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Abstract In this paper, we propose a motion model that
focuses on the discriminative parts of the human body related
to target motions to classify human motions into specific cat-
egories, and apply this model to multi-class daily motion
classifications. We extend this model to a motion recogni-
tion system which generates multiple sentences associated
with human motions. The motion model is evaluated with
the following four datasets acquired by a Kinect sensor or
multiple infrared cameras in a motion capture studio: UCF-
kinect; UT-kinect; HDM05-mocap; and YNL-mocap. We
also evaluate the sentences generated from the dataset of
motion and language pairs. The experimental results indi-
cate that the motion model improves classification accuracy
and our approach is better than other state-of-the-art methods
for specific datasets, including human–object interactions
with variations in the duration of motions, such as daily
humanmotions.We achieve a classification rate of 81.1% for
multi-class dailymotion classifications in a non cross-subject
setting. Additionally, the sentences generated by the motion
recognition system are semantically and syntactically appro-
priate for the description of the target motion, which may
lead to human–robot interaction using natural language.
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1 Introduction

As the result of a change of social demand from industrial
uses to service uses, robots and systems have become more
intelligent and are a familiar presence in our daily lives.
Alongwith this change, intelligent robots and systemsused in
human living areas should be expected to have the abilities to
observe humans closely, understand human behavior, grasp
their intentions and give proper livelihood support. Classi-
fying daily human motions into specific categories plays an
important role because a failure to do so could cause danger
or inconvenience to humans.

An intuitive and common method to represent human
motions is to use sequences of skeleton configurations. Opti-
cal motion capture systems provide accurate 3D skeleton
markers of motion by usingmultiple infrared cameras. These
systems are limited to use in motion capture studios and sub-
jects have to wear cumbersome devices while performing
motions. However, the release of low-cost and marker-less
motion sensors, such as the Kinect developed by Microsoft,
has recently made skeleton-position extractions much easier
and more practical for skeleton-based motion classification
(Shotton et al. 2013). Presti and Cascia (2016) have reviewed
the many works related to skeleton-based motion classifica-
tion.

In this context, we proceed on the basis of the follow-
ing two findings. First, local motion features derived from
discriminative parts of human body are more useful than a
global motion feature derived from the whole body. This is
because the discriminative body parts are different accord-
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ing to the target motion. For example, the “punch” motion
mainly uses one arm, the “clap” motion mainly uses both
arms and the “run” motion mainly uses both legs. Second, it
is also desirable to classify daily human motions systemati-
cally to focus on the discriminative body parts related to the
target motion. This is because human motion is an interac-
tion between objects in the environment and the body parts
in contact with them. For example, the relationship between
the positions of a hand and the face becomes important in the
“make a phone call” or “drink water” motions because of the
contact between an object and an ear or the mouth, respec-
tively. However, simply classifying human motions cannot
directly lead to behavior supports. A connection to other
information is also required for the highly intelligent pro-
cessing referred to as “motion recognition”. Here, humans
are different from other animals in that they can understand
the real world using natural language and engage in complex
communication with others. In order to understand the real
world in the same way, it is important for intelligent robots
and systems to link the real world with natural language.
Therefore, we also use the properties of natural language,
which has the benefits of scalability due to the usage of large-
scale language corpora and interpretability by humans. By
connecting human motions to common words, motion clas-
sification expands to include a variety of applications related
to behavior supports.

In this paper, we propose a motion model which focuses
on discriminative parts of the human body using informa-
tion about relative positions between marker joints in the
skeletal structure to classify human movements precisely.
This model converts continuousmotion patterns into discrete
motion symbols and can be adapted to motion classification,
even when there are many motion categories, because the
combination of discriminative parts from the skeleton con-
figurations expands the capacity to represent humanmotions.
We also develop a motion recognition system proposed in
Takano and Nakamura (2015) that generates multiple sen-
tences associated with human motions by expanding the
above motion model. This system statistically represents
the association relationship between motion symbols and
words, and then constructs network structures that represent
the arrangement of words for sentence generation. Sentence
structures have the benefit of arranging several words into an
easy-to-understand form to provide a linguistic interface for
human–robot interactions.

There are three main contributions in this paper. First, the
design of the proposed motion model is novel: we propose
the weighted integration of motion features by combining
Fisher vector parameterized by a hiddenMarkov model (FV-
HMM)withmultiple kernel learning (MKL). Thismodel can
identify the discriminative parts of the human body related
to a target motion, resulting in higher accuracy than the
model using skeleton information obtained from the whole

body as a motion feature (Goutsu et al. 2015). By using
this vector combination, we demonstrate that our approach
is effective for classifying motions, including human–object
interactions with variations in the duration of motions, such
as daily human motions. Second, we actually address multi-
class daily motion classification and show that the motion
model has high classification accuracy. This is a significant
task because humans live their daily lives by taking various
motions. In this process, we collected a motion dataset of
daily activities for evaluation.Our dataset contains sequences
of 3D skeleton markers measured by multiple infrared cam-
eras in amotion capture studio and includes 125motion cate-
gories. To the best of our knowledge, our study is also the first
to try to classify over 100motion categories using a skeleton-
based approach. Third, our system has various possibilities to
connect with applications that apply intelligent processing to
natural language, such as word association, context inference
and hierarchical ontology, because we construct the relations
between motion and language in the system.

2 Related Work

2.1 Discovering Discriminative Joints or Parts
in Skeleton Configurations

There have been various studies of motion classification in
the field of pattern recognition. In particular, recent advances
on human pose estimation from depth images has enabled the
extraction of the skeleton configuration of the human whole
body, so that three information sources, (i.e., skeleton, color
and depth), become available to many approaches using a
Kinect sensor. Along with this change, various modalities
such as skeleton (Wang et al. 2012b; Zanfir et al. 2013; Evan-
gelidis et al. 2014), depth (Oreifej and Liu 2013; Yang et al.
2012), silhouette (Li et al. 2010; Chaaraoui et al. 2013) and
space–time occupancy (Vieira et al. 2012;Wang et al. 2012a)
have been used as spatio-temporal features for motion clas-
sification. When considering these previous approaches, it
can be said that methods that use skeleton features tend to
achieve higher classification rates. For example, Goutsu et al.
(2015) proposed a motion model, in which skeleton features
obtained from the whole body are represented as a motion
feature and the motion feature is input to the support vector
machine (SVM) to determine the motion category.

In skeleton-based motion classification, some works have
focused on discovering the most discriminative joints of the
human body. In the method proposed by Ofli et al. (2014),
joint angles between two connected limbs were described
as skeleton features. The most discriminative joints were
detected by exploiting the relative informativeness of all the
joint angles according to their entropy. The sequence of the
most informative joints (SMIJ) implicitly encoded the tem-
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poral dynamics of each motion sequence and was used as the
motion feature. Wei et al. (2013) represented skeleton fea-
tures by difference vectors between three-dimensional (3D)
skeleton joints. A symlet wavelet transform was applied to
derive the trajectories of the difference vectors, and only the
first V wavelet coefficients were retained as motion features
to reduce the noise of the skeleton data. By using the motion
features, an MKL method was then used to determine the
discriminative joints of the human body for each motion
category. In the work of Eweiwi et al. (2014), skeleton fea-
tureswere described by joint positions and velocities given as
vectors in a spherical coordinate system, and by the correla-
tions between positions and velocities represented as a vector
orthogonal to the joint positions and velocities. A temporal
pyramid method was then used to construct the temporal
structure of a motion sequence. Motion features were repre-
sented as sets of histograms, each computed over the motion
sequence for a specific feature and body joint. Partial least
squares (PLS) (Barker and Rayens 2003) was used to weight
the importance of joints by using the motion features, and a
Kernel-PLS-SVM (Rosipal and Trejo 2002) was employed
for classification tasks.

There have also been various approaches that focus on dis-
covering themost discriminative subsets of joints or consider
dividing the human body into several parts. In the work of
Wang et al. (2012b), 3D joint positions and depth data were
used to extract skeleton features composed of relative posi-
tions of pairwise joints and local occupancy pattern (LOP)
features, which are depth statistics around joints. A Fourier
temporal pyramid (FTP) method was used to construct the
temporal structure of motion sequences of skeleton joints.
The conjunctive joint structure of FTP featureswas defined as
an actionlet. A data mining method was used to discover the
most discriminative actionlet for each motion category and
joints were included in the actionlet by evaluating confidence
and ambiguity scores. An MKL method was used to weight
the actionlets. Wang et al. (2013) grouped skeleton joints
derived by a pose estimation algorithm into five body parts.
Skeleton features were described by 2D and 3D positions
of skeleton joints. Contrast mining algorithms (Dong and Li
1999) in the spatial and temporal domain were employed
to detect sets of distinctive co-occurring spatial configura-
tions (poses) and temporal sequences of body parts. Such
co-occurring body parts formed a dictionary. By applying
a bag-of-words approach, motion features were represented
by histograms of the detected spatial-part-sets and temporal-
part-sets, and intersection kernel SVM was employed for
classification tasks. In the work of Evangelidis et al. (2014),
skeleton joints were considered as joint quadruples. Skele-
ton features were composed of relative positions in the joint
quadruples referred to as “skeletal quads”. For each class,
a Gaussian mixture model was trained by using expectation
maximization. The parameters of the model were then used

to extract Fisher scores (Jaakkola et al. 1999) and the con-
catenated scores were used to obtain Fisher vectors (FVs).
A multi-level splitting method was then used to construct
the temporal structure of motion sequences. Motion features
were represented as the concatenation of FVs obtained from
all segments and a multi-class linear SVM was employed
for classification tasks. In this paper, we follow a similar
approach. Compared with Goutsu et al. (2015), our approach
weights and integrates motion features obtained from local
parts of the human body, focusing on discriminative body
parts related to the target motion.

2.2 Linguistic Representation of Motion

Work on constructing intelligent robots and systems through
the conversion of bodily motions into symbolic information
has been conducted in the field of robotics. In Billard et al.
(2006) and Kulic et al. (2009), motions are encoded into
parameters, which are represented discretely as points in the
parameter space and each point is defined as “a motion sym-
bol” via statistical models. On the basis of mimesis theory
(Donald 1991) and mirror neurons (Rizzolatti et al. 2001),
Inamura et al. (2004) proposed a statistical model referred to
as “a mimesis model”. The mimesis model encodes continu-
ous motion patterns as discrete motion symbols by using an
imitation learning framework, and links the recognition and
generation of motion.

As a method that overlaps with concepts in the field of
natural language, the work has been conducted by using sta-
tistical methods for handling large-scale language corpora to
develop a robot language. Sugita and Tani (2005) proposed
a bi-directional conversion method by introducing parame-
ters linking robot behaviors and linguistic structures. This
method created corresponding motions from linguistic rep-
resentations by combining a recurrent neural network with
parametric bias (RNNPB) as a behavioral module with a text
processing module. Ogata et al. (2007) extended this frame-
work and developed a computational method that allows a
humanoid robot to generate motions corresponding to given
linguistic representations, even when the motions are not
included in the training data. However, in these approaches it
was difficult to perform training tasks with a large number of
motions and sentences because themotion and sentencewere
combined by parameters shared by two neural networks.

Takano and Nakamura (2015) have previously proposed a
system of robot language processing that represents human
motions as multiple sentences, by integrating a motion
model, a motion language model and a natural language
model. Additionally, this framework created whole body
motions from sentence commands for a humanoid robot,
and thus may lead to human–robot interaction through natu-
ral language or remote control using a linguistic interface.
Goutsu et al. (2013) also expanded the sentence genera-
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tion of this framework by using a large-scale high-order
N-gram dataset to increase the variation ofwords, an efficient
algorithm to reduce the computational costs of generating
multiple sentences and the conversion of a graph structure
obtained by generated sentences into a confusion network
form (Mangu et al. 2000), which is applied in the field of
speech recognition. These approaches used a HMM/1-NN
framework as themotionmodel. This framework classifies an
input motion symbol into the corresponding category of the
closest motion symbol using the same algorithm as 1-nearest
neighbor (1-NN). Compared with Takano and Nakamura
(2015) and Goutsu et al. (2013), our approach extends the
motion model as described in the next chapter.

In the field of computer vision, automatic video descrip-
tions have attracted attention as a challenging task combining
human actions in video and language. Yao et al. (2015)
and Pan et al. (2016) measured the association relation-
ship between video content and the semantics of attached
sentences in the visual-semantic embedding space and rep-
resented the contextual relationship among the associated
words as the sentence form by using long short-term mem-
ory (LSTM) networks (Hochreiter and Schmidhuber 1997),
which can capture long-term temporal information by map-
ping sequences to sequences. However, the visual context
contained in the video stream contributed largely to the pred-
icate estimation of the generated sentence; human actions
can be identified from the visual context, such as objects
or scenes, without recognizing the actions themselves (e.g.,
“shooting”, “swimming” or “riding” is associatedwith a gun,
pool or horse, respectively) (He et al. 2016). However, when
applying these methods to daily action recognition in the
home, accurate action classification and sentence descrip-
tion become more difficult because objects are limited or
scenes are fixed. In contrast, our approach directly mea-
sures humanmotions,which are represented as a complicated
skeletal structure composed of joints affected by each other,
by using spatio-temporal data about 3D joint positions and
describes subtle differences in the motions as corresponding
sentences (e.g., “open hinged door” and “open sliding door”)
compared with the video-based approaches. In Kojima et al.
(2002), human actions are translated into sentences by select-
ing appropriate predetermined sentence templates and filling
them with syntactic components, such as verbs and objects,
based on the visual confidences in the video. However,
compared with data-driven approaches, this type of rule-
based approach has the disadvantages that the templatesmust
be designed manually and the generated sentences become
fixed expressions. Additionally, when applied to multi-class
motion classification, this approach needs to deepen the hier-
archical structure of concept diagram, and thus it becomes
more difficult to generate natural sentences because the num-
ber of state transitions at branches is increased.

Fig. 1 Overviewof our proposedmodel formotion classification based
on a skeletal structure. This model focuses on different parts of the
human body according to the target motion

3 Motion Classification Focusing on Discriminative
Parts of the Human Body

Figure 1 shows an overview of the motion model. The skele-
ton features are composed of the relative position of marker
joints obtained by inverse kinematics (IK) calculations. Sev-
eral marker joints selected from the skeleton configuration
are connected to derive local skeleton features (LSFs). The
temporal sequences of the LSFs are modeled by a hidden
Markov model (HMM). An FV parameterized by the HMM
(Sun and Nevatia 2013; Goutsu et al. 2015) is used to repre-
sent a motion feature corresponding to each local part. The
motion features of all local parts are weighted and integrated
by simultaneously learning parameters using MKL with an
SVM. Themotionmodel classifies observedmotions into the
most probable categories. In this chapter, we introduce the
LSF, the FV parameterized by the HMM and the MKL with
an SVM in detail.

3.1 Local Skeleton Features

As previously discussed,motion classification using skeleton
features tends to achieve a high classification accuracy. In the
skeleton-basedmotion classification, local body parts related
to a target motion are more effective than the body as a whole
for understanding human motions. A whole-body skeleton
configuration is therefore divided into several parts.

In this paper, we use a combination of the features of
four marker joints, an LSF, as the basic unit. Note that the
number of marker joints in the LSF is determined by Wang
et al. (2012b): in that study, four marker joints discovered
by the data mining method are defined to be a discriminative
actionlet. Here, we intuitively choose 58 LSFs from all the
marker joints for motion classification. Note that these LSFs
are not cross-validated using a dataset, but Evangelidis et al.
(2014) shows that there is not much difference in classifica-
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Fig. 2 Two types of LSF. Left: the LSF is a 12D vector composed
of four skeleton features. Each skeleton feature is composed of the
relative position between marker joint n and the center of the skeleton
configuration. Right: the LSF is an 18D vector composed of six skeleton
features. The number of elements in the upper triangular distancematrix
is six, which is the same as the combination number of four joints. Each
skeleton feature is composed of the relative position of a pair of marker
joints

tion performance by considering the body symmetry among
them. Figure 2 shows two types of LSF. The first type is
a 12-dimensional (12D) vector composed of four skeleton
features (see left side of Fig. 2): Each skeleton feature is a
relative position between marker joint n and the center of the
skeleton configuration at time t , represented as Eq. (1). The
second type is an 18-dimensional (18D) vector composed of
six skeleton features. Six is the number of elements in the
upper triangular distance matrix (see right side of Fig. 2).
Each skeleton feature is a relative position between marker
joint n and marker joint m at time t represented as Eq. (2).

onb(t) = {bon(t)|n = 1, 2, 3, 4} (1)

onm(t) = {bon(t) − bom(t)|n,m = 1, 2, 3, 4; n �= m} (2)

These relative positions can be obtained by IK calculations.
IK calculations have the advantage of obtaining relative posi-
tionswith less noise comparedwith raw data from themotion
sensor.

3.2 Fisher Vector Parameterized by a Hidden Markov
Model

Human motions are composed of spatio-temporal data,
involving complex movements that use several skeleton
joints. It is therefore necessary to classify motions by consid-
ering the spatio-temporal relationships of skeleton features
and perform mapping to a high-dimensional space capa-
ble of richly representing human motion. HMMs, which are
robust to noise and error in temporal patterns, are appropri-
ate for modeling human motion data and the FV-HMM is
a spatio-temporal feature vector derived by a Fisher kernel
(FK), which is a feature extraction method for non-linearly
mapping to a high-dimensional space effective for motion
classification.

An HMM is defined by the following four parameters: a
set of hidden states Q, a state transition matrix A, a set of
emission probability distributions B and a set of initial state
probabilities Π. For convenience, we represent the HMM
parameters by a set λ as

λ = {Q,A,B,Π} (3)

Here, we define P(O|λ) as the likelihood of generating the
motion sequence O = {o(1), o(2), . . . , o(T )} when given
the HMM parameters λ. The optimized calculation is usu-
ally conductedbyusing theBaum–Welch algorithm (a typeof
expectation maximization (EM) algorithm), to determine the
HMM parameters by maximizing the likelihood. This like-
lihood can be actually calculated by the forward–backward
algorithm. Here, the HMMparameters representing a human
motion are referred to as a “motion symbol”. The modeling
of temporal sequences of skeleton joints as motion sym-
bols enables robustness against the variation in the duration
of motions due to individual differences or environmen-
tal noises. Therefore, the motion symbols are extracted by
learning the HMM parameters and are then grouped by
hierarchically-structured clustering for each local part. This
process is conducted to obtain abstract motion patterns from
these symbols. During the clustering process, the clustered
motion symbols are iteratively modeled by the HMM, result-
ing in a tree-structured configuration. The distance between
motion symbols is given by theKullback–Leibler (KL) infor-
mation (Inamura et al. 2004) and the hierarchical structure
is constructed by the Ward method using the KL distance.
Finally, NK sets of motion symbols are obtained as abstract
motion symbols. The hierarchically structured clustering of
motion symbols makes the motion model robust to the dis-
placement of 3D joint positions due to individual differences
or environmental noise.

The derivative of the log-likelihood with respect to λ is
calculated as

FS(O,λ) = ∇λlogP(O|λ)

= ∇λL(O|λ) (4)

where FS(O,λ) is called the Fisher score (FS).As previously
explained, a motion symbol λ is composed of the initial state
probabilities πi , the state transition probabilities ai j and the
emission probabilities (the mean vector μi along with the
variance vector σ i in the case of a Gaussian model). The
derivatives with respect to these parameters are defined as

∇λL(O|λ) =
[
∂L(O|λ)

∂πi
· · · ,

∂L(O|λ)

∂ai j
· · · ,

∂L(O|λ)

∂μi
· · · ,

∂L(O|λ)

∂σ i
· · ·

]T

(i, j = 1, . . . , N ) (5)
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where the dimension numbers of μi , σ i and ot are the same
as those of the corresponding skeleton feature, d. The dimen-
sion number of FS is generally given by (N + N 2 + Nd +
Nd) = N (N + 2d + 1). For more information about the
calculation of these derivatives, refer to Goutsu et al. (2015).
Given a sequence Oi and the set of λk in each local part,
a FV-HMM constructed by combining FS(Oi ,λk) obtained
from each abstract motion symbol λk into a single vector is
defined as

FVHMM (Oi , {λk})
= F−1/2

λ [FS(Oi ,λ1)
T , . . . , FS(Oi ,λNK )T ]T (6)

where Fλ is called the Fisher information matrix (FIM),
which is considered to be a diagonal matrix and normalizes
the Fisher score. Equation (6) means that the FV-HMM is
a normalized deviation vector of HMM parameters between
the abstract motion symbols λk and an input motion symbol.
The FV-HMM is input to the SVM for training and classifi-
cation tasks. In the classification task, the SVM predicts the
motion category. If we select a linear kernel as the kernel
function of the SVM, a FK is calculated by the inner product
of FV-HMMs:

FK (Oi ,O j )

=< FVHMM (Oi , {λk}), FVHMM (O j , {λk}) > (7)

Equations (6) and (7) indicate that the FK represents the
similarity between Oi and Oj measuring FIM as the distance
metric and the spatio-temporal variations are normalized in
metric space.

3.3 Multiple Kernel Learning of Fisher Vector
Representations

As discussed in the previous section, the temporal sequences
of LSFs described in Sect. 3.1 are represented by the FV-
HMMasmotion features. This section introduces the strategy
to improve the classification accuracy by weighting and inte-
grating motion features from all local parts according to a
target motion. The discriminative weights are learnt by the
MKL method to be effective for motion classification. This
method constructs a combined kernel by summing weighted
sub-kernels fromall local parts linearly. The combined kernel
is defined as

FKcombined(Oi ,O j ) =
K∑

k=1

βk FKk(Oi ,O j ) (8)

where βk , which is subject to βk ≥ 0 and
∑K

k=1 βk = 1,
denotes the optimized weight in each sub-kernel and K is the
number of sub-kernels (i.e., the number of local parts). The

MKL method makes sub-kernels corresponding to motion
features of local parts and then the combined kernel is applied
to the SVM strategy. A predicted motion label is therefore
determined by weighting and integrating motion features
from all local parts. Here, Sonnenburg et al. (2006) proposed
the strategy to learn kernel weights βk and SVM parameters
at the same time by iterative SVM learning of a single kernel.
In this paper, we adopt that approach. The combined kernel
can also be designed as an inner product of the global skeleton
features. The global skeleton feature is defined by concate-
natingLSFsweighted to be effective formotion classification
by theMKLmethod and is completely different from a skele-
ton feature from the whole body. For more information about
the MKL, refer to the Appendix.

4 Motion Recognition Generating Multiple
Sentences Associated with Human Motion

We extend the FV-HMM/MLK-SVM motion model
described in the previous chapter to a motion recognition
system that represents human motions as multiple sentences
(Takano and Nakamura 2015). Figure 3 shows an overview
of the motion recognition system. As shown in this figure,
this system is composed of three models: “a motion model”,
“a motion language model” and “a natural language model”.
The motion model converts continuous motion patterns into
discrete motion symbols. The motion language model sta-
tistically represents the association between motion symbols
and words. This model is a three-layer structural model of
“motion symbols”, “latent states” and “words”, and calcu-
lates the probabilities thatwords in the sentence are generated
from motion symbols using the model parameters optimized
by an EM algorithm. The natural language model constructs
network structures that represent the arrangements of words.
For this model, we use a word N-grammodel, in which a spe-
cificword depends on the previous (N− 1) words in theword
sequence. Thismodel calculates the probabilities that a series
of words is continuous. Sentences are generated according
to the likelihood obtained by the motion language model and
the natural language model. In this chapter, we introduce
in detail the motion language model, the natural language
model, and the method of generating sentences associated
with motions.

4.1 Motion Language Model

For simplicity, we regard a motion pattern classified by the
FV-HMM/MKL-SVM in the previous chapter as motion
symbol λ, which is not the same as Eq. (3). The motion
symbols are associated with words by the motion language
model. Figure 4 shows a schematic diagram of this statis-
tical model. The motion language model consists of three
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Fig. 3 Overview of the description of a motion as sentences. The
motion language model represents a relationship between motion sym-
bols and words via latent states as a graph structure. The natural
language model represents the dynamics of language, which means the
order of words in sentences. The integration inference model searches
for the largest likelihood that sentences are generated from a motion
symbol using these model scores

Fig. 4 The motion language model represents the stochastic associ-
ation of morpheme words with motion symbols via latent states. The
motion language is defined by two kinds of parameter: the probability
that a morpheme word is generated by a latent state and the probability
that a latent state is generated by a motion symbol

layers: motion symbols, latent states and words. The nodes
of these layers are related to each other by two kinds of
parameter. One is the probability P(s|λ) that a latent state
s is associated with a motion symbol λ. The other is the
probability P(w|s) that a latent state s generates a word w.
Here, the sets of motion symbols, latent states, and words
are described by {λi |i = 1, . . . , Nλ}, {si |i = 1, . . . , Ns} and
{wi |i = 1, . . . , Nw}, respectively. If the kth training pair is
defined as {λk;wk

1, w
k
2, . . . , w

k
nk }, then this means that the

kth observed motion is recognized as the motion symbol λk

and that the same motion is manually expressed by the sen-
tence wk = {wk

1, . . . , w
k
nk }, where N and nk are the total

number of training pairs and the length of the kth sentence,
respectively.

These parameters of the motion language model are
optimized by an EM algorithm to maximize the objective
function. Here, the objective function represents the sum of
the log likelihood that a motion symbol λk generates a sen-
tence wk, which represents the recognition of the observed
motion. The EM algorithm alternately processes two steps:

the expectation step (E-step) and the maximization step (M-
step). E-steps calculate the distribution of latent states from
the model parameters estimated in the previous M-step. The
distributions of latent states are provided as follows.

P
(
s|λk, wk

i

)
= P

(
wk
i |s, λ, θ

)
P(s|λk, θ)∑Ns

j=1 P
(
wk
i |s j , λk, θ

)
P(s j |λk, θ)

(9)

Here, θ is the set of model parameters estimated by the pre-
vious M-step. The M-step optimizes the model parameters
so as to maximize the sum of the expectation of the log-
likelihood that the motion symbol λk generates the sentence
wk = {wk

1, . . . , w
k
nk }.

P(s|λ) =
∑N

k=1
∑nk

i=1 δ(λ, λk)P
(
s|λk, wk

i

)
∑Ns

j=1

∑N
k=1

∑nk
i=1 δ(λ, λk)P

(
s j |λk, wk

i

) (10)

P(w|s) =
∑N

k=1
∑nk

i=1 δ
(
w,wk

i

)
P

(
s|λk, wk

i

)
∑Nw

j=1

∑N
k=1

∑nk
i=1 δ

(
w j , w

k
i

)
P

(
s j |λk, wk

i

)
(11)

Here, δ(·, ·) is the Kronecker delta. The numerators in
Eqs. (10) and (11) are the frequency that latent state s is gener-
ated frommotion symbol λ and the frequency that latent state
s is generated from word w, respectively. The denominators
in Eqs. (10) and (11) are the frequency of motion symbol λ

in the training pairs and the frequency of latent state s in the
training pairs, respectively. In this way, we optimize model
parameters by alternately performing E-steps and M-steps.

4.2 Natural Language Model

Many kinds of natural language model to represent sentence
structures have been proposed in the community of natu-
ral language processing. In particular, a stochastic model is
advantageous because the natural languagemodel is required
to dealwith large amounts of data. In this paper,weuse aword
N -gram model because the model performs well despite its
simple representation of sentence structure. A word N -gram
model is generally represented as an (N − 1)-order Markov
process. In this process, the occurrence probability of the
i th word wi in a word sequence (w = {w1, w2, . . . , wn})
depends on the previous (N − 1) words. Thus, the word N -
gram probability is defined as follows.

P(wi |w1w2 . . . wi−1) � P(wi |wi−N+1, . . . , wi−1) (12)

In the case of text data, the right-hand side of Eq. (12) is
estimated by the relative frequencies of words.

P(wi |wi−N+1, . . . , wi−1) = C(wi−N+1 . . . wi )

C(wi−N+1 . . . wi−1)
(13)

123



502 Int J Comput Vis (2018) 126:495–514

Fig. 5 The natural language model represents sentence structure as
transitions between two words. A node indicates a word and an edge
indicates a transition from one word to another. The transition from the
word wi to the word w j is represented by the conditional probability
P(w j |wi ). The most probable generated sentence is determined by
means of these transition probabilities

Here, C(wi−N+1 . . . wi ) is the frequency of the set of words
{wi−N+1 . . . wi }. The probability of word sequence w being
generated is continuously calculated by summation of the
transition probabilities derived from Eq. (13) along the
sequence from a start word to an end word.

In the case of a word 2-gram model, sentence struc-
ture is represented by the inter-word transition probability
P(w j |wi ) fromwordwi towordw j and the initial state prob-
ability πwi for a word wi appearing at the start of a sentence.
Figure 5 shows an example of the word 2-gram model. Each
node represents a word, and each edge represents a transi-
tion between words. As shown in this figure, we add a virtual
word “〈s〉” (START) to precede each training sentence and
a virtual word “〈/s〉” (END) to follow. This results in the
following initial state probability.

πwi =
{
1 wi = “〈s〉” (START)
0 wi �= “〈s〉” (START) (14)

4.3 Method of Generating Sentences Associated with
Human Motion

The process of motion recognition can be described as
searching for the largest likelihood that a sentence (sequence
of words) is generated from a motion symbol by the motion
language model and natural language model. The likelihood
that a sentence w is generated from a motion symbol λ is
derived as

w̃ = arg max
∀w

P(w|λ)

= arg max
∀w

n∏
i=1

P(wi |λ) ·
n∏

i=1

P(wi |wi−N+1, . . . , wi−1)

(15)

Here, P(wi |λ) represents the probability of generating a
word wi from a motion symbol, and P(wi | wi−N+1, …,
wi−1) represents the probability of generating a word wi

from a sequence {wi−N+1, . . . , wi−1}. Each probability can
be calculated by the motion language and natural language
models, as described in the previous subsection. Since the
search space ofEq. (15) grows exponentially as the number of
words and sentence length increases, an efficient search algo-
rithm is essential. In this paper, Dijkstra’s algorithm, which
is a type of A* search, is used as an efficient search method
for Eq. (15).

5 Experimental Setup

5.1 Dataset

Weused themotionmodelswith three publicmotiondatasets,
UT-kinect (Xia et al. 2012), UCF-kinect (Ellis et al. 2013)
and HDM05-mocap (Müller et al. 2007) , for motion classi-
fication, and we used the models for multi-class daily motion
classificationwithYNL-mocap, which is our original motion
dataset recorded with multiple infrared cameras in a motion
capture studio. An overview of thesemotion datasets, motion
class names, the number of virtual joints, the number of
motion categories, the number of subjects, the total number
of motions in the dataset and the experimental protocol used
for evaluation is given in Table 1. Additionally, we prepared
a motion and language dataset describing the relationship
between a motion symbol and corresponding sentences to
evaluate the motion recognition systems for sentence gener-
ation. Brief explanations of these datasets are as follows.

5.1.1 UCF-Kinect Dataset

We show the experimental results from this dataset for simple
but similar motion classification using a Kinect sensor. The
length ofmotions ranges from27 to 269 frames, with an aver-
age length of 66.1± 30.1 frames. This dataset has 16 motion
categories performed five times by 16 subjects. Of the total of
1280 motion samples contained in this dataset, 70% of sam-
ples were used for training and the rest for testing under the
cross-subject (CrSub) setting (see Table 1). Figure 6 shows
the placement of 20 virtual joints for the Kinect. The sets of
numbers in the bottom of the figure indicate 58 LSFs. These
numbers correspond to the joint numbers on the silhouettes.
However, the skeletal structure consists of 15 virtual joints,
and skeleton features related to the lack of joints (1, 7, 11,
15 and 19) are converted to zero.

5.1.2 UT-Kinect Dataset

We used this dataset captured by a Kinect sensor for
motion classification in indoor settings. This dataset includes
human–object interactions in some motions. The motion
samples are also captured from the right, front or back view.
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Fig. 6 Placement of 20 virtual joints when using the Kinect sensor.
The sets of numbers in the bottom of the figure indicate 58 LSFs. These
numbers correspond to the marker numbers on the silhouette

For more contents, the durations of motions vary from 5 to
110 frames across the whole dataset. The average and stan-
dard deviation formotion categories are 29.5 and 13.7 frames
respectively. Thus, the variation in motion duration is much
larger than in the above dataset. As shown by Table 1, there
are 10 motion categories performed twice by 10 subjects in
the dataset. This dataset includes 200motion samples in total.
Weused seven subjects (140motion samples) for training and
three subjects (60 motion samples) for testing to evaluate the
CrSub setting. The list of 58 LSFs is shown in Fig. 6.

5.1.3 HDM05-Mocap Dataset

We conducted our experiments on this dataset for motion
classification at high frame rates. This dataset is captured by
motion capture sensors that acquire more precise data than
the Kinect data. The frame rate is 120 fps instead of 30 fps as
in the preceding two datasets. We followed the same exper-
imental protocol as in Chaudhry et al. (2013) with the same
11 motions performed by five subjects with various numbers
of trials, resulting in 251 motion samples in total: three sub-
jects (142motion samples) for training and two subjects (109
motion samples) for testing. Although the number of virtual
joints is 31 in this skeletal structure, we associated 20 joints
in Fig. 6 with their corresponding joints and the list of 58
LSFs is shown at the bottom of the figure.

5.1.4 YNL-Mocap Dataset

We used this dataset captured in a motion capture studio for
multi-class daily motion classifications. An optical motion
capture systemmeasures the positions of 34markers attached
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Table 2 125 Motion categories
Nos. Label Nos. Label Nos. Label

1 avoid_big 43 lift_from_ground 85 stir

2 avoid_small 44 look_for 86 stomp

3 beckon 45 mobile_phone 87 stumble_ground

4 bow 46 mow 88 stumble_stair

5 bow_deep 47 open_hinged_door 89 sweep_broom

6 broil 48 open_sliding_door 90 swing_badminton

7 carry_bag_on_back 49 pat_head 91 swing_table_tennis

8 carry_big 50 pick_up 92 swing_tennis

9 carry_small 51 play_bugle 93 take_off_clothes

10 clap 52 play_flute 94 take_off_shirt

11 climb 53 play_guitar 95 take_off_shoes

12 close_hinged_door 54 play_koto 96 take_picture

13 close_sliding_door 55 play_violin 97 take_sitting

14 close_umbrella 56 pour_sitting 98 take_standing

15 comb 57 pour_standing 99 telephone

16 cough 58 pray 100 throw_away

17 cross_legs 59 pull_drawer 101 toss_volleyball

18 crouch 60 pull_rope 102 turn_around_left

19 cut 61 pull_up 103 turn_around_right

20 down_stair 62 push_into 104 turn_face

21 drink 63 put_on_shoes 105 up_stair

22 drive_car 64 raise_left_hand 106 walk_fast

23 drop_head 65 raise_right_hand 107 walk_normal

24 exit_hinged_door 66 read_book 108 walk_slow

25 exit_sliding_door 67 read_newspaper 109 wash_dishes

26 fall_down_left 68 row_boat 110 wash_face

27 fall_down_right 69 run_fast 111 wash_hair_sit

28 fan 70 run_normal 112 watch_binoculars

29 fasten_shoelaces 71 run_slow 113 watch_telescope

30 fire_gun 72 scratch_head 114 wave_hands

31 fire_pistol 73 senobi 115 wave_left_hand

32 fold_clothes 74 shake_hands 116 wave_left_hand_small

33 gargle 75 sit_chair 117 wave_right_hand

34 grope 76 sit_chair_to_stand 118 wave_right_hand_small

35 hold 77 sit_ground 119 wear_clothes

36 hold_up_arms 78 sit_to_stand 120 wear_shirt

37 jump_down 79 skip 121 wear_trousers

38 jump_forward 80 slap 122 wipe_desk

39 jump_normal 81 smoke 123 wipe_window

40 jump_up 82 sneeze 124 write

41 knock 83 stand_reading 125 write_blackboard

42 lift_from_desk 84 step_normal

to the subject by using multiple infrared cameras. Note that
there are 125motion categories in this dataset. Table 2 shows
the list of these motions and Fig. 8 shows 18 examples
selected from them. Three subjects perform each motion two

or three times. We used 748 and 375 motion instances for
training and validation respectively, when not applying the
CrSub setting. Figure 7 shows the locations of the attached
markers which follow the Helen Hayes marker placement
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Fig. 7 For the optical motion capture system, 34 markers are attached
to a human body according to the Helen Hayes marker placement
scheme. The sets of numbers in the bottom of the figure indicate 58
LSFs. These numbers correspond to the marker numbers on the silhou-
ettes

Fig. 8 Examples of captured motion in the YNL-mocap dataset

scheme. The sets of numbers in the bottom of the figure
indicate 58 LSFs. These numbers correspond to the marker
numbers on the silhouettes. The relative position between
markers can be obtained using IK calculations.

5.1.5 Motion and Language Dataset

Weused this dataset ofmotion and languagepairs to construct
the motion language model and natural language model for
sentence generation. Each human motion was encoded as a
motion symbol by the proposed motion model. In the experi-
ment, 748motion symbols were collected in theYNL-mocap
dataset (Nλ = 748). Several sentences describing the cap-

Fig. 9 Examples of training data in the motion and language dataset.
These sentences are manually attached to each motion

tured motion were attached to each motion symbol. There
were 624 different sentences with 218 words used among all
the sentences (N = 624 and Nw = 218). Figure 9 shows
six examples of this training data. As shown in this figure,
English sentences were manually attached to a motion sym-
bol. Here, “〈s〉” and “〈/s〉” indicate the beginning and end of
a sentence, respectively.

5.2 Other Settings

Motion model Fifteen virtual joints were used for the
UCF-kinect dataset, 20 virtual joints for the UT-kinect and
HDM05-mocap datasets and 34 markers for YNL-mocap
dataset. We used two types of LSF and represent them as
12D and 18D vectors. The number of LSFs was 58, but was
57 for the UCF-kinect dataset due to the lack of joints. We
empirically set the number of hidden states, N , to 10 for the
Kinect datasets and 20 for theMocap dataset. This is because
the frequency of capturing motion data is different. We also
decided that NK was around 10. A linear kernel was selected
as the kernel function of the SVM because this gave the best
performance for motion classification.
Motion language model The number of latent states, Ns , in
themotion languagemodel was set to 10,000 (Ns = 10, 000)
and the iterative computation by the EM algorithm in the
training was performed 10 times.
Natural language modelWe used 4-grams as the natural lan-
guage model.

6 Experimental Results

6.1 Several Baseline Comparisons

6.1.1 Effectiveness of Proposed Motion Model

We evaluated the effect of two types of LSF on the UT-
kinect, UCF-kinect and HDM05-mocap datasets. Table 3
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Table 3 Comparison of
classification rates (%) between
FV-HMM/SVM and
FV-HMM/MKL-SVM on the
UT-kinect, UCF-kinect and
HDM05-mocap datasets

Motion model Accuracy

UT-kinect UCF-kinect HDM05-mocap

FV-HMM/SVM (Goutsu et al. 2015) 80.8 59.5 62.4

FV-HMM/MKL-SVM (12D) 98.3 79.3 88.1

FV-HMM/MKL-SVM (18D) 98.3 80.3 89.1

Bold values indicate the results of our approach

shows a comparison of the classification accuracies between
12D and 18D vectors in the proposed motion model. As
shown in this table, the 18D vector was slightly higher for
all datasets. This may be because a higher-dimensional vec-
tor describes more precise motion features. However, this
comparison confirmed that the 12D vector was sufficient to
represent skeleton features at the same level because there
was little difference between the performance of the 12D
and 18D vectors. This table also compares the proposed
motionmodel (FV-HMM/MKL-SVM) and themotionmodel
proposed in Goutsu et al. (2015) (FV-HMM/SVM). In FV-
HMM/SVM, the skeleton features obtained from the whole
body are represented as a motion feature (FV-HMM), and
then the motion feature is input to SVM to classify the
motion category; amotion feature is generated from amotion
pattern. In contrast, in FV-HMM/MKL-SVM, motion fea-
tures obtained from local parts using the MKL method are
weighted and integrated, focusing on discriminative body
parts related to the target motion. This comparison confirmed
that our approaches significantly outperformed the motion
model (Goutsu et al. 2015). Thus, weighting and integrat-
ing motion features from local parts according to a target
motion improves the classification accuracy. Additionally,
the classification accuracies of our approach were increased,
especially for the HDM05-mocap dataset. This means that
our approach is more effective for noiseless, high-frequency
data captured using motion capture sensors.

Figures 10, 11 and 12 show the confusion matrices of
our approach for the UCF-kinect, UT-kinect and HDM05-
mocap datasets, respectively. Each row corresponds to an
actual class and each column denotes the predicted class.
UCF-kinect dataset The most difficult motions to clas-
sify were “stepfront” motions, which were confused with
“stepback” and “stepleft”. Similarly, “vault” motions were
confused with “run” motions, and “step” and “hop” motions
were misclassified each other. These errors occurred because
the motions were partially similar.
UT-kinect dataset We obtained 100% classification accura-
cies in almost all categories except for “sitDown” motions.
This result means that our approach is effective for clas-
sifying motions, including human–object interactions with
variations in motion duration. This might be because motion
features represented as the FV-HMM have transition prop-
erties between frames and thus are robust to the duration
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HMM/MKL-SVM (18D) on the UT-kinect dataset in CrSub evaluation.
The average classification rate is 98.3%

variations. Moreover, the MKL method extracts the discrim-
inative parts of human body related to the human–object
interactions and this leads to proper classifications of target
motions.
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HDM05-mocap dataset The most difficult motions to clas-
sify were “Sneak (Sn)” motions, which were confused with
“HopBothLegs (HBL)” and “Jog (J)”. Similarly, “ThrowBas-
ketball (TB)”motions were confused with “GrabHigh (GH)”
motions. These mistakes occurred because the motions were
partially similar.

Finally, we visualized theweights of local parts learned by
the MKL method as a bar graph, and the top three weighted
parts related to a target motion in the skeleton configuration
for all motion categories (Fig. 13). The three discriminative
parts, which correspond to the LSFswith the first, second and
third highest weights, are shown in red. The color intensity
indicates the strength of the weight.
UCF-kinect dataset Figure 13a shows that the “balance”,
“hop” and “kick” motions have discriminative parts in both
legs, and “punch” motions also have discriminative parts
in both arms. These results nearly match human intuition.
For “stepleft” and “twistleft”, the discriminative parts for
both motions occurred strongly in the left leg. Similarly,
“stepright” and “twistright” motions were weighted strongly
on the right leg.
UT-kinect dataset Figure 13b, shows that “waveHands” and
“clapHands” motions have discriminative parts in both arms.
The “walk” motions also have discriminative parts in both
legs. These results nearly match human intuition. Addition-
ally, “sitDown” motions were weighted strongly on the right
hand because most subjects touch the chair with their right
hand when sitting. Both arms are often used for “pickUp”,
which is picking up a box from the floor, and thus both arms
were weighted.
HDM05-mocap dataset Figure 13c shows the weighting
result. “DepositFloor (DF)” is the motion of depositing an
item on the floor, and the discriminative parts occurred in

both arms because the boxwas heldwith both hands. “Elbow-
ToKnee (ETK)” is an exercise startingwith the right elbow to
the left knee and the discriminative parts occurred in both the
right arm and left leg. “GrabHigh (GH)” was weighted on the
right arm because most subjects grab an item from the shelf
with the right arm. For “HopBothLegs (HBL)” and “Squat
(Sq)”, a swingingmotionmight be emphasized strongly. “Jog
(J)” is jogging on the spot, and thismay bewhy theweighting
was put on both arms rather than both legs.

6.1.2 Comparison to the State-of-the-Art Methods

We compared our approach with state-of-the-art methods for
the UCF-kinect, UT-kinect and HDM05-mocap datasets.
UCF-kinect datasetOur approach achieved an overall classi-
fication accuracy of 80.3% by using FV-HMM/MKL-SVM
(18D) in Table 4. Here, SHMM is a standard HMM classifier
where a set of HMMs has been trainedwith the Baum–Welch
algorithm and DHMM is the discriminative HMM classi-
fier jointly estimating the optimal state path and learning the
model parameters. As shown in this table, our classification
accuracy was better than these two approaches, but lower
than that in Presti et al. (2015) and Slama et al. (2015). How-
ever, the performance of our approach was superior to Slama
et al. (2015) for theUT-kinect dataset (see Table 5). Thus, our
approach is disadvantageous for this dataset. In comparison
with Presti et al. (2015), a 4-fold cross-validationmethodwas
used in the experimental protocol. In this method, a whole
dataset is randomly split into four sub-datasets. Of the four
sub-datasets, a single sub-dataset is used as the validation
data, and the rest for training. The cross-validation process is
then repeated four times, with each of the sub-datasets used
once as the validation data. The average accuracy of the four
splits on 10 runs was reported in Presti et al. (2015). In our
experiments, we completely separated 16 subjects into the
training and test samples. This CrSub evaluation makes clas-
sification more difficult because there are variations in the
motions performed by different subjects.
UT-kinect dataset Table 5 shows that our approach achieved
an overall classification accuracy of 98.3%, exceeding the
best state-of-the-art method proposed in Devanne et al.
(2013). As described in Sects. 5.1.2 and 6.1.1, the UT-kinect
dataset contains human–object interactions in indoor settings
and has a larger difference in the length of motions for each
category. Our approach is valid for such datasets using the
motion features (FV-HMM) and the body weighting method
(MKL).
HDM05-mocap dataset The classification accuracies are
compared in Table 6. We followed the same experimental
setup as in Ofli et al. (2014) and Chaudhry et al. (2013).
As shown in this table, our best classification accuracy
was 89.1% obtained with FV-HMM/MKL-SVM (18D). This
result was better than the previous approach in Ofli et al.
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Fig. 13 The discriminative
weighted graph of each motion
category and the most weighted
parts of the human body related
to target motions. Note that the
three discriminative parts, which
correspond to the LSFs with the
first, second and third highest
weights, are shown in red. The
color intensity indicates the
strength of the weight. (a)
UCF-kinect: 16 motion classes,
15 virtual joints, 57 LSFs. (b)
UT-kinect: 10 motion classes,
20 virtual joints, 58 LSFs. (c)
HDM05-mocap: 11 motion
classes, 20 virtual joints, 58
LSFs

(a)

(b)

(c)
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Table 4 Comparison of classification rates (%)with the state-of-the-art
approaches on the UCF-kinect dataset

Method Accuracy

SHMM (joints) 56.8

DHMM (joints) 60.1

FV-HMM/MKL-SVM (12D) 79.3

FV-HMM/MKL-SVM (18D) 80.3

DHMM-SL (hankelets) (Presti et al. 2015)a 97.7

Grassmannian representation (Slama et al. 2015)b 97.9

Bold values indicate the results of our approach
a Fourfold cross-validation
b 70% of data used for training, the rest for testing

Table 5 Comparison of classification rates (%)with the state-of-the-art
approaches on the UT-kinect dataset

Method Accuracy

Multi-level HDP-HMM (Raman and Maybank 2015)a 83.1

Grassmannian representation (Slama et al. 2015)b 88.5

Histogram of 3D Joints (Xia et al. 2012)b 90.9

Motion trajectory representation (Devanne et al. 2013)b 91.5

FV-HMM/MKL-SVM (12D) 98.3

FV-HMM/MKL-SVM (18D) 98.3

Bold values indicate the results of our approach
a 60% of data used for training, the rest for testing
b Leave-one-out cross-validation

Table 6 Comparison of classification rates (%)with the state-of-the-art
approaches on the HDM05-mocap dataset

Method Accuracy

Sequence of most informative joints (Ofli et al. 2014) 84.4

FV-HMM/MKL-SVM (12D) 88.1

FV-HMM/MKL-SVM (18D) 89.1

Bio-inspired motion representation (Chaudhry et al. 2013) 98.2

Bold values indicate the results of our approach

(2014). The main difference with Ofli et al. (2014) was that
our approach weighted for body parts composed of several
skeleton joints and found the discriminative parts instead of
seeking the most informative joints. However, our approach
had poor accuracy compared with Chaudhry et al. (2013).
Comparing the results for the UCF-kinect and UT-kinect
datasets, the classification performance of our approach
improved as the variation in motion duration increased.

6.2 Multi-class Daily Motion Classification

We evaluated the proposed motion model by applying it to
multi-class motion classification. The motion models com-
pared were HMM/1-NN (Takano and Nakamura 2015) and
FV-HMM/MKL-SVM (18D). Table 7 shows the comparison

Table 7 Comparison of average classification rates (%) and average
BLEU scores

Motion model Accuracy BLEU

CrSub setting Non-CrSub setting

HMM/1-NN (Takano
and Nakamura 2015)

10.4 71.5 0.802

FV-HMM/MKL-SVM
(18D)

13.1 81.1 0.814

Bold values indicate the results of our approach

Fig. 14 Confusion matrix of the 125 motion classes for the FV-
HMM/MKL-SVM (18D) on the YNL-mocap dataset in non cross-
subject evaluation. The average classification rate is 81.1%

of classification accuracies between thesemodels. The values
in the table are the average classification rates for all motion
categories. The experiments were conducted using both
CrSub and Non-CrSub settings. As shown in this table, the
average classification rate of FV-HMM/MKL-SVM (18D)
was higher than Takano and Nakamura (2015) for both set-
tings. Additionally, the average classification rates with the
CrSub setting were relatively low. This might be because the
subjects performed the samemotion in variousways and such
motion classifications were difficult. Note that the average
classification rate of FV-HMM/MKL-SVM (18D) reached
81.1%with the Non-CrSub setting. Figure 14 shows the con-
fusion matrix of this motion model. As shown in this figure,
the classification rates were high in almost all motion cate-
gories. This means that our approach could also be usefully
adopted for multi-class daily motion classifications for one
specific person in a living space. This achievement might
be because the combination of discriminative parts from
the skeleton configuration expands the capacity to represent
humanmotion. Additionally, the dailymotions have different
body-part interactions with objects in the surrounding envi-
ronment and, therefore, might be easier to classify by using
local parts of the human body.
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Fig. 15 Sentences corresponding to each motion are generated by the motion language model and natural language model. Three sentences
corresponding to a motion are shown in the order of the likelihood that the sentence is generated from the motion

6.3 Sentence Description of Daily Human Motion

We evaluated the motion recognition system that gener-
ates multiple sentences associated with human motion. The
motion models compared were HMM/1-NN (Takano and
Nakamura 2015) and FV-HMM/MKL-SVM (18D).We used
the BiLingual Evaluation Understudy (BLEU) score as the
evaluation of generated sentences. The BLEU score repre-
sents the similarity between sentences by calculating the
matching rate of N-grams. In this experiment, we calculated
the similarities between sentences generated by the motion
recognition system and sentences attached tomotion patterns

in the dataset for evaluation tasks. Here, the numbers of gen-
erated sentences and attached sentences were 10 and 2 or 3
respectively. The BLEU scores were calculated for all the
pairs of generated sentences and attached sentences. Table 7
shows the comparison of the average BLEU scores for above
two models. As shown in this table, the average BLEU score
of FV-HMM/MKL-SVM (18D) was higher than Takano and
Nakamura (2015).

Figure 15 shows the sentences associated with motions
in FV-HMM/MKL-SVM (18D). As shown in this figure, the
generated sentences with the three highest likelihoods were
displayed as candidate sentence descriptions. For example,
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the sentences associatedwith the “drink”motion that have the
highest likelihoodswere “a player drinks”, “a student drinks”
and “a player runs”. Comparing these sentences with the
training data shown in Fig. 9 indicates that human motions
are described by appropriate sentences in accordance with
the probabilities that the motion language model generates
the sets of words corresponding to “a player drinks” and the
probabilities that the natural language model generates these
sentences. Therefore, the generated sentences were seman-
tically and syntactically appropriate for the description of
target motions.

7 Conclusion

In this paper, we proposed a motion model that focuses on
discriminative parts of the human body according to a tar-
get motion to classify human motions into categories using
various datasets. We applied this model to multi-class daily
motion classification for more realistic situations. We also
combined the motion model with a motion recognition sys-
tem that generates multiple sentences associated with human
motion. In our experiments, four datasets were used to inves-
tigate the availability of the motion models: UCF-kinect,
UT-kinect and HDM05-mocap datasets for various motion
classifications and the YNL-mocap dataset, which is our
motion capture dataset obtained by multiple infrared cam-
eras in a studio for multi-class daily motion classification.
All datasets provide known beginnings and ends for each
movement. Additionally, we prepared a dataset containing
motion and language pairs for sentence generation to evalu-
ate the motion recognition systems. The conclusions of this
paper can be summarized as follows.

1. In the motion model, an LSF is composed of relative
positions between pairwise marker joints. Motion fea-
tures were represented by FV-HMMs for all LSFs, and
then weighted and integrated by an MKL method. The
motion classifications showed that the proposed motion
model was better than the state-of-the-art methods for
specific datasets in indoor settings. This means that the
design of our motion model is effective for classifying
motions, including human–object interactions with vari-
ations in motion duration, such as daily human motions.
Additionally, our approach visualized the discriminative
parts of the human body related to a targetmotion and can
provide clues to analyze human motions more precisely.

2. We actually investigated the classification accuracy for
multi-class daily motions. The results showed that the
average classification rate of the proposed motion model
was higher than the previous motion model and reached
81.1% with the non CrSub setting. This means that our
approach could also be usefully adopted for the classifi-

cation of multi-class daily motions of one specific person
in a living space. The achievement of a high classification
rate might be because the combination of discriminative
parts from the skeleton configuration expands the capac-
ity to represent human motion. Daily motions also have
different body-part interactions with objects in the sur-
rounding environment and, therefore, it might be easier
to discriminate by using local parts of the human body.
However, it is still difficult to classify human motions
targeted atmany and unspecified persons because of indi-
vidual differences.

3. The motion recognition system represented the associa-
tion between motions encoded in the motion model and
common words, and then constructed network structures
that represent the arrangement of words for sentence
generation. The comparison results showed that the sen-
tence generated by the proposed motion model was the
most appropriate semantically and syntactically for the
description of target motions. This is because the per-
formance in sentence description was directly correlated
with the classification accuracy of the motion model. It
was also confirmed that human motions and language
were semantically connected with each other and that
linguistic representationswere constructed by themotion
recognition system to describe humanmotion in syntactic
structures.

Our approach can be extended to an advanced framework
that performs re-learning of the weight parameters in the
proposedmotionmodel by adopting a feed-back system from
the generated sentences. This extension would lead to higher
accuracy of the motion recognition system.

However, this system used only human motion data for
sentence description. The objects that the motion was acting
on and the subjects performing the motion were associated
with the motion data. Sentences were structured with the
most probable nouns of a motion and corresponding objects
and a subject using statistical models. Several motions were
actually described as correct sentences including the nouns
obtained just from the motion data in the experiments. How-
ever, this system cannot be used for the situations where it
is difficult to identify the objects and the subjects from the
motions. The acquisition of other modal data, such as color
images capturing objects, subjects or scenes, is required to
improve the generation of sentences from motions.

Moreover, this system handles only a small dataset of
motions and sentences, and lacks scalability. Research on
motion recognition has difficulty classifying human motions
performed by various subjects into their relevant categories
because of individual differences. This is a critical problem in
motion recognition because the motion patterns in the same
category are differentiated.We need to collect a large amount
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of motion data from numerous performers and the relevant
sentences.

The segmentation of human motions is also a technical
issue in the process of motion recognition. We used the
datasets in which human motions are manually segmented
in the experiments. It is possible to segment all the human
motion data in small datasets manually, whereas manual seg-
mentation may be impractical for large-scale motion data.
There are two segmentation approaches. One approach is
to use the crowdsourcing framework, where users are asked
to detect the boundaries of human motions and collect the
motion segments. Another approach is to adopt automatic
or unsupervised segmentation methods. These methods are
classified as those based on finding points of change in a
motion sequence and on grouping a motion sequence into
several chunks based on their similarities. We need to inte-
grate each segmentation method into the motion recognition
system.
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Appendix: Multiple Kernel Learning

Multiple kernel learning (MKL) is a discriminative classifier
that extends the support vector machine (SVM) to classifica-
tion. In this process, a discriminant hyperplane is represented
by weighting and integrating induced features obtained by
applying input data to multiple mapping functions. In other
words, the discriminant hyperplane is formulated as follows.

f (x) =
K∑

m=1

< w′
m,Φm(x) > + b (16)

where Φm is defined to be a mapping function that extracts a
feature vector from input data. K is the number of mapping
functions. Generally, x is projected to a high-dimensional
space by Φm . Note that the discriminant hyperplane is deter-
mined by maximizing the margin in the same way as the
SVM. The discriminative classifier can, therefore, be trained
by solving the following quadratic optimization problem.

min
1

2

(
K∑

m=1

||wk ||2
)2

+ C
N∑
i=1

ξi (17)

subject to

ξi ≥ 0,

yi

(
K∑

m=1

〈wm,Φm(xm)〉 + b

)
≥ 1 − ξi , ∀i = 1, . . . , N

(18)

where C is a predefined positive trade-off parameter for tun-
ing between model simplicity and classification error, ξi is
the vector of slack variables, and b is the bias term of the
discriminant hyperplane. Note that the solution can be writ-
ten as wm = ηmw′

m with ηm ≥ 0 and
∑K

m=1 ηm = 1. In the
case of K = 1, the above optimization problem is equiva-
lent to the linear SVM. Instead of solving this optimization
problem directly, the Lagrangian dual function enables us to
obtain the following dual formulation:

min γ ≥ 1

2

N∑
i=1

N∑
j=1

αiα j yi y j km(xi , x j ) −
N∑
i=1

αi

= sm(x), ∀m = 1, . . . , K (19)

subject to

0 ≤ αi ≤ C,

N∑
i=1

αi yi = 0 (20)

Additionally, a combined kernel is represented by integrating
several sub-kernels linearly as follows.

k(xi , x j ) =
K∑

m=1

ηmkm(xi , x j )

=
K∑

m=1

ηm〈Φm(xi ),Φm(x j )〉 (21)

Note that there are several possible kernel functions, such as
a linear kernel, polynomial kernel and Gaussian kernel. The
above equation uses the linear kernel, which calculates an
inner product of mapping functions.

By deforming Eq. (16), the discriminant function can be
rewritten as

f (x) =
K∑

m=1

ηm

N∑
i=1

αi yi km(xi , x) + b (22)

Sub-kernel weights ηm and SVM parameters, α and b, are
optimized at the same time. More precisely, the optimized
parameters are determined by iterative learning, fixing either
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ηm or α and b alternately, to maximize the evaluation func-
tion.

K∑
m=1

ηmsm(x) (23)
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