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Abstract
Existing person re-identification (re-id) deep learning methods rely heavily on the utilisation of large and computationally
expensive convolutional neural networks. They are therefore not scalable to large scale re-id deployment scenarios with the
need of processing a large amount of surveillance video data, due to the lengthy inference processwith high computing costs. In
thiswork,we address this limitation via jointly learning re-id attention selection. Specifically,we formulate a novel harmonious
attention network (HAN) framework to jointly learn soft pixel attention and hard region attention alongside simultaneous
deep feature representation learning, particularly enabling more discriminative re-id matching by efficient networks with
more scalable model inference and feature matching. Extensive evaluations validate the cost-effectiveness superiority of the
proposed HAN approach for person re-id against a wide variety of state-of-the-art methods on four large benchmark datasets:
CUHK03, Market-1501, DukeMTMC, and MSMT17.

Keywords Person re-identification · Scalable search · Compact model · Attention learning · Local and global representation
learning

1 Introduction

Person re-identification (re-id) aims to search people across
non-overlapping surveillance camera views deployed at dif-
ferent locations by matching auto-detected person bounding
box images. With the 24/7 operating nature of surveillance
cameras, person re-id is intrinsically a large scale search
problemwith a fundamental requirement for developing sys-
tems with both fast data throughput (i.e. low inference cost)
and high matching accuracy. This is because, model accu-
racy and inference efficiency both are key enabling factors for
affordable real-world person re-id applications. In this paper,
we define this cost-effectiveness measure as the scalability
of a person re-id system, taking into account model accuracy
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and computational cost jointly, rather than optimising either
alone.

Earlier person re-id methods in the literature rely on slow-
to-compute high-dimensional hand crafted features with
inferior model performance, yielding unsatisfactory solu-
tions (Zheng et al. 2013; Liao et al. 2015; Matsukawa et al.
2016; Zhang et al. 2016; Wang et al. 2018b). The recent
introduction of large scale person re-id datasets (Wei et al.
2018; Zheng et al. 2015a; Li et al. 2014; Ristani et al. 2016)
allows for a natural utilisation of increasingly powerful deep
neural networks (He et al. 2016; Szegedy et al. 2017; Huang
et al. 2017), substantially improving person re-id accuracy
in a single system pipeline.

However, typical existing deep learning re-id methods
remain large sized and computationally expensive there-
fore unfavourable for real deployments in scalability. This
is due to the adoption of deep and wide neural network
architectures with a huge number of parameters and exhaus-
tivemultiply-add operations. For example, the often-selected
CNN architecture ResNet50 (He et al. 2016) consists of 25.1
million parameters consuming 3.80 × 109 FLoating-point
OPerations (FLOPs) in forwarding a single person image
through the network.While the offline training of large neural
networks can be reasonably afforded using industrial-sized or
cloud computing clusters with rich high-performance graph-
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ics processing units (GPUs), deploying them to process big
video data suffers from low inference efficiency and expen-
sive energy consumption. There is an intrinsic need for
designing cost-effective deep learning re-id methods, which
is currently less investigatedwith insufficient research efforts
and attempts.

One intuitive approach to large scale person re-id is to
train efficient small neural network models. This is made
more attractive by the development of lightweight archi-
tectures, e.g. MobileNet (Howard et al. 2017), ShuffleNet
(Zhang et al. 2018a), and CondenseNet (Huang et al. 2018b).
These methods are based on the observation that there exist
highly redundant weights in large neural networks (Denil
et al. 2013). However, such networks, originally designed
for generic object classification and detection, are less effec-
tive for visually fine-grained and subtle person re-idmatching
(Table 7). It is non-trivial to simultaneously achieve both gen-
eralisation performance and inference efficiency by a single
deep learning person re-id model.

In this work, we investigate the under-studied scalabil-
ity and cost-effectiveness problem in deep learning person
re-identification. To this end, we explore the potential of per-
son attention selection learning in a single neural network
architecture. The rationale is that detecting the fine-grained
salient parts of person images not only allows to preserve
the model matching performance, but also favourably sim-
plifies the re-id matching due to noise suppression, therefore
rendering small networks sufficient to induce this simplified
target matching function. It is this re-id attention selection
learning strategy that distinguishes our method from existing
purpose-generic network compression techniques (Howard
et al. 2017; Zhang et al. 2018a; Huang et al. 2018b), enabling
uniquely a simultaneous realisation of model efficiency
and generalisation performance. Owing to the conceptual
orthogonality, existing network compression techniques can
be naturally integrated as complementary designs into our
approach to achieve further model efficiency and scalability.

There have been a number of existing attempts at learning
re-id attention selection. Nevertheless, their primary purpose
is to address the person misalignment issue for higher model
generalisation capability. This is because in practical re-id
scenarios, person images are usually automatically detected
with arbitrary cropping errors for scaling up to large video
data (Zheng et al. 2015a; Li et al. 2014; Ristani et al. 2016).
Additionally, uncooperative people are often captured in var-
ious poses across open space and time. There is consequently
an inevitable need for attention selection within arbitrarily-
aligned bounding boxes as an integral part of model learning
for re-id.

A common earlier strategy for re-id attention selection is
local patch calibration and saliency weighting in pairwise
image matching (Zhao et al. 2013; Shen et al. 2015; Zheng
et al. 2015b; Wang et al. 2014). This approach relies on

pre-fixed hand-crafted features without deep learning jointly
more expressive representations and a matching metric in an
end-to-end manner. A number of more advanced attention
deep learning models for person re-id have been recently
developed (Li et al. 2017a; Zhao et al. 2017; Su et al. 2017;
Lan et al. 2017; Xu et al. 2018; Wang et al. 2018a; Qian
et al. 2018; Suh et al. 2018). Most of these methods con-
sider only coarse region-level attention whilst ignoring the
fine-grained pixel-level saliency. Moreover, such methods
depend on heavy network architectures therefore suffering
the drawbacks of high computational complexity and low
model inference efficiency. Our work addresses the weak-
nesses and limitations of these existing methods for scalable
person re-id with both superior matching accuracy and infer-
ence efficiency.

We make three contributions in this work.
(I) We investigate the under-studied model cost-

effectiveness and scalability issue in deep learning person re-
id, including model accuracy, inference cost, and matching
efficiency. This differs substantially from the existing meth-
ods usually ignoring the model efficiency problem whilst
only focusing on improving re-id accuracy rates. Through
studying this problem, we aim for addressing large scale per-
son re-id deployments typical in practical applications.

(II) We formulate a novel idea of jointly learning multi-
granularity attention selection and feature representation for
optimising person re-id cost-effectiveness in deep learning.
To our knowledge, this is the first attempt at jointly deep
learning multiple complementary attention for solving the
person re-id scalability problem. The proposed approach
is technically orthogonal to existing designs of efficient
neural networks therefore allowing for implementing com-
plementary strengths by concurrent integration in a hybrid
architecture.

(III) We propose a harmonious attention network (HAN)
framework to simultaneously learn hard region-level and soft
pixel-level along with re-id feature representations for max-
imising the correlated complementary information between
attention selection and feature discrimination in a compact
architecture. This is achieved by devising an efficientHarmo-
nious Attention module capable of efficiently and effectively
learning different types of attention from the re-id feature rep-
resentation hierarchy in a multi-task and end-to-end learning
fashion. In the harmonious attention, we introduce a cross-
attention interaction learning scheme to further enhance the
compatibility between attention selection and feature repre-
sentation, subject to the same re-id discriminative training
constraints.

Extensive comparative evaluations demonstrate the cost-
effectiveness superiority of the proposedHANapproach over
a wide variety of state-of-the-art person re-id models and
efficient neural networks on four large benchmark datasets:
CUHK03 (Li et al. 2014), Market-1501 (Zheng et al. 2015a),
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DukeMTMC (Ristani et al. 2016), and MSMT17 (Wei et al.
2018). Preliminary versions of this study have been presented
on concurrently learning global and local feature representa-
tions (Li et al. 2017b) and jointly leaning harmonious re-id
attention (Li et al. 2018b). Built on the two previous stud-
ies, this work presents a further more cost-effective person
re-id deep learning framework that enables more efficient
model deployments therefore more scalable to processing
large surveillance video data.

2 RelatedWork

Person Re-ID The state-of-the-art person re-id deep methods
are typically concerned with supervised learning of identity-
discriminative representations (Qian et al. 2017; Chen et al.
2017a; Xiao et al. 2016; Wang et al. 2016a; Li et al. 2017b;
Chen et al. 2017b; Kalayeh et al. 2018; Song et al. 2018;
Chang et al. 2018a; Wei et al. 2018). Although unsupervised
learning and transfer learning based techniques are progres-
sively advancing (Wang et al. 2018c; Zhong et al. 2018a; Li
et al. 2018a; Chen et al. 2018b; Kodirov et al. 2015; Peng
et al. 2016; Wang et al. 2016b), their re-id performances are
significantly inferior therefore less satisfactory and reliable
in practical use.

With the emergence of large benchmark datasets (Li et al.
2014; Zheng et al. 2015a, 2017; Wei et al. 2018), more pow-
erful and computationally expensive neural networks like
ResNet50 (He et al. 2016), originally designed for object
image classification, have been increasingly adopted in build-
ing person re-id model architectures. The use of stronger and
heavier networks yields significant gains in performance, but
simultaneously sacrifices largely the deployment efficiency
due to the need for highmemory and computing consumption
apart from lengthymodel inference. Such inefficient systems
suffer from low data throughput, therefore limiting the pos-
sible application scenarios (undesired in processing a large
pool of surveillance videos).
Model Efficiency In the literature, model efficiency is an
under-studied and critical problem in person re-id. Zheng
et al. (2015a) employed a KD-tree based approximate near-
est neighbour (ANN) method to expedite the re-id matching
process. As another ANN strategy, the learning-to-hash idea
has been explored with hand-crafted (Zhu et al. 2018) and
deep learning (Zhang et al. 2015; Zhu et al. 2017) models.
Thesemethods quantise the feature representations so that the
hamming distance metric can be applied to rapidly compute
matching scores at the cost of significant performance degra-
dation due to limited expressive capacity. Recently, Wang
et al. (2018e) proposed to conduct re-id matching subject to
given computation budgets. The hypothesis is that feature
representations of easy samples can be computed at lower
costs which makes room for computation reduction. How-

ever, it is intrinsically difficult and ambiguous to measure the
sample easiness degree given the poor-quality surveillance
data and the nature of pairwise matching (not per-sample
inference).

Unlike all these existing strategies, we explore differently
the potential of person attention learning for model effi-
ciency and cost-effectiveness. Conceptually, our method is
complementary to the prior techniques with extra possible
performance benefits.
AttentionLearningThere exist learning-to-attend algorithms
developed for improving re-id particularly in misaligned
person bounding boxes, e.g. those generated by automatic
detection. Earlier approaches are based on localised patch
matching (Shen et al. 2015; Zheng et al. 2015b) and
saliency weighting (Wang et al. 2014; Zhao et al. 2013).
These solutions are mostly ineffective to cope with poorly
aligned person images, due to the stringent requirement of
tight bounding boxes around the whole person and high
dependence on weak hand-crafted features. Besides, such
algorithms are usually more computationally expensive with
a need for explicit and complex patch processing.

Toovercome the aforementioned limitation,more advanced
re-id attention deep learningmethods have been recently pro-
posed (Li et al. 2017a; Zhao et al. 2017; Su et al. 2017; Lan
et al. 2017;Xu et al. 2018;Wang et al. 2018a;Qian et al. 2018;
Suh et al. 2018). A common strategy taken by these meth-
ods is to incorporate a regional attention (i.e. hard attention)
selection sub-network into a deep re-id model. For example,
Su et al. (2017) integrated a pose detection model separately
learned from auxiliary pose ground-truth into a part-based
re-id model. Li et al. (2017a) designed an end-to-end train-
able part-aligning CNN for extracting latent discriminative
regions and exploiting these regional features to perform
re-id. Zhao et al. (2017) exploited a Spatial Transformer
Network (Jaderberg et al. 2015) as a hard attention module
to search re-id discriminative parts given a pre-defined spa-
tial constraint. Lan et al. (2017) formulated a reinforcement
attention selection model for salient region refinement under
identity discriminative constraints. Qian et al. (2018) rotated
persons to canonical poses through pose-specific image syn-
thesising.

A common weakness of these above models is the lack
of handling noisy pixel information within selected regions,
i.e. no soft attentionmodelling. This issue was considered in
(Liu et al. 2017b). However, this model assumes tight person
bounding boxes therefore not suitable for processing poor
detections. In parallel to ourwork,Xuet al. (2018) considered
a joint end-to-end learning of both body parts and regional
saliency. Along with continuously improved matching per-
formance, all the attention learning re-id methods come with
significantly increasedmodel complexity and inference costs
for realising strongmodel generalisation capability. This dra-
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matically limits their scalability and usability in large scale
re-id deployments.

Beyond the conventional advantage from the attentional
weighing for more discriminative person matching, the pro-
posedHANapproach is specially designed to simultaneously
address the efficiency weaknesses of existing re-id attention
methods. This is achievedby formulating a novelharmonious
attentionmodule that enables a efficient joint learning of both
soft and hard attention in compact CNN architectures whilst
preserving themodel generalisation capability. The results of
this design are a class of cost-effective harmonious attention
networks dedicated for scalable re-id matching with state-
of-the-art accuracy performance. This is the first attempt of
modelling multi-level correlated attention in deep learning
for person re-id to our knowledge. In addition, we introduce
cross-attention interaction learning for further enhancing the
complementary effect between different levels of attention
subject to re-id discriminative constraints. This is impossi-
ble to do for most existing methods due to their inherent
single level attention modelling design. We show the bene-
fits of joint modelling multi-level attention in person re-id in
our experiments.
Efficient Neural Networks Conceptually, our work is related
to the approaches for designing generic compact networks,
e.g. weight pruning (LeCun et al. 1990; Hassibi et al. 1993;
Li et al. 2016; He et al. 2017; Luo et al. 2017; Liu et al.
2017c; Huang and Wang 2018), model quantisation (Cour-
bariaux et al. 2015; Rastegari et al. 2016; Hubara et al.
2016; Faraone et al. 2018), and efficient network architec-
tures (Szegedy et al. 2015; He et al. 2016; Iandola et al. 2016;
Chollet 2017; Zhang et al. 2017; Zoph et al. 2018; Howard
et al. 2017; Zhang et al. 2018a; Mehta et al. 2018). Instead
of aiming to formulate some tight building blocks or iden-
tifying redundant parameters as these existing methods, the
proposed method differently exploits the attention learning
mechanism to densely concentrate and more efficiently mine
the intrinsic learning capacity of a network model. There-
fore, ourmethod enables to complement prior efficientmodel
designs. For instance, to control model computational com-
plexity we also use the depth-wise separable convolution, a
type of building block commonly selected for making exist-
ing lightweight networks (Sifre and Mallat 2014; Szegedy
et al. 2015; Chollet 2017;Mehta et al. 2018). Importantly, our
method often surpasses the existing purpose-generic efficient
networks in re-id performance at the similar computational
budgets, thanks to the unique ability of detecting identity
relevant information in person images against distracting
backgrounds.

More broadly, other related techniques include dynamic
networks (Figurnov et al. 2017; Bolukbasi et al. 2017; Huang
et al. 2018a) that automatically adjust the model inference
for each test sample, and model distillation (Ba and Caru-
ana 2014; Hinton et al. 2015; Zhang et al. 2018b; Lan

et al. 2018a, b) that enhances the training of small networks
by transferring the knowledge of a larger-capacity teacher
model. Conceptually, these techniques are also orthogonal
to the proposed attention based model compression, there-
fore enabling them to complete each other in a single neural
network architecture.

3 Scalable Person Re-Identification

Problem Definition Suppose there are n training bounding
box images I = {I i }ni=1 from nid distinct people captured by
non-overlapping camera views together with the correspond-
ing identity class labelsY = {yi }ni=1 where yi ∈ [1, . . . , nid].
We aim to learn a deep feature representation model optimal
for person re-idmatching under significant viewing condition
variations with high computational efficiency.

To that end, we formulate a lightweight (less parameters
and multiplication-addition operations) harmonious atten-
tion network (HAN). This takes a principle of attention
learning particularly for achieving cost-effective person re-
id. The objective of HAN is to concurrently learn a set of
harmonious attention alongwith both global and local feature
representations for maximising their complementary benefit
and compatibility between themodel components in terms of
both the discriminative capability and inference efficiency.
Formulation Rationale The HAN model design is based on
two motivating considerations: (1) The human visual sys-
tem that leverages both global contextual and local saliency
information concurrently in conjunction with the evolution
attention search capability (Navon 1977; Torralba et al.
2006); (2) The divide-and-conquer algorithm design prin-
ciple (Cormen et al. 2009) that decomposes the highly
non-linear re-id feature learning task at different levels of
granularity (global & local) and significance (salient or not),
simplifying the target problem formulation and enabling
efficient small networks suffice to model the desired repre-
sentations. Intuitively, joint learning of global-local feature
representations with attention extracts correlated comple-
mentary information in different context, hence efficiently
achievingmore reliable recognition due to such selective dis-
crimination learning.

For bounding box image based re-id, we consider the
entire person in the image as a global scene context and
body parts of the person as local information sources, both
subject to the surrounding background clutter, potentially
also misalignment and partial occlusion due to poor detec-
tions. Typically, the location information of body parts is not
provided in person re-id image annotation, i.e. only weakly
labelled without fine-grained part labels. Therefore, the per-
son attention learning is a weakly supervised learning task in
the context of optimising the re-id performance.
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Under the global-local concurrent design, we consider
a multi-branch network architecture. The overall objective
of this multi-branch scheme and the architecture composi-
tion is to minimise the target function modelling complexity
in a divide-and-conquer model decomposition. This enables
reducing the network parameter size whilst still maintaining
the model representation learning capacity.
HAN Overview The overall design of our HAN architecture
is depicted in Fig. 1. In particular, the attention model con-
tains two branches with hierarchically distributed attention
modules: (1) One local branch consisting of T streams with
an identical structure: Each stream aims to learn the most
discriminative visual features for one of T local regions of a
person bounding box image. To reduce the model parameter
size, we share the layer parameters among all local streams.
(2) One global branch: This aims to learn the optimal global
level features from the entire person images. (3) Hierarchi-
cal harmonious attention learning: This aims to discover
and exploit re-id discriminant saliency regions (hard atten-
tion) and pixels (soft attention) concurrently in a synergistic
interaction with global and local feature representations in
an end-to-end learning manner. Next, we describe the main
designs of the proposed HAN model.

3.1 Multi-Task Global-Local Feature Learning

The HAN model is designed to perform multi-task global-
local representation learning subject to the same identity
label constraints by allocating each branch with a separate
objective loss function derived from the per-batch training
person classes. As a consequence, the learning behaviour of
each branch is conditioned respectively on their own feature
representations.

Loss Function For model training, we use the softmax cross-
entropy loss function. Formally, we start by predicting the
class posterior probability ỹi of a person image I i over the
ground-truth identity class label yi :

p(ỹi = yi |I i ) = exp(w�
yi xi )

∑|nid|
k=1 exp(w

�
k xi )

(1)

where xi refers to the feature vector of I i from the corre-
sponding branch, and wk the prediction function parameter
of training identity class k. The cross-entropy loss for a mini-
batch of nbs training images is then defined as:

Lce = − 1

nbs

nbs∑

i=1

log
(
p(ỹi = yi |I i )

)
(2)

Sharing Low-Level Feature Learning In a HAN model, we
construct the global and local branches on a common low-
level conv layer, in particular the first conv layer. This is for
facilitating the purpose of inter-branch common representa-
tion learning (Fig. 1). The intuition is that, the bottom conv
layer captures elementary features such as edges and corners
shared by both global and local patterns of person images.
This design is in spirit to multi-task learning (Argyriou et al.
2007), where the local and global feature learning branches
are viewed as two correlated learning tasks.

Besides, sharing the low-level layer reduces the model
parameter size, not only mitigating the model overfitting risk
but also improving the model inference efficiency. This is
critical in learning person re-id models especially when the
labelled training data is limited.
Attention inHierarchyWe take a block-wise attentionmodule
design, that is, each attention module is specifically opti-
mised to attend the input feature representations at its own

Fig. 1 Schematic architecture of the proposed harmonious attention
network (HAN). The design of HAN is characterised by high cost-
effectiveness for maximising the model scalability. This is enabled by
the introduction of a lightweight but effective harmonious attention

(HA) module (see Figs. 2, 3) and a computationally efficient depthwise
separable convolution based building block (see Fig. 4 and Table 1).
The symbol dl (l∈{1, 2, 3}) denotes the number of convolutional filter
in the corresponding l-th block
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level alone. In the CNN hierarchical framework, this natu-
rally allows for hierarchicalmulti-level attention learning to
progressively refine the attentionmaps, again in a spirit of the
divide-and-conquer design (Cormen et al. 2009). As a result,
we can significantly reduce the attention search space (i.e.
the model optimisation complexity) whilst allowing multi-
scale selectiveness of hierarchical features to enrich the final
feature representations.

Such progressive and holistic attention modelling is intu-
itive and essential for re-id due to that (1) the surveillance
person images often have cluttered background and uncon-
trolled appearance variations therefore the optimal attention
patterns of different images can be highly varying, and (2)
a re-id model typically needs robust (generalisable) model
learning given very limited training data (significantly less
than common image classification tasks).

Unlikemost existing attention selection based person re-id
works that simply adopt a standardCNNnetworkwith a large
number of model parameters and high computational cost in
model deployment (Krizhevsky et al. 2012; Szegedy et al.
2015;He et al. 2016;Xu et al. 2018), ourHANdesign ismore
efficient (faster inference in deployment) whilst still having
deep CNN architectures to maintain strong discriminative
power. This is particularly critical for re-id where the label
data is often sparse (large models are more likely to overfit
in training) and the deployment efficiency is important for
practical applications at scales (slow feature extraction is not
scalable to large surveillance video data).
Remarks The HAN model aims to learn concurrently multi-
ple re-id discriminative feature representations for different
local image regions and the entire image. All these repre-
sentations are optimised by maximising the same identity
classification tasks individually and collectively at the same
time. Concurrent multi-task learning in a multi-loss design
enables to preserve both local saliency in feature selection
and global coverage in image representation.

In terms of loss function design, while many existing per-
son re-id methods (Shen et al. 2018a; Song et al. 2018;
Wang et al. 2018e; Chen et al. 2018a; Wang et al. 2018d;
Varior et al. 2016; Subramaniam et al. 2016; Ahmed et al.
2015; Li et al. 2014) suggest the importance of using pair-
wise comparison based loss objectives, e.g. the triplet and
contrastive functions, we empirically found that the simpler
cross-entropy loss suffices to achieve satisfied discriminative
learning without any extra complexity introduced from hard
sample mining. We partly attribute this to the strong capa-
bility of the HAN model in automatically attending re-id
discriminative information, simplifying the loss design com-
plexity.

Importantly, using only the classification loss formulation
brings about a couple of practical benefits:

(i) This significantly simplifies the training mini-batch
data construction, e.g. only random sampling without any

notorious tricks required. This makes our HAN model more
scalable to situations when very large training population is
available and/or the training data fromdifferent camera views
are highly imbalanced.

(ii) This also eliminates the undesirable need for care-
fully forming pairs and/or triplets in preparing re-id training
samples, as in these existing methods, due to the inherent
imbalanced negative and positive pair size distributions.

We consider that the key to person re-id is about model
generalisation to unseen test identity classes given the train-
ing data from independent seen classes. This loss choice is
supported by previous visual psychophysical findings that
representations optimised for classification tasks generalise
well to novel categories (Edelman 1998). We exploit this
general classification learning principle beyond the stringent
pairwise relative verification loss designs.

3.2 Harmonious Attention Learning

To perform attention selection within person bounding box
images with unknown misalignment, we formulate a har-
monious attention learning scheme. This is the core module
component of the proposed model. Specifically, this scheme
jointly learns a collection of complementary attention maps,
including hard (regional) attention for the local branch and
soft (spatial/pixel-level and channel/scale-level) attention for
the global branch. Besides, we introduce a cross-attention
interaction learning scheme between the local and global
branches for further enhancing the harmony and compat-
ibility degree whilst simultaneously optimising per-branch
discriminative feature representations. Next, we describe the
design details of the Harmonious Attention module.
(I) Soft Spatial-Channel AttentionThe input to aHarmonious
Attention module is a 3-D tensor X l ∈ Rh×w×c where h, w,
and c denote the number of pixel in the height, width, and
channel dimensions respectively; and l indicates the level
of this module in the entire network (multiple such mod-
ules). Soft spatial-channel attention learning aims to produce
a saliency weight map Al ∈ Rh×w×c of the same size as X .

Given the largely independent nature between spatial
(inter-pixel) and channel (inter-scale) attention, we propose
to learn them in a joint but factorised way as:

Al = Sl × Cl (3)

where Sl ∈Rh×w×1 and Cl ∈R1×1×c represent the spatial
and channel attention maps, respectively.

We perform the attention tensor factorisation by designing
a two-branches unit (Fig. 2a): One branch to model the spa-
tial attention Sl (shared across the channel dimension), and
another branch to model the channel attention Cl (shared
across both height and width dimensions). By this design,
we can compute efficiently the full soft attention Al from Cl
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(a)

(c)

(d)

(b)

Fig. 2 Structure of a harmonious attention module consists of a Soft
Attention which includes b Spatial Attention (pixel-wise) and c Chan-
nel attention (scale-wise), and d Hard regional attention (part-wise).
Layer type is indicated by background colour: grey for convolutional
(conv), brown for global average pooling, and blue for fully-connected
layers. The three items in the bracket of a conv layer are: filter number,
filter shape, and stride. ReLU (Krizhevsky et al. 2012) and Batch Nor-
malisation (Ioffe and Szegedy 2015) (applied to each conv layer) are
not shown for brevity

and Sl with a tensor multiplication. Our design is more effi-
cient than common tensor factorisation algorithms (Kolda
and Bader 2009) since heavy matrix operations are elimi-
nated.
(i) Spatial AttentionWe model the spatial attention by a tiny
(10 parameters) 4-layers sub-network (Fig. 2b). It consists of
a global cross-channel averaging pooling layer (0 parameter),
a conv layer of 3 × 3 filter with stride 2 (9 parameters),
a resizing bilinear layer (0 parameter), and a scaling conv
layer (1 parameter). In particular, the global average pooling,
formulated as

Sinputl = 1

c

c∑

i=1

X l
1:h,1:w,i (4)

is designed especially to compress the input size of the
subsequent conv layer with merely 1

c times of parameters
needed. This cross-channel pooling is reasonable because in
our design all channels share the identical spatial attention
map. We finally add a scaling layer for automatically learn-
ing an adaptive fusion scale in order to optimally combining
the channel attention described next.
(ii) Channel Attention We model the channel attention by
a small (2 c2

r parameters, see more details below) 4-layers
squeeze-and-excitation component (Fig. 2c). We first per-

form a squeeze operation via an averaging pooling layer (0
parameters) to aggregate the feature information distributed
across the spatial space into a channel signature as

Cinput
l = 1

h · w

h∑

i=1

w∑

j=1

X l
i, j,1:c (5)

This signature conveys the per-channel filter response from
the whole image, therefore providing the complete infor-
mation for the inter-channel dependency modelling in the
subsequent excitation operation, formulated as

Cexcitation
l = ReLU

(
W ca

2 × ReLU(W ca
1 Cinput

l)
)

(6)

where W ca
1 ∈ R c

r ×c ( c
2

r parameters) and W ca
2 ∈ Rc× c

r ( c
2

r
parameters) denote the parameter matrix of 2 conv layers in
order respectively, and r (16 in our implementation) repre-
sents the bottleneck reduction rate. This bottleneck design
reduces the model parameter number from c2 (using 1 conv
layer) to ( c

2

r + c2
r ), e.g. only need 1

8 parameters when r=16.
For facilitating the combination of the spatial attention

and channel attention, we further deploy a 1×1× c conv (c2

parameters) layer to compute blended full soft attention after
tensor multiplication. This is because the spatial and channel
attention are not mutually exclusive but with a co-occurring
complementary relationship. Finally, we use a sigmoid oper-
ation (0 parameter) to normalise the full soft attention into
the range between 0.5 and 1.
Remarks Our model is similar to Residual Attention (RA)
(Wang et al. 2017) and Squeeze-and-Excitation (SE) (Hu
et al. 2018) concepts but with a number of essential differ-
ences: (1) The RA requires to learn a much more complex
soft attention sub-network which is not only computationally
expensive but also less discriminative when the training data
size is small typical in person re-id. (2) The SE considers only
the channel attention and implicitly assumes non-cluttered
background, therefore significantly restricting its suitability
to re-id tasks under cluttered surveillance viewing conditions.
(3) Both RA and SE consider no hard regional attention
modelling, hence lacking the ability to discover the corre-
lated complementary benefit between soft and hard attention
learning.
(II)HardRegional AttentionThe hard attention learning aims
to locate latent (weakly supervised) discriminative T regions
(e.g. human body parts) in each input image at the l-th level.
Wemodel this regional attention by learning a transformation
matrix as:

Al =
[
sh 0 tx
0 sw ty

]

(7)

which enables image cropping, translation, and isotropic
scaling operations by varying two scale factors (sh , sw) and
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the 2-D spatial position (tx , ty). We pre-define the region size
by fixing sh and sw for limiting the model complexity. There-
fore, the effective modelling part of Al is only tx and ty , with
the output dimension as 2 × T (T the region number).

To perform this learning, we introduce a simple 2-layers
(2 × T × c parameters) sub-network (Fig. 2d). We exploit
the first layer output (a c-D vector) of the channel attention
(Eq. (5)) as the first FC layer (2×T ×c parameters) input for
further reducing the parameter size while sharing the avail-
able knowledge in spirit ofmulti-task learning (Evgeniou and
Pontil 2004). The second layer (0 parameter) performs a tanh
scaling (the range of [−1, 1]) to convert the region position
parameters into the percentage so as to allow for positioning
individual regions outside of the input image boundary. This
specially takes into account the cases that only partial person
is detected sometimes.

Note that, unlike the soft attention maps applied to the
input feature representation X l , the hard regional attention
is enforced on that of the corresponding network block to
generate T different parts which are subsequently fed into
the corresponding streams of the local branch (see the dashed
arrow on the top of Fig. 1).
Remarks The proposed hard attention modelling is concep-
tually similar to the Spatial Transformer Network (STN)
(Jaderberg et al. 2015) because both are designed to learn a
transformationmatrix for discriminative region identification
and alignment. However, they differ significantly in design:
(1) The STN attention is network-wise (one level of atten-
tion learning) whilst our HA is module-wise (multiple levels
of attention learning). The latter not only eases the atten-
tion modelling complexity (divide-and-conquer design), but
also provides additional attention refinement in a sequential
manner. (2) The STNutilises a separate large sub-network for
attention modelling whilst the HAN exploits a much smaller
sub-network by sharing the majority model learning with
the target-task network using a multi-task learning design
(Fig. 3), therefore superior in both higher efficiency and lower
overfitting risk. (3) The STN considers only hard attention
whilst HAN models both soft and hard attention in an end-
to-end fashion so that additional complementary benefits are
exploited.

(a) (b)

Fig. 3 Schematic comparison between a spatial transformer network
(STN) (Jaderberg et al. 2015) and bHAN hard attention. Global feature
and hard attention are jointly learned in a multi-task design. “H”: Hard
attention module; “Fg”: Global feature module; “Fl”: Local feature
module

(III) Cross-Attention Interaction Learning Given the joint
learning of soft and hard attention as above, we further con-
sider a cross-attention interaction mechanism for enriching
their joint learning harmony by interacting the attended local
and global features across branches. Specifically, at the l-th
level, we utilise the global-branch feature X(l,k)

G of the k-th

region to enrich the corresponding local-branch feature X (l,k)
L

by tensor addition as

X̃
(l,k)
L = X(l,k)

L + X(l,k)
G (8)

where X (l,k)
G is computed by applying the hard regional atten-

tion of the (l+1)-th level’s HA attention module (see the
dashed arrow in Fig. 1). By doing so, we can simultane-
ously reduce the complexity of the local branch (fewer layers)
since the learning capability of the global branch can be par-
tially shared. During model training by back-propagation,
the global branch takes gradients from both the global and
local branches as

�W (l)
G = ∂LG

∂X (l)
G

∂X (l)
G

∂W (l)
G

+
T∑

k=1

∂LL

∂ X̃
(l,k)
L

∂ X̃
(l,k)
L

∂W (l)
G

(9)

So, the global LG and local LL loss quantities concurrently
function in optimising the parameters W (l)

G of the global
branch. As such, the learning of the global branch is inter-
acted with that of the local branch at multiple levels, whilst
both are subject to the same re-id optimisation constraint.
Remarks By design, cross-attention interaction learning is
subsequent to and complementarywith the harmonious atten-
tion joint reasoning above. Specifically, the latter learns
soft and hard attention from the same input feature repre-
sentations to maximise their compatibility (joint attention
generation), whilst the former optimises the correlated com-
plementary information between attention refined global and
local features under the person re-id matching constraint
(joint attention application). Hence, the composition of both
forms a complete process of joint optimisation of attention
selection for person re-id.

Conceptually, our Harmonious Attention (HA) is a princi-
pled union of hard regional attention (Jaderberg et al. 2015),
soft spatial (Wang et al. 2017) and channel attention (Hu
et al. 2018). This simulates functionally the dorsal and ven-
tral attention mechanism of human brain (Vossel et al. 2014)
in the sense of modelling soft and hard attention simultane-
ously. Soft attention learning aims at selecting fine-grained
important pixels, whilst hard attention learning at search-
ing coarse latent (weakly supervised) discriminative regions.
They are thus largely complementarywith high compatibility
to each other in functionality. Intuitively, their combination
and interaction can relieve the modelling burden of challeng-
ing soft attention learning, resulting in more discriminative
and efficient models.
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(a) (b) (c)

Fig. 4 Structure of a local block and b global block. Each block c
consists of two conv layers. Layer type is indicated by background
colour: grey for normal conv, and green for depthwise separable conv
layers. The three items in the bracket of a conv layer are: filter number,
filter shape, and stride

3.3 HANModel Instantiation

To instantiate HAN models, we build up on the state-fo-the-
art computationally efficient depthwise separable conv units
(Sifre and Mallat 2014) in the main implementation1. In par-
ticular, we use 9 depthwise separable conv units to build the
global branch, and 3 for each local stream. We set T = 4
regions for hard attention, e.g. a total of 4 local streams. We
consider a 3-level attention hierarchy design (Fig. 1). The
global branch network ends with a global average pooling
layer and a fully-connected (FC) feature layer with 512 out-
puts. For the local branch, we also use a 512-D FC feature
layer which fuses the global average pooling outputs of all
local streams.

To provide diverse options inmodel efficiency, we explore
three HAN models with different inference computational
costs. We realise this through varying the stride parameter
s of the building block units in the relatively heavier global
branch (Fig. 4b). More specifically, the computational cost
(FLOPs) of a HAN model is largely determined by the size
of input feature maps per conv layer in each block unit. The
stride parameter controls the shifting step size the conv filters
travel across the input feature maps, therefore the size of
output featuremaps and the computational cost of subsequent
conv layers. Given the context of hierarchical CNN structure,
larger stride values at earlier layer lead to smaller feature
maps and lower FLOPs. In our designs, we adopt two strides
{1, 2} and manage the overall computational complexity of
HAN models by positioning the larger stride “2” to different
layers. That is, placing the stride “2” to earlier layers yields
HANs with higher computational costs, and vice verse. The
configurations of the three stride parameters in a global black

1 Besides, we also consider other building block designs to evaluate the
generalisation of the proposed method in our experiments (Table 12).

Table 1 The stride configuration for the building block units in the
global branch of three varying-efficient HAN models

Model s1 s2 s3 FLOPs

HAN (Small) 2 1 1 3.68 × 108

HAN (Medium) 1 2 1 5.33 × 108

HAN (Large) 1 1 2 7.01 × 108

are summarised in Table 1. We will evaluate all these HAN
models in our experiments.

3.4 Scalable Person Re-ID by HAN

Given a trained HAN model, we obtain a 1,024-D joint fea-
ture vector (deep feature representation) by concatenating
the local (512-D) and the global (512-D) branch feature vec-
tors. For person re-id, we deploy this 1,024-D deep feature
representation using only a generic distance metric without
any camera-pair specific distance metric learning, e.g. the L2
distance.

Specifically, given a test probe image I p from one cam-
era view and a set of test gallery images {I gi } from other
non-overlapping camera views: (1) We first compute the
corresponding 1,024-D feature representation vectors by
forward-feeding the images to a trainedHANmodel, denoted
as x p = [x p

g ; x p
l ] and {xgi = [xgg; xgl ]}. (2) We then apply

L2 normalisation on the global and local features, respec-
tively. (3) Lastly, we compute the cross-camera matching
distances between x p and xgi by the L2 distance. We rank
all gallery images in ascendant order by the L2 distances
against the probe image. The percentage of true matches of
the probe person image in top ranks indicate the goodness of
the learned HAN deep features for person re-id matching.

4 Experiments

Datasets and Evaluation Protocol. For evaluation, we
selected four large-scale re-id benchmark datasets: Market-
1501 (Zheng et al. 2015a), DukeMTMC (Ristani et al. 2016),
CUHK03 (Li et al. 2014), and MSMT17 (Wei et al. 2018).
Figure 5 shows example person bounding box images. To
make a fair comparison against existingmethods, we adopted
the standard person re-id evaluation setting including the
training and testing ID split as summarised in Table 2. For
DukeMTMC, we followed the person re-id evaluation setup
as (Zheng et al. 2017). These datasets present diverse re-id
test scenarios with varying training and testing scales under
realistic viewing conditions exposed to large variations in
human pose and strong similarities among different people,
therefore enabling extensivemodel evaluations in bothmodel
learning and generalisation capabilities. We also considered
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(a) CUHK03 (b) Market-1501

(c) DukeMTMC (d) MSMT17

Fig. 5 Example cross-view matched person image pairs randomly
selected from four person re-id benchmark datasets

Table 2 Data statistics of person re-id datasets

Dataset # ID # Train # Test # Image # Cam

CUHK03 1467 767 700 28,192 2

Market-1501 1501 751 750 32,668 6

DukeMTMC 1404 702 702 36,411 8

MSMT17 4101 1041 3060 126,441 15

the model performance with re-ranking (Zhong et al. 2017a)
as a post-processing.Tomeasure re-id accuracyperformance,
we used the cumulative matching characteristic (CMC) and
mean average precision (mAP)metrics. For model efficiency
measure, we used the FLoating-point OPerations (FLOPs),
i.e. the number of multiply-adds, consumed in forwarding a
person image through the testing network.
Implementation Details We implemented our HAN model
in the tensorflow framework (Abadi et al. 2017). All person
images were resized to 160×64, unless stated otherwise. For
all HAN models, we set the width of building block units at
the 1st/2nd/3rd levels as: d1 = 128, d2 = 256 and d3 = 384
(Fig. 1). In each stream, we fixed the size of three levels of
hard attention as 24 × 28, 12 × 14 and 6 × 7. For model
training, we used SGD algorithm at the initial learning rate
3× 10−2 with momentum of 0.9, learning rate decay of 0.1,
and weight decay of 0.0005. We set the batch size to 32 and
the epoch number to 300with learning rate decayed at epochs

of 100, 200, and 250. To enable efficient and scalable model
training, we did not adopt any data argumentation methods
(e.g. scaling, rotation, flipping, and colour distortion), neither
ImageNet model pre-training. Existing deep re-id methods
typically benefit significantly from these operations, suffer-
ingmuch higher computational cost, notoriously difficult and
time-consuming model tuning, and the implicit undesired
dependence on the source data.

4.1 Comparing State-of-the-Art Re-IDMethods

Evaluation onMarket-1501Weevaluated theHANmodels in
comparison to recent state-of-the-art methods on theMarket-
1501 dataset. Table 3 shows clear superiority and advantages
of the proposed HAN in model cost-effectiveness. Specifi-
cally, in the standardmodel training setting, G-SCNN (Varior
et al. 2016) is featuredwith the best FLOPs, but far inferior to
many alternativemethods including all HANmodels in terms
of re-id performance. HAN (Small) is on par with the recent
art MLFN (Chang et al. 2018b) in re-id matching accuracy
whilst simultaneously achieving an efficiency advantage of
7× cheaper inference.

With a re-ranking based post-processing, re-id models
generally can further improve the accuracy performance.
Note, this benefit comes with a higher computational cost,
e.g. multiple times standard search expense. Interestingly,
the fastest model HAN (Small) benefits the most, achieving
superior model efficiency and discrimination simultaneously
against other existing alternative methods.

As a training data augmentation strategy, random erasing
is shown to be effective for improving re-id model gener-
alisation. For example, the strong models GCS (Chen et al.
2018a) and SGGNN (Shen et al. 2018b) benefit significantly,
achieving the best re-id matching rates. However, this model
is also largely expensive in the computational cost, e.g. more
than 10× cost of HAN (Small).

Whenapplyingboth randomeasing and re-ranking, a com-
plementary benefit is likely to be obtained. In this setting,
our HAN (Small) suffices to outperform the competitor RW
(Shen et al. 2018a) in both accuracy performance and infer-
ence cost. If more computational budge is allowed, we can
further improve the model performance by deploying HAN
(Large).
Evaluation on DukeMTMC We compared the HAN models
with recent state-of-the-art re-idmethods on theDukeMTMC
dataset. Compared toMarket-1501, this benchmark provides
a similar training and testing data scale, but the person images
have more variations in resolution and background clutter.
This is due to wider camera views and more complex scene
layout, therefore presenting a more challenging re-id task.

Table 4 shows that all HAN methods again present supe-
rior model cost-effectiveness as compared to alternative
state-of-the-art methods. Overall, we have similar compara-
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Table 3 Performance evaluation
on Market-1501

Query type SQ MQ FLOPs
Metric (%) R1 mAP R1 mAP

CRAFT (Chen et al. 2017c) 68.7 42.3 77.0 50.3 N/A

CAN (Liu et al. 2017a) 60.3 35.9 72.1 47.9 >1.55×1010

G-SCNN (Varior et al. 2016) 65.8 39.5 76.0 48.4 ≈ 1.11 × 108

HPN (Liu et al. 2017b) 76.9 – – – ≈1.82×1010

SVDNet (Sun et al. 2017) 82.3 62.1 – – > 3.80 × 109

MSCAN (Li et al. 2017a) 80.3 57.5 86.8 66.7 1.36 × 109

DLPA (Zhao et al. 2017) 81.0 63.4 – – > 7.29 × 108

PDC (Su et al. 2017) 84.1 63.4 – – � 9.82 × 109

GLAD (Wei et al. 2017) 89.9 73.9 – – � 7.99 × 109

DPFL (Chen et al. 2017b) 88.9 73.1 92.3 80.7 ≈ 1.2 × 1010

AACN (Xu et al. 2018) 85.9 66.9 89.8 75.1 > 1.57 × 109

DML (Zhang et al. 2018b) 89.3 70.5 92.8 79.0 5.69 × 108

DaRe-D201(Wang et al. 2018e) 86.0 69.9 – – >4.00×109

PT-D169 (Liu et al. 2018) 87.7 68.9 – – >3.00×109

AOS (Huang et al. 2018c) 86.5 70.4 91.3 78.3 ≈ 3.80 × 109

BraidNet (Wang et al. 2018d) 83.7 69.5 – – >2.26×109

MLFN (Chang et al. 2018b) 90.0 74.3 92.3 82.4 ≈ 2.60 × 109

CamStyle (Zhong et al. 2018b) 88.1 68.7 – – ≈ 3.80 × 09

PSE (Saquib et al. 2018) 87.7 69.0 – – >3.80×109

KPM (Shen et al. 2018a) 90.1 75.3 – – >3.80×109

PoseNorm (Qian et al. 2018) 89.4 72.6 92.9 80.2 > 3.80 × 109

HAP2S (Yu et al. 2018) 84.6 69.4 90.2 76.8 ≈3.80×109

HAN (Small) (Ours) 89.4 73.2 93.2 80.8 3.68×108

HAN (Medium) (Ours) 90.7 74.5 93.9 81.9 5.33×108

HAN (Large) (Ours) 91.6 76.7 94.2 83.4 7.01×108

AACNa(Xu et al. 2018) 88.7 83.0 92.2 87.3 >1.57×109

DaRe-D201a(Wang et al. 2018e) 88.6 82.2 – – > 4.00 × 109

MGCAMa(Song et al. 2018) 83.8 74.3 – – 3.76 × 108

AOSa(Huang et al. 2018c) 88.7 83.3 92.5 88.6 ≈3.80×109

PSEa,b (Saquib et al. 2018) 90.3 84.0 – – >3.80×109

HAN (Small)a 91.2 85.5 93.7 90.1 3.68 × 108

HAN (Medium)a 92.0 86.9 94.1 90.8 5.33×108

HAN (Large)a 92.0 87.5 94.3 90.9 7.01 × 108

SGGNNc (Shen et al. 2018b) 92.3 82.8 – – >3.80×109

GCSc (Chen et al. 2018a) 93.5 81.6 – – >3.80×109

HAN (Small)c 90.0 75.3 93.2 82.3 3.68 × 108

HAN (Medium)c 90.9 77.9 93.7 84.0 5.33×108

HAN (Large)c 91.1 78.1 94.1 84.7 7.01×108

RWa,b,c (Shen et al. 2018a) 92.7 82.5 – – >3.80×109

HAN (Small)a,c 92.3 87.5 93.8 91.0 3.68 × 108

HAN (Medium)a,c 92.9 88.8 94.5 92.0 5.33×108

HAN (Large)a,c 93.1 89.6 94.8 92.5 7.01 × 108

Bold values indicate the best result for the respective groups
D201, DenseNet201; D169, DenseNet169; R50, ResNet50; SQ, Single-Query; MQ, Multi-Query
aUsing the re-ranking method in (Zhong et al. 2017a)
bUsing a newly proposed re-ranking method
cUsing random erasing data augmentation (Zhong et al. 2017b)
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Table 4 Performance evaluation on DukeMTMC

Metric (%) R1 mAP FLOPs

LSRO-R50 (Zheng et al. 2017) 67.7 47.1 >3.80×109

SVDNet-R50 (Sun et al. 2017) 76.7 56.8 >3.80×109

DPFL (Chen et al. 2017b) 79.2 60.6 ≈1.2×1010

AACN (Xu et al. 2018) 76.8 59.3 >1.57×109

PT-R50 (Liu et al. 2018) 78.5 56.9 >3.80×109

DaRe-R50 (Wang et al. 2018e) 75.2 57.4 >3.80×109

BraidNet (Wang et al. 2018d) 76.4 59.5 >2.26×109

MLFN (Chang et al. 2018b) 81.0 62.8 ≈2.60×109

CamStyle (Zhong et al. 2018b) 75.3 53.5 ≈3.80×109

AOS (Huang et al. 2018c) 79.2 62.1 ≈3.80×109

PSE (Saquib et al. 2018) 79.8 62.0 >3.80×109

KPM (Shen et al. 2018a) 80.3 63.2 >3.80×109

PoseNorm (Qian et al. 2018) 73.6 53.2 >3.80×109

HAP2S (Yu et al. 2018) 75.9 60.6 ≈3.80×109

HAN (Small) 78.9 61.9 3.68 × 108

HAN (Medium) 80.0 63.4 5.33×108

HAN (Large) 80.6 64.1 7.01×108

DaRe-R50a (Wang et al. 2018e) 80.4 74.5 >3.80×109

AOSa (Huang et al. 2018c) 84.1 78.2 ≈3.80×109

PSEa,b (Saquib et al. 2018) 85.2 79.8 >3.80×109

HAN (Small)a 83.2 77.9 3.68 × 108

HAN (Medium)a 84.0 78.8 5.33×108

HAN (Large)a 84.0 79.5 7.01×108

SGGNNb (Shen et al. 2018b) 81.1 68.2 >3.80×109

GCSb (Chen et al. 2018a) 84.9 69.5 >3.80×109

HAN (Small)c 79.4 64.0 3.68 × 108

HAN (Medium)c 80.5 64.7 5.33×108

HAN (Large)c 80.7 65.9 7.01×108

RWa,b,c (Shen et al. 2018a) 80.7 82.5 >3.80×109

HAN (Small)a,c 83.9 79.6 3.68 × 108

HAN (Medium)a,c 84.2 80.2 5.33×108

HAN (Large)a,c 84.6 81.3 7.01×108

Bold values indicate the best result for the respective groups
R50, ResNet50; D201, DenseNet201
aUsing the re-ranking method in Zhong et al. (2017a)
bUsing a newly proposed re-ranking method
cUsing random erasing data augmentation (Zhong et al. 2017b)

tive observations as onMarket-1501. In the standard training
setting, our HAN models are the most efficient solutions
whilst achieving top performances. With re-ranking, PSE
(Saquib et al. 2018) slightly outperforms HAN models with
up to 10× more expensive in the computational cost. Simi-
lar contrasts between HAN and the competitors are observed
when using random erasing based data augmentation alone
or along with re-ranking.
Evaluation on CUHK03 We evaluated the HAN models
on both manually labelled and auto-detected (more severe

misalignment) person bounding boxes on the CUHK03
benchmark.We adopted the 767/700 identity split rather than
1367/100 since the former defines a more realistic and chal-
lenging re-id task. In the standard setting, the training set
is rather small, with only 7,365 training images vs 12,936
and 16,522 on Market-1501 and DukeMTMC. This gener-
ally imposes an extreme challenge to the training of deep
models, particularly in case of using no large auxiliary data
(e.g. ImageNet) formodel pre-training like ourHANmodels.

Table 5 shows that the HAN models still achieve compet-
itive re-id matching accuracy, although outperformed by two
recent computationally expensive approachesMLFN (Chang
et al. 2018b) and DaRe-R50 (Wang et al. 2018e) which
benefit substantially from ImageNet in model pre-training.
Among all competitors, our models are most efficient there-
fore more scalable to large scale re-id deployments in
practical use. If more computational resource is available,
re-ranking can be applied for all methods to further improve
the re-id performance.
Evaluation on MSMT17 We evaluated the HAN models on
the new large scale MSMT17 benchmark tested by only a
few methods. Having more training data typically benefits
larger neural networks due to a reduced model fitting risk,
and lightweight networks may be therefore less competitive
in accuracy due to relatively inferior representative capabil-
ities. This facilitates a more extensive test on both model
learning capacity and generalisation of our lightweight HAN
against existing more elaborative and “heavier” deep re-id
models, given the larger training and testing sets in terms of
the number of images, identities, and cameras. This test is not
only complementary to the other re-id benchmark tests, but
also a good evaluation on small networks likeHANmodels in
order to evaluate the models’ learning capacity when larger
training and test data are given whilst having less parameters.

Table 6 shows that the heavy model GLAD (Wei et al.
2017) achieves the best results in the standard setting,
but only slightly outperforming the HAN models whilst at
over 10× more computational costs. Besides, HAN (Large)
matches the accuracy performance of ResNet50 with merely
18% inference cost. These suggest that the cost-effectiveness
advantages of our HAN models remain on larger scale re-
id learning and deployments, and importantly the absolute
performances of HAN models are still competitive. The
advantages of HAN are similar in case of using re-ranking.
This test broadly examines the ability of neural networkmod-
els in compromising between model complexity (learning
capacity) and computational efficiency (processing speed)
often required in large scale re-id deployments.

4.2 Comparing State-of-the-Art Efficient Networks

We compared the proposed HANmodels with three state-of-
the-art compact neural network models: MobileNet (Howard
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Table 5 Performance evaluation
on CUHK03

Metric (%) Labelled Detected FLOPs
R1 mAP R1 mAP

IDE-C (Zhong et al. 2017a) 15.6 14.9 15.1 14.2 7.25×108

XQDA-C (Zhong et al. 2017a) 21.9 20.0 21.1 19.0 7.25×108

IDE-R50 (Zhong et al. 2017a) 22.2 21.0 21.3 19.7 3.80×109

XQDA-R50(Zhong et al. 2017a) 32.0 29.6 31.1 28.2 3.80×109

SVDNet-C (Sun et al. 2017) – – 27.7 24.9 >7.25×108

SVDNet-R50 (Sun et al. 2017) – – 41.5 37.3 >3.80×109

DPFL (Chen et al. 2017b) 43.0 40.5 40.7 37.0 ≈1.2×1010

PT-R50 (Liu et al. 2018) 45.1 42.0 41.6 38.7 >3.80×109

AOS (Huang et al. 2018c) – – 47.1 43.3 ≈3.80×109

DaRe-R50 (Wang et al. 2018e) 58.1 53.7 55.1 51.3 >3.80×109

MLFN (Chang et al. 2018b) 54.7 49.2 52.8 47.8 >2.26×109

HAN (Small) 42.7 42.4 40.9 40.0 3.68 × 108

HAN (Medium) 42.0 42.3 42.8 42.0 5.33×108

HAN (Large) 46.5 46.1 47.5 45.5 7.01×108

AOSa (Huang et al. 2018c) – – 54.6 56.1 ≈3.80×109

MGCAMa (Song et al. 2018) 50.1 50.2 46.7 46.9 3.76×108

DaRe-R50a (Wang et al. 2018e) 66.0 66.7 62.8 63.6 >3.80×109

HAN (Small)a 49.6 54.3 46.9 51.6 3.68 × 108

HAN (Medium)a 50.1 55.2 49.7 54.0 5.33×108

HAN (Large)a 53.6 58.7 54.9 57.9 7.01×108

Bold values indicate the best result for the respective groups
C, CaffeNet; R50, ResNet50; D201, DenseNet201
aUsing the re-ranking method in Zhong et al. (2017a)

Table 6 Performance evaluation on MSMT17

Metric (%) R1 mAP FLOPs

GoogLeNet (Szegedy et al. 2015) 47.6 23.0 1.57×109

PDC (Su et al. 2017) 58.0 29.7 �9.82×109

GLAD (Wei et al. 2017) 61.4 34.0 �7.99×109

ResNet50 (He et al. 2016) 59.7 33.7 3.80×109

HAN (Small) 56.3 29.2 3.68 × 108

HAN (Medium) 57.1 30.3 5.33×108

HAN (Large) 60.1 32.6 7.01×108

ResNet50a (He et al. 2016) 64.6 47.6 3.80×109

HAN (Small)a 61.8 41.8 3.68 × 108

HAN (Medium)a 63.8 42.9 5.33×108

HAN (Large)a 66.2 46.2 7.01×108

Bold values indicate the best result for the respective groups
aUsing the re-ranking method (Zhong et al. 2017a)

et al. 2017), ShuffleNet (Zhang et al. 2018a), and Con-
denseNet (Huang et al. 2018b). These competitors are
general-purpose lightweight neural networks therefore directly
applicable for person re-id although not evaluated in the orig-
inal works.

Table 7 shows that our HAN models achieve the best per-
formances at competitive inference computational costs. In
particular,HAN(Small) significantly outperformsMobileNet
whilst enjoying more efficient inference. While the Con-
denseNet and ShuffleNet are more efficient than HAN, their
re-idmatching performances are theworst. HAN (Large) fur-
ther improves the model generalisation capability by extra
3.33×108 (7.01-3.68) FLOPs per image. These indicate the
cost-effectiveness advantages of the proposed HAN models
in person re-id over state-of-the-art efficient network designs.

4.3 Further Analysis and Discussions

To provide more detailed examinations and insights, we con-
ducted a sequence of component analysis usingHAN (Large)
on Market-1501 and DukeMTMC in the Single-Query set-
ting.
Joint Local and Global Features We evaluated the effect of
joint local and global features by comparing their individual
re-id performances against that of the joint feature. Table 8
shows that: (1) Either feature representation alone is already
very discriminative for person re-id. (2) A further perfor-
mance gain is obtained by joining the two representations,
yielding 2.7% (91.6–88.9) in Rank-1 boost and 4.5% (76.7–
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Table 7 Comparisons with efficient neural networks

Dataset Market-1501 (SQ) Market-1501 (MQ) DukeMTMC CUHK03 (L) CUHK03 (D) MSMT17 FLOPs

Metric (%) R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP

MobileNet 84.6 64.3 89.3 72.8 72.1 50.9 36.1 35.5 35.0 34.3 53.8 26.4 5.69×108

ShuffleNet 80.6 58.4 86.4 67.0 70.0 48.2 35.6 35.1 33.2 33.3 42.8 18.9 1.40 × 108

CondenseNet 83.5 62.8 88.2 70.8 72.6 51.3 33.4 33.5 32.1 31.8 54.2 26.5 2.74×108

HAN (Small) 89.4 73.2 93.2 80.8 78.9 61.9 42.7 42.4 40.9 40.0 56.3 29.2 3.68×108

HAN (Medium) 90.7 74.5 93.9 81.9 80.0 63.4 42.0 42.3 42.8 42.0 57.1 30.3 5.33×108

HAN (Large) 91.6 76.7 94.2 83.4 80.6 64.1 46.5 46.1 47.5 45.5 60.1 32.6 7.01×108

Bold values indicate the best result for the respective groups
SQ single-query; MQ multi-query; L labelled; D detected

Table 8 Evaluating the global and local-level features

Dataset Market-1501 DukeMTMC

Metric (%) R1 mAP R1 mAP

Global 88.9 72.2 77.9 59.8

Local 89.3 73.0 77.8 59.8

Global + Local 91.6 76.7 80.6 64.1

Bold values indicate the best result for the respective groups

Table 9 Comparative evaluation of individual types of attention in our
HA model

Dataset Market-1501 DukeMTMC

Metric (%) R1 mAP R1 mAP

No Attention 85.2 64.2 72.8 50.7

SSA 86.3 65.3 74.6 51.2

SCA 87.2 67.7 74.8 53.0

SSA+SCA 88.9 69.9 77.2 56.1

HRA 87.9 70.3 77.1 60.0

SSA+HRA 89.5 72.1 77.5 60.1

SCA+HRA 90.1 74.9 78.9 62.9

HAN (All) 91.6 76.7 80.6 64.1

Bold values indicate the best result for the respective groups
SSA soft spatial attention;SCA soft channel attention;HRAhard regional
attention

72.2) in mAP increase on Market-1501. Similar trends are
observed on DukeMTMC (Table 4). These validate the com-
plementary effect of jointly learning local and global features
in the harmonious attention context by our HAN model.
Different Types of Attention We tested the effect of individ-
ual attention components in the HAN model: Soft Spatial
Attention (SSA), Soft Channel Attention (SCA), and Hard
Regional Attention (HRA). Table 9 shows that: (1) Each
type of attention in isolation brings person re-id performance
gain; (2) SSA+SCA gives a further accuracy boost, suggest-
ing the complementary information between the two soft
attention discovered by our model; (3) When combining the

Table 10 Evaluating the cross-attention interaction learning (CAIL)
component

Dataset Market-1501 DukeMTMC

Metric (%) R1 mAP R1 mAP

Global (w/o CAIL) 84.1 64.0 73.2 53.3

Global (w/ CAIL) 88.9 72.2 77.9 59.8

Local (w/o CAIL) 17.1 7.6 24.3 14.3

Local (w/ CAIL) 89.3 73.0 77.8 59.8

Global+Local (w/o CAIL) 72.1 50.9 56.7 40.1

Global+Local (w/ CAIL) 91.6 76.7 80.6 64.1

Bold values indicate the best result for the respective groups

Table 11 Evaluating different types of objective functions

Dataset Market-1501 DukeMTMC

Metric (%) R1 mAP R1 mAP

Cross-Entropy 91.6 76.7 80.6 64.1

Triplet 63.7 41.7 57.8 37.6

Cross-Entropy + Triplet 91.5 76.3 79.9 61.5

Bold values indicate the best result for the respective groups

Table 12 Evaluating different types of building blocks

Dataset Market-1501 DukeMTMC FLOPs

Metric (%) R1 mAP R1 mAP

Depthwise 91.6 76.7 80.6 64.1 7.01 × 108

Inception 91.2 75.7 80.5 63.8 1.09×109

Residual 91.0 75.0 78.5 62.1 1.34×109

Bold values indicate the best result for the respective groups

hard and soft attention (SSA, SCA, or both), the model per-
formance can be further improved. This indicates that our
method is effective in identifying and exploiting the comple-
mentary benefits between coarse-grained hard attention and
fine-grained soft attention.
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Fig. 6 Evaluating a set of feature dimensions {128, 256, 320, 448, 512, 640, 720, 832, 928, 1024} w.r.t. the re-id performance on Market-1501 and
DukeMTMC.

Cross-Attention Interaction LearningWeevaluated the bene-
fit of cross-attention interaction learning (CAIL) between the
global and local branches. Table 10 shows three observations:
(1) CAIL benefits clearly the learning of global feature, local
feature and their combination. (2) The local branch obtains
substantiallymore performance gain,which is expected since
its design is of super-lightweight with insufficient learning
capacity on its own; With CAIL, it also simultaneously bor-
rows the representation learning capacity from the global
branch. This overall design aims for minimising the model
parameter redundancy. (3) Without CAIL, the combined
feature is even inferior to the global feature alone, due to
the negative impact from the very weak and incompatible
local feature. This suggests that CAIL also plays a signifi-
cant bridging role between the two branches in our model
formulation. Overall, this experiment validates our design
consideration that it is necessary to jointly learn the attended
feature representations across soft and hard attention subject
to the same label constraint.
Objective Loss FunctionWeevaluated the choice of objective
loss function in HAN. In particular, we additionally tested
the common triplet ranking loss. To more effectively and
efficiently impose useful triplet constraints, we exploited the
online triplet selection strategy in a hard sample mining prin-
ciple (Schroff et al. 2015; Hermans et al. 2017).

Specifically, for each mini-batch training we identify on-
the-fly and use only those hard triplets yielding positive loss
values while throwing away the remaining ones that fulfil the
triplet constraints with zero loss values.

We have some interesting observations in Table 11: (1)
Using the triplet loss alone in the tiny HAN model gives
significantly inferior re-id performance. The plausible rea-
son is that such pairwise comparison based objective has an
unnoticed need for large (less efficient though more expres-
sive) neural network models. (2) Combining the triplet and
cross-entropy loss functions can only achieve similar results
as using the latter alone. This suggests that the triplet rank-
ing loss is hardly able to provide complementary supervision
information, due to the strong capability of identifying re-id
attention by the HAN. This favourably eliminates the need
of detecting subtle discrepancy between visually similar dif-
ferent persons through exhuastive (a quadratic number of
identity pairs) pairwise contrasts in the triplet loss. (3) With
a strong attentionmodel likeHAN, it is likely that the simpler
cross-entropy loss suffices to induce a discriminative person
re-id model.
Network Building Blocks We examined the generalisation
capability of HAN in the incorporation of three state-of-the-
artCNNbuildingblockdesigns: (1) Inception-A/Bunit (Xiao
et al. 2016; Szegedy et al. 2017), (2) Residual bottleneck unit
(He et al. 2016), and (3) Depthwise separable conv unit used
in our main models (Sifre and Mallat 2014). Table 12 shows
thatHAN is able to effectively accommodate varying types of
conv building blocks. Among the three designs, it is interest-
ingly found that the depthwise one is the most cost-effective
unit, yielding both the best accuracy and efficiency. This
provides an unusual example that the lightweight depthwise
conv units are not necessarily inferior in recognition per-
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Fig. 7 Visualisation of the harmonious re-id attention. From left to
right, a the original image, b the 1st-level of hard attention, c the 1s-
level of soft attention, d the 2nd-level of hard attention, e the 2nd-level
of soft attention, f the 3rd-level of hard attention, g the 3rd-level of soft
attention

formance, contrary to the existing finding in coarse-grained
object detection and recognition tasks (Howard et al. 2017).
Feature Dimension In addition to feature extraction cost, fea-
ture dimension is another scalability factor in the large scale
re-id search process, regarding to data transportation, storage
size, and matching speed. We evaluated this factor by com-
paring ourmethodwith the golden standardmodelResNet50,
using a set of feature dimensions ranging from 128 to 1024.
As shown in Fig. 6, the HAN (large) model not only delivers
consistent performance advantage over all the feature dimen-
sions, but also enables the use of lower-dimensional feature
vectors whilst simultaneously yielding a similar or even bet-
ter re-id performance. This verifies the superior scalability
of our method in terms of memory usage and matching effi-
ciency, therefore scalable to small feature vectors for better
data transportation and potential deployment in the cloud or
at the edge. The margin gets smaller on the more challenging
DukeMTMCdatasetwhenusingvery low feature dimensions
(e.g. 128) due to too limited feature representation capacity
to fully exploit the learning capability of HAN.
Visualisation of Harmonious Attention We visualised both
learned soft attention and hard attention discovered by the

HAN re-id model at three different network levels. Fig-
ure 7 shows that: (1) Hard attention localises four body
parts well at all three levels, approximately correspond-
ing to head+shoulder (red), upper-body (blue), upper-leg
(green) and lower-leg (violet). (2) Soft attention focuses on
the discriminative pixel-wise selections progressively in spa-
tial localisation, e.g. attending hierarchically from the global
whole body by the 1st-level spatial soft attention (c) to local
salient parts (e.g. object associations) by the 3rd-level spatial
soft attention (g). This shows compellingly the effectiveness
and collaboration of soft and hard attention joint learning.

5 Conclusion

In this work, we present a cost-effective Harmonious Atten-
tion Network (HAN) framework for joint learning of person
re-identification attention selection and feature representa-
tions. In contrast to existing re-id deep learning methods that
typically ignore the model efficiency issue, the HAN model
is designed to scale up large deployments whilst simulta-
neously achieving top re-id matching performances. This is
realised by designing a Harmonious Attention mechanism
enabling to establish lightweight CNN architectures with
sufficient discrimination learning capability. Moreover, we
introduce a cross-attention interaction learning strategy to
enhance the joint optimisation of attention selection and re-
id features. Extensive evaluations have been conducted on
four large re-id benchmarks with varying training and test
scales to validate the cost-effectiveness advantages of our
HAN model over state-of-the-art re-id methods and scalable
neural network designs. We also provide a series of detailed
model component analysis and insightful discussions on the
HAN model cost-effectiveness superiority.
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