Skip to main content
Log in

Inextensible Surface Reconstruction Under Small Relative Deformations from Distributed Angle Measurements

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A mathematical model to measure the shape of a 3D surface using angle measurements from embedded sensors is presented. The surface is known in a reference configuration and is assumed to have deformed inextensibly to its current shape. An inextensibility condition is enforced through a discretization of the metric tensor generating a finite number of constraints. This model allows to parameterize the shape of the surface using a small number of unknowns which leads to a small number of sensors. We study the singularities of the equations and derive necessary conditions for the problem to be well-posed as well as limitations of the algorithm. Simulations and experiments are performed on developable surfaces under relatively small deformations to analyze the performance of the method and to show the influence of the parameters used in our algorithm. Overall, the proposed method outperforms the current state-of-the-art by almost an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P., Guennebaud, G., Levine, J. A., Sharf, A., & Silva, C. T. (2017). A survey of surface reconstruction from point clouds. Computer Graphics Forum, 36(1), 301–329.

    Article  Google Scholar 

  2. Khatamian, A., & Arabnia, H. R. (2016). Survey on 3D surface reconstruction. Journal of Information Processing Systems, 12(3), 338–357.

    Google Scholar 

  3. Brunet, F., Hartley, R., Bartoli, A., Navab, N., & Malgouyres, R. (2010). Monocular template-based reconstruction of smooth and inextensible surfaces, Asian Conference on Computer Vision (pp. 52–66). Berlin, Heidelberg: Springer.

    Google Scholar 

  4. Perriollat, M., Hartley, R., & Bartoli, A. (2011). Monocular template-based reconstruction of inextensible surfaces. International journal of computer vision, 95(2), 124–137.

    Article  MathSciNet  Google Scholar 

  5. Salzmann, M., Pilet, J., Ilic, S., & Fua, P. (2007). Surface deformation models for nonrigid 3D shape recovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8), 1481–1487.

    Article  Google Scholar 

  6. Brunet, F., Bartoli, A., & Hartley, R. I. (2014). Monocular template-based 3D surface reconstruction: Convex inextensible and nonconvex isometric methods. Computer Vision and Image Understanding, 125, 138–154.

    Article  Google Scholar 

  7. Bartoli, A., Gérard, Y., Chadebecq, F., Collins, T., & Pizarro, D. (2015). Shape-from-template. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(10), 2099–2118.

    Article  Google Scholar 

  8. Chhatkuli, A., Pizarro, D., Bartoli, A., & Collins, T. (2016). A stable analytical framework for isometric shape-from-template by surface integratio. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(5), 833–850.

    Article  Google Scholar 

  9. Gallardo, M., Collins, T., & Bartoli, A. (2017). Dense non-rigid structure-from-motion and shading with unknown albedos. In Proceedings of the IEEE International Conference on Computer Vision, 3884–3892.

  10. Varol, A., Shaji, A., Salzmann, M., & Fua, P. (2012). Monocular 3D reconstruction of locally textured surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(6), 1118–1130.

    Article  Google Scholar 

  11. Hermanis, A., Cacurs, R., & Greitans, M. (2016). Acceleration and magnetic sensor network for shape sensing. IEEE Sensors Journal, 16(5), 1271–1280.

    Article  Google Scholar 

  12. Hoshi, T., & Shinoda, H. (2008). 3D shape measuring sheet utilizing gravitational and geomagnetic fields, 2008 SICE Annual Conference, pp. 915-920, IEEE.

  13. Huard, M., Sprynski, N., Szafran, N., & Biard, L. (2013). Reconstruction of quasi developable surfaces from ribbon curves. Numerical Algorithms, 63(3), 483–506.

    Article  MathSciNet  Google Scholar 

  14. Saguin-Sprynski, N., Jouanet, L., Lacolle, B., & Biard, L. (2014). Surfaces reconstruction via inertial sensors for monitoring, EWSHM-7th European Workshop on Structural Health Monitoring (pp. 702–709). IFFSTTAR: Inria, Université de Nantes.

  15. Sprynski, N., Lacolle, B., & Biard, L. (2011). Motion capture of an animated surface via sensors’ ribbons, PECCS 2011-1st International Conference on Pervasive and Embedded Computing and Communication Systems, pp. 421-426, SciTePress.

  16. Stanko, T., Hahmann, S., Bonneau, G. P., & Saguin-Sprynski, N. (2017). Shape from sensors: Curve networks on surfaces from 3D orientations. Computers and Graphics, 66, 74–84.

    Article  Google Scholar 

  17. Boden, R. C., & Hernando-Ayuso, J. (2017). Shape estimation of gossamer structures using distributed sun-angle measurements. Journal of Spacecraft and Rockets, 55(2), 415–426.

    Article  Google Scholar 

  18. Talon, T., & Pellegrino, S. (2017). In-space shape measurement of large planar structures, 4th AIAA Spacecraft Structures Conference. AIAA, p. 1116.

  19. Talon, T., & Pellegrino, S. (2018). Shape measurement of large structures in space: Experiments, 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), pp. 581-584, IEEE.

  20. Trebi-Ollennu, A., Huntsberger, T., Cheng, Y., Baumgartner, E. T., Kennedy, B., & Schenker, P. (2001). Design and analysis of a sun sensor for planetary rover absolute heading detection. IEEE Transactions on Robotics and Automation, 17(6), 939–947.

    Article  Google Scholar 

  21. Salzmann, M., Moreno-Noguer, F., Lepetit, V., & Fua, P. (2008). Closed-form solution to non-rigid 3D surface registration, European conference on computer vision (pp. 581–594). Berlin, Heidelberg: Springer.

    Google Scholar 

  22. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., & Grinspun, E. (2007). Efficient simulation of inextensible cloth. ACM Transitions on Graphics, 26(3), 49.

    Article  Google Scholar 

  23. Sumner, R.W., Schmid, J., & Pauly, M. (2007). Embedded deformation for shape manipulation, In ACM SIGGRAPH 2007 papers, pp. 80.

  24. Sorkine, O., & Alexa, M. (2007). As-rigid-as-possible surface modeling. In Symposium on Geometry processing, 4, 109–116.

  25. Metaxas, D., & Terzopoulos, D. (1991). Constrained deformable superquadrics and nonrigid motion tracking, In Proceedings, 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 337-343). IEEE.

  26. Torresani, L., Hertzmann, A., & Bregler, C. (2004). Learning non-rigid 3D shape from 2D motion. Advances in Neural Information Processing Systems, 1555–1562.

  27. Dierckx, P. (1995). Curve and surface fitting with splines. Oxford: Oxford University Press.

    MATH  Google Scholar 

  28. Goshtasby, A. (1993). Design and recovery of 2-D and 3-D shapes using rational Gaussian curves and surfaces. International Journal of Computer 11263on, 10(3), 233-256

  29. Abramowitz, M., & Stegun, I.A. (1965). Handbook of mathematical functions: with formulas, graphs, and mathematical tables (Vol. 55), Courier Corporation

  30. Fornberg, B., & Zuev, J. (2007). The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Computers and Mathematics with Applications, 54(3), 379–398.

    Article  MathSciNet  Google Scholar 

  31. Kreyszig, E. (1968). Introduction to differential geometry and Riemannian geometry. Toronto: University of Toronto Press.

    Book  Google Scholar 

  32. Ricci, M. M. G., & Levi-Civita, T. (1900). Méthodes de calcul différentiel absolu et leurs applications. Mathematische Annalen, 54(1–2), 125–201.

    Article  MathSciNet  Google Scholar 

  33. Abbena, E., Salamon, S., & Gray, A. (2017). Modern differential geometry of curves and surfaces with Mathematica, Chapman and Hall/CRC

  34. Floudas, C.A., & Pardalos, P.M. eds. (2001). Encyclopedia of optimization (Vol. 1), Springer Science & Business Media.

  35. Malvern, L. E. (1969). Introduction to the mechanics of continuous medium. New Jersey: Prentice Hall.

    Google Scholar 

  36. Nielson, G. M. (2004). \(\nu \)-Quaternion splines for the smooth interpolation of orientations. IEEE Transactions on Visualization and Computer Graphics, 10(2), 224–229.

    Article  Google Scholar 

  37. Coons, S. A. (1974). Surface patches and B-spline curves (pp. 1–16). In Computer Aided Geometric Design: Academic Press.

  38. Perriollat, M., & Bartoli, A. (2013). A Computational Model of Bounded Developable Surfaces with Application to Image-Based Three-Dimensional Reconstruction. Computer Animation and Virtual Worlds, 24(5), 459–476.

    Article  Google Scholar 

  39. Talon, T. (2020). Surface Reconstruction from Distributed Angle Measurements. California Institute of Technology: PhD diss.

  40. Talon, T., Chen, Y. L., & Pellegrino, S. (2021). Shape Reconstruction of Planar Flexible Spacecraft Structures Using Distributed Sun Sensors. Acta Astronautica, 180, 328–339.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Space Solar Power Project at Caltech is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Adrien Bartoli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talon, T., Pellegrino, S. Inextensible Surface Reconstruction Under Small Relative Deformations from Distributed Angle Measurements. Int J Comput Vis 130, 594–614 (2022). https://doi.org/10.1007/s11263-021-01552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-021-01552-x

Keywords

Navigation