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Abstract
Recovering 3D geometry from cameras in underwater applications involves the Refractive Structure-from-Motion problem
where the non-linear distortion of light induced by a change of medium density invalidates the single viewpoint assumption.
The pinhole-plus-distortion camera projection model suffers from a systematic geometric bias since refractive distortion
depends on object distance. This leads to inaccurate camera pose and 3D shape estimation. To account for refraction, it is
possible to use the axial cameramodel or to explicitly consider one or multiple parallel refractive interfaces whose orientations
and positions with respect to the camera can be calibrated. Although it has been demonstrated that the refractive camera model
is well-suited for underwater imaging, Refractive Structure-from-Motion remains particularly difficult to use in practice when
considering the seldom studied case of a camera with a flat refractive interface. Our method applies to the case of underwater
imaging systems whose entrance lens is in direct contact with the external medium. By adopting the refractive camera model,
we provide a succinct derivation and expression for the refractive fundamental matrix and use this as the basis for a novel two-
view reconstruction method for underwater imaging. For validation we use synthetic data to show the numerical properties
of our method and we provide results on real data to demonstrate its practical application within laboratory settings and for
medical applications in fluid-immersed endoscopy. We demonstrate our approach outperforms classic two-view Structure-
from-Motion method relying on the pinhole-plus-distortion camera model.
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1 Introduction

Underwater imaging and 3D reconstruction are important for
a variety of practical applications ranging from submarine
exploration and robot guidance to fluid-immersed endo-
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scopic surgical procedures such as arthroscopy or fetoscopy
(see examples shown in Fig. 1). The problem of recover-
ing both the 3D geometry of the environment and the camera
motionwhenoperating underwater requires adaptation of the
normal pinhole-plus-distortion camera model because non-
linear refractive distortion occurs at the interface between
the liquid and the camera’s housing. This means that the
multi-view geometry of the problem is also influenced and
additional considerations are required in order to formu-
late reconstruction as a Refractive Structure-from-Motion
(RSfM).

When a camera is immersed in a fluid, light rays undergo
refraction while passing through media with different opti-
cal density. The refractive distortion is defined by Snell’s law
and depends on the refractive index of traversed medium as
well as the incidence angle of the incoming light ray (Hecht
1998). Dome windows can be used to efficiently compen-
sate for refractive distortion. They however exhibit severe
field curvature, they are unwieldy and need to be specially
engineered (Luczyński et al. 2017). Flat-pane windows are
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Fig. 1 Example of submarine and fluid-immersed computer vision
applications. From the left column to the right: submarine exploration
using a camera embedded in awaterproof casing (images courtesyofMr.
Giorgio Capelli, FiasParma, Federazione Italiana Attività Subacquee
Parma, national park of Port-Cros and Porquerolles), underwater object
recognition for the development of Autonomous Underwater Vehi-

cles[images courtesy of Robotics and Intelligent Machines Laboratory,
University of Parma, Marine Autonomous Robotics for InterventionS
project (LodiRizzini et al. 2015;Oleari et al. 2015)],RemotelyOperated
Vehicle KIEL 6000 used for submarine exploration (images courtesy
of GEOMAR Helmholtz Centre for Ocean Research Kiel), laboratory
experiment reproducing fetoscopic examination of a human placenta

more flexible and affordable but they do not compensate for
refractive distortion (see Fig. 2). Without taking into account
refraction, it can be demonstrated that incoming light rays
coming from the scene do not intersect anymore in a sin-
gle center of projection and therefore the Single ViewPoint
(SVP) assumption becomes invalid (Glaeser and Schröcker
2000; Treibitz et al. 2012, see Fig. 3a).

As a result, if a camera is calibrated in air assuming the
pinhole model, calibration parameters cannot be used effec-
tively once the camera is immersed within the liquid. While
adapting the intrinsic camera parameters and distortion coef-
ficients can compensate for refraction to some degree and for
a limited working distance (Kang et al. 2012a; Treibitz et al.
2012), this approach introduces a systematic geometric bias
which affects 3D measurements and camera pose estima-
tion (Sedlazeck andKoch 2012). Indeed, refractive distortion
directly depends on the incidence angle of the incoming light
rays and as such on the scene depth [i.e. the 2D coordinates
of a 3D point in the image plane directly depends on its depth
(Treibitz et al. 2012)].

It has been demonstrated that image formation through a
flat refractive interface can be modelled by an axial camera
(Agrawal et al. 2012). However, such ray-based cameramod-
els are difficult to accurately calibrate and subsequently to use
in practice due to the high dimensionality of their parametri-
sation (Glaeser and Schröcker 2000). The axial camera can
also be regarded as a particular case of the generalised camera
model for which multiple-view geometry has been exten-
sively studied (Sturm et al. 2005; Sturm 2005; Li et al. 2008).
However, this model is particularly sensitive to noise when
considered for modelling monocular axial cameras whose
image formation process can be efficiently approximated by
a pinhole camera. Even if well calibrated, 3D reconstruc-

tion with a moving generalised camera remains even more
challenging under water due to image quality degradations
in such context. Approaches to solve this problem typically
make prior assumptions, such as knowledge of the camera
orientation (Chang and Chen 2011), or considering that the
camera moves behind a fixed refractive interface (Chari and
Sturm 2009) which is not suitable to estimate the motion of
an immersed camera embeddedwithin a waterproof housing.

An alternative approach to using generalised cameramod-
els is to explicitly consider one or more interfaces separating
the optical system from the external medium. The media on
either side of the interfaces have different refractive indexes
causing refraction (Agrawal et al. 2012). By explicitly mod-
elling this configuration’s geometry, as shown in Fig. 3b, it
is possible to form a refractive camera model with param-
eters that account for refractive distortion. Algorithms for
3D reconstruction can then rely on the refractive geometric
constraints (Jordt-Sedlazeck et al. 2013; Jordt-Sedlazeck and
Koch 2013; Jordt et al. 2016). Using refractive geometry, the
two-view relative pose problem can be solved iteratively fol-
lowed by bundle adjustment by associating each 2D image
point to a virtual perspective camera (Agrawal et al. 2012).
This formulation avoids directly computing the refractive re-
projection error, which is computationally expensive as it
requires solving a 12th degree polynomial (Treibitz et al.
2012). Dense 3D reconstruction can then be obtained by
using a refractive plane sweep algorithm (Jordt-Sedlazeck
et al. 2013).

More recently, Luczyński et al. (2017) proposed the Pinax
camera model which combines a virtual pinhole camera
model with the axial camera model. It more particularly
allows the pre-computation of a lookup-table for fast and
accurate refraction correction. The Pinax model has fur-
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thermore demonstrated a high efficiency for stereo 3D
reconstruction under water.

A notable current limitation of existing methods for esti-
mating relative camera motion under water is that they are
highly sensitive to noise and this results in a major prac-
tical limitation given that underwater images are subject
to complex light scattering as well as medium turbidity,
which makes precise point matches difficult to establish.
In certain application domains, for example fluid-immersed
endoscopic surgical procedures, accurate correspondence
can be extremely challenging due to paucity of reliable fea-
tures, medium properties and the restricted workspace of the
moving camera. This means that stable and robust methods
for estimating the refractive two view geometry and relative
pose of cameras are an important area for further develop-
ment in underwater vision and imaging.

Contribution

We propose a novel stereo 3D-reconstruction method for the
case of a pinhole camera looking through a thin refractive
interface, where the position and orientation of this interface
are known (see Fig. 2). Our approach is particularly flexi-
ble and can be applied to various applications of underwater
imaging and vision behind a thin refractive interface. This
paper extends our previous work (Chadebecq et al. 2017) by:

i. providing with an explicit formulation of the refractive
Fundamental relationship (rF), further developing the
previous theoretical derivation of the two-view geometry
for a fixed refractive plane (Chari and Sturm 2009) (see
Sect. 4). By appropriately formulating the rF, we propose
a robust stereo reconstruction method able to withstand
complex underwater imaging conditions,

ii. extensively evaluating our approach for different under-
water scenarios ranging from fluid-immersed medical
endoscopy to deep underwater imaging. To demonstrate
our contribution to the refractive geometry of underwater
vision, we evaluate the effectiveness and improvements
on numerical stability of our approach on synthetic and
real data over classic two-view Structure-from-Motion
(2View SfM) relying on the pinhole-plus-distortion per-
spective camera model. To highlight a particular appli-
cation for two-view Refractive Structure-from-Motion
(2View RSfM), we show results for fetoscopy, where an
endoscope is used to guide vessel photo-coagulation on
the placental surface within the amniotic fluid.

Appendices

For the sake of clarity, the refractive forward projection
equation introduced in Agrawal et al. (2012) is recalled in

Fig. 2 Refractive camera model. We assume the underwater imaging
system can be modelled by a pinhole camera embedded within a water-
tight case. The underwater scene is observed through a flat and thin
refractive interface

appendix 1 and the refractive single-view geometry intro-
duced in Chari and Sturm (2009) is recalled in “Appendix B”.

2 Underwater ImagingModel and Refractive
Structure-from-Motion: RelatedWork

To provide the necessary background to our work, we first
introduce the cameramodels for refractive imagingwhich are
generally considered for submarine and underwater explo-
ration. A detailed review of these models can be found
in Sedlazeck and Koch (2012). We then describe state of
the art RSfM approaches. An exhaustive survey of these
approaches can be found in Jordt (2014). A complemen-
tary survey on underwater 3D reconstruction can be found in
Massot-Campos and Oliver-Codina (2015).

2.1 Refractive Image FormationModel

In previous works, three different image formation models
have been used for refractive imaging and vision: the pinhole
model (Kang et al. 2012a), the ray-based and generalised
model (Chari and Sturm 2009), and the refractive model
(Agrawal et al. 2012; Jordt 2014).

Adapted Pinhole Camera Model Most underwater com-
puter vision literature has previously relied on the classic
pinhole camera model of perspective projection. This choice
is mainly motivated by its simplicity, general popularity and
efficiency despite the known systematic geometric bias due to
refraction (Glaeser and Schröcker 2000; Treibitz et al. 2012).
Several papers have demonstrated that focal length and dis-
tortion parameters could be adapted to partially compensate
for refraction effects (Fryer and Fraser 1986; Lavest et al.
2000; Kang et al. 2012a). Such assumption remains valid
assuming the refractive plane is fronto parallel to the image
plane of the camera. If it is tilted, symmetric or irregular
distortion functions should be considered (You et al. 2016;
Agrawal and Ramalingam 2013). Moreover, the adapted pin-
hole camera model is valid within a limited range of distance
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(a) (b) (c)

Fig. 3 a Illustration of the ray-based camera model, where the rays
refracted at the refractive interface of the optical system form a caus-
tic. Due to this refraction, the single viewpoint assumption is not valid.
The axial camera model can be defined by the envelope tangent to the
refracted rays. As such, the caustic is a measure of the deviation from

the pinhole camera model. b Illustration of the refractive camera model
assuming a single, thin refractive interface attached to the camera. We
assumed the refractive plane position and orientation to be known. c
Two-view refractive geometry assuming the refractive model from (b)

(the range of distances considered for camera calibration)
as refractive distortion depends on the depth of the scene
(Treibitz et al. 2012). The underlying geometry of rays actu-
ally defines an axial camera model (Agrawal et al. 2012).
The influence of scene depth on the approximation error of
the adapted pinhole model has been evaluated in Luczyński
et al. (2017). They simulated an underwater scene observed
at a reference distance of 2m corresponding to the distance at
which the camerawas synthetically calibrated. They reported
an approximation error of the order of 20 pixels for a 3Dpoint
located 50 cm away from the reference distance. This error
corresponded to the average 2D distance between a set of 3D
points projected within the image plane using the adapted
pinhole and refractive camera models.

Ray-Based and Generalised Camera Model A complex
but comprehensive approach is to associate each image pixel
within the image to a light ray, similarly to the raxel model
(Grossberg and Nayar 2005), and this has been used effec-
tively in underwater imaging (Glaeser and Schröcker 2000;
Sturm and Ramalingam 2004; Sturm et al. 2005; Treibitz
et al. 2012). The imaging system can be characterized by its
caustic, which is defined as the surface tangential to the bun-
dle of rays intersecting the camera axis (see the illustration
in Fig. 3a). In practice, this model is difficult to calibrate due
to its large number of parameters (Sturm and Ramalingam
2004). An alternative is the generalised camera model which
describes a generic and unified image formation process for
both single and non-single viewpoint cameras (Grossberg

and Nayar 2001). Calibration of the generalised model and
its use in multiple-view geometry have been studied (Sturm
et al. 2005) and the approach has also been extended to under-
water imaging assuming a camera moving behind a fixed
refractive plane (Chari and Sturm 2009).

Refractive Camera Model Explicitly considering refrac-
tion at one or multiple flat-refractive planes (sharing the
same orientation) has been proposed in a range of works
(Agrawal et al. 2012; Jordt-Sedlazeck and Koch 2012; Yau
et al. 2013; Chen and Yang 2014). We adopt this approach
considering a single and thin refractive interface (illustrated
in Fig. 3b). Such configuration is particularly adapted to
underwater camera for which entrance lens is in direct con-
tact with the external medium. This is for instance the case of
fluid-immersed endoscopic imaging system used for medical
procedure such as fetoscopy or arthroscopy. Moreover, it has
been shown in Agrawal et al. (2012) that such relatively sim-
ple model (compared to the thick interface case) is capable of
approximating both single and multiple-layer systems which
allows us to propose a generic method for 2View RSfM.

Combined Camera Model The Pinax model proposed by
Luczyński et al. (2017) combines a virtual pinhole camera
model with the axial camera model. It assumes the distance
between the refractive plane and the camera’s optical cen-
ter is close to the optimal distance for which the interval
defined by the intersection of the light rays and the camera’s
axis is minimal. Under this assumption, it can be shown that
the pinhole model efficiently approximates the underwater
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image formation process. As such, each image point of the
virtual pinhole camera can be back-projected onto a virtual
pinax plane (virtual plane perpendicular to the camera’s axis
and situated at a reference distance in the scene) and then
projected forward onto the physical camera (modelled by an
axial camera). This allows the pre-computation of a lookup-
table for fast and accurate refraction correction. Moreover,
it is also particularly convenient as it only requires an in-air
calibration of the underwater camera system. It is however
sensitive to externalmedium refractive index changes and the
distance of the scene can influence 3D reconstruction accu-
racy as it directly relies on the SVP approximation (which
is an important limitation considering applications such as
fluid-immersed endoscopy).

2.2 Refractive 3D Reconstruction

The problem of recovering 3D geometry in the presence of
refraction has been studied in the past and there is a recent
survey on active and passive 3D reconstruction methods
for underwater imaging (Massot-Campos and Oliver-Codina
2015). In this section, we briefly review the most relevant
approaches to this paper. The majority of approaches rely on
standard SfM methods assuming the pinhole-plus-distortion
cameramodel can compensate for refraction, which is known
as the SVP assumption (Yu et al. 2003). It has been demon-
strated that adapting radial lens distortion and focal length
can compensate for refraction to a certain extent (Lavest et al.
2000) but this only leads to acceptable pose and 3D shape
estimation within a limited range of distance of the scene
(Kang et al. 2012b). There still exists a systematic geometric
bias and estimated camera poses absorb some of the errors
due to modelling (Sedlazeck and Koch 2012). Moreover,
Jordt-Sedlazeck and Koch (2013) showed that measurement
errors are particularly significant when the refractive inter-
face is not strictly fronto-parallel to the image plane. As such,
standard SfM methods remain poorly reliable under water
due to drifting of camera poses estimations.

Few dedicated RSfM methods relying on ray-based mod-
els have been proposed. This is notably due to the difficulty of
accurately calibrating such a system and its high sensitivity
to noise. It has moreover been demonstrated that physical-
based models outperform the generalised camera model (see
Mouragnon et al. (2009) for SfM in the context of deep
underwater imaging). Two theoretical works remain however
particularly relevant to the refractive geometry of underwa-
ter vision. Considering the case of a camera moving behind
a fixed refractive plane such as a camera seeing through an
aquarium (fixed interface scenario), Chari and Sturm (2009)
derived the rF relationship. It is however defined by a 12×12
matrix whose estimation is computationally unstable. An
alternative ray-basedmodel has been proposed in Chaudhury
et al. (2015). It allows to express the underlying refractive

geometry as a direct extension of the projective geometry.
The authors assume refraction happens at the camera centre
only allowing them to geometrically estimate the relation-
ship between the observed image point and the one obtained
if refraction had not taken place [following a similar idea
to the division model for distortion (Fitzgibbon 2001)]. By
correcting image coordinates, the fundamental matrix can be
directly estimated, while the external camera parameters and
the 3D reconstruction are obtained up to a similarity.

Most of the RSfM approaches rely on a physical-based
model by explicitly considering a pinhole camera looking
through a refractive plane. The case of a fixed interface is
considered in Chang and Chen (2011). They assume the
camera embeds an Inertial Measurement Unit (IMU) and
therefore both pitch and yaw of the camera are known. They
proposed a closed-form solution to the absolute pose estima-
tion, however it requires to know the vertical displacement
of the camera. The case of two cameras embedded in differ-
ent watertight casing is considered in Kang et al. (2012b).
They propose an optimal solution to the relative translation
problem under L∞ assuming camera rotation is known. This
solution is then extended to the unknowncamera rotation case
assuming a thin refractive plane parallel to both image plane
of the cameras. More recently, Haner and Aström (2015)
developed efficient minimal solvers for the cases considered
in Chang and Chen (2011), Kang et al. (2012b) to solve for
the absolute pose problem (camera observing known struc-
ture through a known refractive plane). For the general case
of deep underwater imaging, Jordt et al. (2016) developed
a complete RSfM framework by combining their previous
works (Jordt-Sedlazeck and Koch 2013; Jordt-Sedlazeck
et al. 2013). Relative camera motion between two succes-
sive views is estimated by relying on the flat refraction and
coplanarity constraints derived from Agrawal et al. (2012)
[respectively equations (12), (13)]. They then proposed a
non-linear refractive bundle adjustment by extending (Rama-
lingamet al. 2006). It is based on the idea that a virtual camera
can be associated to each 2Dpoint intowhich the correspond-
ing 3D point can be projected perspectively. Finally, dense
depth estimation is obtained byusing a refractive plane sweep
algorithm (Gallup et al. 2007). This method requires a good
initialisation, more particularly for two-view pose estima-
tion, and relies on a costly iterative algorithm.

It is worth to note that RSfM has also been considered
to solve for the absolute scale ambiguity inherent to SfM
(Shibata et al. 2015a, b). Indeed, knowing the position and
orientation of the interfaces theoretically yields to the abso-
lute camera motion as relative pose is no more invariant
to scale change in camera translation (Jordt-Sedlazeck and
Koch 2013). The authors of Shibata et al. (2015a) suggest to
place a thick refractive plate in front of a pinhole camera in
order to infer the absolute scale of a scene. The coplanarity
constraint is extended to two views and directly solved using
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a least squaresmethod.However, this approach is particularly
sensitive to noise and requires at least 17 points correspon-
dences. It has been experimentally observed in Jordt et al.
(2016) that RSfM methods are too sensitive to noise to be
able to infer the absolute scale of a scene. This is particularly
the case considering a thin refractive interface as we noticed
during our experiments.

3 Notation

For consistency, we adopt the mathematical notation used in
Chari and Sturm (2009) (see Fig. 3b). The world coordinate
frame (X ,Y , Z) is arbitrarily set up in the first view. The
Z -axis lies on the camera’s axis defined as the line passing
through the normal of the refractive interface (n = (0 0 1)�)
and the camera optical centre. It is important to note that we
here distinguish between the camera’s axis (i.e. the camera is
composed of a pinhole camera looking through a refractive
interface) and the pinhole camera’s axis Zc. The camera’s and
pinhole camera’s axis are thus not necessarily aligned. The X
and Y axes lie on the refractive plane and respectively align
with the orthographic projection of Xc-axis and Yc-axis of
the camera coordinate frame onto the refractive plane. The
pose of the camera in the first view is expressed as P1 =
R−1
r (I − tr ) where I is the 3 × 3 identity matrix, Rr is the

3 × 3 rotation matrix corresponding to the refractive plane

orientation relative to the camera coordinate frame and tr =
(0 0 d)� is the refractive plane position. The interface to
camera centre distance along the camera’s axis is denoted
by d. A 2D image point i observed in view j is denoted by
pij = (x y 1)�. We denote as Pi

j = (x y z 1)� the 3D point
of incidence (point lying on the refractive interface) related
to the 3D point Qi projected in pij .

Light rays are defined by a starting point (e.g. a point
of incidence) and a direction vector. Direction vectors asso-
ciated to incident light rays (travelling within water) are
denoted by Li

j . Direction vectors associated to their cor-
responding refracted light rays (travelling within the water
tightness housing) are denoted by P i

j . They are directly
derived, in the world coordinate system, from the expres-

sion P i
j = (px ij pyij pzij )

� = (R−1
r

−K−1pij
‖K−1pij‖

)� where K−1

corresponds to the internal camera parameters of the pin-
hole camera. The Plücker coordinates of incident light rays
are denoted by Li

j = (L0
i
j , . . . ,L6

i
j )

� (Yu et al. 2003). As

such, L(a,b,c)
i
j defines a vector composed of the elements

La
i
j , Lb

i
j and Lc

i
j of L

i
j .

The lifted coordinates of the n-dimensional vector v can be
obtained by vectorising the upper triangular part of thematrix
vv�. Therefore, the expressions v̂ = (vx

2 vxvy vy
2 vxvz vyvz

vz
2)� and v̂ = (vu

2 vuvv vv
2vuvw vvvw vw

2vuvx vvvx vwvx
vx

2 vuvy vvvy vwvy vxvyvy
2 vuvz vvvz vwvz vxvz vyvz vz

2)�
respectively define the lifted coordinates of the three-
dimensional vector v = (vx vy vz)

� and the six-dimensional
vector v = (vu vv vw vx vy vz)

�. If two vectors are related by
a linear transformation T such as v2 = Tv1, their lifted coor-
dinates are related by the expression v̂2 = D−1S(T⊗ T)S�v̂1
(Sturm and Barreto 2008). The symbol ⊗ refers to the Kro-
necker product. The design matrix S is a binary matrix of
size n2+n

2 × n2. In the three-dimensional case, we denote S
by St which is defined as:

St =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

In the six-dimensional case, we denote S by Ss . For the
sake of brevity, we provide the matrix index corresponding
to the non-null value (i.e. Ss ij corresponds to the entry in the
i th row and j th column of the matrix).

Ss(11,
2
2 ,27 ,38 ,43 , 4

13 ,59 , 5
14 , 6

15 ,74 , 7
19 , 8

10 , 8
20 , 9

16 , 9
21 ,1022 ,115 ,1125 ,1211 ,1226 , 13

17,
13
27 ,1423 ,1428 ,1529 ,166 ,1631 ,1712 ,1732 ,1818 ,1833 ,1924 ,1934 ,2030 ,2035 ,2136 ) = 1

The matrix D is a diagonal matrix of size m × m where
m is the number of rows of S. Its entries are given by
the expression Di i = ∑k

j=1 Si j where k is the number
of columns of S. Therefore, Dt = diag(1 2 1 2 2 1) and
Ds = diag(1 2 1 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1). These rela-
tionships can easily be extended to n dimensions.

4 Refractive Geometry

The refractive projection equation introduced in Chari and
Sturm (2009) is recalled in “Appendix B”. We here derive
the two-view refractive relationship for the practical case of
an underwater camera whose watertight case window can be
modelled by a thin refractive plane.

4.1 Two-view Refractive Geometry

We here consider two views of an underwater scene. The
incident light ray of direction-vector Li

2 stemming from the
point Qi is projected in pi2 in the second view (see illus-
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tration Fig. 3c). The Plücker coordinates of Li
2 are given

by:

Li
2 = T (λpx

i
2 λpy

i
2 γz

i
2 −d

pyi2
pzi2

γz
i
2 d

px i2
pzi2

γz
i
2 0)� (1)

where T =
(

R 0
[t]xR R

)
and [t]x =

⎛
⎝

0 −tz ty
tz 0 −tx

−ty tx 0

⎞
⎠ corre-

sponds to the camera pose (Sturm and Barreto 2008). The
scalar λ = μ1

μ2
, where μ1 corresponds to the refractive index

within the camera housing (generally equal to 1) and μ2 cor-
responds to the refractive index of the refractivemedium. For

brevity’s sake we define γz
i
j =

√
1 − λ2 + λ2 pzij

2
.

By reordering the expression of Li
2, we can extract vector

components L(6,1,2)
i
2 and L(4,5,3)

i
2:

(
L(6,1,2)

i
2

L(4,5,3)
i
2

)
= T′

(
λtu 0
0 tv

)⎛
⎝ P i

2

γz
i
2

P i
2

pz i2
2

⎞
⎠ (2)

where tu =
⎛
⎝
0 0 0
1 0 0
0 1 0

⎞
⎠ and tv =

⎛
⎝
0 −d 0
d 0 0
0 0 1

⎞
⎠. The matrix T′

corresponds to the camera pose matrix T reorganised:

T′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

R33 [t]x 3:R.1 [t]x 3:R.2 R31 R32 [t]x 3:R.3

0 R11 R12 0 0 R13

0 R21 R22 0 0 R23

R13 [t]x 1:R:1 [t]x 1:R:2 R11 R12 [t]x 1:R:3
R23 [t]x 2:R:1 [t]x 2:R:2 R21 R22 [t]x 2:R:3
0 R31 R32 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(3)

The vector R:i identifies the i th columnof the camera rotation
matrix and we define R.i = [R1i R2i 0]�. Similarly, [t]x i :
identifies the i th row of the matrix [t]x .

Expressing concisely the lifted coordinates of the afore-
mentioned vector components is not obvious and eliminating
the square root in γz

i
2 leads to a complex expression.

We can nevertheless extract the lifted vector components(
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)
from the expression of
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(see Sect. 3). We can then derive the

following relationship:

(
L̂�
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2

)
= N T̂′ Ĉ

̂

(
P i
2
� P i

2

pzi2
2

�)
(4)

where N is a sparse change of basis binary matrix used to
rearrange rows and reducematrix dimensionality. It is defined
by:

N(11,
2
2 ,33 ,44 ,55 ,66 , 7

10 , 8
14 , 9

15 ,1019 ,1120 ,1221 ) = 1 (5)

The lifted coordinates of the camera pose matrix T′ are given
by T̂′ = D−1

s SsT′ ⊗ T′S�
s . Matrix Ds and Ss are defined in

Sect. 3.
ThematrixC , which notably embeds the refractive param-

eters (interface position and medium refractive index), is
defined by:

C =
(

λtu 0
0 γz

i
2tv

)
(6)

The lifted matrix Ĉ is derived using Ĉ = D−1
s SsC ⊗ CS�

s .
Combining equations (22) and (4) allows us to define the

refractive fundamental relationship:

̂

(
P i
2

P i
2

pzi2

)�

rF

⎛
⎝

P̂ i
1

pz i1
2

P̂ i
1

⎞
⎠ = 0 (7)

The matrix rF is defined as:

rF = Ĉ�T̂′�N�MDs (8)

where the matrix M is defined by:

M =
⎛
⎝

(1 − λ2)D−1
t St t�b ⊗ t�b S�

t 0

λ2D−1
t St t�b ⊗ t�b S�

t −λ2D−1
t St t�a ⊗ t�a S�

t

⎞
⎠

(9)

The matrix ta =
⎛
⎝
1 0 0
0 1 0
0 0 0

⎞
⎠ and tb =

⎛
⎝
0 0 1
0 −d 0
d 0 0

⎞
⎠. The

complete derivation of the matrixM is recalled in “Appendix
B” (Chari and Sturm 2009).

The rF matrix is of size 12 × 21. It directly depends on
refractive interface parameters (distance and orientation), as
well as, the camera’s motion.

5 Refractive Camera Pose Estimation

Directly estimating rF matrix entries from two-view cor-
respondences is computationally unstable and practically
difficult because it requires matching 12 × 21 = 252 points
across the image pair. The high degree of freedom of the rF
matrix prevents closed-form algebraic solutions to provide
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with reliable estimates of its entries. These solutions are par-
ticularly sensitive to noise, as it can also be observed for the
estimation of the generalised essential matrix considering a
monocular axial camera. Even using a robust method such as
RANdom Sample Consensus (RANSAC), we were not able
to reliably estimate the rFmatrix and as such extract absolute
or relative cameras’ poses.

This suggested to rely on a two step relative pose esti-
mation method. The relative camera motion is first esti-
mated using the classic two-view SfM pipeline. Assuming
the refractive geometry of the camera is calibrated (using
Agrawal and Ramalingam 2013), its pose can then be refined
using both the rF relationship and reprojection constraints.
The rF matrix is computed thanks to equation (8). The
reprojection constraint is based on the refractive forward
projection equation (see “Appendix A”). It is worth to note
that the rF constraint is also essential to remove outlier cor-
respondences. This is a particularly sensitive key point in
underwater imaging where images are highly affected by
medium properties.

5.1 Camera Calibration

We assume the camera to be calibrated both in air and under
water. In air, calibration has been achieved using (Bouguet
2008). Underwater calibration consists in calibrating the
camera considering both the single viewpoint approximation
and the refractive cameramodel. The underwater pinhole cal-
ibration is similar to the calibration in air. Calibration of the
position and orientation of the thin refractive plane has been
performed using (Agrawal et al. 2012) relying on the same
set of images. Whereas this method only requires a single
view of the calibration target, we relied on the full set of
underwater calibration images (20 images). We experimen-
tally noticed a stable estimation of the interface orientation
while the estimation of the interface depth suffered from a
significant variance.Weused the average interface depth esti-
mated over the 20 underwater calibration images.

It is worth to note that calibrations have been performed
under water before each experiment. As it will be showed
using synthetic datasets in Sect. 6.1, slight changes in
medium refractive index do not significantly impact camera
pose estimation.

5.2 Underwater Relative Pose Estimation

The proposed relative pose estimation method is depicted in
Fig. 4.

Our method is composed of the following steps. The first
step relies on the single viewpoint assumption. After undis-
torting images using distortion parameters estimated under
water, SIFT features are extracted andmatched between each
pair of views (Lowe 1999;Vedaldi and Fulkerson 2008;Daga

Fig. 4 Overview of the proposed relative pose estimation method. The
relative pose is first estimated using the classic fundamental constraint
assuming the camera has been calibrated under water. The relative
camera pose is then refined using the refractive Fundamental (rF) and
reprojection constraints. Outlier Correspondences are discarded based
on the rF constraint. Propagating key correspondences using (Stoyanov
et al. 2010) and removing geometrically inconsistent correspondences
using the rF constraint allowed us to obtain quasi dense reconstruction

et al. 2016). Along this step, fundamental matrix and relative
camera motion are estimated using standard direct estima-
tion approaches (Yu et al. 2003). The second step consists in
refining the single viewpoint approximation. This is done by
minimising the following non-linear least squares constraint
based on the rF and reprojection constraints:

θ∗, t∗ = arg min
θ,t

n∑
i=1

FCi (θ, t) +
n∑

i=1

Proji (θ, t) (10)

where the Euler angles θ = (θx , θy, θz)
� and t define

the rotation and translation of the camera respectively. The
indices i = {1, . . . n} correspond to the point number. FCi

corresponds to the refractive fundamental constraint defined
in equation (7) and computed for the point i . The reprojection
constraint Proji , computed for the point i , is defined by:

Proji (θ, t) = ‖PpPr (θ0, t0,Qi ) − qi1‖22+∥∥∥PpPr (θ, t,Qi ) − qi2
∥∥∥2
2

(11)

where qi1 and q
i
2 respectively correspond to the observations

of the 3D point Qi in the first and second view (i.e. corre-
sponding tomatching i). The refractive projection funtionPr

projects the 3D pointQi onto the refractive plane.The refrac-
tive forward projection function is derived in Agrawal et al.
(2012). Its definition is recalled in appendix 1, equation (21).
We denote as (θ0, t0) the camera’s pose corresponding to
the first view. Without any loss of generality, we fixed
θ0 = t0 = (0, 0, 0)�. Points lying on the refrative plane
are projected onto the image plane thanks to the perspective
projection matrix Pp (obtained by calibration).
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We used a similar weight for the reprojection and the
refractive fundamental constraints involved in cost function
(10) as we experimentally observed that it allowed us to
obtain the most accurate pose and 3D reconstruction esti-
mates. As demonstrated by our experiments, the 2View SfM
pose estimates computed in the first step of our method
provided us with an accurate and reliable initialisation of
cameraposes sufficiently close to theoptimumestimates.The
minimisation problem is then solved using the Levenberg-
Marquardt method (Marquardt 1963) and the rF matrix is
used to reject outliers. We practically used a threshold of 0.1
pixels to truncate matches that do not conform to the refrac-
tive geometry.

We finally obtain quasi-dense stereo correspondences
using an iterative growing scheme (Stoyanov et al. 2010).
Again, outliers are discarded using the refractive geometry
which leads to a final quasi-dense reconstruction.

5.3 Discussion

The proposed 2View RSfM approach explicitly relies on
refractive geometry. Unlike 2View SfM, relying on the
adapted pinhole model, it does not suffer from a system-
atic geometric bias. Additionally, it allows us to efficiently
discard mismatches which is of particular significance for
application such as fluid-immersed endoscopy for which
underwater artefacts generally prevent the reliable tracking of
features (complex light scattering, medium turbidity, motion
blur due to the manipulation of a flexible endoscope within
a closed environment). By combining our approach with the
method proposed in Stoyanov et al. (2010), we obtain quasi-
dense reconstructions.

The proposed method nevertheless suffers from limita-
tions. Because its second step relies on a costly non-linear
minimisation (equation (10)), it is not real time. Furthermore,
as its first step relies on 2View SfM it inherits from its lim-
itations. Most particularly, it is sensitive to the same critical
camera motions and it suffers of scale ambiguity (Yu et al.
2003). Similarly, the 3Ddensification step inherits fromStoy-
anov et al. (2010) method drawback. As such, it is sensitive
to specular reflections and model occlusion.

6 Experiments

The proposed 2View RSfM method has been evaluated on
both synthetic and real data. Synthetic evaluation considers
general underwater scenario where the scene is generally sit-
uated at a distance of 2 to 4 meters to the camera. For real
experiments, we consider the scenario of a consumer action
camera imaging a scene situated at a close distance of approx-
imately 0.5 meters.We also highlight a particular application
for 2View RSfM and show results for fetoscopy. In such con-

Fig. 5 Synthetic evaluation. A set of randomly generated 3D points
is projected into two views using the refractive forward projection
equation (Agrawal et al. 2012). Camera motion is randomly gener-
ated. We evaluate the influence of medium refractive index, interface
position and orientation as well as image noise on the robustness of our
method. Parameters written in red correspond to known parameters or
parameters for which we want to estimate the influence on two-view
Refractive Structure-from-Motion. Parameters written in blue corre-
spond to unknown parameters

text, providing the surgeonwith 3D reconstruction (aswell as
endoscope displacement) could facilitate both diagnosis and
intervention within highly sensitive cavity such as uterus.

Our code and used datasets will be published online at
http://www.surgicalvision.cs.ucl.ac.uk/resources/code/.

6.1 Synthetic Evaluation

The synthetic dataset has been generated using the following
steps (see Fig. 5). A set of 3D points situated at a distance
between 2 and 4 meters from the camera are randomly gen-
erated. They are assumed to belong to a smooth 3D surface
of approximate dimensions 1 × 1 meter. For each setup, we
generated 100 pairs of synthetic images considering a virtual
camera moving in front of the scene. We used the refractive
forward projection equation (21) derived in Agrawal et al.
(2012).We considered the following internal camera parame-
ters; focal length: 800 pixels, principal point: 640×480 pixels
(no distortion parameters, no skew, image size: 1280×960
pixels). The refractive parameters have been randomly cho-
sen for each pair of view. The refractive plane orientation
lays in the interval −π/6 to π/6 radians (refractive plane
normal rotation) and its depth in the interval 2 to 15 millime-
tres (mm). The camera rotation lays in the interval −π/6 to
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Fig. 6 Evaluation of estimation of camera motion in the presence of noise: camera translation estimation error (left), camera rotation estimation
error (center), 3D reconstruction error (right)

π/6 radian and its translation in the interval 0.2 to 0.5 meters
(absolute distance).

A set of 40 calibration images has also been synthetically
generated. We assumed a synthetic checkerboard situated
at a distance of 2 to 4 meters from the camera. We gen-
erated 20 synthetic calibration images of the checkerboard
in air assuming the pinhole camera model whose internal
parameters have been described in the previous paragraph.
We added 0.2 pixelsGaussian noise to the synthetic images of
the checkerboard simulating a real calibration scenario. We
also generated 20 calibration images under water (using the
method described for generating the images pairs dataset)
and proceed to underwater calibration considering the sin-
gle viewpoint assumption (also adding a Gaussian noise of
0.2 pixels). Refractive plane calibration has not been directly
carried out, as we evaluated the influence of refractive plane
calibration in our experiments, it has been synthetically con-
trolled.

We evaluated the influence of noise, medium refractive
index changes and refractive plane calibration accuracy on
the robustness of camera motion estimation and accuracy
of 3D reconstruction (see Fig. 5). We chose to present the
median and median absolute deviation errors as we noticed
cases of inconsistent pose estimation using the single view-
point assumption for noise level greater than 0.5 pixels.
Considering a noise level of 1.5 pixels it appeared in 12%
of cases. Although the proposed method allowed us to with-
drawoutliers, results take into account the entire set of points.

Robustness to Noise we evaluated the robustness of our
method to image noise. We considered a random Gaussian
noise whose standard deviation lays within the range 0 to
1.5 pixels. Results are presented in Fig. 6. Despite significant
noise levels, ourmethod leads to accurate estimations of cam-
eramotions. The rotation error is less than 2 degrees despite a
noise of 1.5 pixels and the translation error is approximately
of 0.5 mm for the same level of noise. However, we observed
a significant median absolute deviation error for noise level
greater than 0.8 pixels. This was due to inconsistent initiali-
sation leading to degenerate pose estimation. Considering a
noise of 0.4 pixels we noticed 4 cases for which an inaccurate

Fig. 7 Relative pose estimation between the cameras pair of a surgical
stereo-endoscope. Despite the small baseline between the two cam-
eras, two-view Structure-from-Motion pose estimations are efficiently
refined considering the refractive camera model. This is here particu-
larly noticeable for translation estimation

initialisation led to an alteration of camera pose estimation.
For a noise between 1 and 1.5 pixels, such initialisation fail-
ures appeared in 10% of evaluated cases.

Despite accurate camera motions estimations, it is impor-
tant to note that above 0.6 pixels of noise, the 3D recon-
struction error is greater than 2 mm. Such error can be of
significance considering medical applications. This is how-
ever related to the scale of the scene as well as the setup
considered in our synthetic evaluation. The evaluation of
the accuracy of 3D reconstruction in the context of fluid-
immersed endoscopy is highlighted in the next section.
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Fig. 8 Evaluation of camera motion estimation for inaccurate cali-
bration of the refractive interface depth (left column), the refractive
interface orientation (centre column) and the refractive medium (right

column). The top line presents camera translation estimation errorwhile
the second line presents camera rotation estimation error

Robustness to inaccurate interface calibration we first
highlight the influence of inaccurate interface depth calibra-
tion on relative pose estimation (see Fig. 8, left column).
The interface depth error is evaluated in the interval 0 to 2
mm. We observed that an interface depth error greater than
1 mm has a significant impact on translation estimation. The
translation error is greater than 1 mm for an interface depth
calibration error greater than 1.4mm. Such errors imply inac-
curate 3D reconstructions and measurements as it has been
previously outlined (see Fig. 6). Interface depth errors have
a minimal impact on camera rotation estimations. Moreover,
we observed that noise level lower than 0.6 pixels does not
significantly impact on results and behaviour of our method.

We then highlight the influence of inaccurate interface
orientation calibration (see Fig. 8, central column). Refrac-
tive interface orientation accuracy has a strong influence on
camera pose estimation. The translation error is greater than
0.5 mm when the interface rotation error is greater than 5
degrees. The error of camera rotation estimation is approxi-
mately 2 degrees and 4 degrees for an interface rotation error
greater than 9 degrees.

Robustness to medium refractive index changes this
evaluation is particularly relevant in the context of fluid-
immersed endoscopy. For instance, most computer vision
approaches for medical imaging assume organic fluid refrac-
tive index is similar to the refractive index of water while
the influence of such assumption has not been quantitatively
evaluated. It is particularly important for procedure such as
fetoscopy which consists in inserting an endoscope (namely

fetoscope)within theuterine cavity duringpregnancy inorder
to allow access to the fetus, the placenta and the amniotic
cavity. The refractive index of amniotic fluid can evolve
according to gestation time despite it is mainly composed
of saline fluid (Steigman et al. 2010). However, estimating
the refractive index of amniotic fluid during the procedure is
complex. We considered the medium refractive index error
lays between 0 and 0.1. We noticed that, even for important
changes of fluid refractive index, the translation estimation
error is less than 0.5 mm and the rotation error less than 1
degree. These results remain valid provided that the image
noise level is lower than 0.6 pixels. We therefore observed
that approximating organic fluid refractive index by water
refractive index remains a fair assumption despite significant
changes of medium properties.

6.2 Real Data Evaluation

6.2.1 Camera Pose Estimation Evaluation

For evaluating relative camera pose estimation, we car-
ried out real experiments considering a surgical stereo-
endoscope. We first calibrate the stereo-endoscope using a a
set of 20 calibration images acquired outside water. We used
a planar checkerboard and estimated both internal camera
parameters and rigid pose between the cameras pair (Zhang
2000). We then followed the same procedure to calibrate
the stereo-endoscope under water considering as such the
adapted pinhole camera model (Nikitichev et al. 2017). We
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Fig. 9 Underwater 3D reconstruction of a planar checkerboard pat-
tern using the two views of a surgical stereo endoscope. The proposed
two-view Refractive Structure-from-Motion significantly improves the
initial 3D shape estimate provided by two-view Structure-from-Motion

used the same set of underwater images to calibrate the ori-
entation and distance of the flat refractive plane considering
the flat refractive camera model (Agrawal et al. 2012). We
finally collected a set of 20 additional images under water
and compared relative camera pose estimation between the
two images of the stereo pair using 2View SfM and 2View
RSfM. We considered as the ground truth the rigid pose esti-
mated during the first calibration step realised outside water.
The translation between the two cameras of the stereo pair is
5.8 mm and the rotation is 3.5 degrees along the Y axis and
less than a degree along the X and Z axis.

Results are reported in Fig.e 7. We observed a mean rota-
tion error of 0.54 degrees for 2View SfM with a variance of
0.58 degrees. Using 2View RSfM slightly improved rotation
estimation, we reported a mean rotation error of 0.35 degrees
and a variance of 0.51 degrees. We noticed a significant
improvement of translation estimation which strengthens the
results obtained for the synthetic experiments. The mean
translation error for 2View SfM is 5.24 mm with a variance
of 3.21 mm. The mean translation error for 2View RSfM
is 1.21 mm with a variance of 1.39 mm. The translational
error observed for 2View SfM can be explained by the small
baseline between the cameras. However, the initial relative
pose estimation provided by 2View SfM can be efficiently
refined using 2View RSfM. As can be seen in Fig. 9, it has a
noticeable impact on 3D shape estimation.

6.2.2 3D Shape Estimation Evaluation

We evaluated our approach on three datasets. For each pair
of views in our datasets, we used the same feature points for
both 2View SfM and 2View RSfM. Outliers have been with-
drawn thanks to themethod described in section 5.2. The first
dataset consists of 10 images of a statuette immersed within
a tank filled with water (see Fig. 10). We used a Gopro®
hero 3 camera embedded within its dedicated water tight
casing. The size of the statuette is approximately 150 mm

Fig. 10 Setup used to acquire the statuette and toy dataset. The statuette
dataset was realised using a Go pro hero 3 camera embedded within its
dedicatedwatertight casing. The toy dataset was realised using a Storz®
Hopkins 26008 BA fetoscope

width and 140 mm height and the camera was situated at a
distance of approximately 400 to 500 mm. The ground truth
3D object model was obtained using an Artec® Spider 3D
scanner. The second dataset consists of 15 images of a toy
immersed under identical conditions. Images were acquired
using a Storz® Hopkins 26008 BA fetoscope. This endo-
scope model relies on a rod lens optical system. Therefore, it
allowed us to validate that the single refractive plane assump-
tion approximates well a complex optical system. The size of
the toy is approximately 18mmwidth and 15mmheight (fig-
urine head). The distance from the endoscope distal end to the
object was approximately 20 to 50 mm. Similarly to the stat-
uette dataset, the ground truth 3D object model was obtained
using anArtec®Spider 3D scanner. The third dataset consists
of 10 images of a term human placenta collected following
a caesarean section delivery and immersed under water (a
written informed consent was obtained at University College
London Hospital (UCLH) after the Joint UCL/UCLH Com-
mittees on the Ethics of Human Research approved the study
(14/LO/0863)). Images were acquired using the fetoscopic
equipment previously mentioned (distance between 50 to 80
mm).Our goalwas to evaluate the robustness of our approach
towards 2View SfM in real fetoscopic conditions. Fetoscopy
is performed during pregnancy. The placenta positions itself
at either the top or side of the uterus within the amniotic
sac. At the early stage of pregnancy, the amniotic sac is
filled with amniotic fluid which is progressively replaced by
fetal urine. As such, the placenta is always immersed within
fluid during pregnancy but the nature of this fluid evolves.
Unfortunately, it was impossible to obtain a reliable ground
truth 3D model of the placenta. Indeed, once the placenta is
immersedwithin water, refractive distortion prohibits the use
of 3D laser scanners. Furthermore, water penetrates within
the organ significantly deforming it which invalidates any 3D
model computed outside water.

Statuette dataset Figure 11 depicts a representative sam-
ple of the 3D reconstruction results obtained with both
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Fig. 11 Representative sample of the statuette and toy dataset results.
The top row presents three consecutive images pairs as well as the
ground truth 3D reconstruction obtained thanks to a high definition
Artec® Spider 3D scanner. For each of the image pair we present the
results obtained with the proposed two-viewRefractive Structure-from-
Motion method as well as two-view Structure-from-Motion method.
The second rowpresents 3D reconstruction results overlayon theground

truth mesh. The last row presents the discrepancy map obtained after
aligning 3D reconstruction results with the ground truth mesh. Results
demonstrate a sensitive improvement of 3D reconstruction accuracy
using two-view Refractive Structure-from-Motion. It is worth to note
for the statuette dataset that, for two cases, two-view Structure-from-
Motion did not allow us to obtain reliable 3D shape reconstruction

2View SfM (assuming underwater camera parameters) and
our 2View RSfM method. More particularly, we present the
discrepancy map between the ground truth reconstruction
and these reconstructions. We observed a mean error of 5.3
mm and a standard deviation of 3.6 mm for 2View SfMwhile
we obtained an error of 4.6 mm and a standard deviation of
3.2 mm for 2View RSfM. Beyond the accuracy improvement
we noticed two particular cases where 2View SfM did not

allow us to obtain reliable 3D reconstructions. Initial camera
pose estimates were too erroneous in those cases to allow us
to infer acceptable 3D shape of the statuette. We noticed that
it corresponded to cases for which the object depth range
was particularly large (side view of the statuette) or cases
for which the object was located at a close distance from the
camera. We nevertheless observed in such situations that our
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Fig. 12 Underwater 3D reconstruction of a placenta. The top row
presents three consecutive images pairs of the placenta dataset. It has
been obtain by imaging a real placenta, immersed in a tank filled
with water, thanks to a fetoscope. The visual appearance of the 3D
reconstruction obtained thanks to the proposed two-view Refractive

Structure-from-Motion (second raw) and the two-view Structure-from-
Motion are similar. However it can be observed a sensitive difference
while comparing these reconstructions. It is more particularly the case
in the vicinity of the veins visible at the surface of the placenta (last
row)

algorithm allowed us to correct for these erroneous initiali-
sation despite a loss in accuracy (see Fig. 11).

Toy dataset results related to this dataset are depicted
in Figure 11. We observed similar accuracy using 2View
SfM and 2View RSfM with a mean error of respectively 0.3
and 0.2 mm and a standard deviation of 0.4 and 0.5 mm. It
can nevertheless be highlighted a slight improvement in uni-
formity of shape reconstruction which can be observed by
looking at the distribution of the errors. Moreover, it is worth
to note that our method allowed us to efficiently remove out-
liers which is essential in underwater imaging.

Fetoscopy dataset we aimed at reconstructing the sur-
face of a human placenta immersed under water reproducing
a real fetoscopic surgery scenario. Results are presented in
Fig. 12. Quasi-dense 3D reconstruction in such case remains
difficult due to the lack of features at the surface of the organ.
We have however been able to obtain partial reconstruction
for both 2View SfM and 2View RSfM thanks to the effec-
tiveness of the proposedmethod for removing outliers.While
3D shape estimation appears visually similar for both 2View
SfM and 2View RSfM, we observe significant disparities in
the vicinity of veins and arteries. The proposed 2View RSfM
method highlights more noticeably the slight changes at the
surface of the placenta which is of particular importance in
fetoscopy. We furthermore noticed that it was particularly
significant when the viewing angle of the camera was impor-
tant (side view of the placenta) which is consistent with the
results obtained with the statuette dataset.

7 Conclusion

Wehave proposed a new formulation for the two-view geom-
etry of images in underwater environments relying on the
refractive epipolar geometry.Wederived anovel rF constraint
which forms the basis of a robust method for accurate and
quasi-dense stereo reconstruction under water. More partic-
ularly, we showed that relative camera pose estimation based
on the rF constraint outperforms state of the art techniques
considered in underwater imaging. Numerical validation on
synthetic data demonstrates the robustness of our approach
against varying levels of additive noise while state of the art
methods are particularly noise sensitive. This is an important
improvement in underwater imaging context. We validated
our method on real images by performing laboratory experi-
ments and demonstrated that it improves underwater 2View
SfM on both 3D shape and camera pose estimation. We
demonstrated a potential application of 2View RSfM for
endoscopic surgery. We successfully applied our method to
fetoscopy and more particularly the 3D reconstruction of
a placenta. Beyond this evaluation, the practical value of
our work lies in various applications of underwater imag-
ing where one can assume a single, thin refractive interface
that separates the camera and the external environment.

Possible extensions of our work include implementing
it within a more comprehensive pipeline for multiple-view
reconstruction by extending our two view formulation for
2View RSfM. It would also be of interest to apply the con-
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straint to develop a refractive Simultaneous Localisation and
Mapping (SLAM) framework and potentially consider in
more depth the relationship between the light source and
the camera, which dictates the position of reflections within
the scene’s illumination. Theoretically our current assump-
tion of a single refractive interface may also be extended
to handle thick interfaces that are used for deep underwa-
ter reconstruction. Our method could then integrate motion
information generally provided by underwater robotic sys-
tem as an additional constraint.
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Appendix A: Refractive Forward Projection
Equation

Two constraints can be directly derived from the flat refrac-
tive camera model (Agrawal et al. 2012). They are illustrated
in (Fig. 13) and recalled below in order to introduce the for-
ward refractive projection equation.

The Flat Refraction Constraint (FRC) enforces the inci-
dent light ray Li

j (i.e. travelling within the external medium)

to be parallel to the line joining the point R jQi + t j and the
incidence pointPi

j . The rotationmatrix R j and the translation
vector t j define the pose of the camera in view j .

(R jQi + t j − Pi
j ) × L(1,2,3)

i
j = 0 (12)

The Co-planarity Constraint (CC) enforces each light ray
to lie on the plane of refraction (defined by the camera axis
and an incident light ray) and the refracted ray to also inter-
sect the camera axis. This can be mathematically described
by:

(R jQi + t j )�(n × Pi
j ) = 0 (13)

The refractive forward projection equation has originally
been defined in Glaeser and Schröcker (2000) but it can also
be efficiently derived from the CC (Agrawal et al. 2012). It
allows us to compute the coordinates of the point of incidence
Pi
j corresponding to the 3DpointQi . It is derived considering

the 2D coordinate frame (u1, u2) of the corresponding plane

of refraction, where the axis u2 aligns with the camera’s opti-
cal axis (i.e. u2 = n = Z ) and the axis u1 = u2 × (u2 ×Qi ).

The point Q̃i = (Q̃x
i
, Q̃y

i
) expresses the 3D pointQi in this

coordinate frame. Similarly, P̃i
j = (P̃x

i
j , P̃y

i
j ) = (P̃x

i
j , d)

corresponds to the point Pi
j . The refracted light ray can then

be expressed by P̃x
i
j u2 + du1. By deriving the CC in the

coordinate frame of the plane of refraction, and considering
a single and thin refractive interface, the refractive forward
projection equation can be formulated by the following 4th

degree polynomial equation in the unknown P̃x
i
j (Agrawal

et al. 2012):

(Q̃x
i−P̃x

i
j )
2(d2μ2+μ2P̃x

i
j
2
)−(dP̃x

i
j−Q̃y

i
P̃x

i
j )
2 = 0 (14)

whereμ corresponds to the refractive index of the external
medium (e.g. water refractive index ≈ 1.33).

Appendix B: Single-view Refractive
Geometry

For the sake of clarity, we here recall the refractive single-
view geometry introduced in Chari and Sturm (2009).

An incidence point Pi
1 lying on the refractive plane is

expressed by:

Pi
1 =

(
−d

px i1
pzi1

−d
pyi1
pzi1

0 1

)�
(15)

Fig. 13 The refractive forward projection equation can be derived from
the co-planarity constraint ensuring each light path lies on the plane of
refraction (Agrawal et al. 2012)
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reminding that P i
j = (px ij pyij pzij )

� corresponds to the

refracted light ray associated to the point pij and d is the dis-
tance from the camera optical centre to the refractive plane.

Snell’s law (Hecht 1998) allows us to derive the direction
vector of the corresponding incident light ray:

Li
1 = (λpx

i
1 λpy

i
1

√
1 − λ2 + λ2 pzi1

2
)� (16)

where λ = μ1
μ2
, μ1 is the refractive index within the

camera housing (generally equal to 1) and μ2 is the
refractive index of the refractive medium. We furthermore

define γz
i
j =

√
1 − λ2 + λ2 pzij

2
.

UsingPlücker coordinates, the incident light ray can there-
fore be formulated as:

Li
1 = (λpx

i
1 λpy

i
1 γz

i
1 − d

pyi1
pzi1

γz
i
1 d

px i1
pzi1

γz
i
1 0)� (17)

The Plücker constraint on lines intersection directly
derives from the definition of Plücker coordinates (Sturm
and Barreto 2008). It allows us to express the intersection of
the incident ray Li

1 with a 3D ray L′ (i.e. a 3D ray or a 3D
line L′ intersecting the incident ray L1

i ):

Li
1
�
WL′ = 0 (18)

where W =
(
0 I
I 0

)
.

The previous relationship can be rewritten in the following
form:

λL′�
(4,5,3)

i

1
taP i

1 + γz
i
1

pzi1
L′�

(6,1,2)
i

1
tbP i

1 = 0 (19)

where ta =
⎛
⎝
1 0 0
0 1 0
0 0 0

⎞
⎠ and tb =

⎛
⎝
0 0 1
0 −d 0
d 0 0

⎞
⎠.

Removing root square in γz
i
1 allows to reformulate equa-

tion (19) as follow (Chari and Sturm 2009).

(
λ2(−Â + B̂) (1 − λ2)B̂

) (
Dt 0
0 Dt

)

︸ ︷︷ ︸
D′

(P̂ i
1

P̂ i
1

pzi1
2 )� = 0 (20)

where A = λL′�
(4,5,3)

i

1
ta and B = L′�

(6,1,2)
i

1
tb.

The refractive projection equation can then be derived in
its general form by expending equation (20). Unlike the for-
mulation proposed in Agrawal et al. (2012) (equation (14)),
it does not directly depend on the planes of refraction.

(
L̂′�

(6,1,2)
i
1 L̂′�

(4,5,3)
i
1

)
rP�

⎛
⎝

P̂ i
1

pz i1
2

P̂ i
1

⎞
⎠ = 0 (21)

The refractive projection matrix rP is therefore defined in
Chari and Sturm 2009 as:

rP = D′�
⎛
⎝

(1 − λ2)D−1
t St t�b ⊗ t�b S�

t 0

λ2D−1
t St t�b ⊗ t�b S�

t −λ2D−1
t St t�a ⊗ t�a S�

t

⎞
⎠

︸ ︷︷ ︸
M

(22)

The refractive projection matrix is of size 12× 12. It only
depends on the medium refractive index on both sides of the
refractive interface as well as on the distance between the
optical centre of the camera and the refractive plane.
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