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Abstract
Despite the importance of image representations such as histograms of oriented gradients and deep Convolutional Neural
Networks (CNN), our theoretical understanding of them remains limited. Aimed at filling this gap, we investigate two
key mathematical properties of representations: equivariance and equivalence. Equivariance studies how transformations of
the input image are encoded by the representation, invariance being a special case where a transformation has no effect.
Equivalence studies whether two representations, for example two different parameterizations of a CNN, two different layers,
or two different CNNarchitectures, share the same visual information or not. A number ofmethods to establish these properties
empirically are proposed, including introducing transformation and stitching layers in CNNs. These methods are then applied
to popular representations to reveal insightful aspects of their structure, including clarifying at which layers in a CNN certain
geometric invariances are achieved and how various CNN architectures differ. We identify several predictors of geometric and
architectural compatibility, including the spatial resolution of the representation and the complexity and depth of the models.
While the focus of the paper is theoretical, direct applications to structured-output regression are demonstrated too.

Keywords Image representations · Geometric equivariance · Equivalent representations · Convolutional neural networks

1 Introduction

Image representations have been a key focus of the research
in computer vision for at least two decades. Notable exam-
ples include textons (Leung and Malik 2001), histogram of
oriented gradients (SIFT Lowe 2004) and HOG Dalal and
Triggs 2005), bag of visual words (Csurka et al. 2004; Sivic
andZisserman 2003), sparse (Yang et al. 2010) and local cod-
ing (Wang et al. 2010), super vector coding (Zhou et al. 2010),
VLAD (Jégou et al. 2010), Fisher Vectors (Perronnin and
Dance 2006), and, more recently, modern deep neural net-
works (Krizhevsky et al. 2012; Sermanet et al. 2014; Zeiler
and Fergus 2013). Despite this extensive research effort, the
development of image representations remains largely empir-
ical, and our theoretical understanding of them is still limited.
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It is generally believed that a good representation should
combine invariance and discriminability, but this character-
ization is rather vague; furthermore, it is often unclear what
invariances are captured by existing representations and how
they are obtained.

In this work, we formally investigate image represen-
tations in terms of their properties. In full generality, a
representation φ is a functionmapping an image x to a vector
φ(x) ∈ R

d and our goal is to establish important statistical
properties of such functions. We focus on two such prop-
erties. The first one is equivariance, which looks at how
the representation output changes upon transformations of
the input image. We demonstrate that most representations,
including HOG and most of the layers in deep neural net-
works, change in a easily predictablemanner with geometric
transformations of the input (Fig. 1). We show that such
equivariant transformations can be learned empirically from
data (Sect. 5.1) and that, importantly, they amount to simple
linear transformations of the representation output (Sects. 5.2
and 5.3). In the case of convolutional networks, we obtain
this by introducing and learning a new transformation layer.
As a special case of equivariance, by analyzing the learned
equivariant transformations we are also able to find and char-
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Fig. 1 Equivariant transformation of CNN features. First column:
features of a convolutional neural network (representation after four
convolutional layers, C4) visualized with the method ofMahendran and
Vedaldi (2016). Second column: Visualizing the features after trans-
forming the image. Third column: Visualizing the features after the
naive geometric transformation of the representation (spatial permu-
tation only). Last column: Visualized transformed features using an
equivariant transformation which additionally re-projects network fea-
ture channels learned using the method of Sect. 5

acterize the invariances of the representation. This allows us
to quantify geometric invariance and to show how it builds
up with the representation depth.

The second part of the manuscript investigates another
property, equivalence, which looks at whether different
representations, such as different neural networks, capture
similar information or not. In the case of CNNs, in particu-
lar, the non-convex nature of learning means that the same
CNN architecture may result in different models even when
retrained on the same data. The question then is whether
the resulting differences are substantial or just superficial.
To answer this question, we propose to learn stitching layers
that allow swapping parts of different architectures, rerout-
ing information between them. Equivalence and coverage is
then established if the resulting “Franken-CNNs” perform as
well as the original ones (Sect. 6.2).

This paper extends the original conference paper (Lenc
and Vedaldi 2015) substantially, by providing extensive
results on recent deep neural network architectures, more
analysis, and better visualizations. For equivariance, the
paper investigates new formulations using alternative loss
definitions as well as element-wise feature invariance. For
equivalence, the paper systematically explores the equiva-
lence between all layers of neural networks, analyzing for

the first time the compatibility between different layers of
different neural network architectures.

The rest of the paper is organized as follows. Section 3
discusses properties of selection of image representations.
Section 5 discusses methods to learn empirically representa-
tion equivariance and invariance and presents experiments on
shallow (Sect. 5.2) and deep (Sect. 5.3) representations. We
also present a simple application of such results to structured-
output regression in Sect. 5.4. In Sect. 6.2 we study the
representation equivalence and show the relation between
different deep image representations. Finally, Sect. 7 sum-
marizes our findings.

2 RelatedWork

The problem of designing invariant or equivariant features
has been widely explored in computer vision, as it is a com-
mon task to remove nuisance factors from the data (both
geometric and photometric).

Invariance to geometric nuisance factors is traditionally
achieved with either pose normalization, or by folding an
equivariant representation over a group (e.g. by averaging,
max-pooling or by exploiting function symmetries) (Cohen
and Welling 2016). Both of these principles are taken into
account in the architecture of deep CNNs, including the
design byKrizhevsky et al. (2012) and related state-of-the-art
architectures (He et al. 2016; Simonyan et al. 2013), mainly
for translation invariance which can be extended for differ-
ent groups as well (Cohen andWelling 2016; Dieleman et al.
2015). This is evenmademore explicit in the scattering trans-
form of Sifre and Mallat (2013). For pose normalization or
feature folding the aim is to obtain invariant image features
such that a non-invariant classifier can be used. However,
in case of CNNs, the goal is to get an end-to-end invariant
classifier and little is known of how and where these models
achieve invariance to other nuisance factors present in the
data (such as horizontal flipping).

There are many examples of the general pose normal-
ization methodology in computer vision applications. One
of the common approaches is to sample the nuisance fea-
ture space sparsely with various “detectors”—such as local
feature detectors with different normalization schemes (Lin-
deberg 1998; Lowe 1999; Mikolajczyk and Schmid 2003),
bounding box proposals (Uijlings et al. 2013; Zitnick and
Dollar 2014) or a direct regression of the normalized frame
(Jaderberg et al. 2015; Ren et al. 2015). Another option is to
sample the feature space densely using a grid search (Dalal
and Triggs 2005; Felzenszwalb et al. 2009).1 It is always

1 A common next step for these algorithms is to reduce the var-
ious hypothesis with e.g. RANSAC (Fischler and Bolles 1981) in
local feature pipelines or non-maxima-suppression for object detection
tasks (Dalal and Triggs 2005; Girshick et al. 2014b).
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the detected geometric “frame” which is used to normalize
either image or features in order to obtain invariant represen-
tations. However, in order to be able to normalize the features
(due to computational constraints), the features need to be
equivariant to the selected geometry factors. A number of
authors have looked at incorporating equivariance explicitly
in the representations (Schimdt and Roth 2012a; Sohn and
Lee 2012).

A second approach to achieving invariance to a group of
transformations is to fold the equivariant representation along
the manifold induced by the nuisance transformation. This
can be as simple as averaging the features (Anselmi et al.
2016), max-pooling (Laptev et al. 2016; Cohen and Welling
2016) or simply by exploiting the group symmetry [such as
ignoring the gradient ‘sign’ in Dalal and Triggs (2005) for
vertical flip invariance].

In all these examples, invariance is a design aim that may
or may not be achieved by a given architecture. By contrast,
our aim is not to propose yet another mechanism to learn
invariances (Anselmi et al. 2016; Bruna and Mallat 2013;
Huang et al. 2007) or equivariance (Dieleman et al. 2016;
Schmidt and Roth 2012b), but rather a method to systemati-
cally tease out invariance, equivariance, and other properties
that a given representation may have. To the best of our
knowledge, there is very limited work in conducting this
type of analysis. Perhaps the works most closely related to
ours only study invariances of neural networks to specific
image transformations (Goodfellow et al. 2009; Zeiler and
Fergus 2013). In Aubry and Russell (2015), the authors train
networks on computer generated imagery to visually investi-
gate the manifold in the feature space induced by underlying
object transformation (such as rotation, style etc.). They show
that across layers, the invariance to viewpoint increases with
depth (by studying invariances and intrinsic dimensionality),
which corroborates our findings. However, differently to this
work, we attempt to find whether there exists a transforma-
tion in feature space for the whole training dataset instead of
quantitative statistics on its subset. We believe this work is
the first to functionally characterize and quantify these prop-
erties in a systematic manner, as well as being the first to
investigate the equivalence of different representations.

The equivariance maps and steerable filters (Freeman and
Adelson 1991) share some of the underlying theory. While
conceptually similar, this work searches for linear maps of
existing representations, instead of designing representations
to achieve steerability. In fact, some more recent works have
attempted to design steerable CNN representations (Cohen
and Welling 2017) for CIFAR10 dataset (Krizhevsky and
Hinton 2009).

Another property of image representations studied in this
work is equivalence and covering, which tackles the relation-
ship between different representations. Yosinski et al. (2014),
the authors study the transferability of CNN features between

different tasks by retraining various parts of the networks.
While this may seem similar to our equivalence study of net-
works trained for different tasks, we do not change existing
representations or train new features, we only study the rela-
tionship between them.

The work Li et al. (2015), published one year after our
original manuscript (Lenc and Vedaldi 2015), studies differ-
ent ways how to find equivalence between networks trained
with a different initializationwith the goal of investigating the
common factors of different networks quantitatively. While
this work is similar to our equivalence chapter, our goal is to
find relationship between representations of different layers
and various deep CNN networks with architectural differ-
ences or trained for different tasks in order to understand
better the geometry of the representations.

3 Image Representations

An image representation φ associates to an image x a vector
φ(x) ∈ R

d that encodes the image content in amanner useful
for tasks such as classification or regression. We distinguish
two important families of representations: traditional “hand-
crafted” representations such as SIFT and HOG (Sect. 3.1)
and modern learnable deep neural networks (Sect. 3.2).

3.1 Traditional Image Representations

Before the advent ofmodern deep neural networks, computer
vision researchers proposed various image representations
such as textons (Leung and Malik 2001), histogram of ori-
ented gradients (SIFT Lowe 2004 andHOGDalal and Triggs
2005), bag of visualwords (BoVW) (Csurka et al. 2004; Sivic
and Zisserman 2003), sparse (Yang et al. 2010) and local
coding (Wang et al. 2010), super vector coding (Zhou et al.
2010), VLAD (Jégou et al. 2010), Fisher Vectors (Perronnin
and Dance 2006), and many others.

Such representations are entirely handcrafted, as in the
case of SIFT and HOG, or are partially learned using using
proxy criteria such as K -means clustering, as in the case of
BoVW, sparse coding, VLAD, and Fisher Vectors. In this
work, HOG (Dalal and Triggs 2005) is selected as a rep-
resentative of traditional image features. HOG is a variant
of the SIFT descriptor which became the predominant repre-
sentation in image understanding tasks before deep networks.
HOG decomposes an image it into small blocks (usually of
8 × 8 pixels) and represents each block by a histogram of
image gradient orientations. Histograms are further grouped
into small partially overlapping 2×2 blocks and normalized,
building invariance to illumination changes into the represen-
tation. Histograms are computed by using weighted bi-linear
sampling of the image gradients, which results in approx-
imate invariance to small image translations. Similarly,
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ANET, CNET, PLCS, PLCSH
Mod. u c m k v Pool
C1 227 3 11 96 55 P1↓ 27

C2 27 96 5 256 27 P2↓ 13

C3 13 256 3 384 13
C4 13 384 3 384 13
C5 13 384 3 256 13 P5↓ 6

F6 6 256 6 4096 1
F7 1 4096 1 4096 1
F8 1 4096 1 1000 1

VGG16
Mod. u c mr k v Pool
V 11...2 224 3 3×2 64 224 P1↓ 112

V 21...2 112 64 3×2 128 112 P2↓ 56

V 31...3 56 128 3×3 256 56 P3↓ 28

V 41...3 28 256 3×3 512 28 P4↓ 14

V 51...3 14 512 3×3 512 14 P5↓ 7

F6 7 512 6 4096 1
F7 1 4096 1 4096 1
F8 1 4096 1 1000 1

RESN50
Mod. u c mds

r k v Pool
C1 224 3 7 64 112 P1↓ 56

R21...3 56 64 3↓64
×3 256 56

R31...4 56 256 3↓128
×4 512 28

R41...6 28 512 3↓256
×6 1024 14

R51...3 14 1024 3↓512
×3 2048 7 P5↓ 1

FC 1 2048 1 1000 1

Fig. 2 Simplified structure of the investigated convolutional neural net-
works. Each row of the table corresponds to a single block visualized
above the table (without non-linearities, pooling and normalization lay-
ers).AlexNet (Krizhevsky et al. 2012) and its variants (Zhou et al. 2014),
consist of simple convolutional layersC� or fully connected layers F�.
A block in VGG-19 network (Simonyan and Zisserman 2014) is a set of
r 3 × 3 convolutions C�1...r which operate on same spatial resolution

u = v. A block of a ResN50 (He et al. 2016) networks is a set of r
residual modules R�1...r , which consist of down-sampling, 3 × 3 and
up-sampling convolution (for a simplicity only a single residual module
visualized). All residual modules perform on the same spatial resolution
with exception of the first of a block which performs down-sampling.
To keep the figure compact, we do not visualize the residual connection

quantization of the gradient orientations and soft assignment
of gradients to adjacent orientation bins gives HOG approx-
imate invariance to small image rotations as well.

The SIFT image representation (Lowe 1999), which pre-
dates HOG, is conceptually very similar to HOG with slight
differences in the normalization and gradient sampling and
pooling schemes. Themost significant difference is that SIFT
was introduced as a descriptor of local imagepatcheswhereas
HOG as a descriptor of the image as a whole, more useful
for tasks such as object detection by sliding window. Due to
the similarity between HOG and SIFT and due to the fact
that HOG can be implemented as a small convolutional neu-
ral network (Mahendran and Vedaldi 2016), we focus on the
latter in the remainder of the paper.

3.2 Deep Learnable Image Representations

Traditional image representations have been almost entirely
replaced by modern deep convolutional neural networks
(CNNs). CNNs share many structural elements with rep-
resentations such as HOG (which, as noted, can be imple-
mented as as a small convolutional network); crucially,
however, they are based on generic blueprints containing
millions of parameters that are learned end-to-end to opti-
mize the performance of the representation on a task of
interest, such as image classification. As a result, these repre-
sentations have dramatically superior performance than their
handcrafted predecessors.

In this paper we investigate three popular families of
CNNs: AlexNet-like networks (Krizhevsky et al. 2012)
(ANet, CNet, Plcs (Zhou et al. 2014)), VGG-like net-
works (SimonyanandZisserman2015) (Vgg16) andResNet-

like networks (He et al. 2016) (ResN50). Recall that a deep
network is a computational chain or graph comprising oper-
ations such as linear convolution by filter banks, non-linear
activation functions, pooling, and a few other simple oper-
ators. Despite differences in the local topology, AlexNet,
VGG, and ResNet-like networks can generally be decom-
posed into a number of blocks that operate on tensors of
different resolutions, with different blocks connected by
down-sampling layers. This subdivision is useful to compare
networks, and is summarized in Fig. 2. The performance of
the selected model variants in the popular ILSVRC12 bench-
mark is summarized in Table 1.

In more detail, ANet is the composition of twenty func-
tions, grouped into five convolutional layers (implementing
linear filtering, max-pooling, normalization and ReLU oper-
ations) and three fully-connected layers (linear filtering and
ReLU). In the paper, we analyze the output of convolution
layers C1–C5, pooling layers P1, P2, P5, and of the fully
connected layers F5 and F7. Features are taken immediately
after the application of the linear filters (i.e. before the ReLU)
and can be positive or negative, except for P1-5, which are
taken after the non-linearity and are non-negative. We also
consider the CNet variant of ANet due to its popularity in
applications; it differs from ANet only slightly by placing
the normalization operator before max pooling.

While ANet contains filters of various sizes, the C3–C5
layers all use 3 × 3 filters only. This design decision was
extended in the Vgg16 model to include all convolutional
layers. Vgg16 consists of 5 blocks V 1-V 5, each of which
comprises a number of 3 × 3 convolutional layers config-
ured to preserve the spatial resolution of the data within a
block. Max-pooling operators reduce the spatial resolution
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Table 1 Performance of the
selected CNN models on the
ILSVRC12 dataset as
implemented in Vedaldi and
Lenc (2014)

ANet (Krizhevsky
et al. 2012)

CNet (Krizhevsky
et al. 2012)

Vgg16 (Simonyan and
Zisserman 2015)

ResN50 (He
et al. 2016)

Top-5 error 19.6 19.7 9.9 7.7

Top-1 error 42.6 42.6 28.5 24.6

GFLOPs 0.727 0.724 16 4

The computational complexity is approximated in Giga-float operations per image based on Canziani et al.
(2016) as measured in Albanie (2017)

between blocks. Similarly to ANet, Vgg16 terminates in 3
fully connected layers. This network has been widely used as
a plug-and-play replacement of ANet due to its simplicity
and superior performance (Girshick et al. 2014a; He et al.
2014; Long et al. 2015). As with the ANet, in our experi-
mentswe consider outputs of the last convolution of the block
(V 12 . . . V 53), pooling layers P1–P5 and the fully connected
layers F6 and F7.

The ResNet (He et al. 2016) architectures depart from
ANetmore substantially. Themost obvious difference is that
they contain a significantly larger number of convolutional
layers. Learning such deep networks is made possible by the
introduction of residual configurations where the input of
a set of linear convolutions is added back to their outputs.
ResNet also differs from ANet by the use of a single fully
connected layer which performs image classification at the
very end of themodel; all other layers are convolutional, with
the penultimate layer followed by average pooling. Concep-
tually, the lack of the fully connected layers is similar to the
Google Inception network (Szegedy et al. 2015). This archi-
tectural difference makes ResNet slightly harder to use as
a plug-in replacement for ANet in some applications (Ren
et al. 2017), but the performance is generally far better than
ANet and Vgg16.

We consider a single ResNet variant,ResN50. This model
is organized into residual blocks, each comprising several
residual units with three convolutional layers, performing
dimensionality reduction, 3×3 convolution, and dimension-
ality expansion respectively. In our experiments, we consider
outputs of six blocks, the first one C1 comprising a standard
convolutional layer, and five residual blocks R2–R6 with
a 2× down-sampling during the first convolutional opera-
tion of its first (e.g. R21) with a stride-2 convolution which
performs dimensionality reduction. More details about this
architecture and the operations performed in each block can
be found in He et al. (2016).

4 Properties of Representations

So far a representation φ has been described as a function
mapping an image to a vector. The design of representations
is empirical, guided by intuition and validation of the per-

formance of the representation on tasks of interest, such as
image classification. Deep learning has partially automated
this empirical design process by optimizing the representa-
tion parameters directly on the final task, in an end-to-end
fashion.

Although the performance of representations has impr-
oved significantly as a consequence of such research efforts,
we still do not understand them well from a theoretical
viewpoint; this situation has in fact deteriorated with deep
learning, as the complexity of deep networks, which are
learned as black boxes, has made their interpretation even
more challenging. In this paper we aim to shed some light
on two important properties of representations: equivariance
(Sect. 4.1) and equivalence (Sect. 4.2).

4.1 Equivariance

A popular principle in the design of representations is the
idea that a representation should extract from an image infor-
mation which is useful for interpreting it, for example by
recognizing its content, while removing the effect of nui-
sance factors such as changes in viewpoint or illumination
that change the image but not its interpretation. Often, we
say that a representation should be invariant to the nuisance
factors while at the same time being distinctive for the infor-
mation of interest (a constant function is invariant but not
distinctive).

In order to illustrate this concept, consider the effect on
an image x of certain transformations g such as rotations,
translations, or re-scaling. Since in almost all cases the iden-
tity of the objects in the image would not be affected by such
transformations, it makes sense to seek a representation φ

which is invariant to the effect of g, i.e. φ(x) = φ(gx).2 This
notion of invariance, however, requires closure with respect
to the transformation group G (Vedaldi and Soatto 2005):
given any two transformations g, g′ ∈ G, if φ(x) = φ(gx)
and φ(gx) = φ(g′gx), then φ(x) = φ(gg′x) for the com-
bined transformation gg′. Due to the finite resolution and
extent of digital images, this is not realistic even for simple
transformations—for example, if φ is invariant to any scaling

2 Here, g : R2 → R
2 is a transformation of the plane. An image x is,

up to discretization, a function R
2 → R

3. The action gx of the trans-
formation on the image results in a new image [gx](u) = x(g−1(u)).
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factor g �= 1, it must be invariant to any multiple gn as well,
even if the scaled image gnx reduces to a single pixel. Even
disregarding finiteness issues, many simple transformations
close onto 2D diffeomorphisms, resulting in representations
that in principle should not distinguish even heavily distorted
versions of the same image. In practice, therefore, invariance
is often relaxed to insensitivity to bounded transformations:
‖φ(gx)−φ(x)‖ ≤ ε‖g‖, where ‖g‖ is a measure of the size
of the transformation.

A more fundamental problem with invariance is that the
definition of a nuisance factor depends on the task at hand,
whereas a representation should be useful for several tasks
(otherwise there would be no difference between represen-
tations and solutions to a specific problem). For example,
recognizing objects may be invariant to image translations
and rotations, but localizing them clearly is not. Rather than
removing factors of variation, therefore, often one seeks for
representations that untangle such factors, which is sufficient
to simplify the solution of specific problemswhile preventing
others from being solved as well.

Thus, generalizing the concept of invariance, we aim at
studying the equivariant properties of representations. A rep-
resentation φ is equivariant with a transformation g of the
input image if the transformation canbe transferred to the rep-
resentation output. Formally, equivariance with g is obtained
when there exists a map Mg : Rd → R

d such that:

∀x ∈ X : φ(gx) ≈ Mgφ(x). (1)

A sufficient condition for the existence of Mg is that the
representation φ is invertible, because in this case Mg =
φ ◦ g ◦ φ−1. It is known that representations such as HOG
are at least approximately invertible (Vondrick et al. 2013).
Hence it is not just the existence, but also the structure of
the mapping Mg that is of interest. In particular, Mg should
be simple, for example a linear function. This is important
because the representation is often used in simple predic-
tors such as linear classifiers, or in the case of CNNs, is
further processed by linear filters. Furthermore, by requiring
the same mapping Mg to work for any input image, intrin-
sic geometric properties of the representations are captured.
Invariance is a special case of equivariance obtained when
Mg (or a subset of Mg) acts as the simplest possible trans-
formation, i.e. the identity map.

The nature of the transformation g is in principle arbi-
trary; in practice, in this paper we will focus on geometric
transformations such as affine warps and flips of the image.

As an illustrative example of equivariance, let φ denote
the HOG (Dalal and Triggs 2005) feature extractor. In this
case φ(x) can be interpreted as a H × W vector field of of
D-dimensional feature vectors, called “cells” in the HOG
terminology. If g denotes image flipping around the vertical
axis, then φ(x) and φ(gx) are related by a well defined per-

mutation of the feature components. This permutation swaps
the HOG cells in the horizontal direction and, within each
HOG cell, swaps the components corresponding to symmet-
ric orientations of the gradient. Hence the mapping Mg is a
permutation andone has exactlyφ(gx) = Mgφ(x). The same
is true for horizontal flips and 180◦ rotations, and, approx-
imately,3 for 90◦ rotations. HOG implementations (Vedaldi
and Fulkerson 2010) do in fact explicitly provide such per-
mutations.

As another remarkable example of equivariance, note that
HOG, densely-computed SIFT (DSIFT), and convolutional
networks are all convolutional representations in the sense
that they are local and translation invariant operators. Barring
boundary and sampling effects, convolutional representa-
tions are equivariant to translations of the input image by
design, which transfer to a corresponding translation of the
resulting feature field.

In all such examples, the map Mg is linear. We will show
empirically that this is the case formanymore representations
and transformations (Sect. 5).

4.2 Covering and Equivalence

While equivariance looks at how a representation is affected
by transformations of the input image, covering studies the
relationship between different representations. We say that
a representation φ covers a representation φ′, and we write
φ → φ′, if there exist a map Eφ→φ′ such that

∀x : φ′(x) ≈ Eφ→φ′φ(x). (2)

Covering captures the idea that φ contains at least as much
information as φ′. Algebraically, covering is a transitive and
reflexive relation; however, it is a pre-order rather than a
partial order because φ′ → φ and φ → φ′ do not imply
that φ and φ′ are identical (i.e. the → relation is reflexive
and transitive but not anti-symmetric); rather, in this case
we say that they are equivalent, as they both carry the same
information.

Note that, if φ is invertible, then Eφ→φ′ = φ′ ◦ φ−1 satis-
fies this condition; hence, as for the mapping Mg before, the
interest is not just in the existence but also in the structure of
the mapping Eφ→φ′ .

The reason why covering and equivalence are interest-
ing properties to test for is that there exist a large variety
of different image representations. In fact, each time a deep
network is learned from data, the non-convex nature of the
optimization results in a different and, as we will see, seem-
ingly incompatible neural networks. However, as it may be
expected, these differences are not fundamental and this can

3 Most HOG implementations use 9 orientation bins, breaking rota-
tional symmetry.
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be demonstrated by the existence of simple mapping Eφ→φ′
that bridge them. More interestingly, covering and equiva-
lence can be used to assess differences in the representations
computed at different depths in a neural network, as well as
to compare different architectures (Sect. 6).

5 Analysis of Equivariance

Given an image representation φ, we study its equivariance
properties (Sect. 4.1) empirically by learning the map Mg

from data. The approach, based on a structured sparse regres-
sion method (Sect. 5.1), is applied to the analysis of both
traditional and deep image representations in Sects. 5.2 and
5.3, respectively. Section 5.4 shows also a practical applica-
tion of these equivariant mappings to object detection using
structure-output regression.

The key finding from these experiments are that:

– HOG, our representative traditional feature extractor, has
a high degree of equivariance with similarity transforma-
tions (translation, rotation, flip, scale) up to limitations
due to sampling artifacts.

– Deep feature extractors such as ANet, Vgg16, and
ResN50 are also highly equivariant up to layers that
still preserve sufficient spatial resolution, as those bet-
ter represent geometry. This is also consistent with the
fact that such features can be used to perform geometric-
oriented tasks, such as object detection in R-CNN and
related methods.

– We also show that equivariance in deep feature extrac-
tors reduces to invariance for those transformations such
as left-right flipping that are present in data or in data
augmentation during training. This effect is more pro-
nounced as depth increases.

– Finally, we show that simple reconstruction metrics such
as the Euclidean distance between features are not nec-
essarily predictive of classification performance; instead,
using a task-oriented regression method learns better
equivariant maps in most cases.

5.1 Methods

As our goal is to study the equivariance properties of a
given image representation φ, the equivariant map Mg of
Sect. 4.1 is not available a-priori and must be estimated
from data, if it exists. This section discusses a number of
methods to do so. First, the learning problem is discussed in
general (Sect. 5.1.1) and suitable regularisers are proposed
(Sect. 5.1.2). Then, efficient versions of the loss (Sect. 5.1.3)
and of the map Mg (Sect. 5.1.4) are given for the special case
of CNN representations.

5.1.1 Learning Equivariance

Given a representation φ and a transformation g, the goal
is to find a mapping Mg satisfying (1). In the simplest case
Mg = (Ag,bg), Ag ∈ R

d×d , bg ∈ R
d is an affine transfor-

mationφ(gx) ≈ Agφ(x)+bg . This choice is not as restrictive
as it may initially seem: in the examples of Sect. 4.1 Mg is
a permutation, and hence can be implemented by a corre-
sponding permutation matrix Ag .

Estimating (Ag,bg) can be formulated as an empirical risk
minimization problem. Given images x1, . . . , xn sampled
from a set of natural images, learning amounts to optimizing
the regularized reconstruction error

E(Ag,bg) = λR(Ag) + 1

n

n∑

i=1

�(φ(gxi ), Agφ(xi ) + bg),

(3)

where R is a regularizer and � a regression loss.
The choice of regularizer is particularly important as Ag ∈

R
d×d has a Ω(d2) parameters. Since d can be quite large

(for example, in HOG one has d = DWH ), regularization
is essential. The standard l2 regularizer ‖Ag‖2F was found to
be inadequate; instead, sparsity-inducting priors work much
better for this problem as they encourage Ag to be similar to
a permutation matrix.

5.1.2 Regularizer

We consider two such sparsity-inducing regularisers. The
first regularizer allows Ag to contain a fixed number k of
non-zero entries in each row:

Rk(A) =
{

+∞, ∃i : ‖Ai,:‖0 > k,

‖A‖2F , otherwise.
(4)

Regularizing rows independently reflects the fact that each
row is a predictor of a particular component of φ(gx).

The second sparsity-inducing regularizer is similar, but
exploits the convolutional structure of a representation.
Convolutional features are obtained from translation invari-
ant and local operators (non-linear filters). In this case,
the representation [φ(x)]uvt can be interpreted as a fea-
ture field or tensor with spatial indexes (u, v) and feature
channel index t . Due to the locality of the representation,
the component (u, v, t) of φ(gx) should be predictable
from a corresponding neighborhood Ωg,m(u, v) of features
in tensor φ(x) (see Fig. 3). This results in a particu-
lar sparsity structure for Ag that can be imposed by the
regularizer
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Fig. 3 Structured sparsity. Predicting equivariant features at location
(u, v) uses a corresponding small neighborhood of features Ωg,m(u, v)

Rg,m(A) =

⎧
⎪⎨

⎪⎩

+∞, ∃t, t ′, (u, v), (u′, v′) /∈
Ωg,m(u, v) : Auvt,u′v′t ′ �= 0

‖A‖2F , otherwise,

(5)

wherem denotes the neighbor size and the indexes of A have
been identifiedwith triplets (u, v, t). The neighborhood itself
is defined as the m × m input feature locations closer to the
back-projection of the output feature (u, v).4 In practice (4)
and (5) will be combined in order to limit the number of
regression coefficients activated in each neighborhood.

5.1.3 Loss and Optimization

As will be shown empirically in Sect. 5.3, the choice of loss
� in Eq. (3) is important. For HOG and similar histogram-
like representations, a regression loss such as l2, Hellinger,
or χ2 distance works well. Such a loss can also be applied
to convolutional architectures, although an end-to-end task-
oriented loss can perform better. The l2 loss can be easily
optimized offline, for which we use a direct implementation
of least squares or ridge regression, or the implementation
by Sjöstrand et al. (2018) of the forward-selection algorithm.
Alternatively, for CNNs the Siamese architecture approach
described next works well.

Siamese architecture for the l2 loss For CNN representa-
tions and regression losses such as l2, the transformation Mg

can also be learned using a Siamese architecture (Bromley
et al. 1994). This is illustrated in Fig. 4: one branch of the
network computes the representation of the original image
φ(x) and the second branch computes the representation of

4 Formally, denote by (x, y) the coordinates of a pixel in the input
image x and by p : (u, v) 
→ (x, y) the affine function mapping the
feature index (u, v) to the center (x, y) of the corresponding receptive
field (measurement region) in the input image. Denote by Nk(u, v)

the k feature locations (u′, v′) that are closer to (u, v) (the latter can
have fractional coordinates) and use this to define the neighborhood of
the back-transformed location (u, v) as Ωg,k(u, v) = Nk(p−1 ◦ g−1 ◦
p(u, v)).

Fig. 4 Siamese architecture for training a CNN Equivariance map. The
equivariance map Mg−1 aims to transform the features to minimize
l2 loss in the feature space. All parameters of the network are kept
unchanged

ψ(Mg◦φ(g−1x))whileminimizing the l2 loss between these
two representations.

The Siamese approach has several advantages. First, it
allows to learn Mg using the same methods used to learn
the CNN, usually on-line SGD optimization, which may be
more memory efficient than off-line solvers. Additionally, a
Siamese architecture ismoreflexible. For example, it is possi-
ble to applyMg after the output of a convolutional layer, but to
compute the l2 loss after the ReLU operator is applied to the
output of the latter. In fact, since ReLU removes the negative
components of the representation in any case, reconstruct-
ing accurately negative levels may be overkill; the Siamese
configuration allows us to test this hypothesis.

End-to-end loss In practice, it is unclearwhether a regression
loss such as l2 captures well the informative content of the
features or whether a different metric should be used instead.
In order to sidestep the issue of choosing ametric,we propose
to measure the quality of feature reconstruction based on
whether the features can still solve the original task.

To this end, consider a CNN ζ trained end-to-end on a
categorizationproblemsuch as the ILSVRC2012 image clas-
sification task (ILSVRC12) (Russakovsky et al. 2015). It is
common (Chatfield et al. 2014; Donahue et al. 2013; Raza-
vian et al. 2014) to consider the first several layers φ of the
network ζ = ψ ◦ φ as a general-purpose feature extractor
and the last layers ψ as a classifier using such features. This
suggests an alternative objective that preserves the quality of
the features φ in the original problem:

E(Ag,bg) = λR(Ag)

+1

n

n∑

i=1

�(yi , ψ ◦ (Ag,bg) ◦ φ(g−1xi )). (6)
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Fig. 5 Finding equivariancemap for aCNN representation using target-
oriented loss. The original network (first row) is divided into the φ

(feature representation) andψ (a classifier). The aim of the equivariance
map Mg−1 is to remove the nuisance transformation g in the feature
space by minimizing the classification loss on the ILSVRC12 train
dataset while keeping the network weights fixed

Here yi denotes the ground truth label of image xi and � is
the same classification loss used to train ζ . Note that in this
case (Ag,bg) is learned to compensate for the image trans-
formation, which therefore is set to g−1. This formulation is
not restricted to CNNs, but applies to any representation φ

given a target classification or regression task and a corre-
sponding pre-trained classifier ψ using it. This approach is
further illustrated in Fig. 5.

Implementation For implementation convenience, the
Siamese formulations are optimized using the same online
stochastic gradient descent algorithm and weight decay used
to learn the neural networks in the first place. Learning uses
the MatConvNet framework (Vedaldi and Lenc 2014). The
transformation layer is implemented with a layer similar to a
spatial transformer (Jaderberg et al. 2015) with a fixed sam-
pling grid. The spatial transformation and convolution with
Fg has little influence on the network training speed.

5.1.4 Transformation Layer

The method of Sect. 5.1 can be substantially refined for the
case of CNN representations and certain classes of trans-
formations. In fact, the structured sparsity regularizer of (5)
encourages Ag to match the convolutional structure of the
representation. If g is an affine transformation more can be
said: up to sampling artifacts, the equivariant transformation
Mg is local and translation invariant, i.e. convolutional. The
reason is that an affine transformation g acts uniformly on
the image domain5 so that the same is true for Mg . This has
two key advantages: it dramatically reduces the number of
parameters to learn and it can be implemented efficiently as
an additional layer of a CNN.

5 In the sense that g(x + u, y + v) = g(x, y) + (u′, v′).

Such a transformation layer consists of a permutation
layer, which implements the multiplication by a permutation
matrix Pg moving input feature sites (u, v, t) to output fea-
ture sites (g(u, v), t), followed by convolution with a bank of
D linear filters and scalar biases (Fg,bg), each of dimension
m ×m × D. Here m corresponds to the size of the neighbor-
hood Ωg,m(u, v) described in Sect. 5.1. Intuitively, the main
purpose of these filters is to permute and interpolate feature
channels.

Note that g(u, v) does not, in general, fall at integer
coordinates. To address this issue, the permutation layer Pg
distributes g(u, v) to the nearest 2 × 2 sites using bi-linear
interpolation.6 The transformation layers allows to rewrite
the learning objective as:

E(Fg,bg) = λR(Fg)

+1

n

n∑

i=1

�(yi , ψ(Fg ∗ (Pg · φ(g−1xi )

+bg))). (7)

5.2 Results on Traditional Representations

This section applies the methods of Sect. 5.1 to learn
equivariant maps for shallow representations, and HOG
features in particular. The first method to be evaluated
is sparse regression (Sect. 5.2.1) followed by structured
sparsity (Sect. 5.2.2). A qualitative evaluation is given
in Sect. 5.2.3.

5.2.1 Sparse Regression

The first experiment (Fig. 6) explores variants of the sparse
regression formulation of Eq. (3). The goal is to learn a map-
pingMg = (Ag,bg) that predicts the effect of selected image
transformations g on the HOG features of an image. For each
transformation, the mapping Mg is learned from 1000 train-
ing images by minimizing the regularized empirical risk (6).
The performance is measured as the average Hellinger’s dis-
tance ‖φ(gx) − Mgφ(x)‖Hell. on a test set of further 1000
images.7 Images are randomly sampled from the ILSVRC12
train and validation datasets respectively.

This experiment focuses on predicting a small array of
5 × 5 of HOG cells, which allows to train full regression
matrices evenwith naive baseline regression algorithms. Fur-
thermore, the 5×5 array is predicted from a larger 9×9 input

6 Better accuracy could be obtainedbyusing imagewarping techniques.
For example, sub-pixel accuracy can be obtained by up-sampling the
permutation layer and then allowing the transformation filter to be trans-
lation variant (or, equivalently, by introducing a suitable non-linear
mapping between the permutation layer and the transformation filters).
7 The Hellinger’s distance (

∑
i (

√
xi − √

yi )2)1/2 is preferred to the
Euclidean distance as the HOG features are histograms.
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Fig. 6 Regression methods. The figure reports the HOG feature recon-
struction error (average per-cell Hellinger distance) achieved by the
learned equivariant mapping Mg by setting g to different image rota-
tions (left) and scalings (center) for different learning strategies (see

text). No other constraint is imposed on Ag . In the right panel the exper-
iment is repeated for the 45◦ rotation, but this time imposing structured
sparsity on Ag for different values of the neighborhood size m

array to avoid boundary issues when images are rotated or re-
scaled. Both these restrictions will be relaxed later. Figure 6
compares the following methods to learn Mg: choosing the
identity transformation Mg = 1, learning Mg by optimizing
the objective (3) without regularization (Least Square – LS),
with the Frobenius norm regularizer for different values of λ

(RidgeRegression—RR), andwith the sparsity-inducing reg-
ularizer (4) (Forward-Selection—FS, using (Sjöstrand et al.
2018)) for a different number k of regression coefficients per
output dimension.

As can be seen in Fig. 6, LS over-fits badly, which is
not surprising given that Mg contains 1M parameters even
for these small HOG arrays. RR performs significantly bet-
ter, but it is easily outperformed by FS, confirming the very
sparse nature of the solution (e.g. for k = 5 just 0.2% of
the 1M coefficients are non-zero). The best result is obtained
by FS with k = 5. As expected, the prediction error of FS
is zero for a 180◦ rotation as this transformation is exact
(Sect. 5.1), but note that LS and RR fail to recover it. As one
might expect, errors are smaller for transformations close to
identity, although in the case of FS the error remains small
throughout the range.

5.2.2 Structured Sparse Regression

The conclusion of the previous experiments is that sparsity is
essential to achieve good generalization. However, learning
Mg directly, e.g. by forward-selection or by l1 regulariza-
tion, can be quite expensive even if the solution is ultimately
sparse. Next, we evaluate using the structured sparsity reg-
ularizer of Eq. (5), where each output feature is predicted
from a pre-specified neighborhood of input features depen-
dent on the image transformation g. The right plot of Fig. 6
repeats the experiment for a 45◦ rotation, but this time limited
to neighborhoods of m × m input HOG cells. To be able to
span larger intervals of m, an array of 15 × 15 HOG cells is
used. Since spatial sparsity is now imposed a-priori, LS, RR,
and FS perform nearly equivalently for m ≤ 3, with the best
result achieved byFSwith k = 5 and a small neighborhoodof

Table 2 Regression cost. Cost (in s) of learning the equivariant regres-
sors of Fig. 7

k m HOG size

3 × 3 5 × 5 7 × 7 9 × 9

5 ∞ 1.67 12.21 82.49 281.18

5 1 0.97 2.06 3.47 5.91

5 3 1.23 3.90 7.81 13.04

5 5 1.83 7.46 17.96 30.93

As the size of the HOG arrays becomes larger, the optimization cost
increases significantly unless structured sparsity is considered by setting
m to a small number
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Fig. 7 Equivariant classification using HOG features. Classification
performance of a HOG-based classifier trained to discriminate dog and
cat heads as the test images are gradually rotated and scaled and the
effect compensated by equivariant maps learned using LS, RR, and FS

m = 3 cells. There is also a significant computational advan-
tage in structured sparsity (Table 2) as it limits the effective
size of the regression problems to be solved.Weconclude that
structured sparsity is highly preferable over generic sparsity
(Fig. 7).

5.2.3 Regression Quality

So far results have been given in term of the reconstruc-
tion error of the features; this paragraph relates this measure
to the practical performance of the learned mappings. The
first experiment is qualitative and uses the HOGgle tech-
nique (Vondrick et al. 2013) to visualize the transformed
features. As shown in Fig. 8, the visualizations of φ(gx)
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Fig. 8 Qualitative evaluation of equivariant HOG. Visualization of the
features φ(x), φ(gx) and Mgφ(x) using the φ−1 HOGgle (Vondrick
et al. 2013) HOG inverse. Mg is learned using FS with k = 5 and
m = 3 and g is set to a rotation by 45◦ and up/down-scaling by

√
2

respectively. The dashed boxes show the support of the reconstructed
features

and Mgφ(x) are indeed nearly identical, validating the map-
ping Mg . The second experiment (Fig. 7) evaluates instead
the performance of transformedHOG features quantitatively,
in a classification problem. To this end, an SVM classifier

〈w, φ(x)〉 is trained to discriminate between dog and cat
faces using the data of Parkhi et al. (2011) (using 15 × 15
HOG templates, 400 training and 1000 testing images evenly
split among cats and dogs). Then a progressively larger
rotation or scaling g−1 is applied to the input image and
the effect compensated by Mg , computing the SVM score
as 〈w, Mgφ(g−1x)〉 (equivalently the model is transformed
by M�

g ). The performance of the compensated classifier is
nearly identical to the original classifier for all angles and
scales, whereas the uncompensated classifier 〈w, φ(g−1x)〉
rapidly fails, particularly for rotation. We conclude that
equivariant transformations encode visual information effec-
tively.

5.3 Results on Deep Representations

This section extends the experiments of the previous section
on deep representations, including investigations with task-
oriented losses.

5.3.1 Regression Methods

In this section we validate the parameters of various regres-
sion methods and show that the task-oriented loss results in
better equivariant maps.

Orig. FS k = 1 m = 1 FS k = 1 m = 5 FS k = 1 m = 25 Joint OPT ReLU-OPT
VFlip TF FS k = 3 m = 1 FS k = 3 m = 5 FS k = 3 m = 25
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Fig. 9 Comparison of regression methods for a CNN. Regression error
of an equivariant map Mg learned for vertical image flips for differ-
ent layers of a CNN. FS (gray and brown lines) and the task-oriented
objective (purple) are evaluated against the number of training samples.
Both the task loss (top) and the feature reconstruction error (bottom)
are reported. In the task loss, the green dashed line is the performance

of the original classifier on the original images (best possible perfor-
mance) and the red dashed line the performance of this classifier on the
transformed images (worst case). In the second row, the l2 reconstruc-
tion error per cell is visualized together with the baseline—average l2

distance of the representation to zero vector (Color figure online)
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The first experiment (Fig. 9) compares different methods
to learn equivariant mappingsMg in a CNN. The first method
(gray and brown lines) is FS, computed for different neigh-
borhood sizes k (line color) and sparsitym (line pattern). The
next method (blue line) is the l2 loss training after the ReLU
layer, as specified in Sect. 5.1.3. The last method (orange
line) is the task oriented formulation of Sect. 5.1 using a
transformation layer.

The classification error (task-oriented loss, first row), l2

reconstruction error (second row) and l2 reconstruction error
after the ReLU operation (third row) are reported against
the number of training samples seen. As in Sect. 5.1.4, the
latter is the classification error of the compensated network
ψ◦Mg◦φ(g−1x) on ImageNet ILSVCR12 data (the reported
error is measured on the validation data, but optimized on
the training data). The figure reports the evolution of the loss
as more training samples are used. For the purpose of this
experiment, g is set to be vertical image flipping. Figure 11
repeats the experiments for the task-oriented objective and
rotations g from 0 to 90 degrees (the fact that intermediate
rotations are slightly harder to reconstruct suggests that a
better Mg could be learned by addressing more carefully
interpolation and boundary effects).

Several observations can be made. First, all methods per-
form substantially better than doing nothing (which has 75%
top-1 error, red dashed line), recoveringmost if not all the per-
formance of the original classifier (43%, green dashed line).
This demonstrates that linear equivariant mappings Mg can
be learned successfully for CNNs too. Second, for the shal-
lower features up to C2, FS is better: it requires less training
samples (as it uses an offline optimizer) and it has a smaller
reconstruction error and comparable classification error than
the task-oriented loss. Compared to Sect. 5.2, however, the
best setting m = 3, k = 25 is substantially less sparse.
From C3 onward, the task-oriented loss is better, converg-
ing to a much lower classification error than FS. FS still
achieves a significantly smaller reconstruction error, showing
that feature reconstruction is not always predictive of classi-
fication performance. Third, the classification error increases
somewhat with depth, matching the intuition that deeper lay-
ers contain more specialized information: as such, perfectly
transforming these layers for transformationswhichwere not
experienced during training (e.g. vertical flips) may not be
possible.

Because the CNN uses a ReLU non-linearity, one can ask
whether optimizing the l2 loss before the non-linearity is
apt for this task. To shed light on this question, we train
Mg using a l2 loss after the non-linearity (ReLU-OPT). One
can see that this still performs slightly worse than the task-
specific loss, even though it performs slightly better than the
FS (which may be due to more training data). However it is
interesting to observe that neither the l2 loss before or after the
non-linearity is strongly predictive of the target performance.

Thus we conclude that the l2 metric should only be used as a
proxy metric in the hidden representation of the CNNs (with
respect to the target task).

5.3.2 Comparing Transformation Types

Next we investigate which geometric transformations can be
represented by different layers of various CNNs (Fig. 10),
considering in particular horizontal and vertical flips, re-
scaling by half, and rotation of 90◦. We perform this
experiment for three CNN models. For ANet and Vgg16
the experiment is additionally performed on two of its fully
connected layer representations. This is not applicable for
the ResN50which has only the final classifier as a fully con-
nected layer. In all experiments, the training is done for five
epochs of 2 · 105 training samples, using a constant learning
rate of 10−2.

For transformations such as horizontal flips and scaling,
learning equivariant mappings is not better than leaving the
features unchanged: this is due to the fact that the CNN
implicitly learns to be invariant to such factors. For vertical
flips and rotations, however, the learned equivariant mapping
substantially reduce the error. In particular, thefirst few layers
for all three investigated networks are easily transformable,
confirming their generic nature.

The results also show that finding an equivariant trans-
formation for fully connected layers (or layers with lower
spatial resolution in general) is more difficult than for con-
volutional layers. This is consistent with the fact that the
deepest layers of networks contain less spatial information
and hence expressing geometric transformations on top of
thembecomes harder. This is also consistentwith the fact that
ResN50 shows better equivariance properties for deeper lay-
ers compared toVgg16 andANet: the reason is thatResN50
preserves spatial information deeper in the architecture.

5.3.3 Qualitative Evaluation

Similarly to the visualization we obtained for the HOG fea-
tures, we can use the pre-image method of Mahendran and
Vedaldi (2016) to invert each deep representation and assess
the learned mappings visually. Figure 10 shows the inverse
of the maps φ(gx) and Mgφ(x) for different representations
corresponding to different layers of ANet. It also shows the
results obtained by inverting with Pgφ(x), considering only
a permutation matrix Pg instead of using the fully-fledged
map Mg . In this experiment, Mg is obtained using the task-
oriented optimization.

We can see that in all cases the pre-images Mgφ(x)]−1

are nearly always better than the pre-images [φ(gx)]−1,
which validates the equivariant map Mg . Furthermore, in all
cases the pre-image obtained using Mg is better than the one
obtained using the simple permutation Pg , which confirms
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Fig. 10 Equivariance of various networks to selected transformations.
Equivariance of selected network feature representations (rows) under
selected transformations (columns). The green dashed line is the initial
error rate of the selected network on the ILSVRC12 validation dataset.
The red dashed line represents error rate for transformed images. The

gray solid line visualizes the initial performance by only spatially rear-
ranging the features and the orange solid line shows the performance
of the learn equivariant map Mg . For all networks, the representation
used is the last block of the specified module

that both permutation and feature channel transformation are
needed to achieve equivariance.

5.3.4 Geometric Invariances

This section explores the geometric invariance properties of
different neural network architectures. This is done by mea-
suring theperformanceof thehybrid networkψ(Pgφ(g−1x)),
where the spatial permutation matrix Pg is used to undo the
effect of the geometric transformation in feature space as was
done with the task-oriented objective (7). We compare this
result to the one obtained previously where Pg was gener-
alized to the learned equivariant map Mg: the idea is that if
the spatial permutation Pg is sufficient to achieve the same
performance as Mg then the feature channels are already
invariant to the nuisance transformation.

The performance of Pg against Mg is visualized in Fig. 10
(gray vs orange lines) for the different layers of ANet,
Vgg16, and ResN50. We note that the invariance to horizon-
tal flips is obtainedprogressivelywith depth.Consequently,m
the fully convolutional layers have access to a representation
which is already invariant to this geometric transformation,
which significantly simplifies the image classification task.

We also observe that there is a certain degree of scale
invariance in the C5 representation of ANet andVgg16 net-
works. Thismay help to explainwhyR-CNNobject detectors
such as (Girshick 2015; He et al. 2014; Ren et al. 2015) work
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Fig. 11 Learning equivariant CNN mappings for image rotations. The
setting is similar to Fig. 9, extended to several rotations g but limited to
the task-oriented regressionmethod for theANet. The solid and dashed
lines report the top1 and top5 errors on the ILSVRC12 validation set
respectively

well. Recall that thee methods use a simple spatial resampler
such as Spatial Pyramid Pooling to extract features in corre-
spondence of objects of different sizes and locations in the
image. Resampling spatial coordinates is in principle insuffi-
cient to make the extracted region representation invariant to
scale changes, unless, as it appears to be the case, the feature
channel values are also insensitive to scale.

Additionally, it can be seen in Fig. 10, that applying only
the permutation Pg on the lower layers significantly reduces
the performance of the network. We can observe that earlier
representations are “anti-invariant” since the rest of the net-
work is more sensitive to this nuisance transformation when
this is applied in feature space (Figs. 11, 12).
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CONV1
φ-1φ(x) φ-1φ(gx) φ-1Pgφ(x) φ-1Mgφ(x)

CONV3
φ-1φ(x) φ-1φ(gx) φ-1Pgφ(x) φ-1Mgφ(x)

CONV5
φ-1φ(x) φ-1φ(gx) φ-1Pgφ(x) φ-1Mgφ(x)

Fig. 12 Qualitative evaluation of Mg . Visualization of the features
φ(x), φ(gx) and Mgφ(x) of C1, C2 and C3 representations of ANet
using the φ−1 Deep Goggle (Mahendran and Vedaldi 2016) for feature
inverse. Inverse of the input image and of transformed image are in the

first two columns. Third column is inverse of the features with only spa-
tially re-arranged representation with a permutation matrix Pg . Mg is
learned using the joint optimization (see quantitative results in Fig. 10)
and should be ideally equal to the second column

Table 3 CNN invariance

Layer Horiz. Flip Vert. Flip Sc. 2− 1
2 Rot. 90◦

Num % Num % Num % Num %

C1 52 54.17 53 55.21 95 98.96 42 43.75

C2 131 51.17 45 17.58 69 26.95 27 10.55

C3 238 61.98 132 34.38 295 76.82 120 31.25

C4 343 89.32 124 32.29 378 98.44 101 26.30

C5 255 99.61 47 18.36 252 98.44 56 21.88

Number and percentage of invariant feature channels in the Alexn
network, identified by analyzing corresponding equivariant transfor-
mations

Next, we study the map Fg to identify which feature chan-
nels are invariant: these are the ones that are best predicted
by themselves after a transformation. However, invariance is
almost never achieved exactly; instead, the degree of invari-
anceof a feature channel is scored as the ratio of theEuclidean
norm of the corresponding row of Fg with the same row after
suppressing the “diagonal” component of that row. The p
rows of Fg with the highest invariance score are then replaced
by (scaled) rows of the identity matrix. Finally, the perfor-
mance of the modified transformation F̄g is evaluated and
accepted if the classification performance does not deteri-
orate by more than 5% relative to Fg . The corresponding
feature channels for the largest possible p are then consid-
ered approximately invariant.

Table 3 reports the result of this analysis for horizontal
and vertical flips, re-scaling, and 90◦ rotation in the ANet
CNN. There are several notable observations. First, for trans-
formations in which the network has achieved invariance
such as horizontal flips and re-scaling. This invariance is

obtained largely in C3 or C4. Second, invariance does not
always increase with depth (for example C1 tends to be
more invariant than C2). This is possible because, even if
the feature channels within a layer are invariant, the spatial
pooling in the subsequent layermaynot be. Third, the number
of invariant features is significantly smaller for unexpected
transformations such as vertical flips and 90◦ rotations, fur-
ther validating the approach. These results corroborate the
finding reported in Fig. 10, first row.

5.4 Application to Structured-Output Regression

To complement the theoretical investigation thus far, this
section shows a direct practical application of the learned
equivariant mappings of Sect. 5 to the task of structured-
output regression (Taskar et al. 2003). In structured regres-
sion an input image x is mapped to a label y by the function
ŷ(x) = argmaxy,z〈φ(x, y, z),w〉 (direct regression) where z
is an optional latent variable and φ is a joint feature map. If
either y or z include geometric parameters, the joint features
can be partially or fully rewritten as φ(x, y, z) = My,zφ(x),
reducing inference to the maximization of 〈M�

y,zw, φ(x)〉
(equivariant regression). There are two computational advan-
tages to this approach: (i) the representation φ(x) needs only
to be computed once and (ii) the vectors M�

y,zw can be pre-
computed offline.

This idea is demonstrated on the task of pose estima-
tion, where y = g is a geometric transformation in a class
g−1 ∈ G of possible poses of an object. As an example, con-
sider estimating the pose of cat faces in the PASCAL VOC
2007 (VOC07) (Everingham et al. 2007) data takingG either
to be (i) rotations or (ii) affine transformations (Fig. 14). The
rotations in G are sampled uniformly every 10 degrees and
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Table 4 Equivariant regression.
The table reports the prediction
errors for the cat head
rotation/affine pose with
direct/equivariant structured
SVM regressors

φ(x) Bsln HOG C3 C4 C5

g Mg g Mg g Mg g Mg

Rot (◦) 23.8 14.9 17.0 13.3 11.6 10.5 11.1 10.1 13.4

Rot � (◦) 86.9 18.9 19.1 13.2 15.0 12.8 15.3 12.9 17.4

Aff (–) 0.35 0.25 0.25 0.25 0.28 0.24 0.26 0.24 0.26

Time/TF (ms) – 18.2 0.8 59.4 6.9 65.0 7.0 70.1 5.7

Speedup (–) – 1 21.9 1 8.6 1 9.3 1 12.3

The error is measured in expected degrees of residual rotation or as the average keypoint distance in the
normalized face frame, respectively. The baseline (denoted as Bsln) method predicts a constant transformation

HOG Conv3 Conv4 Conv5 Bsln
φ(gx) Mgφ(x)
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Fig. 13 Equivariant regression errors. Cumulative error curves for the
rotation and affine pose regressors of Table 4

the ground-truth rotation of a face is defined by the line con-
necting the nose to the midpoints between the eyes. These
keypoints are obtained as the center of gravity of the corre-
sponding regions in the VOC07 part annotations (Chen et al.
2014). The affine transformations in G are obtained by clus-
tering the vectors [c�

l , c�
r , c�

n ]� containing the location of
eyes and nose of 300 example faces in the VOC07 data.

The clusters are obtained using GMM-EM on the training
data and used tomap the test data to the same pose classes for
evaluation. G then contains the set of affine transformations
mapping the keypoints [c̄�

l , c̄�
r , c̄�

n ]� in a canonical frame
to each cluster center.

The matrices Mg are pre-learned (from generic images
not containing cats) using FS with k = 5 and m = 3 as in
Sect. 5.1. Since cat faces in VOC07 data are usually upright,
a second more challenging version of the data (denoted by
the symbol �) augmented with random image rotations is
considered as well. The direct 〈w, φ(gx)〉 and equivariant
〈w, Mgφ(x)〉 scoring functions are learnedusing 300 training
samples and evaluated on 300 test ones.

Table 4 reports the accuracy and speed obtained for HOG
andANetCNNC3, C4, andC5 features for direct and equiv-
ariant regression. The latter is generally as good or nearly as
good as direct regression, but up to 22 times faster further
validating the mappings Mg . Figure 13 shows the cumula-
tive error curves for the different regressors.

6 Analysis of Coverage and Equivalence

We now move our attention from equivariance to coverage
and equivalence of CNN representations by first adapting the
methods developed in the previous section to this analysis
(Sect. 6.1) and then using them to studying numerous cases
of interest (Sect. 6.2).

The key finding from these experiments are that:

– Different networks trained to perform the same task tend
to learn representations that are approximately equiva-
lent.

– Deeper and larger representations tend to cover well for
shallower and smaller ones, but the converse is not always
true. For example, the deeper layers of ANet cover for
the shallower layers of the same network, Vgg16 layers
cover well for ANet layers, and ResN50 layers cover
well for Vgg16 layers. However, Vgg16 layers cannot
cover for ResN50 layers.

– Coverage and equivalence tend to be better for layers
whose output spatial resolutionmatches. In fact, a layer’s
resolution is a better indicator of compatibility than its
depth.

– When the same network is trained on two different tasks,
shallower layers tend to be equivalent, whereas deeper
ones tend to be less so, as they becomemore task-specific.

6.1 Methods

As for the map Mg in the case of equivariance, the cover-
ing map Eφ→φ′ of Eq. (2) must be estimated from data.
Fortunately, a number of the algorithms used for estimating
Mg are equally applicable to Eφ→φ′ . In particular, the objec-
tive (3) can be adapted to the covering problem by replacing
φ(gx) by φ′(x). Following the task-oriented loss formula-
tion of Sect. 5.1, consider two representations φ and φ′ and
a predictor ψ ′ learned to solve a reference task using the
representation φ′. For example, these could be obtained by
decomposing two CNNs ζ = ψ ◦φ and ζ ′ = ψ ′ ◦φ′ trained
on the ImageNet ILSVRC12 data (butφ could also be learned
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Fig. 14 Equivariant regression examples. Rotation (top) and affine pose
(bottom) prediction for cat faces in theVOC07 parts data. The estimated
affine pose is represented by eyes and nose location. The first four
columns contain examples of successful regressions and the last column
shows a failure case. Regression usesCNNC5 features computedwithin
the green dashed box region

Fig. 15 CNN architecture for learning a covering map. In order to learn
the covering map Eφ→φ′ we stitch the shallower layers of network
Net-A (forming representation φ) to the deeper layers of network Net-
B (forming an image classifier ψ ′). The stitching map Eφ→φ′ is to
optimized to minimize the classification loss on the training set

on a different dataset, with a different network architecture
or could be an handcrafted feature representation) (Fig. 14).

The goal is to find a mapping Eφ→φ′ such that φ′ ≈
Eφ→φ′φ. This map can be seen as a “stitching transforma-
tion” allowingψ ′ ◦Eφ→φ′ ◦φ to perform as well asψ ′ ◦φ′ on
the original classification task. Hence this transformation can
be learned by minimizing the loss �(yi , ψ ′ ◦ Eφ→φ′ ◦ φ(xi ))
with an objective similar to (6), resulting in the architecture
of Fig. 15.

In a CNN, the stitching transformation Eφ→φ′ can be
implemented as a stitching layer. Given the convolutional
structure of the representation, this layer can be implemented
as a bank of linear filters. No permutation layer is needed in
this case, but it may be necessary to down/up-sample the
features if the spatial dimensions of φ and φ′ do not match.
This is done by using nearest neighbor interpolation for
down-sampling and bilinear interpolation for up-sampling,
resulting in a definition similar to (7), where Pg is defined as
up-scaling or down-scaling based on the spatial resolution of
φ and φ′.

Table 5 Stitching different variants of the ANet architecture—mean
and a standard deviation of the top1 error over 3 training runs with
different random seed

In all experiments, training is done for seven epochs
with 2 · 105 training samples, using a constant learning
rate of 10−2. The E map is initialized randomly with the
Xavier method (Glorot and Bengio 2010), although we have
observed that results are not sensitive to the form of ini-
tialization (randommatrix, random permutation and identity
matrix) or level of weight decay.

6.2 Results

The goal of this experimental section is to asses whether dif-
ferent image representations carry similar information. We
perform three different investigations: covering of represen-
tations produced by different layers of the same network
(Sect. 6.2.1), covering of representations obtained by training
the same CNN architecture on different tasks (Sect. 6.2.2),
and covering of representations obtained from different CNN
architectures (Sect. 6.2.3).

6.2.1 Same Architecture, Different Layers

In the first experiment we “stitch” different layers of the same
neural network architecture. This is done to assess the degree
of change between different layers and to provide a baseline
level of performance for subsequent experiments. Note that,x
when a layer is stitched to itself, the ideal stitching transfor-
mation E is the identity; nevertheless, we still initialize the
map E with a random noise and learn it from data. Due to the
non-convex nature of the optimization, this will not in gen-
eral recover the identity transformation perfectly, and can be
used to assess the performance loss due to the limitations of
the optimization procedure ((Yosinski et al. 2014) refer to
this issue as “fragile co-adaptation”) (Table 5).

Table 6b shows the results of this experiment on the CNet
network. We test the stitching of any pair of layers in the
architecture, to construct a matrix of results. Each entry in
the matrix reports the accuracy of the stitched network on
the ILSVRC12 data after learning the map Eφ→φ′ initial-
ized from random noise (without learning, the error rate is
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Table 6 Stitching different layers of the CNet network. The top1 error of the original CNet network is 42.5%

(a) (b)

The trained network on row m and column n is φRow
1 . . . φRow

m ◦ E ◦ φCol
n . . . φCol

softmax. The top-1 error is shown as a mean of 3 experiments with
the standard deviation as the subscript value

100% in all cases). There are three cases of interest: the diag-
onal (stitching a layer to itself), the upper diagonal (which
amounts to skipping some of the layers) and the lower diago-
nal (which amounts to recomputing someof the layers twice).

Along the diagonal, there is a modest performance drop
as a result of the fragile co-adaptation effect.

For the upper diagonal, skipping layers may reduce the
network performance substantially. This is particularly true
if one skips C2, but less so when skipping one or more of
C3–C5. We note that C3–C5 operate on the same resolu-
tion, different to that of C2, so a portion of the drop can be
explained by effects of aliasing in down-sampling the feature
maps in the stitching layer.

For the lower diagonal, rerouting the information through
part of the network twice tends to preserve the baseline per-
formance. This suggests that the stitching map E can learn
to “undo” the effect of several network layers despite being a
simple linear projection. One possible interpretation is that,
while layers perform complex operations such as removing
the effect of nuisance factors and building invariance, it is
easy to reconstruct an equivalent version of the input given
the result of such operations. Note that, since deeper lay-
ers contain many more feature channels than earlier ones,
the map E performs dimensionality reduction. Still, there
are limitations: we also evaluated reconstruction of the input
image pixels, but in this case the error rate of the stitched
network remained > 94%.

The asymmetry of the results show the importance of
distinguishing the concepts of coverage (asymmetric) and
equivalence (symmetric). Our results can be summarized as
follows“the deep layers of a neural network cover the earlier
layer, but not vice-versa”.

Table 6b also reports the standard deviation of the results
obtained by randomly re-initializing E and re-learning it sev-
eral times. The stability of the results is proportional to their
quality, suggesting that learning E is stable when stitching
compatible representations and less stable otherwise.

Finally, we note that there is a correlation between the lay-
ers’ resolution and their compatibility. This can be observed
in the similarity of Table 6a, reporting the resolution change,
and Table 6b, reporting the performance of the stitched
model. We see that there are subtle differences—e.g. for
the block of P2–C5, where no sampling is performed, C5
is clearly more compatible with C4 than with P2. Simi-
larly, down-sampling by a factor of 21.1, can lead to a top-1
error from 59.2% up to 95.4%. We conclude that down-
sampling/up-sampling may lead to an offset in the results
score, however there are still clear differences between the
results obtained for the same constant factor. Thus we can
use these results for drawing observations about the repre-
sentation compatibility.

6.2.2 Same Architecture, Different Tasks

Next, we investigate the compatibility of nearly identical
architectures trained on the same data twice, or on differ-
ent data. In more detail, the first several layers φ′ of the
ANet CNN ζ ′ = ψ ′ ◦ φ′ are swapped with layers φ from
CNet, also trained on the ILSVRC12 data, Plcs (Zhou et al.
2014), trained on the MIT Places data, and PlcsH, trained
on a mixture of MIT Places and ILSVRC12 images. These
representations have a similar, but not identical, structure and
different parameterizations as they are trained independently.

Table 5 reports the top-1 error on ILSVRC12 of the hybrid
models ψ ′ ◦ Eφ→φ′ ◦ φ where the covering map Eφ→φ′
is learned as usual. There are a number of notable facts.
First, setting Eφ→φ′ = 1 to the identity map has a top-
1 error > 99% (not shown in the table), confirming that
different representations are not directly compatible. Sec-
ond, a strong level of equivalence can be established up
to C4 between ANet and CNet, slightly weaker level can
be established between ANet and PlcsH, and only a poor
level of equivalence is observed for the deepest layers of
Plcs. Specifically, the C1-2 layers of all networks are almost
always interchangeable, whereas C5 is not as interchange-

123



International Journal of Computer Vision (2019) 127:456–476 473

Table 7 Equivalence of ANet features with Vgg16 classifiers, top-1
error

(a)

(b)

The initial performance of ANet is 42.5%, which provides the theoret-
ical upper bound of achievable performance

able, particularly for Plcs. This corroborates the intuition
that C1-2 are generic image codes, whereas C5 is more
task-specific. Still, even in the worst case, performance is
dramatically better than chance, demonstrating that all such
features are compatible to an extent. Results are also stable
over repeated learning of the map E .

6.2.3 Different Architectures, Same Task

The final experiment assesses the equivalence between layers
of different neural network architectures trained on the same
data. In this case, we stitch the output of the linear convolu-
tion layers as well as the output of the pooling layers, after
ReLUs. Note that, since the two architecture differ, there is
no “obvious” stitching point, so each possibility is evaluated.

ANET → VGG16 Table 7 shows the effect of replac-
ing a subset of the Vgg16 layers with layers from the
ANet network. Generally, the ANet can partially cover the
Vgg16 layers, but there is almost always a non-negligible
performance drop compared to the more powerful Vgg16
configuration. The presence of theReLU activation functions
has little to no influence on coverage.

Contrary to the previous experiment, deeper ANet fea-
tures fail to cover for earlierVgg16 features (whereas deeper
ANet features can generally cover well for early ANet fea-
tures). It is possible that the constrained structure of the map
Eφ→φ′ fails to capture the required transformation.

Table 8 Equivalence of Vgg16 features with ANet classifiers, top-1
error

(a)

(b)

The initial performance of Vgg16 is 28.5%, which is the theoretical
lower bound of the achievable performance

VGG16 → ANET Next, Table 8 tests the reverse direction:
whether Vgg16 can cover ANet features. The answer is
mixed. The output of the Vgg16 P5 layer can cover well for
ANet C2 to P5, even though there is a significant resolu-
tion change. In fact, the performance is significantly better
than ANet alone, (reducing the 42.5 top-1 error of ANet
to 34.9), which suggests the degree to which the represen-
tational power of Vgg16 is contained in the convolutional
layers. The ability of Vgg16-P5 to cover for ANet-C2–P5
may also be explained by the fact that the last three layers of
ANet have a similar structure as the V 4 block of Vgg16, as
they all use 3 × 3 filters.

On the other hand, the earlier layers of Vgg16 cover sig-
nificantly less well for ANet features than Vgg16-P5.

RESN50 → VGG16 Next, in Table 9 we asses whether
ResN50 features can coverVgg16 features.As seen in Fig. 2,
these two architectures differ significantly in their structure;
consequently, ResN50 fails to cover well for Vgg16 in most
cases. Good performance is however obtained by stitch-
ing the top layers; for example, ResN50-R53 covers well
Vgg16-P5. This suggests that the final layers of ResN50
are more similar to the top convolutional layers of Vgg16

123



474 International Journal of Computer Vision (2019) 127:456–476

Table 9 StitchingResN50 feature representations toVgg16 classifiers

(a)

(b)

The top-1 error of the Vgg16 network is 28.5%

than to its fully connected layers. This indicates that the main
driving factor establishing the kind of information captured
at different depths is predominantly controlled by the spatial
resolution of the features rather than by the depth or com-
plexity of the representation.

Vgg16→ResN50 It was not possible to useVgg16 features
to cover for ResN50 with our method at all. In all cases,
the error remained > 90%. We hypothesize that the lack of
the residual connections in the Vgg16 network makes the
features incompatible with the ResN50 ones.

7 Summary

This paper introduced the idea of studying representations by
learning their equivariant and coverage/equivalence proper-
ties empirically. It was shown that shallow representations
and the first several layers of deep state-of-the-art CNNs
transform in an easily predictable manner with image warps.
It was also shown that many representations tend to be inter-
changeable, and hence equivalent, despite differences, even
substantial ones, in the architectures. Deeper layers share
some of these properties but to a lesser degree, being more
task-specific.

A similarity of spatial resolution is a key predictor of rep-
resentations compatibility; having a sufficiently-large spatial
resolution is also predictive of the equivariance properties
to geometric warps. Furthermore, deeper and larger rep-
resentations tend to cover well for shallower and smaller
ones.

In addition the usage as analytical tools, these methods
have practical applications such as accelerating structured-
output regressors classifier in a simple and elegant manner.
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