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Abstract

Devising computational models for detecting abnormalities reflective of diseases from facial structures is a novel and emerging
field of research in automatic face analysis. In this paper, we focus on automatic pain intensity estimation from faces. This
has a paramount potential diagnosis values in healthcare applications. In this context, we present a novel 3D deep model for
dynamic spatiotemporal representation of faces in videos. Using several convolutional layers with diverse temporal depths, our
proposed model captures a wide range of spatiotemporal variations in the faces. Moreover, we introduce a cross-architecture
knowledge transfer technique for training 3D convolutional neural networks using a pre-trained 2D architecture. This strategy
is a practical approach for training 3D models, especially when the size of the database is relatively small. Our extensive
experiments and analysis on two benchmarking and publicly available databases, namely the UNBC-McMaster shoulder pain
and the BioVid, clearly show that our proposed method consistently outperforms many state-of-the-art methods in automatic
pain intensity estimation.

Keywords Deep learning - Convolutional neural network - Facial dynamics - Pain intensity estimation - Cross-architecture

knowledge transfer - Healthcare

1 Introduction

Pain is among vital indicators of our health condition. It can
be defined as a highly unpleasant sensation which is caused
by diseases, injuries, or mental distress. Pain is often consid-
ered as the fifth vital sign in disease diagnosis (Lynch 2001).
Chronic pain can carry a wide array of pathophysiological
risks. Pain is usually reported by patients themselves (self-
report), either in clinical inspection or using Visual Analog
Scale (VAS) (Lesage et al. 2012). Pain assessment based
on the self-report is however highly subjective, and can-
not be used for population that are incapable of articulating
their pain experiences (Brahnam et al. 2006; Werner et al.
2013). Technologies that automatically recognize such a state
from the facial patterns of a patient can be extremely power-
ful, both diagnostically and therapeutically. Automatic pain
expression detection has indeed an important potential diag-
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nostic value, especially for populations, such as neonates and
post-surgery patients, that are incapable of articulating their
pain experiences (Brahnam et al. 2006; Werner et al. 2013).
At present, health professionals must infer pain in individuals
by examining various physiological and behavioural indica-
tors that are strongly associated with pain. Face analysis is
particularly relevant in pain assessment, since research has
shown that facial expressions of pain provide the most reli-
able and accurate source of information regarding a subject’s
health condition. However, people exhibit an increase in pain
behavior in the presence of health practitioners (Flor et al.
1995); i.e. subjects who experience pain tend to exaggerate
their pain expressions in order to attract more attention. In
order to tackle such issues, developing an unbiased solution
for pain assessment is crucial.

A potential approach to automatic pain assessment is
through the use of facial expression analysis. The human face
is indeed a rich source for non-verbal information regarding
the health condition (Thevenot et al. 2017). Facial expression
can be considered as a reflective and spontaneous reaction
of painful experiences (Craig et al. 2011). Most studies on
facial expression are based on the Facial Action Coding Sys-
tem (FACS) (Ekman and Friesen 1978). FACS is a system
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Fig.1 An example of facial action coding

for objectively scoring facial expressions in terms of elemen-
tary facial movements, called Action Units (AUs). Each AU
is coded with onset, offset, and an intensity on a five-point
scale. Figure 1 shows an example of a facial pain expres-
sion that is coded in terms of seven component facial actions
based on FACS.

Most of previous works on automatic pain assessment
focused on extracting features from consecutive frames of
face videos to detect and measure the intensity of pain—great
progress has been achieved in these endeavors (Brahnam
et al. 2006; Littlewort et al. 2009; Lucey et al. 2012). How-
ever, traditional image descriptors represent video frames
based on static features, hence limiting their ability in encod-
ing rich dynamic information required for pain intensity
estimation. Some pioneering approaches have addressed the
challenge of relevant spatiotemporal representation in the
context of pain expression recognition (Rodriguezetal. 2017,
Werner et al. 2017). These methods rely on exploiting fixed-
range temporal information from videos. However, facial
expression variations comprise short, mid, and long-range
terms.

Based on the above observations, we strive to take an
important step towards the goal of robust automatic pain
assessment by introducing a novel 3D convolutional model.
Our primary challenge is to develop a model that exploits
facial dynamics using both the appearance and the motion
information. The model should preferably be free of assump-
tions about the length of the videos and templates while
learns embedded spatiotemporal information effectively in
an end-to-end fashion. The second challenge is related to the
need of a large amount of annotated training data to achieve
good performance in video representation using deep mod-
els. Moreover, training on large databases is difficult and
time-consuming. Our core insight is that we can leverage
an efficacious transfer learning that bridges the knowledge
transfer between different architectures so that there is no
need to train the network from scratch. We propose to extend
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ResNet architecture (He et al. 2016), which has 2D filters and
pooling kernels, to incorporate 3D filters and pooling kernels.
Unlike Res3D (Tran et al. 2017), we replace the standard 3D
convolutional blocks with 3D convolutional filters of variable
depths to capture the appearance and temporal information in
short, mid, and long-range terms. We adopt ResNet because
residual connections make it possible to train deeper network
while minimizing overfitting problems (He et al. 2016). We
call our proposed model Spatiotemporal Convolutional Net-
work (SCN).

Among our salient contributions in this paper, we can cite:

(i) We propose a novel 3D deep convolutional neural
network that captures both appearance and temporal
information in different temporal ranges. The model
learns the spatiotemporal representation of facial pain
expression throughout the SCN (Spatiotemporal Con-
volutional Network) architecture and is trained end-to-
end.

(i) We introduce and develop a cross-architecture knowl-
edge transfer technique to train our 3D deep model,
hence avoiding training from scratch. Our extensive
analysis demonstrates that a 2D pre-trained model on
a large database can be used in a transfer learning pro-
cess for stable parameter initialization of a 3D model.

(iii)) We extensively validate the effectiveness of our pro-
posed method on automatic pain intensity estimation
using two benchmark and publicly available databases.

2 Related Work

In the recent years, there has been a considerable interest in
automatic pain assessment from facial patterns. The existing
works can be broadly divided into two categories: determin-
ing the presence of pain versus measuring the intensity of
pain. Early studies tend to design models that automatically
distinguish pain from no-pain (Ashraf et al. 2009; Lucey
etal. 2011a; Hammal and Kunz 2012). For instance, Brahnam
et al. (2007) exploited Discrete Cosine Transform (DCT) for
image description followed by Sequential Forward Selection
(SFS) for dimensionality reduction and nearest neighbor for
pain classification. Gholami et al. (2010) relied on Relevance
Vector Machine (RVM) that is applied on manually selected
face images. Guo et al. (2012) used Local Binary Pattern
(LBP) and its variants for improving both face description
and pain detection accuracy. Ashraf et al. (2009) used Active
Appearance Model (AAM) to detect the pain. By using
AAM, Lucey et al. (2011a) tracked and aligned faces on
manually labeled key-frames and fed them to a support Vector
Machine (SVM) classifier for frame-level pain classification.

We note that all the abovementioned methods deal with
pain analysis as a binary problem (i.e. pain vs. non-pain).
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According to Prkachin and Solomon’s pain intensity metric
(Prkachin and Solomon 2008), pain can however be classi-
fied into several discrete levels. So, the most recent works on
automatic pain assessment have focused on the challenging
task of estimating the intensity of pain. For instance, Lucey
etal. (2012) trained extended SVM classifiers for three-level
pain intensity estimation. Kaltwang et al. (2012) extracted
LBP and DCT features from facial images and used them
and their combinations as appearance-based features. They
fed these features to Relevance Vector Regression (RVR) for
pain intensity detection. Hammal and Cohn (2012) used Log
normal filters to identify four levels of pain. Florea et al.
(2014) improved the performance of pain intensity recog-
nition by using a histogram of topographical features and
an SVM classifier. Recently, Zhao et al. (2016) proposed an
alternating direction method of multipliers to solve Ordinal
Support Vector Regression (OSVR).

It appears that the majority of these works (classifiying
pain into several levels) have mainly been focused on tradi-
tional hand-engineered representations which are obtained
from individual frames. This yields in indisputable limi-
tations in describing relevant dynamic information often
required for accurate pain intensity estimation.

More recently, a few attempts have been made to model
temporal information within video sequences by using deep
neural networks. For instance, Zhou et al. (2016) proposed
a Recurrent Convolutional Neural Network (RCNN) as a
regressor model to estimate the pain intensity. They converted
video frames into vectors and fed them to their model. How-
ever, this spatial conversion results in losing the structural
information of the face. Rodriguez et al. (2017) extracted
features in each frame from the fully connected layer of a
CNN architecture. These features are fed to a Long-Short
Term Memory (LSTM) (Hochreiter and Schmidhuber 1997)
to exploit the temporal information. In this way, they consider
a temporal relationship between video frames by integrating
the extracted features from the CNN.

In order to have an efficient representation of facial videos
for pain intensity estimation, it is crucial to simultaneously
encode both appearance and temporal information. In recent
years, several deep models have been proposed for spatiotem-
poral representations. These models mainly use 3D filters
and pooling kernels with fixed temporal kernel depths. The
most intuitive architecture is based on 3D convolutions (Ji
et al. 2013) where the depth of the kernels corresponds to
the number of frames used as input. Simonyan and Zisser-
man (2014) proposed a two-stream network, including RGB
spatial and optical-flow CNNs. Tran et al. (2015) explored
3D CNNs with a kernel size of 3 x 3 x 3 to learn both the
spatial and temporal features with 3D convolution operation.
In Tran et al. (2017), Tran et al. extended the ResNet archi-
tecture with 3D convolutions. Sun et al. (2015) decomposed
3D convolutions into 2D spatial and 1D temporal convolu-

tions. Carreira and Zisserman (2017) proposed to convert a
pre-trained Inception-V1 (Ioffe and Szegedy 2015) model
into 3D by inflating all the filters and pooling kernels with an
additional temporal dimension. They achieved this by repli-
cating the weights of the 2D filters. All these structures have
fixed temporal 3D convolution kernel depths throughout the
whole architecture. This makes them often incapable of cap-
turing short, mid, and long temporal ranges. We address this
problem by incorporating several temporal kernel depths in
our proposed architecture for pain intensity estimation.

3 The Proposed Method: Spatiotemporal
Convolutional Network

A subject experiencing pain often exhibits spontaneous spa-
tiotemporal variations in his/her face. Our aim is to capture
the dynamics of the face that embody most of the rele-
vant information for automatic pain intensity estimation.
We extend the residual block of ResNet architecture (He
et al. 2016) to 3D convolution kernels with diverse tempo-
ral depths. Figure 2 illustrates an overview of our proposed
model. By using an identity shortcut connection, the input
of each 3D residual block is connected to its output feature
maps. The obtained feature maps are fed to the subsequent
block. We use bottleneck building block to make the train-
ing process of deep networks more efficient (He et al. 2016).
Additionally, we adopt cross-architecture knowledge trans-
fer (2D to 3D CNNis) to avoid cumbersome training of 3D
CNNs from scratch.

3.1 Spatiotemporal Convolutional Network

ResNet architecture (He et al. 2016) uses 2D convolutional
filters and pooling kernels. In our present work, we introduce
an extended ResNet architecture that uses 3D convolutional
filters and pooling kernels. The motivations behind adopting
the ResNet architecture include the compact structure, the
ability of training deep networks without overfitting thanks
to residual connections, and the state-of-the-art performance
on visual classification tasks. We develop a Spatiotempo-
ral Convolutional Network (SCN) by introducing several 3D
convolutional kernels of different temporal depths in the bot-
tleneck building block instead of the residual building blocks
in the 3D ResNet architecture (Res3D) (Tran et al. 2017). Fig-
ure 3 depicts our proposed bottleneck building block. As can
be seen from the block diagram in Fig. 3, the bottleneck block
comprises two 3D convolutional layers with a fixed tempo-
ral depth and several 3D convolutional layers with variable
temporal depths. The depth of the 3D convolutional kernels
ranges within # € {f1, ..., g }. Rather than capturing fixed
temporal range homogeneously, our proposed bottleneck is
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Fig.2 An overview of our proposed spatiotemporal convolutional network (SCN). The input of each 3D bottleneck block is connected to its output
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Fig.3 The proposed bottleneck building block. The red arrows repre-
sent ReLu non-linearity (Color figure online)

able to capture a wide range of dynamics that encode com-
plementary information for video representation.

The output feature maps of the 3D convolutions and pool-
ing kernels at the /th layer extracted from an input video
is a tensor x € RT*WXC where H, W, and C are the
height, width, and the number of channels of the feature
maps, respectively. The 3D convolution and pooling kernels
are of size s x s x t, where s is the spatial size of the kernels
and ¢ denotes the temporal depth.

Similar to the standard ResNet connectivity, we consider
a bottleneck building block defined as:

x'=F (x, {Wi, W, W, }) + x (1)

where x and x’ are the input and output of the layer, respec-
tively. The function F (x, {Wi, Wp, W, }) represents the
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residual mapping to be learned. {W;, W} are the weight
parameters of the first and last convolutional layers in the
block and {W;, }2(: | denote the weight parameters of middle
convolutional layers. According to Fig. 3, the function F is
defined as

K
F (x) = Wao (U W, o (Wlx)) )

k=1

where | J stands for concatenation operation and o denotes
ReLu non-linearity.

Within each bottleneck building block, after convolving
the feature map of the preceding layer, x, witha 1 x 1 x 3
convolution kernel, K parallel 3D convolutions with different
temporal depths are applied on it, resulting K intermediate
feature maps {S1, Sa, ..., Sk}, where Sy € RF>*WxC 1t
should be noted that each intermediate feature map has differ-
ent number of channels as they are obtained by convolution
operations of different temporal depths, while the spatial size
of all feature maps H x W is the same. These intermediate
feature maps {Sk}f:1 are simply concatenated into a single
tensor and then fed into a 1 x 1 x 3 convolutional layer. By
using a shortcut connection and element-wise addition, the
output feature map of the bottleneck block, x’ € R *WxC’,
is computed. We employ 1 x 1 x 3 convolutional kernels at
the beginning and the end of bottleneck building blocks to
perform a feature pooling operation and control the temporal



International Journal of Computer Vision (2019) 127:1413-1425

1417

f 2D Bottleneck
Block

l 2D Bottleneck ‘

- Au0D (1T ]

sied
0ANESoN 10 OAISO]

SCN

Pre-trained 2D ResNet

[ 2D Bottleneck

“ [00d 3AY |

BOUOD)

(saed Sumyorey

Fig. 4 The cross-architecture knowledge transfer architecture. The 2D pre-trained model deals with frames and the 3D model operates on video
sequences of the same time stamp. The 3D model learns mid-level representations by image-video correspondence task

depth of the intermediate feature maps. 1 x 1 convolutions
act as coordinate-dependent transformation in the filter space.
So, 1 x 1 x 3 convolution operations allow the network to
go deeper and simultaneously reduce the dimensions inside
the bottleneck building block. As shown in Fig. 2, the bot-
tleneck building blocks are learned in an end-to-end network
training.

Provided that the number of input and output channels are
not equal, we can reformulate Eq. (1) by applying a linear
projection to match the temporal dimensions.

x'=F (x, {Wi, Wo, W, }) + Wyx 3)

For pain intensity estimation, the model should be able to
make a continuous-valued prediction. Therefore, instead of
cross-entropy loss function which is widely used for classi-
fication in deep architectures, we use the mean squared error
function to solve the regression problem. We calculate the
Euclidean distance between the predicted output y and the
actual one y to determine the error. The training is carried
out using Stochastic Gradient Descent (SGD) and backprop-
agation.

1.
E= L3 5 - nl? @
n=1

3.2 Cross-Architecture Knowledge Transfer

Training 3D deep models usually takes a lot of time due to
the large number of parameters. In this section, we describe
how to avoid training 3D CNNs from scratch by using cross-
architecture knowledge transfer, i.e. pre-trained 2D CNN to
3D CNN. Suppose there is a pre-trained 2D model which has
learned a rich representation from static images, while a 3D
model is randomly initialized following the procedure in He
et al. (2015). We aim to transfer substantial knowledge from
2D model to its 3D counterpart for an appropriate weight

initialization. The training of 3D CNN may fail provided
that the model is initialized with inappropriate weights. It
is worth noting that weight initialization plays an important
role in the network convergence. Specifically talking, arbi-
trary weight initialization may compromise or slowdown the
convergence, e.g. getting the network stuck in local minima.

Given N frames as an image sequence and a video showing
pain for the same time stamp, the appearance information in
both the frames and video sequence are similar. To build the
image sequence, we randomly sample frames for the training
videos in which they have the same level of pain intensity. The
number of frames in the image sequence is proportional to the
length of the input video to the 3D model. We leverage this
for learning mid-level feature representation by image-video
correspondence task between 2D and 3D model architectures
(see Fig. 4). In this setup, we use a pre-trained 2D ResNet on
alarge database and our proposed SCN as the 3D model. The
architecture of the both networks are similar. We concatenate
the fully connected layers of both architectures to make a
single fully connected layer that is further followed by two
more layers with the dimension of 512 and 128 for binary
classification. We use a binary classifier to decide whether
the given N frames and the video belong to the same class
or not.

During this knowledge transferring process, the parame-
ters of the 2D model remain unchanged, while the task is to
learn the model parameters for the 3D model. In backpropa-
gation, only the parameters of the 3D model are updated. The
pairs that belong to the same time stamp from the same video
are considered as positive pairs, while the pairs drawn from
two different videos by random sampling of N frames and
video from two different videos are considered as negative
pairs. It should be noted that the cross-architecture knowl-
edge transfer technique is an unsupervised method and does
not require labeled data.

In our experiments, we show that adequate weight ini-
tialization of SCN followed by fine-tuning on the target
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Fig.5 Face samples from the UNBC-McMaster shoulder pain expres-
sion archive database (Lucey et al. 2011b)

database significantly improve the performance. Addition-
ally, we demonstrate that our proposed knowledge transfer
technique can effectively be considered for training with
small video database (note that all existing databases for pain
intensity estimation are indeed small in size).

4 Experimental Analysis

For performance evaluation, we conducted extensive experi-
ments on two benchmarking and publicly available databases
namely UNBC-McMaster Shoulder Pain Expression Archive
(Lucey et al. 2011b) and the BioVid Heat Pain (Walter et al.
2013). First, we adjusted the values for the hyper-parameters
by performing a grid search and following the guidelines
in Bengio (2012). Then, we made a comparison with the
3D CNN benchmarks to evaluate the effectiveness of our
proposed cross-architecture knowledge transfer technique.
Finally, we compared the performance of our method against
state-of-the-art approaches. In all experiments, we followed
the standard protocols corresponding to each database.

4.1 Experimental Data

UNBC-McMaster Database The UNBC-McMaster Shoul-
der Pain Expression Archive database (Lucey et al. 2011b) is
widely used for pain expression recognition. This database
contains facial videos of subjects performing a series of active
and passive range-of-motion tests to their either affected
or unaffected limbs on two sessions. Figure 5 shows some
face samples from this database. Each video sequence was
annotated in a frame-level fashion by FACS, resulting in 16
discrete pain intensity level (0-15) based on AUs. In our
experiments, we considered the active test set that includes
200 face videos of 25 subjects with 48,398 frames of the size
of 320 x 240 pixels.

BioVid Database The BioVid Heat Pain database (Walter
etal. 2013) was collected from 90 participants from three age
groups. Four distinct pain levels were induced in the right
arm of each subject. Moreover, bio-psychological signals
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Fig.6 Face samples from the BioVid Heat Pain database (Walter et al.
2013)

such as the Skin Conductance Level (SCL), the electro-
cardiogram (ECG), the electromyography (EMG), and the
electroencephalogram (EEG) were recorded. However, in our
experiment, we only use part A of this database (see Fig. 6).
BioVid Part A includes 8,700 videos of 87 subjects which are
labeled with respect to pain stimulus intensity. So, we dis-
tinguish five pain intensity levels, i.e. no pain (level 0), low
pain (level 1), severe pain (level 4), and two intermediate pain
intensities (levels 2 and 3).

4.2 Experimental Setup

To define the architecture of our SCN, we started with Res3D
based on the standard 2D ResNet. Then, we explored SCN
architecture based on Res3D. Due to the heavy computations
when training deep models, we conducted the analysis (i.e.
search for the optimal architecture) on the UNBC-McMaster
database, as the BioVid database (Walter et al. 2013) is
much larger than the UNBC-McMaster (Lucey et al. 2011b).
Finally, we fine-tuned the optimal architecture for pain inten-
sity estimation on each database separately.

We designed the Res3D architecture by replacing all the
2D kernels with 3D kernels and removing the first max pool-
ing layer as in Tran et al. (2017). To achieve the optimal
configuration for this architecture, we conducted a series of
experiments on the model size and the temporal depths of the
input data. Using bottleneck building block, we employed
five versions of 2D ResNet with network sizes of 26, 39,
50, 101, and 152 for designing the Res3D. Similarly, we
developed our SCN with these five network sizes. Table 1
summarizes the Area Under the Curve (AUC) as the accuracy
measurement for these two models with different network
sizes. As can be seen from Table 1, both models’ accuracies
increase with the increment of the network size. However,
our SCN performs much better than the Res3D model and
achieves 98.53% accuracy in pain intensity estimation. How-
ever, its accuracy drops when the network size becomes 152
layers. This implies that detailed spatiotemporal information
for an effective representation of the video can be readily
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Table 1 The area under the curve (AUC) accuracy (%) of the Res3D
and SCN for different network sizes on the UNBC-McMaster database
(Lucey et al. 2011b)

Network size

26 39 50 101 152
Res3D 80.92 84.55 86.27 91.05 91.75
SCN 87.33 91.74 93.81 98.53 98.44

extracted using several 3D convolutional kernels with divers
temporal depths. Hence, enlarging the network depth does
not necessarily improve the model performance, while it sig-
nificantly increases the number of model’s parameters.
Facial expressions exhibit short, mid, and long-range spa-
tiotemporal variations. So, the number and temporal depth,
and the receptive field’s size of parallel 3D convolutional
kernels in the bottleneck building blocks architecture play a
crucial role in capturing those changes. In our experiments,
we empirically changed the number of parallel 3D convo-
lutional kernels from 1 to 4 to determine an optimal value.
Simultaneously, we varied the temporal depth of each 3D
convolutional kernel to find a good arrangement for the tem-
poral coverage of kernels. Table 2 shows the accuracy of our
proposed SCN for different number of parallel 3D convo-
lutional kernels versus various temporal depths of kernels.
We explored the performance of the SCN on capturing the
facial dynamics by trying various gaps in temporal coverage
of the 3D convolutional kernels. The results in Table 2 show
that the accuracy of the SCN improves as the number of ker-
nels increases. This increase allows the model to have more
kernels with diverse temporal depths, which is important for
obtaining a rich representation of the input data. The highest
accuracy is achieved, i.e. 97.32%, when the number of par-
allel 3D convolutional kernels is set to 3 and the temporal
depths of kernels are [3, 5, 9]. As can be seen, the accuracy
drops provided that we do not consider a continuous temporal
coverage. For instance, SCN achieves 91.33% using kernels
with temporal depths of [3, 9, 13]. This ignores the mid-

range spatiotemporal variations. However, the performance
improves significantly as the temporal depths are set to [3,
7, 9]. These results further validate our initial hypothesis of
capturing short, mid, and long-range variations using kernels
with diverse temporal depths. We conclude that the temporal
depths of convolutional kernels should not be very dense nor
loose to effectively capture the dynamics of video.

The receptive field of convolutional kernels is one of the
basic concepts in CNNs. It is essential to carefully adjust
the receptive field to ensure that it encompasses the rele-
vant image regions. In order to effectively represent the input
data, we analyzed the effect of kernels’ receptive field size.
We conducted experiments by changing the spatial size of
the 3D convolutional kernels. Figure 7 illustrates the perfor-
mance of our SCN with different sizes of kernel’s receptive
field versus a range of temporal depth combinations. Our
experiments demonstrate that the smaller receptive fields can
capture more detailed information. Hence, the overall accu-
racy of the proposed method is high when the spatial size
of the convolutional kernels are 3 x 3. On the other hand,
the performance declines as the receptive field’s size and the
steps between temporal depths of 3D convolutional kernels
become larger.

According to Tran et al. (2015), the temporal depth of
input data affects the model performance in spatiotemporal
representations. We evaluated the accuracy of our SCN with
inputs of different temporal depths (see Fig. 8). Among all the
considered temporal depths, input data with temporal depth
of 32 frames seems to perform better. This result validates our
initial hypotheses in the sense that larger input depth allows
the model to capture short, mid, and long-range spatiotem-
poral terms in the video for more efficient representation.
According to the results in Tables 1 and 2 and Fig. 7, different
temporal lengths of the convolutional kernels in the bottle-
neck building block allow the model to capture more relevant
spatiotemporal information from the videos. The details of
our SCN architecture are illustrated in Table 3.

Table 2 The area under the curve (AUC) accuracy (%) of SCN for different number of parallel 3D convolutional kernels versus various temporal
depths of convolutional kernels on the UNBC-McMaster database (Lucey et al. 2011b)

Number of parallel 3D convolutional kernels

1 Temporal Depths 3 5
AUC 90.34 90.05

2 Temporal Depths [3, 5] [3,7]
AUC 93.54 93.24

3 Temporal Depths [3,5,7] [3,5,9]
AUC 96.54 97.32

4 Temporal Depths [3,5,7,9] [5,7,9,11]
AUC 96.43 97.04

7 9 11 13
89.47 86.33 81.35 77.49

[3,9] [S,7] [5,9] [7,9]

92.81 90.75 89.79 88.46

13,5, 11] (3,7, 9] (3,9, 11] [3,9,13]
95.77 96.64 93.21 91.33
[3,7,9, 11] 17,9, 11, 13] 13,5,9,11] [3,5,7,13]
96.79 94.37 95.46 95.57
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100 Table 5 presents the model accuracy trained on inputs with
98 different frame sampling rates. The optimal performance is
96 obtained when the temporal stride is set to 2 frames.
S o4 Based on the obtained results in our experimental setup
E 0 and design, the model achieves its optimal performance
% 90‘ with network depth of 101 layers and input temporal
Q
<

88
86
84 ' ' ! '
[3,5,7] [3,5,9] [3,5‘, 1] 3, 7‘, 9] [3,9‘, 1] [3,9,13]

Temnoral Depth of Parallel 3D Convolutional Kernels

Fig.7 The area under the curve (AUC) accuracy of the proposed SCN
versus different spatial sizes of the convolutional kernels receptive field

Accuracy (%)

26 41 50 101 152
Network Depth

Fig. 8 Evaluation of SCN for different temporal depths of input data
on the UNBC-McMaster database (Lucey et al. 2011b)

The input structure plays a crucial role in capturing
detailed appearance and temporal information of the video
(Tran et al. 2015). We conducted a series of experiments to
determine the optimal input frame resolution and the frame
sampling rate. We performed experiments on three differ-
ent input frame resolutions, i.e. 224 x 224, 112 x 112, and
56 x 56. Based on the results obtained in the previous section,
we constrained our search to the network that has achieved
the best result. Table 4 reports the accuracy of SCN on these
three input resolutions. As can be seen, an input resolution
of 112 x 112 pixels gains the best performance, while res-
olutions of 224 x 224 and 56 x 56 seem to be very large
and very small, respectively. These results can partially be
explained by the fact that small input resolution does not
provide enough spatial information for representation. On
the other hand, large input resolution does not necessarily
introduce more information to the model.

Another model’s hyper-parameter that has an influence on
the output accuracy is the frame sampling rate. Following the
previous network setup, we evaluated the performance of our
model by changing the temporal stride of the input frames.

@ Springer

depth of 32 frames along with input frame resolution of
112 x 112 pixels and the temporal stride of 2. Here-
after, we use these settings in all the remaining experi-
ments.

4.3 Training the Model

Our proposed SCN works on a chunk of 32 RGB frames.
We cropped and resized the detected face images in the
video sequence into 112 x 112 pixels. We followed the
same weight initialization strategy as in He et al. (2015). For
the training stage, we adopted Stochastic Gradient Descent
(SGD) with a momentum of 0.9, weight decay 10~4, and
batch size of 64. The initial learning rate is set to 0.01
and decreased by a factor of 10 after every 10 epochs. The
maximum number of epochs for the training was set to
200.

Moreover, we used a pre-trained 2D ResNet architecture
on the CASIA WebFaces database (Yi et al. 2014) in the
cross-architecture knowledge transfer scheme. In this frame-
work, 32 RGB mean-subtracted frames were the inputs of the
2D network. To transfer knowledge to SCN, we substituted
the classification layer of the 2D network with a two-way
softmax classifier to determine positive and negative pairs.
Our experiments showed that a proper weight initialization
followed by a transfer learning improve the training of 3D
CNNs on small databases like the UNBC-McMaster (Lucey
et al. 2011b).

To transfer knowledge between architectures, we used
positive and negative video sequence pairs. The videos
are considered as positive pairs if they belong to the
same class. A pair of 32 frames and a video sequence
for the same time stamp will go through the 2D ResNet
and SCN. An average pooling is done on the last layer
of the 2D ResNet. The obtained representations of the
2D ResNet were concatenated with the video representa-
tions of SCN and passed into two fully connected lay-
ers afterward. The binary classifier distinguishes positive
pairs from negative ones. The SCN network is trained
using backpropagation to learn the 3D kernels’ param-
eters, while the parameters of the 2D ResNet remained
unchanged.

The proposed cross-architecture knowledge transfer tech-
nique is an elegant way to train 3D CNN architectures when
large-scale databases are not available for a specific applica-
tion. In addition, this learning technique is an unsupervised
approach. Hence, the labeled data are not required for the
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Table 3 The architecture of the .
proposed SCN Layer Spatial output Structure Number of layers
26 41 50 101 152
Convl 112 x 112 [7 x7 x3],64
Conv2 56 x 56 [1x1x3],64 X2 X 3 x 3 X 3 X 3
M3 x 3 x 37
3x3x5]|,64
[3x3x9]
[1 x1x3],256
Conv3 28 x 28 [1 x1x3],128 X2 X 3 x 4 x 4 x 8
3 x 3 x 37
3x3x5](,128
[3x3x9]
[1x1x3],512
Conv4 14 x 14 [1x1x3],256 X 2 x 4 ) x 23 x 36
3x3x3
3x3x5|,256
3x3x7
[T x1x3],1024
Conv5 7x7 [1x1x3],512 X 2 x 3 x 3 x 3 x 3
3x3x3
3x3x5],512
3x3x7
[T x1x3],2048
Pooling 1x1 Average pooling, 1000D fully connected

Table4 The accuracy (%) of SCN for different input frame resolutions
on the UNBC-McMaster database (Lucey et al. 2011b)

Input resolution 224 x 224 112 x 112 56 x 56

AUC 92.07 98.53 90.22

Table 5 The accuracy (%) of SCN for different input sampling rates
on the UNBC-McMaster database (Lucey et al. 2011b)

Temporal stride 1 2 4 8 16

AUC 93.50 98.53 97.61 90.33 87.09

knowledge transferring. After pre-training our SCN using
the mentioned cross-architecture knowledge transfer tech-
nique, we can fine-tune the model on the target database.
It is worth noting that the proposed method for transfer
learning can also be adapted to different 3D CNN architec-

Table 6 The AUC accuracy (%) of the cross-architecture knowledge
transfer on 3D CNN architectures

Model With transfer learning Without transfer learning
VGG3D 82.54 80.32
Inception3D 85.31 82.65
Res3D 91.05 87.33
SCN 98.53 95.27

tures. A direct comparison between the accuracy of different
3D CNN architectures (Res3D, Inception3D, VGG3D, and
SCN) with and without cross-architecture knowledge trans-
fer learning is given in Table 6. These experimental results
in Table 6 clearly indicate that the proposed transfer learn-
ing technique significantly improves the accuracy of all 3D
CNNEs.

@ Springer



1422

International Journal of Computer Vision (2019) 127:1413-1425

Table 7 Comparative analysis in terms of mean squared error and
the Pearson correlation coefficient on the UNBC-McMaster database
(Lucey et al. 2011b)

Method MSE PCC
RVR + (LBP and DCT) (Kaltwang et al. 2012) 1.39 0.59
HoT (Florea et al. 2014) 1.21 0.53
OSVR (Zhao et al. 2016) N/A 0.60
RCNN (Zhou et al. 2016) 1.54 0.64
LSTM (Rodriguez et al. 2017) 0.74 0.78
WRN (Zagoruyko and Komodakis 2016) 0.75 0.78
BORMIR (Zhang et al. 2018) 1.38 0.61
DDM (Tavakolian and Hadid 2018)* 0.69 0.83
TSN (Wang et al. 2018)" 0.75 0.80
S3D-G (Xie et al. 2018)" 0.60 0.88
C3D (Tran et al. 2015)" 0.71 0.81
Res3D (Tran et al. 2017)F 0.65 0.86
SCN 0.32 0.92

TThe method was originally proposed for action recognition and is
adopted for pain intensity estimation

4.4 Experimental Results and Comparison with
State-of-the-Art

We compared the performance of our proposed SCN with the
recent state-of-the-art methods for automatic pain intensity
estimation on the UNBC-McMaster (Lucey et al. 201 1b) and
the BioVid (Walter et al. 2013) databases.

In order to make a direct and fair comparison with the
state-of-the-art methods, we report the Mean Squared Error
(MSE) and the Pearson Correlation Coefficient (PCC) for
the UNBC-McMaster database (Lucey et al. 2011b). Table 7
shows that the SCN improves the performance of pain inten-
sity estimation using leave-one-subject-out cross-validation.
As can be seen, our proposed method consistently outper-
forms the existing benchmark approaches by a large margin
both in terms of MSE and PCC. It significantly reduces the
MSE by 0.33 compared to Res3D architecture. In addition,
its high PCC reveals that our proposed method is able to
effectively extract detailed information from the face videos
for accurate pain intensity estimation. The results in Table 7
further confirm that the deep spatiotemporal representation
based methods (C3D, Res3D, and SCN) perform substan-
tially better than Recurrent Neural Networks (RNNs) or
LSTM for automatic pain intensity estimation, since these
methods consider both the spatial and temporal information
at the same time rather than treating the video sequences
frame by frame.

To visualize the effectiveness of the SCN in determining
different levels of pain, we compare in Fig. 9 the out-
put of our model with the ground truth and Res3D on a
video sequence of one subject from the UNBC-McMaster

@ Springer
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Fig.9 Anexample of continuous pain intensity estimation using Res3D
and SCN on a sample video from the UNBC-McMaster database (Lucey
etal. 2011b)

database. It can be seen that SCN captures well different
levels of pain and keeps track of pain intensity variations
in each time instance thanks to its short, mid, and long-
range spatiotemporal representation. Although Res3D can
also determine pain intensity quite well, it is unable to
correctly estimate the pain intensity when sudden changes
happen in the face. Furthermore, Fig. 10 illustrates qualitative
comparisons between Res3D and SCN with varied speed of
facial expression changes. When changes in the facial struc-
ture happen smoothly (Fig. 10 left), both Res3D and SCN
track changes in the pain intensity quite well. However, the
performance of Res3D drops as sudden changes occur in the
video sequence, while SCN firmly estimates the pain inten-
sity level. As changes in the facial expression of pain happen
rapidly, Res3D shows a noisy behaviour and cannot accu-
rately determine the right level of pain intensity. However,
our proposed SCN adapts itself to various speeds due to cap-
turing a wide range of facial dynamics by the parallel 3D
convolutional kernels.

Table 8 compares our results against the state-of-the-art
on the BioVid database (Walter et al. 2013). As mentioned in
Sect. 4.1, we considered BioVid Part A and use only the facial
video data. The obtained results demonstrate that the 3D deep
architecture has a higher accuracy in pain intensity estima-
tion compared to conventional methods like LBP (Yang et al.
2016). Among the deep models, our SCN achieves the best
accuracy which illustrates its robustness in the representa-
tion of a wide range of facial variations, i.e. subtle and large
changes.

Although some methods in Tables 7 and 8 have achieved
state-of-the-art performance in action recognition and video
classification, not all of them are suitable for pain intensity
estimation. To be specific, TSN (Wang et al. 2018) is a good
alternative for 3D models such as C3D in action recognition.
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—Ground Truth
9k ~——SCN
~--Res3D

Pain Intensity

120

Frame Number

Fig. 10 Performance comparisons between Res3D and SCN when
facial structures undergo changes with various speeds. Left: low speed,
middle: medium speed, and right: high speed of facial expression vari-

Table 8 Comparative analysis in terms of accuracy (%) on the BioVid
database (Walter et al. 2013)

Method AUC
Head-movement (Walter et al. 2013) 67.00
Time-windows (Walter et al. 2013) 71.00
LBP (Yang et al. 2016) 63.72
LPQ (Yang et al. 2016) 63.19
BSIF (Yang et al. 2016) 65.17
FAD set (Werner et al. 2017) 72.40
WRN (Zagoruyko and Komodakis 2016) 73.55
BORMIR (Zhang et al. 2018) 72.85
DDM (Tavakolian and Hadid 2018)" 81.05
TSN (Wang et al. 2018)" 75.39
S3D-G (Xie et al. 2018)" 83.26
C3D (Tran et al. 2015)F 80.31
Res3D (Tran et al. 2017)" 82.54
SCN 86.02

"The method was originally proposed for action recognition and is
adopted for pain intensity estimation

However, its performance is deteriorated in pain intensity
estimation due to random sampling of frames from the seg-
ments of videos. The random sampling discards the crucial
information of sudden and subtle transitions of facial struc-
ture produced by pain. S3D-G (Xie et al. 2018) replaces 3D
convolution kernels in I3D architecture with two consecutive
convolution layers: one 2D convolution kernel to capture the
spatial information followed by one 1D convolution kernel
to incorporate the temporal information. The S3D-G’s per-
formance is higher than the vanilla C3D and Res3D on both
UNBC and BioVid databases. Nevertheless, it is still unable
to encode different ranges of facial dynamics due to disjoint
learning of spatial and temporal information. These results
confirm our hypothesis that capturing different ranges of spa-
tiotemporal information is important for encoding subtle and

160
Frame Number

—Ground Truth

==Ground Truth|
O IS | SO —SCN

200 240 280 320 350 0 40 80

120
Frame Number

160

ation. Res3D shows a noisy behaviour in response to sudden changes
in the facial structure produced by pain

sudden facial expression variations for pain intensity estima-
tion from faces.

4.5 Computational Complexity Analysis

Although deep models extract more information from the
inputs, the model’s complexity and computational time tend
to increase when enlarging the depth of the network. Insights
into the computational complexity of our proposed SCN ver-
sus Res3D on the UNBC-McMaster database are given in
Table 9. The average training time (in seconds) and the time
required to estimate the pain intensity from the query video
are listed in Table 9. Although our SCN requires more time
for training, it needs 3.263s to estimate the pain intensity
in the test phase. We argue that this short testing time is
attributed to the parallel 3D convolution kernels in the bot-
tleneck blocks that allow the model learn rich representation
of the input video. All the feature maps are computed simul-
taneously within each layer by the virtue of parallelization of
3D convolutional kernels. So, widening the model to achieve
short, mid, and long-range representations substantiate the
short testing time of SCN in comparison with Res3D in
Table 9, i.e. once the model learned efficient representations,
the processing of test samples is quick and straightforward.

On the other hand, we assert that the training time signif-
icantly increases as we train the model without knowledge
transferring. In this case, we pre-train the SCN using the
CASIA WebFace database (Yi et al. 2014). Thanks to the
substantial number of parameters, training 3D architecture
from scratch demands heavy computational workload and
long training time. By using the proposed cross-architecture
knowledge transfer approach, the training time for both
Res3D and SCN is reduced, significantly. This is due to
appropriate parameter initialization of the 3D model by gain-
ing knowledge from the 2D model, which results in deceasing
the number of epochs required for the convergence.
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Table 9 Training and testing

times (seconds) of SCN and # of Layers Train Test # of Parameters (x 10°)

Res3D on the UNBC-McMaster Without transfer learning With transfer learning

database (Lucey et al. 2011b)
SCN
26 104.520 27.433 2.065 126.0
41 130.029 31.182 2.103 199.6
50 145.814 36.729 2.558 226.0
101 197.816 41.537 3.263 4232
152 353.270 55.809 4.316 586.8
Res3D
26 30.284 9.347 4.821 334
41 58.990 13.501 5.740 52.0
50 77.995 17.294 6.233 58.6
101 129.595 24.360 6.861 108.8
152 177.352 30.631 7.592 150.0

The SCN has 3.8 times more model parameters compared
to Res3D due to the parallel convolutional kernels in the bot-
tleneck building blocks. However, its performance is higher
than Res3D by a large margin. We note that Res3D and the
other 3D CNN-based models only capture the spatiotemporal
information within a fixed and homogeneous temporal range.
Moreover, once our model is pre-initialized using the pro-
posed cross-architecture knowledge transfer, it can be readily
employed on different databases. In fact, the model is fine-
tuned on the new target database. This strategy reduces the
training time for the new database.

5 Conclusion

Automatic pain intensity assessment has a high value in
diagnosis applications. This paper proposed a spatiotempo-
ral convolutional network for pain intensity estimation from
face videos. It leverages the detailed spatiotemporal infor-
mation of spontaneous variations in the facial expression by
deploying several 3D convolution operations with different
temporal depths. Unlike 3D convolutional neural networks
with fixed 3D kernel depths, our proposed architecture cap-
tures short, mid, and long-range spatiotemporal variations
that are essential for representating spontaneous facial varia-
tions. Furthermore, we developed a cross-architecture knowl-
edge transfer approach to avoid training 3D model from
scratch. We used a pre-trained 2D deep model to train our 3D
architecture with a relatively small number of training data.
Using this technique, we further fine-tuned the 3D model on
the target database. Our extensive experiments on the UNBC-
McMaster Shoulder Pain and the BioVid databases showed
the effectiveness of our proposed approach comapred to the
state of the art. As a future work, we plan to validate the gener-
alization of the proposed model on other face analysis tasks.
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