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Abstract
Several factors contribute to the appearance of an object in a visual scene, including pose, illumination, and deformation,
among others. Each factor accounts for a source of variability in the data, while the multiplicative interactions of these factors
emulate the entangled variability, giving rise to the rich structure of visual object appearance. Disentangling such unobserved
factors from visual data is a challenging task, especially when the data have been captured in uncontrolled recording conditions
(also referred to as “in-the-wild”) and label information is not available. In this paper, we propose a pseudo-supervised deep
learning method for disentangling multiple latent factors of variation in face images captured in-the-wild. To this end, we
propose a deep latent variable model, where the multiplicative interactions of multiple latent factors of variation are explicitly
modelled by means of multilinear (tensor) structure. We demonstrate that the proposed approach indeed learns disentangled
representations of facial expressions and pose, which can be used in various applications, including face editing, as well as
3D face reconstruction and classification of facial expression, identity and pose.

Keywords Adversarial autoencoder · Disentangled representation · Tensor decomposition

1 Introduction

The appearance of visual objects is significantly affected by
multiple factors of variability such as, for example, pose,
illumination, identity, and expression in case of faces. Each
factor accounts for a source of variability in the data, while
their complex interactions give rise to the observed entan-
gled variability. Discovering the modes of variation, or in
other words disentangling the latent factors of variations in
visual data, is a very important problem in the intersection
of statistics, machine learning, and computer vision.

Factor analysis (Fabrigar and Wegener 2011) and the
closely related Principal Component Analysis (PCA)
(Hotelling 1933) are probably the most popular statistical
methods that find a single mode of variation explaining the
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data. Nevertheless, visual appearance (e.g., facial appear-
ance) is affected by several modes of variations. Hence,
methods such as PCA are not able to identify such multi-
ple factors of variation. For example, when PCA is applied
to facial images, the first principal component captures both
pose and expressions variations.

An early approach for learning different modes of varia-
tion in the data is TensorFaces (Vasilescu and Terzopoulos
2002). In particular, TensorFaces is a strictly supervised
method as it not only requires the facial data to be labelled
(e.g., in terms of expression, identity, illumination etc.) but
the data tensor must also contain all samples in all different
variations. This is the primary reason that the use of such
tensor decompositions is still limited to databases that have
been captured in a strictly controlled environment, such as the
Weizmann face database (Vasilescu and Terzopoulos 2002).

Recent unsupervised tensor decompositions methods
(Tang et al. 2013; Wang et al. 2017b) automatically discover
the modes of variation in unlabelled data. In particular, the
most recent one (Wang et al. 2017b) assumes that the original
visual data have been produced by a hiddenmultilinear struc-
ture and the aim of the unsupervised tensor decomposition is
to discover both the underlying multilinear structure, as well
as the corresponding weights (coefficients) that best explain
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Fig. 1 Given a single in-the-wild image, our network learns disentangled representations for pose, illumination, expression and identity. Using
these representations, we are able to manipulate the image and edit the pose or expression

the data. Special instances of the unsupervised tensor decom-
position are the Shape-from-Shading (SfS) decompositions
in Kemelmacher-Shlizerman (2013), Snape et al. (2015) and
the multilinear decompositions for 3D face description in
Wang et al. (2017b). In Wang et al. (2017b), it is shown
that the method indeed can be used to learn representations
where manymodes of variation have been disentangled (e.g.,
identity, expression and illumination etc.). Nevertheless, the
method in Wang et al. (2017b) is not able to find pose varia-
tions and bypasses this problem by applying it to faces which
have been frontalised by applying a warping function [e.g.,
piece-wise affine warping (Matthews and Baker 2004)].

Another promising line of research for discovering latent
representations is unsupervised Deep Neural Networks
(DNNs). Unsupervised DNNs architectures include the
Auto-Encoders (AE) (Bengio et al. 2013), as well as the
Generative Adversarial Networks (GANs) (Goodfellow et al.
2014) or adversarial versions of AE, e.g., the Adversarial
Auto-Encoders (AAE) (Makhzani et al. 2015). Even though
GANs, aswell asAAEs, provide very elegant frameworks for
discovering powerful low-dimensional embeddings without
having to align the faces, due to the complexity of the net-
works, unavoidably all modes of variation are multiplexed
in the latent-representation. Only with the use of labels it is
possible to model/learn the manifold over the latent repre-
sentation, usually as a post-processing step (Shu et al. 2017).

In this paper, we show that it is possible to learn a disentan-
gled representation of the human face captured in arbitrary
recording conditions in an pseudo-supervised manner1 by
imposing a multilinear structure on the latent representation
of an AAE (Shu et al. 2017). To the best of our knowledge,
this is the first time that unsupervised tensor decompositions
have been combined with DNNs for learning disentangled
representations. We demonstrate the power of the proposed
approach by showing expression/pose transfer using only the

1 Our methodology uses the information produced by an automatic 3D
face fitting procedure (Booth et al. 2017) but it does not make use of
any labels in the training set.

latent variable that is related to expression/pose. We also
demonstrate that the disentangled low-dimensional embed-
dings are useful for many other applications, such as facial
expression, pose, and identity recognition and clustering. An
example of the proposed approach is given in Fig. 1. In par-
ticular, the left pair of images have been decomposed, using
the encoder of the proposed neural network E(·), into many
different latent representations including latent representa-
tions for pose, illumination, identity and expression. Since
our framework has learned a disentangled representation we
can easily transfer the expression by only changing the latent
variable related to expression and passing the latent vector
into the decoder of our neural network D(·). Similarly, we
can transfer the pose merely by changing the latent variable
related to pose.

2 RelatedWork

Learning disentangled representations that explain multiple
factors of variation in the data as disjoint latent dimensions is
desirable in several machine learning, computer vision, and
graphics tasks.

Indeed, bilinear factor analysis models (Tenenbaum and
Freeman 2000) have been employed for disentangling two
factors of variation (e.g., head pose and facial identity) in the
data. Identity, expression, pose, and illumination variations
are disentangled in Vasilescu and Terzopoulos (2002) by
applying Tucker decomposition [also known as multilinear
Singular Value Decomposition (SVD) (De Lathauwer et al.
2000)] into a carefully constructed tensor through label infor-
mation. Interestingly, the modes of variation in well aligned
images can be recovered via a multilinear matrix factoriza-
tion (Wang et al. 2017b) without any supervision. However,
inference in Wang et al. (2017b) might be ill-posed.

More recently, both supervised and unsupervised deep
learning methods have been developed for disentangled rep-
resentations learning. Transforming auto-encoders (Hinton
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et al. 2011) is among the earliest methods for disentan-
gling latent factors by means of auto-encoder capsules. In
Desjardins et al. (2012) hidden factors of variation are disen-
tangled via inference in a variant of the restricted Boltzmann
machine. Disentangled representations of input images are
obtained by the hidden layers of deep networks in Cheung
et al. (2014) and through a higher-order Boltzmann machine
inReed et al. (2014). TheDeepConvolutional InverseGraph-
icsNetwork (Kulkarni et al. 2015) learns a representation that
is disentangled with respect to transformations such as out-
of-plane rotations and lighting variations. Methods in Chen
et al. (2016), Mathieu et al. (2016), Wang et al. (2017a),
Tewari et al. (2017) and Tran et al. (2017) extract disentan-
gled and interpretable visual representations by employing
adversarial training. Recent works in face modeling (Tewari
et al. 2018; Tran and Liu 2018) also employ self-supervision
or pseudo-supervision to learn 3D Morphable Models from
images. They rely on the use of a 3D to 2D image rendering
layer to separate shape and texture. Contrarily to Tewari et al.
(2018), Tran and Liu (2018) the proposed network does not
render the 3D shape into a 2D image. Learning the compo-
nents of a 3Dmorphable model is an additional advantage of
the pseudo-supervision employed. The method in Shu et al.
(2017) disentangles the latent representations of illumina-
tion, surface normals, and albedo of face images using an
image rendering pipeline. Trained with pseudo-supervision,
Shu et al. (2017) undertakes multiple image editing tasks by
manipulating the relevant latent representations. Nonethe-
less, this editing approach still requires expression labelling,
as well as sufficient sampling of a specific expression.

Here, the proposed network is able to edit the expression
of a face image given another single in-the-wild face image
of arbitrary expression. Furthermore, we are able to edit the
pose of a face in the image which is not possible in Shu et al.
(2017).

3 ProposedMethod

In this section, we will introduce the main multilinear mod-
els used to describe three different image modalities, namely
texture, 3D shape and 3D surface normals. To this end, we
assume that for each different modality there is a different
core tensor but all modalities share the same latent represen-
tation of weights regarding identity and expression. During
training all the core tensors inside the network are randomly
initialised and learnt end-to-end. In the following, we assume
that we have a set of n facial images (e.g., in the training
batch) and their corresponding 3D facial shape, as well as
their normals per pixel (the 3D shape and normals have been
produced by fitting a 3D model on the 2D image, e.g., Booth
et al. 2017).

3.1 Facial Texture

The main assumption here follows fromWang et al. (2017b).
That is, the rich structure of visual data is a result of mul-
tiplicative interactions of hidden (latent) factors and hence
the underlying multilinear structure, as well as the corre-
sponding weights (coefficients) that best explain the data
can be recovered using the unsupervised tensor decompo-
sition (Wang et al. 2017b). Indeed, following (Wang et al.
2017b), disentangled representations canbe learnt (e.g., iden-
tity, expression, and illumination, etc.) from frontalised facial
images. The frontalisation process is performed by applying
a piecewise affine transform using the sparse shape recovered
by a face alignment process. Inevitably, this process suf-
fers from warping artifacts. Therefore, rather than applying
any warping process, we perform the multilinear decompo-
sition only on near frontal faces, which can be automatically
detected during the 3D face fitting stage. In particular, assum-
ing a near frontal facial image rasterised in a vector x f ∈
R
kx×1, given a core tensorQ ∈ R

kx×kl×kexp×kid ,2 this can be
decomposed as

x f = Q ×2 zl ×3 zexp ×4 zid , (1)

where zl ∈ R
kl , zexp ∈ R

kexp and zid ∈ R
kid are the

weights that correspond to illumination, expression and iden-
tity respectively. The equivalent form in case that we have a
number of images in the batch stacked in the columns of a
matrix X f ∈ R

kx×n is

X f = Q(1)(Zl � Zexp � Zid), (2)

where Q(1) is a mode-1 matricisation of tensor Q and Zl ,
Zexp and Zid are the corresponding matrices that gather the
weights of the decomposition for all images in the batch. That
is, Zexp ∈ R

kexp×n stacks then latent variables of expressions
of the images, Zid ∈ R

kid×n stacks the n latent variables
of identity and Zl ∈ R

kl×n stacks the n latent variables of
illumination.

3.2 3D Facial Shape

It is quite common to use a bilinear model for disentan-
gling identity and expression in 3D facial shape (Bolkart and

2 Tensors notation: Tensors (i.e., multidimensional arrays) are and
denoted by calligraphic letters, e.g., X . The mode-m matricisation of
a tensor X ∈ R

I1×I2×···×IM maps X to a matrix X(m) ∈ R
Im× Īm . The

mode-m vector product of a tensor X ∈ R
I1×I2×...×IM with a vector

x ∈ R
Im , denoted by X ×n x ∈ R

I1×I2×···×In−1×In+1×···×IN .
The Kronecker product is denoted by ⊗ and the Khatri-Rao (i.e.,
column-wise Kronecker product) product is denoted by�. More details
on tensors and multilinear operators can be found in Kolda and Bader
(2008).
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Wuhrer 2016). Hence, for 3D shape we assume that there is
a different core tensor B ∈ R

k3d×kexp×kid and each 3D facial
shape x3d ∈ R

k3d can be decomposed as:

x3d = B ×2 zexp ×3 zid , (3)

where zexp and zid are exactly the same weights as in the
texture decomposition (2). The tensor decomposition for the
n images in the batch is therefore written as as

X3d = B(1)(Zexp � Zid), (4)

where B(1) is a mode-1 matricization of tensor B.

3.3 Facial Normals

The tensor decomposition we opted to use for facial normals
was exactly the same as the texture, hence we can use the
same core tensor and weights. The difference is that since
facial normals do not depend on illumination parameters
(assuming a Lambertian illumination model), we just need
to replace the illumination weights with a constant.3 Thus,
the decomposition for normals can be written as

XN = Q(1)

(
1

kl
1 � Zexp � Zid

)
, (5)

where 1 is a matrix of ones.

3.4 3D Facial Pose

Finally, we define another latent variable regarding 3D pose.
This latent variable z p ∈ R

9 represents a 3D rotation. We
denote by xi ∈ R

kx an image at index i . The indexing is
denoted in the following by the superscript. The correspond-
ing zip can be reshaped into a rotation matrix Ri ∈ R

3×3.
As proposed in Worrall et al. (2017), we apply this rotation
to the feature of the image xi created by 2-way synthesis
(explained in Sect. 3.5). This feature vector is the i-th col-
umn of the feature matrix resulting from the 2-way synthesis
(Zexp � Zid) ∈ R

kexpkid×n . We denote this feature vector
corresponding to a single image as (Zexp � Zid)

i ∈ R
kexpkid .

Next (Zexp � Zid)
i is reshaped into a 3 × kexpkid

3 matrix
and left-multiplied by Ri . After another round of vectorisa-
tion, the resulting feature ∈ R

kexpkid becomes the input of the
decoders for normal and albedo. This transformation from
feature vector (Zexp � Zid)

i to the rotated feature is called
rotation.

3 This is also the way that normals are computed inWang et al. (2017b)
up to a scaling factor

3.5 Network Architecture

We incorporate the structure imposed by Eqs. (2), (4) and (5)
into an auto-encoder network, see Fig. 2. For some matrices
Y i ∈ R

kyi×n , we refer to the operation Y1 �Y2 ∈ R
ky1ky2×n

as 2-way synthesis and Y1 � Y2 � Y3 ∈ R
ky1ky2ky3×n as

3-way synthesis. The multiplication of a feature matrix by
B(1) or Q(1), mode-1 matricisations of tensors B and Q,
is referred to as projection and can be represented by an
unbiased fully-connected layer.

Our network follows the architecture of Shu et al. (2017).
The encoder E receives an input image x and the convolu-
tional encoder stack first encodes it into zi , an intermediate
latent variable vector of size 128× 1. zi is then transformed
into latent codes for background zb,mask zm , illumination zl ,
pose z p, identity zid and expression zexp via fully-connected
layers.

E(x) = [zb, zm, zl , z p, zid , zexp]T . (6)

The decoder D takes in the latent codes as input. zb and
zm (128 × 1 vectors) are directly passed into convolutional
decoder stacks to estimate background and facemask respec-
tively. The remaining latent variables follow 3 streams:

1. zexp (15×1 vector) and zid (80×1 vector) are joined by
2-way synthesis and projection to estimate facial shape
ˆx3d .

2. The result of 2-way synthesis of zexp and zid is rotated
using z p. The rotated feature is passed into 2 different
convolutional decoder stacks: one for normal estima-
tion and another for albedo. Using the estimated normal
map, albedo, illumination component zl , mask and back-
ground, we render a reconstructed image x̂.

3. zexp, zid and zl are combined by a 3-way synthesis and
projection to estimate frontal normal map and a frontal
reconstruction of the image.

Streams 1 and 3 drive the disentangling of expression and
identity components, while stream 2 focuses on the recon-
struction of the image by adding the pose components. The
decoder D then outputs the reconstructed image from the
latent codes.

D(zb, zm, zl , z p, zid , zexp) = x̂. (7)

Our input images are aligned and cropped facial images
from the CelebA database (Liu et al. 2015) of size 64 × 64,
so kx = 3 × 64 × 64. k3d = 3 × 9375, kl = 9, kid = 80
and kexp = 15. More details on the network such as the
convolutional encoder stacks anddecoder stacks canbe found
in the supplementary material.

123



International Journal of Computer Vision (2019) 127:743–762 747

Fig. 2 Our network is an end-to-end trained auto-encoder. The encoder
E extracts latent variables corresponding to illumination, pose, expres-
sion and identity from the input image x. These latent variables are then
fed into the decoder D to reconstruct the image. We impose a multi-

linear structure and enforce the disentangling of variations. The grey
triangles represent the losses: adversarial loss A, verification loss V , L1
and L2 losses

3.6 Training

We use in-the-wild face images for training. Hence, we
only have access to the image itself (x) while ground truth
labelling for pose, illumination, normal, albedo, expression,
identity or 3D shape is unavailable. The main loss function
is the reconstruction loss of the image x :

Ex = Erecon + λadvEadv + λveri Everi , (8)

where x̂ is the reconstructed image, Erecon = ‖x − x̂‖1
is the reconstruction loss, λadv and λadv are regularisation
weights, Eadv represents the adversarial loss and Everi the
verification loss. We use the pre-trained verification network
V (Wu et al. 2015) to find face embeddings of our images x
and x̂. As both images are supposed to represent the same
person, weminimise the cosine distance between the embed-
dings: Everi = 1 − cos(V(x),V(x̂)). Simultaneously, a
discriminative network D is trained to distinguish between
the generated and real images (Goodfellow et al. 2014). We
incorporate the discriminative information by following the

auto-encoder loss distribution matching approach of Berth-
elot et al. (2017). The discriminative network D is itself an
auto-encoder trying to reconstruct the input image x so the
adversarial loss is Eadv = ‖x̂ − D(x̂)‖1. D is trained to
minimise ‖x − D(x)‖1 − kt‖x̂ − D(x̂)‖1.

As fully unsupervised training often results in semanti-
cally meaningless latent representations, Shu et al. (2017)
proposed to train with pseudo ground truth values for nor-
mals, lighting and 3D facial shape. We adopt here this
technique and introduce further pseudo ground truth values
for pose x̂ p, expression ˆxexp and identity ˆxid . x̂ p, ˆxexp and
ˆxid are obtained by fitting coarse face geometry to every

image in the training set using a 3DMorphableModel (Booth
et al. 2017).We incorporated the constraints used in Shu et al.
(2017) for illumination, normals and albedo. Hence, the fol-
lowing new objectives are introduced:

Ep = ‖z p − x̂ p‖22, (9)

where x̂ p is a 3D camera rotation matrix.
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Eexp = ‖ f c(zexp) − ˆxexp‖22, (10)

where fc(·) is a fully-connected layer and ˆxexp ∈ R
28 is a

pseudo ground truth vector representing 3DMM expression
components of the image x.

Eid = ‖ f c(zid) − ˆxid‖22 (11)

where fc(·) is a fully-connected layer and ˆxid ∈ R
157 is

a pseudo ground truth vector representing 3DMM identity
components of the image x.

3.6.1 Multilinear Losses

Directly applying the above losses as constraints to the latent
variables does not result in a well-disentangled representa-
tion. To achieve a better performance, we impose a tensor
structure on the image using the following losses:

E3d = ‖ ˆx3d − B ×2 zexp ×3 zid‖22, (12)

where ˆx3d is the 3D facial shape of the fitted model.

E f = ‖x f − Q ×2 zl ×3 zexp ×4 zid)‖22, (13)

where x f is a semi-frontal face image. During training, E f

is only applied on near-frontal face images filtered using x̂ p.

En = ‖n̂ f − Q ×2
1

kl
1 ×3 zexp ×4 zid)‖22 (14)

where n̂ f is a near frontal normal map. During training, the
loss En is only applied on near frontal normal maps.

The model is trained end-to-end by applying gradient
descent to batches of images, where Eqs. (12), (13) and (14)
are written in the following general form:

E = ‖X − B(1)(Z(1) � Z(2) � · · · � Z(M))‖2F , (15)

where M is the number of modes of variations, X ∈ R
k×n is

a data matrix, B(1) is the mode-1 matricisation of a tensor B
and Z(i) ∈ R

kzi×n are the latent variables matrices.
The partial derivative of (15) with respect to the latent

variable Z(i) are computed as follows: Let x̂ = vec(X) be
the vectorised X , ẑ(i) = vec(Z(i)) be the vectorised Z(i),

ˆZ(i−1) = Z(1)�Z(2)�· · ·�Z(i−1) and ˆZ(i+1) = Z(i+1)�
· · · � Z(M) , then (15) is equivalent with:

‖x̂ − (I ⊗ B(1))vec(Z(1) � Z(2) � · · · � Z(M))‖2F
= ‖x̂ − (I ⊗ B(1))(I � ˆZ(i−1)) ⊗ I

· I � ( ˆZ(i+1)(I ⊗ �)) · ˆz(i)‖22
(16)

Consequently the partial derivative of (15) with respect to
Z(i) is obtained by matricising the partial derivative of (16)
with respect to Z(i). The derivation details are in the subse-
quent section.

3.6.2 Derivation Details

Themodel is trained end-to-end by applying gradient descent
to batches of images, where (12), (13) and (14) are written
in the following general form:

E = ‖X − B(1)(Z(1) � Z(2) � · · · � Z(M))‖2F , (15)

where X ∈ R
k×n is a datamatrix, B(1) is themode-1matrici-

sation of a tensorB and Z(i) ∈ R
kzi×n are the latent variables

matrices.
The partial derivative of (15) with respect to the latent

variable Z(i) are computed as follows: Let x̂ = vec(X) be a
vectorisation of X , then (15) is equivalent with:

‖X − B(1)(Z(1) � Z(2) � · · · � Z(M))‖2F
= ‖vec(X − B(1)(Z(1) � Z(2) � · · · � Z(M)))‖22
= ‖x̂ − vec(B(1)(Z(1) � Z(2) � · · · � Z(M)))‖22,

(17)

as both the Frobenius norm and the L2 norm are the sum of
all elements squared.

‖x̂ − vec(B(1)(Z(1) � Z(2) � · · · � Z(M)))‖22
= ‖x̂ − (I ⊗ B(1))vec(Z(1) � Z(2) � · · · � Z(M))‖22,

(18)

as the property vec(BZ) = (I⊗B)vec(Z) holds Neudecker
(1969).

Using vec(Z(1) � Z(2)) = (I � Z(1)) ⊗ I · vec(Z(2))

(Roemer 2012) and let ˆZ(i−1) = Z(1) � Z(2) � · · · � Z(i−1)

and ˆZ(i) = Z(i) � · · · � Z(M) the following holds:

‖x̂ − (I ⊗ B(1))vec(Z(1) � Z(2) � · · · � Z(M))‖22
= ‖x̂ − (I ⊗ B(1))(I � ˆZ(i−1)) ⊗ I · vec( ˆZ(i))‖22

(19)

Using vec(Z(1) � Z(2)) = I � (Z(2)(I ⊗ �)) · vec(Z(1))

(Roemer 2012) and let ˆZ(i+1) = Z(i+1) � · · · � Z(M):

‖x̂ − (I ⊗ B(1))(I � ˆZ(i−1)) ⊗ I · vec( ˆZ(i))‖22
= ‖x̂ − (I ⊗ B(1))(I � ˆZ(i−1)) ⊗ I

· I � ( ˆZ(i+1)(I ⊗ �)) · vec(Z(i))‖22

(20)
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Let ẑ(i) = vec(Z(i)) be a vectorisation of Z(i), this
becomes:

‖x̂ − (I ⊗ B(1))(I � ˆZ(i−1)) ⊗ I

· I � ( ˆZ(i+1)(I ⊗ �)) · ˆz(i)‖22
(16)

We then compute the partial derivative of (16)with respect

to ˆz(i):

∂‖x̂ − A ˆz(i)‖22
∂ ˆz(i)

= 2AT (A · ˆz(i) − x̂), (21)

where A = (I⊗B(1))(I� ˆZ(i−1))⊗ I · I�( ˆZ(i+1)(I⊗�)).
The partial derivative of (15) with respect to Z(i) is

obtained by matricising (21).
To efficiently compute the above mentioned operations,

Tensorly (Kossaifi et al. 2016) has been employed.

4 Proof of Concept Experiments

We develop a lighter version of our proposed network, a
proof-of-concept network (visualised in Fig. 3), to show that
our network is able to learn and disentangle pose, expression
and identity.

In order to showcase the ability of the network, we lever-
age our newly proposed 4DFABdatabase (Cheng et al. 2018),
where subjects were invited to attend four sessions at differ-
ent times in a span of five years. In each experiment session,

the subject was asked to articulate 6 different facial expres-
sions (anger, disgust, fear, happiness, sadness, surprise), and
we manually select the most expressive mesh (i.e. the apex
frame) for this experiment. In total, 1795 facial meshes from
364 recording sessions (with 170 unique identities) are used.
We keep 148 identities for training and leave 22 identities
for testing. Note that there are no overlapping of identities
between both sets. Within the training set, we synthetically
augment each facial mesh by generating new facial meshes
with 20 randomly selected expressions. Our training set con-
tains in total 35900meshes. The test set contains 387meshes.
For eachmesh, we have the ground truth facial texture aswell
as expression and identity components of the 3DMMmodel.

4.1 Disentangling Expression and Identity

We create frontal images of the facial meshes. Hence there
is no illumination or pose variation in this training dataset.
We train a lighter version of our network by removing the
illumination and pose streams, a proof-of-concept network,
visualised in Fig. 3, on this synthetic dataset.

4.1.1 Expression Editing

We show the disentanglement between expression and iden-
tity by transferring the expression of one person to another.

For this experiment, wework with unseen data (a hold-out
set consisting of 22 unseen identities) and no labels. We first
encode both input images xi and x j :

Fig. 3 Our proof-of-concept network is an end-to-end trained auto-
encoder. The encoder E extracts latent variables corresponding to
expression and identity from the input image x. These latent variables
are then fed into the decoder D to reconstruct the image. A separate
streamalso reconstructs facial texture from zid .We impose amultilinear

structure and enforce the disentanglement of variations. In the extended
version a) the encoder also extracts a latent variable corresponding to
pose. The decoder takes in this information and reconstructs an image
containing pose variations
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Original
Image Expression Our Recon

Our Exp
Edit

Ground
Truth

Original
Image Expression Our Recon

Our Exp
Edit

Ground
Truth

Fig. 4 Our network is able to transfer the expression from one face to another by disentangling the expression components of the images. The
ground truth has been computed using the ground truth texture with synthetic identity and expression components

Input

Ground
Truth

Recons-
truction

Fig. 5 Given a single image, we infer meaningful expression and identity components to reconstruct a 3D mesh of the face. We compare the
reconstruction (last row) against the ground truth (2nd row)

E(xi ) = ziexp, z
i
id ,

E(x j ) = z jexp, z
j
id ,

(22)

where E(·) is our encoder and zexp and zid are the latent
representations of expression and identity respectively.

Assuming we want xi to emulate the expression of x j , we
decode on:

D(z jexp, z
i
id) = x j i , (23)

where D(·) is our decoder. The resulting x j i becomes our
edited image where xi has the expression of x j . Figure 4
shows how the network is able to separate expression and
identity. The edited images clearly maintain the identity
while expression changes.

4.1.2 3D Reconstruction and Facial Texture

The latent variables zexp and zid that our network learns are
extremely meaningful. Not only can they be used to recon-

struct the image in 2D, but also they can be mapped into the
expression (xexp) and identity (xid ) components of a 3DMM
model. This mapping is learnt inside the network. By replac-
ing the expression and identity components of a mean face
shape with ˆxexp and ˆxid , we are able to reconstruct the 3D
mesh of a face given a single input image. We compare these
reconstructed meshes against the ground truth 3DMM used
to create the input image in Fig. 5.

At the same time, the network is able to learn a mapping
from zid to facial texture. Therefore, we can predict the facial
texture given a single input image. We compare the recon-
structed facial texture with the ground truth facial texture in
Fig. 6.

4.2 Disentangling Pose, Expression and Identity

Our synthetic training set contains in total 35900meshes. For
each mesh, we have the ground truth facial texture as well
as expression and identity components of the 3DMM, from
which we create a corresponding image with one of 7 given
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Input

Ground
Truth

Recons-
truction

Fig. 6 Given a single image, we infer the facial texture. We compare the reconstructed facial texture (last row) against the ground truth texture
(2nd row)

Original
Image Pose Our Recon

Our Pose
Edit

Ground
Truth

Original
Image Pose Our Recon

Our Pose
Edit

Ground
Truth

Fig. 7 Our network is able to transfer the pose from one face to another by disentangling the pose, expression and identity components of the
images. The ground truth has been computed using the ground truth texture with synthetic pose, identity and expression components

poses. As there is no illumination variation in this training
set, we train a proof-of-concept network by removing the
illumination stream, visualised in Fig. 3a, on this synthetic
dataset.

4.2.1 Pose Editing

We show the disentanglement between pose, expression and
identity by transferring the pose of one person to another.
Figure 7 shows how the network is able to separate pose
from expression and identity. This experiment highlights the
ability of our proposed network to learn large pose variations
even from profile to frontal faces.

5 Experiments in-the-Wild

We train our network on in-the-wild data and perform sev-
eral experiments on unseen data to show that our network is
indeed able to disentangle illumination, pose, expression and
identity.

We edit expression or pose by swapping the latent expres-
sion/pose component learnt by the encoder E [Eq. (6)] with
the latent expression/pose component predicted from another

image. We feed the decoder D [Eq. (7)] with the modified
latent component to retrieve our edited image.

5.1 Expression, Pose and Identity Editing in-the-Wild

Given two in-the-wild images of faces, we are able to transfer
the expression, pose of one person to another. We are also
able to swap the face of the person from one image to another.
Transferring the expression from two different facial images
without fitting a 3D model is a very challenging problem.
Generally, it is considered in the context of the same person
under an elaborate blending framework (Yang et al. 2011) or
by transferring certain classes of expressions (Sagonas et al.
2017).

For this experiment, weworkwith completely unseen data
(a hold-out set of CelebA) and no labels.We first encode both
input images xi and x j :

E(xi ) = ziexp, z
i
id , z

i
p

E(x j ) = z jexp, z
j
id , z

j
p,

(24)

where E(·) is our encoder and zexp, zid , z p are the latent
representations of expression, identity and pose respectively.
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Fig. 8 We compare our expression editing results with Wang et al. (2017b). As Wang et al. (2017b) is not able to disentangle pose, editing
expressions from images of different poses returns noisy results

Assuming we want xi to take on the expression, pose or
identity of x j , we then decode on:

D(z jexp, z
i
id , z

i
p) = x j i i

D(ziexp, z
i
id , z

j
p) = xi i j

D(ziexp, z
j
id , z

i
p) = xi j i

(25)

where D(·) is our decoder.
The resulting x j i i then becomes our result image where

xi has the expression of x j . x j i i is the edited image where
xi changed to the pose of x j . xi j i is the edit where xi ’s face
changed to the face of x j .

As there is currently no prior work for this expression edit-
ing experiment without fitting an AAM (Cootes et al. 2001)
or 3DMM, we used the image synthesised by the 3DMM
fitted models as a baseline, which indeed performs quite
well. Compared with our method, other very closely related
works (Wang et al. 2017b; Shu et al. 2017) are not able to
disentangle illumination, pose, expression and identity. In
particular, Shu et al. (2017) disentangles illumination of an
image while Wang et al. (2017b) disentangles illumination,
expression and identity from “frontalised” images. Hence
they are not able to disentangle pose. None of these methods
can be applied to the expression/pose editing experiments
on a dataset that contains pose variations such as CelebA. If

Wang et al. (2017b) is applied directly on our test images,
it would not be able to perform expression editing well, as
shown by Fig. 8.

For the 3DMM baseline, we fit a shape model to both
images and extract the expression components of the model.
This fitting step has high overhead of 20s per image.We then
generate a new face shape using the expression components
of one face and the identity components of another face in the
same 3DMM setting. This technique has much higher over-
head than our proposedmethod as it requires time-consuming
3DMM fitting of the images. Our expression editing results
and the baseline results are shown in Fig. 9. Though the base-
line is very strong, it does not change the texture of the face
which can produce unnatural looking faces shown with orig-
inal expression. Also, the baseline method can not fill up
the inner mouth area. Our editing results show more natural
looking faces.

For pose editing, the background is unknown once the
pose has changed, thus, for this experiment, we mainly focus
on the face region. Figure 10 shows our pose editing results.
For the baseline method, we fit a 3DMM to both images and
estimate the rotation matrix. We then synthesise xi with the
rotation of x j . This technique has high overhead as it requires
expensive 3DMM fitting of the images.
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Original
Image Expression Our Recon

Our Exp
Edit Baseline

Original
Image Expression Our Recon

Our Exp
Edit Baseline

Fig. 9 Our network is able to transfer the expression from one face to another by disentangling the expression components of the images. We
compare our expression editing results with a baseline where a 3DMM has been fit to both input images

Original
Image Pose Our Recon

Our Pose
Edit Baseline

Original
Image Pose Our Recon

Our Pose
Edit Baseline

Fig. 10 Our network is able to transfer the pose of one face to another by disentangling the pose components of the images. We compare our pose
editing results with a baseline where a 3DMM has been fit to both input images
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Original
Image Identity Recon Our Id Edit

Original
Image Identity Recon Our Id Edit

Fig. 11 Our network is also able to transfer the identity of one image to another by disentangling the identity components of the images

Figure 11 shows our results on the task of face swapping
where the identity of one image has been swapped with the
face of another person from the second image.

5.1.1 Quantitative Studies

We conducted a quantitative measure on the expression edit-
ing experiment. We ran a face recognition experiment on 50
pairs of images where only the expression has been trans-
ferred. We then passed them to a face recognition network
(Deng et al. 2018) and extracted their respective embeddings.
All 50 pairs of embeddings had cosine similarity larger than
0.3. In comparison, We selected 600 pairs of different people
from CelebA and computed their average cosine similarity
which is 0.062. The histogram of these cosine similarities
is visualised in Fig. 12. This indicates that the expression

Fig. 12 Histogram of cosine similarities on 600 pairs of “non-same”
people from CelebA

editing does conserve identity in terms of machine percep-
tion.
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Original
Image Expression Our Recon.

Without
ML Loss

With ML
Loss

With ML,
Adv Loss

With ML,
Adv, Veri

Loss Baseline

Fig. 13 Ablation study on different losses (multilinear, adversarial, verification) for expression editing. The results show that incorporating
multilinear losses indeed helps the network to better disentangle the expression variations
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Original
Image Pose Our Recon.

Without
ML Loss

With ML
Loss

With ML,
Adv Loss

With ML,
Adv, Veri

Loss Baseline

Fig. 14 Ablation study on different losses (multilinear, adversarial, verification) for facial pose editing. The results show that incorporating
multilinear losses helps the network to better disentangle the pose variations

5.1.2 Ablation Studies

We performed a series of ablation studies. We first trained
a network without multilinear losses by simply feeding
the concatenated parameters p = [z pose, zexp, zid ] to the
decoder, thus the training of the network is only driven by the
reconstruction loss and pseudo-supervision from 3DMM on
pose, expression and identity latent variables, i.e., z pose, zexp
and zid . Next,we started to incorporate other losses (i.e.,mul-
tilinear losses, adversarial loss, verification loss) step by step
in the network and trained different models. In this way, we
can observe at each step how additional loss may improve
the result.

In Figs. 13 and 14, we compare the expression and pose
editing results. We find that the results without multilinear
losses shows some entanglement of the variations in terms
of illumination, identity, expression and pose. In particular,
the entanglement with illumination is strong, examples can
be found in second and ninth row of Fig. 13. Indeed, by
incorporating multilinear losses in the network, the identity

Tewari et al
(2018)

Tran and Liu
(2018) Ours

Fig. 15 Texture reconstruction compared with Tewari et al. (2018),
Tran andLiu (2018). Tewari et al. (2018), Tran andLiu (2018) have been
trained with images of higher resolutions of 240× 240 and 128× 128
respectively. In comparisonourmodel has only been trainedwith images
of size 64× 64 pixels

and expression variations are better disentangled. Further-
more, the incorporation of adversarial and verification losses
enhances the quality of images, making them look more

123



International Journal of Computer Vision (2019) 127:743–762 757

Fig. 16 Expression interpolation

Fig. 17 Identity interpolation

realistic but do not contribute in a meaningful way to the
disentanglement.

5.1.3 Discussion on Texture Quality

It has to be noted that our baseline 3DMMmethodBooth et al.
(2017) does not change facial texture. It directly samples the
original texture and maps it to a 3D face. Hence, the texture
quality is exactly the same as that of the original image as
no low-dimensional texture representation is used. In terms
of texture quality, direct texture mapping has an edge over
our proposed method which models the texture using a low-
dimensional representation. But direct texture mapping is
also prone to artefacts and does not learn the new expression
in the texture. Looking at Fig. 9 column 2, rows 4, 5 and
7, we observe that the texture itself did not change in the
baseline result. The eyes and cheeks did not adjust to show a
smiling or neutral face. The expression change results from
the change in the 3D shape but the texture itself remained the
same as in the input. Low-dimensional texture representation
does not have this issue and can generate new texture with
changed expression.

Generally methods similar to ours which estimate facial
texture is not able to extract the same amount of details as the
original image. Figure 15 visualises how our texture recon-
struction compares to state-of-the-art works which have been
trained on images of higher resolutions.

5.2 Expression and Identity Interpolation

We interpolate ziexp / z
i
id of the input image xi on the right-

hand side to the ztexp / ztid of the target image xt on the
left-hand side. The interpolation is linear and at 0.1 interval.
For the interpolation we do not modify the background so
the background remains that of image xi .

For expression interpolation, we expect the identity and
pose to stay the same as the input image xi and only the
expression to change gradually from the expression of the
input image to the expression of the target image xt . Fig-
ure 16 shows the expression interpolation. We can clearly
see the change in expression while pose and identity remain
constant.

For identity interpolation, we expect the expression and
pose to stay the same as the input image xi and only the
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Source ŝsource

Shu et al
(2017)
ŝsource

Ours
Target

Recon-
struction ŝtarget stransfer Result

Shu et al (2017)

Ours

Shu et al (2017)

Fig. 18 Using the illumination and normals estimated by our network,
we are able to relight target faces using illumination from the source
image. The source ŝsource and target shading ŝtarget are displayed to
visualise against the new transferred shading strans f er . We compare
against Shu et al. (2017)

identity to change gradually from the identity of the input
image to the identity of the target image xt . Figure 17 shows

the identity interpolation. We can clearly observe the change
in identity while other variations remain limited.

5.3 Illumination Editing

We transfer illumination by estimating the normals n̂, albedo
â and illumination components l̂ of the source (xsource) and
target (xtarget ) images. Then we use n̂target and l̂

source
to

compute the transferred shading strans f er and multiply the
new shading by âtarget to create the relighted image result
xtrans f er . In Fig. 18 we show the performance of our method
and compare against Shu et al. (2017) on illumination trans-
fer.Weobserve that ourmethod outperformsShu et al. (2017)
as we obtain more realistic looking results.

5.4 3D Reconstruction

The latent variables zexp and zid that our network learns
are extremely meaningful. Not only can they be used to
reconstruct the image in 2D, they can be mapped into the
expression (xexp) and identity (xid ) components of a 3DMM.
This mapping is learnt inside the network. By replacing the
expression and identity components of a mean face shape
with ˆxexp and ˆxid , we are able to reconstruct the 3D mesh
of a face given a single in-the-wild 2D image. We compare
these reconstructed meshes against the fitted 3DMM to the
input image.

Input
Jackson

et al (2017)
Feng et al
(2018) Ours Input

Jackson
et al (2017)

Feng et al
(2018) Ours

Fig. 19 Given a single image, we infer meaningful expression and identity components to reconstruct a 3D mesh of the face. We compare our 3D
estimation against recent works (Jackson et al. 2017; Feng et al. 2018)

123



International Journal of Computer Vision (2019) 127:743–762 759

Fig. 20 Comparison of the estimated normals obtained using the pro-
posed model vs the ones obtained by Wang et al. (2017b) and Shu et al.
(2017)

Table 1 Angular error for the various surface normal estimation meth-
ods on the Photoface (Zafeiriou et al. 2013) dataset. We also show the
proportion of the normals below 35◦ and 40◦

Method Mean± Std against
Woodham (1980)

< 35◦ (%) < 40◦ (%)

Wang et al. (2017b) 33.37◦ ± 3.29◦ 75.3 96.3

Shu et al. (2017) 30.09◦ ± 4.66◦ 84.6 98.1

Proposed 28.67◦ ± 5.79◦ 89.1 96.3

The results of the experiment are visualised in Fig. 19.We
observe that the reconstruction is comparable to other state-
of-the-art techniques (Jackson et al. 2017; Feng et al. 2018).
None of the techniques though capture well the identity of
the person in the input image due to a known weakness in
3DMM.

5.5 Normal Estimation

We evaluate our method on the surface normal estimation
task on the Photoface (Zafeiriou et al. 2013) dataset which
has information about illumination. Assuming the normals
found using calibrated Photometric Stereo (Woodham 1980)
as “ground truth”, we calculate the angular error between
our estimated normals and the “ground truth”. Figure 20 and
Table 1 quantitatively evaluates our proposedmethod against
prior works (Wang et al. 2017b; Shu et al. 2017) in the nor-
mal estimation task. We observe that our proposed method
performs on par or outperforms previous methods.

5.6 Quantitative Evaluation of the Latent Space

We want to test whether our latent space corresponds well
to the variation that it is supposed to learn. For our quan-
titative experiment, we used Multi-PIE (Gross et al. 2010)
as our test dataset. This dataset contains labelled variations
in identity, expressions and pose. Disentanglement of vari-
ations in Multi-PIE is particularly challenging as its images
are captured under laboratory conditions which is quite dif-
ferent from that of our training images. As a matter of fact,

Table 2 Classification accuracy results: we try to classify 54 identities
using zid , 6 expressions using zexp and 7 poses using z p . We compare
against standard baseline methods such as SIFT and CNN

Features Identity (%) Expression (%) Pose (%)

SIFT and visual bag of
words, K = 50

14.60 58.33 55.50

SIFT and visual bag of
words, K = 100

18.71 59.36 59.46

Standard CNN model 94.68 96.54 98.78

Ours (zident i t y,
zexpression, z pose)

88.29 84.85 95.55

Table 3 Identity classification accuracy results: we classify 54 identi-
ties using zid with and without verification loss

Features Identity (%)

Without verification loss 87.94

Ours (zident i t y) 88.29

Without verification loss (frontal only) 99.96

Ours (zident i t y, frontal only) 99.98

Top performing values are given in bold

Table 4 Classification accuracy results in comparison with Wang et al.
(2017b): as Wang et al. (2017b) works on frontal images, we only con-
sider frontal images in this experiment. We try to classify 54 identities
using zid versus C, 6 expressions using zexp versus E and 16 illumi-
nation using zill versus L

zident i t y (%) C (Wang et al. 2017b) (%)

Identity

Accuracy 99.33 19.18

zexpression (%) E (Wang et al. 2017b) (%)

Expression

Accuracy 78.92 35.49

zi l luminat ion (%) L (Wang et al. 2017b) (%)

Illumination

Accuracy 64.11 48.85

Top performing values are given in bold

the expressions contained in Multi-PIE do not correspond to
the 7 basic expressions and can be easily confused.

We encoded 10,368 images of the Multi-PIE dataset with
54 identities, 6 expressions and 7 poses and trained a lin-
ear SVM classifier using 90% of the identity labels and the
latent variables zid . We then test on the remaining 10% zid
to check whether they are discriminative for identity clas-
sification. We use 10-fold cross-validation to evaluate the
accuracy of the learnt classifier. We repeat this experiment
for expression with zexp and pose with z p respectively. Our
results in Table 2 show that our latent representation is indeed
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Fig. 21 Visualisation of our
Zexp and baseline Z0 using
t-SNE. Our latent Zexp clusters
better with regards to expression
than the latent space Z0 of an
auto-encoder

Fig. 22 Visualisation of our Z p
and baseline Z0 using t-SNE. It
is evident that the proposed
disentangled Z p clusters better
with regards to pose than the
latent space Z0 of an
auto-encoder

discriminative. We compare against some standard baselines
such as Bag-of-Words (BoWs) models with SIFT feature
(Sivic and Zisserman 2009) and standard CNN. Our model
does not outperform the standard CNNmodel, which is fully
supervised and requires a separate model for each varia-
tion classification. Still our results are a strong indication
that the latent representation found is discriminative. This
experiment showcases the discriminative power of our latent
representation on a previously unseen dataset.

As an ablation study, we test the accuracy of the iden-
tity classification of zid from a model trained without the
verification. The results in Table 3 show that though adding
the verification loss improves the performance, the gain is
not significant enough to prove that this loss is a substantial
contributor of the information.

In order to quantitatively compare with Wang et al.
(2017b), we run another experiment on only frontal images
of the dataset with 54 identities, 6 expressions and 16 illu-
minations. The results in Table 4 shows how our proposed
model outperforms (Wang et al. 2017b) in these classification
tasks. Our latent representation has stronger discriminative
power than the one learnt by Wang et al. (2017b).

We visualise, using t-SNE (Maaten and Hinton 2008), the
latent Zexp and Z p encoded from Multi-PIE according to

their expression and pose label and compare against the latent
representation Z0 learnt by an in-house large-scale adversar-
ial auto-encoder of similar architecture trainedwith 2million
faces (Makhzani et al. 2015). Figures 21 and 22 show that
even though our encoder has not seen any images of Multi-
PIE, it manages to create informative latent representations
that cluster well expression and pose (contrary to the repre-
sentation learned by the tested auto-encoder).

6 Limitations

Some of our results do still show entanglement in the varia-
tions. Sometimes despite only aiming to change expression
only, pose or illumination have been modified as well. This
happens mainly in very challenging scenarios where for
example one of the image shows extreme lighting conditions,
is itself black and white or displays large pose variations.
Due to the dataset (CelebA) we used, we do struggle with
large pose variations. The proof of concept experiments do
show that this is possible to be learned with a more balanced
dataset.
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7 Conclusion

We proposed the first, to the best of our knowledge, attempt
to jointly disentangle modes of variation that correspond to
expression, identity, illumination and pose using no explicit
labels regarding these attributes. More specifically, we pro-
posed the first, as far as we know, approach that combines
a powerful Deep Convolutional Neural Network (DCNN)
architecture with unsupervised tensor decompositions. We
demonstrate the power of our methodology in expression
and pose transfer, as well as discovering powerful features
for pose and expression classification. For future work, we
believe that designing networks with skip connections for
better reconstruction quality and which at the same time can
learn a representation space where some of the variations are
disentangled would be a promising research direction.
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