Qualitative results of our method for
structural and logical anomalies are shown in Fig. 9.

Figure 10 provides additional qualitative results for all
evaluated methods. Anomaly images are shown for four test
images of our MVTec LOCO AD dataset. Two of them con-
tain structural anomalies, i.e., the flipped splicing connector
and the contamination in the juice bottle. The other two con-
tain logical anomalies, i.e., the additional red cable between
the two splicing connectors and the banana logo on the bottle
filled with orange juice.

Our method performed well for all of the displayed
examples. While the Student–Teacher approach detected the
structural anomalies reliably, it failed to detect the logical
anomalies due to its limited receptive field. The SPADE
method, on the other hand, failed to detect the flipped splicing
connector, while it managed to localize the remaining three
anomalies. The deterministic and the variational autoencoder
both yielded large residuals in the parts of the images that
are challenging to reconstruct, e.g., on the cables between

the two splicing connectors. While the memory module in
MNAD reduced the number of false positive predictions and
improved upon the basic autoencoders in the detection of
structural anomalies, it failed to detect the logical anoma-
lies. Similar to the deterministic and variation autoencoders,
f-AnoGAN yielded numerous false positive predictions in
areas that are difficult to accurately reconstruct. TheVariation
Model requires a pixel-precise alignment of the inspected
objects. Since this is not possible for the splicing connectors,
it did not perform well for this dataset category. For the juice
bottle, it managed to detect parts of the structural anomaly.

Figure 11 shows some failure cases of our method. Our
methodmight fail when anomalies are very small in size, e.g.,
for the broken pushpin in the top left compartment. It might
also fail to capture very challenging logical constraints, such
as enforcing a fixed number of objects that can potentially
appear almost anywhere in the input image. The second row
of Fig. 11 depicts such an example in which the screw bag
contains an additional washer.We show a third failure case of
our method in which anomalies manifest themselves in very
subtle and intricate differences compared to the anomaly-free
images. In the last row of Fig. 11, no almonds are mixed into
the banana chips in the bottom right compartment.

5.4 Ablation Studies

Toassess the sensitivity of ourmethodwith respect to the cho-
sen hyperparameters, we performed various ablation studies.
The results are shown in Fig. 12.

Global Context Dimension. We begin by analyzing the
impact of the global context dimension g of the global fea-
ture encoder Eglo. When the dimension of the latent space
was too small, Eglo struggled to output meaningful feature

Fig. 9 Qualitative results of our method on the MVTec LOCO AD
dataset for both structural and logical anomalies. The damaged tanger-
ine, the blue pushpin, and the broken connector are structural anomalies.

The wrong ratio of cereals and banana chips in the breakfast box, the
additional yellow pushpin, and the missing cable between the two con-
nectors constitute logical anomalies
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Fig. 10 Qualitative results for each evaluated method on our MVTec
LOCOADdataset. Thefirst and third rowcontain examples of structural
anomalies, i.e. the flipped connector and the contamination in the juice

bottle. The second and third row contain examples of logical anomalies,
i.e., a second cable being present between the two connectors and the
banana label on the bottle filled with orange juice

maps and the anomaly detection performance declined for
both types of anomalies. When the global context dimension
was increased, the overall detection performance was not
affected substantially. However, we observed a slight decline
in the detection of logical anomalies, while the localization
of structural anomalies improved. The increased capacity
of Eglo led to fewer false positives in the global anomaly
detection branch while, at the same time, Eglo captured the
global context of the data less reliably. This is due to the
fact that choosing a latent dimension that is too large allows
the global feature encoder to copy parts of its input directly

into the latent representation. This phenomenon can also be
observed in other bottleneck architectures, such as autoen-
coders. While the mean performance is slightly better for
g = 64, the best balance between the detection of structural
and logical anomalies is achieved for g = 32.

Receptive Field. We also assessed the performance of
our proposed method with respect to the size of the receptive
field of the local feature encoder Eloc. Figure 12 shows the
difference in performance when evaluating our approach for
single receptive fields of sizes 17, 33, and 65, as well as when
combining the anomaly images of multiple receptive fields
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Fig. 11 Qualitative examples for which our GCAD method fails to
localize anomalies

together. Our method yielded a similar mean performance
for receptive fields of size 17 and 33, while the performance
dropped for very large values of p.When combiningmultiple
receptive fields together, the performance for both structural
and logical anomaly detection could be enhanced.

Model Branch. Fig. 12 also evaluates the responsibility
of the different branches of our method with respect to the
anomaly localization performance. We compared the perfor-
mance of the local anomaly maps Aloc to that of the global
anomaly maps Aglo and saw that, indeed, Aloc performed
much better in the detection of structural anomalies. While
our local branch is similar to the Student–Teacher approach,
we do not train a computationally expensive ensemble to
additionally evaluate the intrinsic uncertainty of Rloc. This
comes at a small cost of structural anomaly detection perfor-
mance. Aglo, on the other hand, yielded a better performance
on the logical anomalies. Combining Aloc and Aglo improved
the performance for both structural and logical anomalies.

This indicates that some of the logical anomalies are bet-
ter detected by the local branch and some structural ones
by the global branch. We illustrate this in Fig. 13. Certain

logical anomalies can be detected by the local branch, e.g.,
two pushpins being present in a single compartment, since
both pushpins fall into the receptive field of the local feature
extractor Eloc. The global branch also detects this anomaly.
However, it also tends to produce more false positive pre-
dictions than the local branch since it has to reconstruct the
entire input image over a low dimensional bottleneck. In this
case, the global branch benefits from the performance of the
local branch on this logical anomaly. There also exist cases
in which the global branch contributes to a better detection
of structural anomalies. In the bottom row of Fig. 13, a piece
of a tangerine is present as a contamination in the breakfast
box. Since the texture of the contamination matches that of
a tangerine, the local branch does not detect this anomaly.
The global branch, however, analyzes the entire image con-
text and can encode that there are already two tangerines
present in the input image. Therefore, it manages to localize
this structural anomaly.

Feature Regression vs. Reconstruction. Next, we com-
pare using Rglo for the detection of logical anomalies to
simply evaluating the reconstruction error of the global fea-
ture encoder Eglo with respect to the pretrained features after
upsampling. Figure 12 shows that evaluating the reconstruc-
tion error performed significantly worse than our feature
regression approach. This is because the reconstruction of
128-dimensional pretrained features through a small bottle-
neck is challenging and leads to many false positives. Our
approach circumvents this problem by shifting the feature
matching task to a lower-dimensional, learned feature space.

DescriptorDimension of Eglo.We investigate the impact
of the output dimension dglo of the global feature encoder
Eglo on the anomaly detection performance. The plot on the
left-hand side of Fig. 14 indicates that our method performed
well for various values of dglo and is not highly sensitive to
this parameter.

Knowledge Distillation. Finally, we assess the benefit of
distilling knowledge of pretrained descriptors into the global
branch of our method. For comparison, we distilled knowl-

Fig. 12 Performance of our algorithm when varying different hyperparameters during training or evaluation
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Fig. 13 Qualitative examples for which the local branch works better
in the detection of a logical anomaly than the global branch and vice
versa. In the top row, the global branch produces more false positive

predictions than the local branch in the detection of the two pushpins.
In the bottom row, the local branch fails to localize the contamination
in the breakfast box

edge from the original input images by changing Lkd to

Lkd(I ) = ∥∥I −U (Eglo(I ))
∥∥2
F . (6)

The plot on the right-hand side of Fig. 14 shows that the
distillation of features from pretrained networks into Eglo

greatly enhanced the anomaly localization performance for
both structural and logical anomalies.

Variation of Saturation Thresholds. In this paragraph,
we analyze the sensitivity of the sPRO metric with respect
to the manually selected saturation thresholds. We evaluated
eachmethod in our benchmark ten timeswith thresholds sam-
pled uniformly from an interval ranging from 0.5 to 1.5 times
the original threshold. In case of defects for which the satu-
ration threshold was chosen to be equal to the annotated area,
we did not vary the threshold. The ranking of the evaluated
methods was stable across all ten runs, with the exception of
two runs in which two methods switched between the sixth
and seventh rank.

5.5 Image-Level Classification

In addition to deciding whether a certain pixel is anoma-
lous, in practical applications it is also often important to
make an image-level binary decision. We derive image-level
anomaly scores for each evaluated method by computing the
maximum anomaly score over all pixels in a given anomaly
map. We then compute the area under the ROC curve for
each dataset category, again separating logical and struc-
tural anomalies. The top bar chart in Fig. 15 shows our
results. Similar to our experiments on anomaly localiza-
tion, our GCAD method performs significantly better than

Fig. 14 The left barplot examines the impact of the output dimension
of Eglo on the anomaly localization performance. The plot on the right
shows the difference in performance for different knowledge distillation
targets

all other evaluated methods in the detection of logical and
the joint detection of structural and logical anomalies. The
Student–Teacher method performs best in the detection of
structural anomalies, however, its performance on the log-
ical ones is significantly lower. All other methods show
a balanced classification performance between logical and
structural anomalies. The AU-ROC values depicted in the
bar plot can be found in Table 6 in the appendix.

6 Experiments on theMVTec AD Dataset

In addition to the ones on our MVTec LOCO AD dataset,
we performed experiments on MVTec AD. We split all test
images of the dataset into two subsets. The first contains only
images with defects that match our definition of structural
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Fig. 15 Image-level classification results on the presented MVTec
LOCO dataset (top) and the MVTec AD dataset (bottom)

Table 4 Images of the MVTec AD dataset that match our description
of logical anomalies

Category Defect Name # Images Image IDs

Cable Cable swap 12 All images

Combined 3 {5, 7, 9}

Capsule Faulty imprint 2 {4, 5}

Transistor Cut lead 10 All images

Misplaced 10 All images

anomalies. The second comprises all images that contain
at least one logical anomaly. Of the 1258 anomalous test
images, we identified 37 to contain defects that match our
definition of logical anomalies. We list them in Table 4. For
each of the logical anomalies, the saturation threshold for
the sPRO metric was chosen to be the whole area of the
ground truth label. We performed a separate evaluation of
each method on structural and logical anomalies, respec-
tively. For all methods, we used the same hyperparameters
as on the MVTec LOCO AD dataset. The data augmentation
strategies for each evaluated object are listed in Appendix C.

Figure 16 shows a bar chart of our results. The corre-
sponding numerical values are listed in Table 8. The results
are similar to the ones on the MVTec LOCO AD dataset.
Our method outperformed all other methods at the combined
detection of structural and logical anomalies. The Student–
Teacher approach performed slightly better at the detection
of structural anomalies. However, its performance dropped
significantly for the logical anomalies in the dataset.

Fig. 16 Difference in anomaly localization performance for both struc-
tural and logical anomalies on the MVTec AD dataset

Figure 17 shows qualitative results for all evaluated meth-
ods on the object categories transistor and cable. The first
and third row contain examples of structural anomalies, i.e.,
a damaged transistor surface and bent wires in a cable cross
section. The other two show examples of logical anoma-
lies. In the second row, the transistor is entirely missing.
In the fourth row, the top yellow cable has been replaced
by a blue one. Our method reliably detects all four defects.
The Student–Teacher model performs well on the structural
anomalies but entirely fails to localize the logical anoma-
lies due to its limited receptive field. The SPADE method
manages to detect the missing transistor and performs well
on the structural anomalies, but has difficulties to localize
the more subtle logical anomaly in the image of the cable.
All methods based on autoencoders tend to yield increased
anomaly scores on the structural anomalies. However, they
also produce many false positives in areas that are difficult to
accurately reconstruct, i.e., the reflections on the wires of the
cable. Both the VAE and the deterministic AE show a ten-
dency to detect both of the logical anomalies. This is not the
case forMNAD, forwhich the high-capacitymemorymodule
allows to reconstruct the areas that contain logical anomalies.
Similarly to the autoencoders, f-AnoGAN yields many false
positives on areas that are challenging to reconstruct. For the
missing transistor, however, it manages to capture the logi-
cal constraint that a transistor should always be present. The
VariationModelmanages to detect parts of the damaged tran-
sistor as well as its absence. It also yields increased anomaly
scores on the bent wires. However, it fails to localize the
logical anomaly on the cable.

As for MVTec LOCO, we also compute the AU-ROC val-
ues for the image-level classification task on the MVTec AD
dataset. The bottom bar chart in Fig. 15 shows our results.
While our proposed method performs slightly worse in the
detection of structural anomalies than the Student–Teacher
method and SPADE, it excels in the classification of the logi-
cal anomalies on this dataset. Exact numbers for theAU-ROC
values reported in the bar plot can be found in Table 9 in the
appendix.
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Fig. 17 Qualitative results for each evaluatedmethodon theMVTecAD
dataset. The first and third row contain examples of structural anoma-
lies, i.e., the damaged transistor and the bent wires in the cable cross

section. The second and fourth row contain examples of logical anoma-
lies, i.e., the transistor being entirely missing and a blue cable being
present instead of a yellow one

7 Conclusions

This paper is based on the observation that anomalies in nat-
ural images can manifest themselves in many different ways.
We defined two categories of anomalies which we call struc-
tural and logical anomalies. Previous work predominantly
concentrated on the development of datasets andmethods for
the detection of structural ones. We therefore created a new
dataset for the unsupervised localization of anomalies that
focuses on the detection of both structural and logical anoma-
lies. Pixel-precise ground truth annotations are provided for
each anomalous test image. Furthermore, we introduced a
new performance metric that takes the different modalities
of the two anomaly types into account.

In addition, we developed a new method that permits the
joint localization of both anomaly types. It consists of two
branches, each of which is primarily intended for the detec-
tion of structural and logical anomalies, respectively. Thefirst
is based on an existing method that excels at the localization
of structural anomalies. The second learns an embedding of
the anomaly-free training data that captures its underlying
logical constraints. This is achieved by compressing the input
images via a low-dimensional bottleneck.

We performed extensive experiments on our new dataset
as well as a suitable subset of the MVTec AD dataset.
Our results showed that existing methods tend to be biased

towards the detection of one of the two types of anomalies.
Our approach performed equally well in the detection of
structural and logical anomalies and improved the state of
the art in the joint detection of both. Nevertheless, due to the
complexity of our new dataset, there is still room for future
improvement.
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AConstructionof theBlackCircle ToyDataset

We drew inspiration from the homonymous painting by
Malevich (1924). All images in the dataset are RGB images
of size 256×256 pixels. The anomaly-free images show a
single black circle with a radius of 16 pixels at a random
location on a bright background. The value of each back-
ground pixel of each channel is sampled randomly from the
interval [247, 255]. We introduce two types of anomalies, a
structural and a logical one. The former is a simple color
variation where a randomly selected region within the circle
is filled with a randomly selected color. The latter manifests
itself by the presence of a second black circle. It is also placed
at a random location while ensuring that the two circles do
not overlap. All images, anomalous as well as anomaly-free
ones, are postprocessed by smoothing them with a Gaussian
filter with σ = 1.5. For training the Student–Teacher method
and the VAE on our toy dataset, we generated 1000 train and
100 validation images. We followed the same training proto-
col as for our experiments on the MVTec LOCOAD dataset.

B Additional Results onMVTec LOCO AD

Table 5 provides the sPRO values corresponding to the bar
chart in Fig. 8 on the MVTec LOCO AD dataset. Table 7
shows the mean performance of each evaluated method
on structural and logical anomalies for increasing integra-
tion limits for the area under the sPRO curve. We observe
seemingly better performances for all methodswhen increas-
ing the integration threshold. However, as motivated in
Bergmann et al. (2021), we discourage an evaluation of our
dataset at high false positive rates since those correspond to
segmentation results that are no longer meaningful in prac-
tice.

Table 5 Additional quantitative results on the LOCO dataset. The nor-
malized area under the sPRO curve up to an average false positive rate
per pixel of 5% is computed separately for the structural and logical
anomalies. The table additionally reports the mean of both values. The
best-performing method is highlighted in boldface

Method Structural anomalies Logical anomalies Mean

VM 0.124 0.325 0.225

f-AnoGAN 0.209 0.460 0.334

MNAD 0.412 0.266 0.339

AE 0.296 0.460 0.378

VAE 0.305 0.459 0.382

SPADE 0.368 0.536 0.451

S–T 0.756 0.497 0.626

GCAD (Ours) 0.692 0.711 0.701

Table 6 AU-ROC values for the image-level classification experiment
on the MVTec LOCO dataset. The best-performing method is high-
lighted in boldface

Method Structural Anomalies Logical Anomalies Mean

VAE 0.548 0.538 0.543

AE 0.565 0.581 0.573

VM 0.589 0.565 0.577

f-AnoGAN 0.627 0.658 0.642

MNAD 0.702 0.600 0.651

SPADE 0.668 0.709 0.689

S–T 0.883 0.664 0.773

GCAD (Ours) 0.806 0.860 0.833

Table 7 We report the area under the sPRO curve for different integra-
tion limits L. The best performing method is highlighted in boldface

Method L = 0.01 L = 0.05 L = 0.1 L = 0.3 L = 1.0

VM 0.086 0.225 0.314 0.493 0.740

f-AnoGAN 0.152 0.334 0.442 0.624 0.827

MNAD 0.176 0.339 0.447 0.643 0.853

AE 0.166 0.378 0.499 0.699 0.882

VAE 0.162 0.382 0.506 0.705 0.884

SPADE 0.225 0.451 0.587 0.790 0.927

S–T 0.402 0.626 0.717 0.836 0.937

GCAD (Ours) 0.462 0.701 0.787 0.891 0.962
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C Additional Results onMVTec AD

Table 8 provides the exact sPRO values depicted in the bar
plot in Fig. 16 on the MVTec AD dataset. Table 10 provides
an overview of the augmentation techniques applied to each
dataset category duringmodel training.Note that no augmen-
tation was applied for the training of the Student–Teacher
model, SPADE, and the Variation Model.

Table 8 Quantitative results on theMVTecADdataset. The normalized
area under the sPROcurve up to an average false positive rate per pixel of
5% is computed separately for the structural and logical anomalies. The
table additionally reports the mean of both values. The best-performing
method is highlighted in boldface

Method Structural Anomalies Logical Anomalies Mean

VM 0.240 0.069 0.155

MNAD 0.294 0.032 0.163

f-AnoGAN 0.290 0.231 0.261

AE 0.337 0.224 0.281

VAE 0.336 0.215 0.276

S–T 0.762 0.417 0.590

SPADE 0.632 0.647 0.640

GCAD (Ours) 0.716 0.863 0.789

Table 9 AU-ROC values for the image-level classification experiment
on the MVTec AD dataset. The best-performing method is highlighted
in boldface

Method Structural Anomalies Logical Anomalies Mean

MNAD 0.709 0.427 0.568

VM 0.690 0.679 0.684

AE 0.761 0.718 0.740

f-AnoGAN 0.751 0.751 0.751

VAE 0.766 0.737 0.751

S–T 0.936 0.747 0.842

SPADE 0.898 0.906 0.902

GCAD (Ours) 0.871 0.991 0.931

Table 10 Overview of the dataset augmentation techniques applied
during training to each of the object categories present in the MVTec
AD dataset

Category Vertical flip Horizontal flip Random rotation Color jitter

Bottle ✓ ✓ ✓ ✓

Cable ✗ ✗ ✓ ✓

Capsule ✗ ✗ ✓ ✓

Carpet ✓ ✓ ✓ ✓

Grid ✓ ✓ ✓ ✓

Hazelnut ✓ ✓ ✓ ✓

Leather ✓ ✓ ✓ ✓

Metal Nut ✗ ✗ ✓ ✓

Pill ✗ ✗ ✓ ✓

Screw ✓ ✓ ✓ ✓

Tile ✓ ✓ ✓ ✓

Toothbrush ✗ ✓ ✓ ✓

Transistor ✗ ✓ ✓ ✓

Wood ✓ ✓ ✓ ✓

Zipper ✓ ✓ ✓ ✓

D Overview of the Anomalies Present in the
MVTec LOCO ADDataset

Tables 11, 12, 13, 14, 15 provide an overview over all anoma-
lies for eachobject category in theMVTecLOCOADdataset.
For each kind of anomaly, the tables include the classifica-
tion as a structural or logical anomaly, the pixel value in the
corresponding ground truth image (GT), as well as the sat-
uration threshold for the sPRO metric. For some anomalies,
the saturation threshold is expressed as an absolute value
sabs in pixels. In this case, the value of si in Eq. 1 is set to
si = sabs. For the other anomalies, the saturation threshold
is expressed as a relative threshold srel and si = srel |Ai |. A
relative threshold of 1 indicates that the whole area of the
ground truth region is taken as the saturation threshold. In
particular, this is the case for all structural anomalies in our
dataset.
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Table 11 Overview over all anomalies of category breakfast box in our
MVTec LOCO AD dataset

Anomaly Name Type GT sabs srel

Missing_almonds Logical 255 1

Missing_bananas Logical 254 1

Missing_toppings Logical 253 1

Missing_cereals Logical 252 1

Missing_cereals_and_toppings Logical 251 1

2_nectarines_1_tangerine Logical 250 100100

1_nectarine_1_tangerine Logical 249 84300

0_nectarines_2_tangerines Logical 248 100100

0_nectarines_3_tangerines Logical 247 100100

3_nectarines_0_tangerines Logical 246 200200

0_nectarines_1_tangerine Logical 245 184400

0_nectarines_0_tangerines Logical 244 268700

0_nectarines_4_tangerines Logical 243 168600

Compartments_swapped Logical 242 1

Overflow Logical 241 1

Underflow Logical 240 1

Wrong_ratio Logical 239 1

Mixed_cereals Structural 238 1

Fruit_damaged Structural 237 1

Box_damaged Structural 236 1

Toppings_crushed Structural 235 1

Contamination Structural 234 1

Table 12 Overview over all anomalies of category screw bag in our
MVTec LOCO AD dataset

Anomaly Name Type GT sabs srel

Screw_too_long Logical 255 9000

Screw_too_short Logical 254 9000

1_very_short_screw Logical 253 1

2_very_short_screws Logical 252 18000

1_additional_long_screw Logical 251 29600

1_additional_short_screw Logical 250 20600

1_additional_nut Logical 249 7500

2_additional_nuts Logical 248 15000

1_additional_washer Logical 247 5500

2_additional_washers Logical 246 11000

1_missing_long_screw Logical 245 29600

1_missing_short_screw Logical 244 20600

1_missing_nut Logical 243 7500

2_missing_nuts Logical 242 15000

1_missing_washer Logical 241 5500

2_missing_washers Logical 240 11000

Bag_broken Structural 239 1

Color Structural 238 1

Contamination Structural 237 1

Part_broken Structural 236 1

Table 13 Overview over all anomalies of category pushpins in our
MVTec LOCO AD dataset

Anomaly Name Type GT sabs srel

1_additional_pushpin Logical 255 6300

2_additional_pushpins Logical 254 12600

Missing_pushpin Logical 253 6300

Missing_separator Logical 252 1

Front_bent Structural 251 1

Broken Structural 250 1

Color Structural 249 1

Contamination Structural 248 1

Table 14 Overview over all anomalies of category splicing connectors
in our MVTec LOCO AD dataset

Anomaly Name Type GT sabs srel

Wrong_connector_type_5_2 Logical 255 67100

Wrong_connector_type_5_3 Logical 254 44300

Wrong_connector_type_3_2 Logical 253 22100

Cable_too_short_T2 Logical 252 53300

Cable_too_short_T3 Logical 251 76100

Cable_too_short_T5 Logical 250 120000

Missing_connector Logical 249 1

Missing_connector_and_cable Logical l 248 103600

Missing_cable Logical 247 18000

Extra_cable Logical 246 0.5

Cable_color Logical 245 18000

Broken_cable Structural 244 1

Cable_cut Logical 243 1

Cable_not_plugged Structural 242 1

Unknown_cable_color Structural 241 1

Wrong_cable_location Logical 240 18000

Flipped_connector Structural 239 1

Broken_connector Structural 238 1

Open_lever Structural 237 1

Color Structural 236 1

Contamination Structural 235 1
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Table 15 Overview over all anomalies of category juice bottle in our
MVTec LOCO AD dataset

Anomaly Name Type GT sabs srel

Missing_top_label Logical 255 70400

Missing_bottom_label Logical 254 32700

Swapped_labels Logical 253 140800

Damaged_label Structural 252 1

Rotated_label Structural 251 1

Misplaced_label_top Logical l 250 70400

Misplaced_label_bottom Logical 249 32700

Label_text_incomplete Structural 248 1

Empty_bottle Logical 247 1

Wrong_fill_level_too_much Logical 246 1

Wrong_fill_level_not_enough Logical 245 1

Misplaced_fruit_icon Logical 244 1

Missing_fruit_icon Logical 243 1

Unknown_fruit_icon Structural 242 1

Incomplete_fruit_icon Structural 241 1

Wrong_juice_type Logical 240 4500

Juice_color Structural 239 1

Contamination Structural 238 1
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