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Abstract Video object codiscovery can leverage the weak
semantic constraint implied by sentences that describe the
video content. Our codiscovery method, like other object
codetection techniques, does not employ any pretrained
object models or detectors. Unlike most prior work that
focuses on codetecting large objects which are usually salient
both in size and appearance, our method can discover small
or medium sized objects as well as ones that may be occluded
for part of the video. More importantly, our method can
codiscover multiple object instances of different classes
within a single video clip. Although the semantic informa-
tion employed is usually simple andweak, it can greatly boost
performance by constraining the hypothesized object loca-
tions. Experiments show promising results on three datasets:
an average IoU score of 0.423 on a new dataset with 15 object
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classes, an average IoU score of 0.373 on a subset of CAD-
120 with 5 object classes, and an average IoU score of 0.358
on a subset ofMPII-Cookingwith 7 object classes. Our result
on this subset of MPII-Cooking improves upon those of the
previous state-of-the-art methods by significant margins.
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1 Introduction

We address the problem of video object codiscovery: nam-
ing and localizing novel objects in a set of videos, by placing
bounding boxes around those objects,without any pretrained
object detectors. This problem is essentially one of video
object codetection: given a set of videos that contain instances
of a common object class, locate those instances simultane-
ously. However, ourwork differs frommost prior codetection
work in two crucial ways. First, our method can codetect
small or medium sized objects, as well as ones that are
occluded for part of the video. Second, it can codetect multi-
ple object instances of different classes both within a single
video clip and across a set of video clips. Thus, following
Srikantha and Gall (2014), we call our task codiscovery, to
distinguish it from approaches that are only able to codetect
a single large salient object per image or video as well as to
distinguish it from approaches that are only able to codetect a
single object class across a codetection set. Our approach is a
form of weakly supervised learning, where hidden structure
is inferred from weakly labeled data.

Object codetection with a single class is typically
approached by selecting one out of many object proposals
per image or frame that maximizes a combination of the con-
fidence scores associated with the selected proposals and the
similarity scores between proposal pairs (Tang et al. 2014).
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Fig. 1 Object proposal confidence and saliency scores for a sample
frame from our new dataset. Left the original input video frame. Mid-
dle several proposals and associated confidence scores produced by the
method of Arbelaez et al. (2014). Note that the red boxes, which do not
correspond to objects, let alone salient ones, all have higher scores than
thegreen box,which does denote a salient object.Right the saliencymap

output by the saliency detection method of Jiang et al. (2015), currently
the highest ranking method on the MIT saliency benchmark (Bylinskii
et al. 2012). Note that the cooler is not highlighted as salient. Using
these scores as part of the scoring function can drive the codetection
process to produce undesired results (Color figure online)

The confidence score indicates how likely an image region
corresponds to an object, while the similarity score biases the
process to codetect instances with similar appearance. Since
codetection is a process of ambiguity resolution, it is gener-
ally more difficult to codetect objects from fewer videos than
from more.

The confidence score of a proposal can sometimes be
a poor indicator of whether a proposal denotes an object,
especially when objects are occluded, the lighting is poor, or
motion blur exists (e.g., Fig. 1). Salient objects can have low
confidence score while nonsalient objects or image regions
that do not correspond to objects can have high confidence
score. Thus our scoring function does not use the confidence
scores produced by the proposal generation mechanism.
Instead, we avail ourselves of a different source of constraint
on the codiscovery problem. In videos depicting human inter-
action with objects to be codiscovered, descriptions of such
activity can impart weak spatial or motion constraint either
on a single object or among multiple objects of interest. For
example, if the video depicts a “pick up” event, some object
should have an upward displacement during this process,
which should be detectable even if it is small. This motion
constraint will reliably differentiate the object which is being
picked up from other stationary background objects. It is
weak because itmight not totally resolve the ambiguity; other
image regions might satisfy this constraint, perhaps due to
noise. Similarly, if we know that object A is to the left of
object B, then the detection search for object A will weakly
affect the detection search for object B, and vice versa. To this
end, we extract spatio-temporal constraints from sentences
that describe the videos and then impose these constraints
on the codiscovery process to find the collections of objects
that best satisfy these constraints and that are similar within
each object class. Even though the constraints implied by a
single sentence are usually weak, when accumulated across a
set of videos and sentences, they together will greatly prune
the detection search space. We call this process sentence
directed video object codiscovery. It can be viewed as the

inverse of video captioning/description (Barbu et al. 2012;
Das et al. 2013;Guadarrama et al. 2013;Rohrbach et al. 2014;
Venugopalan et al. 2015; Yu et al. 2015, 2016) where object
evidence (in the form of detections or other visual features)
is first produced by pretrained detectors and then sentences
are generated given the object appearance and movement.

Our sentence directed codiscovery process produces
instances of multiple object classes at a time by its very
nature. The sentence we use to describe a video usually con-
tains multiple nouns referring to multiple object instances of
different classes. The sentence semantics captures the spatio-
temporal relationships between these objects. As a result,
the codiscovery of one object class affects that of the oth-
ers and vice versa. In contrast, as we will see in Sect. 2,
all prior codetection methods, whether for images or video,
codetect only one common object class at a time: differ-
ent object classes are codetected independently. Each time
they output a single object detection of the same class for
each video clip. To the best of our knowledge, our work is
the first to codiscover multiple object classes, both in one
video clip and across multiple video clips, simultaneously
(Fig. 2).

Generally speaking, we extract a set of predicates from
each sentence and formulate each predicate around a set
of primitive functions. The predicates may be verbs (e.g.,
carried and rotated), spatial-relation prepositions (e.g.,
leftOf and above), motion prepositions (e.g., awayFrom
and towards), or adverbs (e.g., quickly and slowly). The
sentential predicates are applied to the candidate object pro-
posals as arguments, allowing an overall predicate score to be
computed that indicates howwell these candidate object pro-
posals satisfy the sentence semantics. We add this predicate
score into the codiscovery framework, on top of the origi-
nal similarity score, to guide the optimization. To the best of
our knowledge, this is the first work that uses sentences to
guide generic video object codiscovery. To summarize, our
approach differs from prior codetection work (Sect. 2) in the
following ways:
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Fig. 2 Top: Single-class codetection performed by prior work. Given
an object class, a subset of videos is defined for that class and codetec-
tion is performed on that class. Object instances of two different classes
(e.g., bread and grater) are codetected independently. Bottom: Simul-
taneous multi-class codiscovery performed by our approach. The two
subsets of videos can be pooled together and the object instances of the

two classes can be codiscovered simultaneously. Note that such pooling
allows two additional bread instances in the grater video subset to also
be codiscovered due to their spatial relationship with the grater, even
though they are not involved in the human activity of seasoning bread
that is used by Srikantha and Gall (2014) to codiscover bread

(a) Our method can codiscover small or medium sized non-
salient objects which can be located anywhere in the
field of view.

(b) Our method can codiscover multiple objects simulta-
neously, both multiple instances and classes within a
single video and multiple classes across a set of videos.
These objects can be either moving in the foreground or
stationary in the background.

(c) Our method leverages sentence semantics to help codis-
covery.

We evaluated our approach on three different datasets.
The first is a new dataset that contains 15 distinct object
classes and 150 video clips with a total of 12,509 frames.
The second is a subset of CAD-120 (Koppula et al. 2013), a
dataset originally intended for activity recognition. We con-
structed the subset by selecting videos that contain multiple
object instances of interest, to demonstrate our capability of
simultaneousmulti-class object codiscovery. The subset con-
tains 5 distinct object classes and 75 video clipswith a total of
8854 frames. The last is a subset ofMPII-Cooking (Rohrbach
et al. 2012), the most challenging dataset used in Srikantha
and Gall (2014, 2017). The subset contains 7 distinct object

classes and 233 video clips with a total of 70,259 frames. On
this dataset, we conducted an apples-to-apples comparison
of our method with Prest et al. (2012) and Srikantha and Gall
(2014, 2017), and show that our method outperforms these
prior methods by significant margins. Our approach achieves
an average IoU (Intersection-over-Union) score of 0.423 on
the new dataset, 0.373 on the subset of CAD-120, and 0.358
on the subset of MPII-Cooking.

Our focus here is the general idea of using semantic infor-
mation of the activity in a video to assist codiscovery. Our
contribution is not the particular predicates and parsing rules
which we will later use to instantiate this idea. While con-
ceptually, such semantic information is typically conveyedby
sentences, our focus is on the computer vision task of using
such information when processing video, not the natural lan-
guage processing task of extracting such information from
sentences. Thus we neither implement nor describe a seman-
tic parser that would perform such extraction. Construction
of semantic parsers, either by handor by usingmachine learn-
ing techniques, is well studied in the field of natural-language
processing (Wong and Mooney 2007; Clarke et al. 2010).
Indeed, deep learning techniques, such as Recurrent Neural
Networks (Elman 1990; Hochreiter and Schmidhuber 1997)
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andNeural TuringMachines (Graves et al. 2014), are promis-
ing candidates for approaching this task. In principle, our
codiscovery methods could be coupled with one of a variety
of different methods for learning a semantic parser to build a
more comprehensive system that learns both to detect objects
and process language. However, our goal here is not to build
such a comprehensive system and thus we leave the training
of a semantic parser for futurework.Moreover, other nonsen-
tential sources could be used instead to incorporate semantic
information into object codiscovery, for example, inferring
the intent or goals of the actors, following their performance
of a script, or modeling the physics of the world. Finally,
even though our codiscovery results could he used to help
train object detectors, we are not suggesting that a natural or
fruitful approach to do so would be to annotate training video
for object detectors with sentences or predicates. We see our
main contribution as proposing a framework for incorporat-
ing semantic inference into computer vision.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews existing codetectionmethods and other related
work, to situate our sentence directed object codiscovery
approach. Section 3 presents the details of our approach. Sec-
tion 4 reports and analyzes extensive experiments. Section 5
discusses the suitability of available datasets for our task.
Finally, Sect. 6 concludes with a summary of our contribu-
tions.

2 Related Work

Video object codetection is similar to a number of related
tasks including image object corecognition, image object
codetection, and supervised image/video object detection.
Image object corecognition is a simpler variant of image
codetection (Tuytelaars et al. 2010), where the objects of
interest are sufficiently prominent in the field of view that the
problem does not require object localization. Thus corecog-
nition operates like unsupervised clustering, using feature
extraction and a similarity measure. Image object codetec-
tion (Blaschko et al. 2010; Lee andGrauman 2011; Tang et al.
2014; Cinbis et al. 2014) additionally requires localization,
often accomplished by placing bounding boxes around the
objects. This can require combinatorial search over a large
space of possible object locations (Cinbis et al. 2014). One
way to remedy this is to limit the space of possible object
locations to those produced by an object proposal method
(Alexe et al. 2010; Arbelaez et al. 2014; Zitnick and Dollár
2014; Cheng et al. 2014). These methods typically associate
a confidence score with each proposal which can be used to
prune or prioritize the search. Codetection is typically formu-
lated as the process of selecting one proposal per image, out
of themany produced by the proposal mechanism, that maxi-
mizes the collective confidence of and similarity between the

selected proposals. This optimization is usually performed
with Belief Propagation (Pearl 1982) or with nonlinear pro-
gramming.

Recently, the codetection problem has been extended to
video. Schulter et al. (2013) construct a Conditional Ran-
dom Field (CRF) in each input video frame with segmented
superpixels as vertices. They use both motion and appear-
ance information as unary potentials, and put binary edges
between both spatially and temporally neighboring super-
pixels. Prest et al. (2012) extract motion segments from each
video shot to obtain candidate tubes. They then construct a
CRF where each video is a vertex and the tubes in the video
are the possible labels for that vertex. Joulin et al. (2014)
replace the motion tubes with proposal boxes and solve the
codetection problemwith the Frank–Wolfe algorithm (1956).
Srikantha and Gall (2014) incorporate a similarity measure
based on an object’s functionality in an activity into the code-
tection framework. Their subsequent work (Srikantha and
Gall 2017) extends the approach to select a varying number
of tubes for each video and improved the final codetection
performance. Ramanathan et al. (2014) develop a bidirec-
tional model for person naming and coreference resolution in
video, which is optimized by block coordinate descent.Wang
et al. (2014) present a spatio-temporal energy minimiza-
tion formulation for simultaneous video object discovery and
segmentation. Kwak et al. (2015) formulate the codetection
process as a combination of establishing correspondences
between prominent regions across videos and associating
similar object regions within the same video.

Our method closely follows some of the above work. Like
Srikantha and Gall (2014, 2017), we codetect small and
medium sized objects, but do sowithout a depthmap or heavy
dependence on human pose data. Like Schulter et al. (2013),
we codetect both moving and stationary objects, but do so
with a larger set of object classes and a larger video corpus.
Also, like Ramanathan et al. (2014), we use sentences, but
do so for a vocabulary that goes beyond pronouns, nominals,
and names that are used to codetect only human face tracks.

Most prior work assumes that the objects to be codetected
are salient, both in size and appearance, and are located in
the center of the field of view (Prest et al. 2012; Joulin et al.
2014; Wang et al. 2014; Kwak et al. 2015). Thus they easily
“pop out.” For example, limiting codetection to objects in the
center of the field of view allowed Prest et al. (2012) to prune
the search space by penalizing proposals in contact with the
video frame perimeter. Moreover, object proposal methods
work well in such simple images, and the confidence score
associated with proposals is a reliable measure of salience
and a good indicator ofwhich image regions constitute poten-
tial objects (Rubinstein et al. 2013). Therefore, the proposal
confidence dominates the overall codetection process and
the similarity measure only serves to refine the codetection.
One exception is Srikantha and Gall (2014, 2017), where
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they attempt to discover small or medium sized objects in
video, without the above simplifying assumptions. However,
in order to search through the larger resulting object pro-
posal space, they avail themselves of human pose and depth
information to prune the search space.

As a weakly supervised learning problem, image and
video object codetection has seen less research effort than
fully supervised object detection. While deep learning based
object detection methods such as Girshick (2015) are able to
detect thousands of object classes, training such requiresmil-
lions of labeled bounding boxes (Russakovsky et al. 2015). In
contrast, our object codiscovery method requires no labeled
bounding boxes and can codiscover instances of multiple
object classes from tiny codiscovery sets comprising a few
dozen short video clips. As we stated earlier, since codiscov-
ery is a process of ambiguity resolution, it is more difficult
and thus more impressive that we can do this with fewer
videos rather than more videos.

By pairing sentences with video, we formulate video
object codiscovery as an extremely weakly supervised prob-
lem. Sentence semantics only provides ambiguous and
implicit labels. This resembles another line of work that
learns structured output from image captions (Berg et al.

2004; Gupta and Davis 2008; Luo et al. 2009; Jamieson et al.
2010a, b; Plummer et al. 2015; Mao et al. 2016), treating the
input as a parallel image-text dataset. However, all of these
methods, except Gupta and Davis (2008) and Jamieson et al.
(2010a, b) use pretrained object models learned from other
datasets. Thus strictly speaking they cannot be called “code-
tection.” Since this line of work focuses on images and not
video, the sentential captions only contain static concepts,
such as the names of people or the spatial relations between
objects in the images. In contrast, our approach models the
motion and changing spatial relations that are present only in
video as described by verbs and motion prepositions in the
sentential annotation. By using sentence semantics to guide
codiscovery, we also endow our codiscovery method with
the ability for high-level reasoning that is rarely seen in most
existing computer-vision methods.

3 Our Approach

Our sentence directed object codiscovery process is illus-
trated in Fig. 3. The input is a set of videos paired with
human-elicited sentences, one sentence per video. For each

Fig. 3 An overview of our codiscovery process. Left input a set of
videos pairedwith sentences.Middle sentence directed object codiscov-
ery, where black bounding boxes represent object proposals. Right out-
put original videos with objects codiscovered. Note that no pretrained
object detectors are used in this whole process. Also note how sentence

semantics plays an important role in this process: it provides both unary
scores, e.g., leftwards(squash0) and down(mouthwash0), for pro-
posal confidence, and binary scores, e.g., outFrom(cabbage0, bowl0)
and near(mouthwash0, cabbage1), for relating multiple objects in the
same video (best viewed in color) (Color figure online)
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sentence,we extract a conjunction of predicates togetherwith
the object instances as the predicate arguments. In the exam-
ple from Fig. 3, we have:

The man removed the violet
cabbage from the bowl

→ outFrom (cabbage0, bowl0)

The person carried the
squash to the left, away
from the yellow bowl

→ leftwards (squash0 ∧
awayFrom (squash0, bowl1))

The person is placing the
mouthwash next to the
cabbage in the sink

→ down (mouthwash0) ∧
near (mouthwash0, cabbage1)

The sentences in this example contain six nouns. Thus we
extract six object instances: cabbage0, cabbage1, squash0,
bowl0, bowl1, and mouthwash0, and produce six tracks, one
track per object instance. Two tracks will be produced for
each of the three video clips. To accomplish this, a collection
of object-candidate generators and video-tracking methods
are applied to each video to obtain a pool of object propos-
als (Sect. 3.2).1 Any proposal in a video’s pool is a possible
object instance to assign to a noun in the sentence associated
with that video. Given multiple such video-sentence pairs,
a graph is formed where object instances serve as vertices
and there are two kinds of edges: similarities between object
instances and predicates linking object instances in a sen-
tence. Belief Propagation is applied to this graph to jointly
infer object codiscoveries by determining an assignment of
proposals to each object instance. In the output column of
Fig. 3, the red track of the first video clip is selected for cab-
bage0, and the blue track is selected for bowl0. The green
track of the second video clip is selected for squash0, and
the blue track is selected for bowl1. The red track of the third
video clip is selected for cabbage1, and the yellow track is
selected for mouthwash0. All six tracks are produced simul-
taneously in one inference run. Below, we explain the details
of each component of this codiscovery framework.

3.1 Sentence Semantics

Our main contribution is exploiting sentence semantics to
help the codiscovery process. We use a conjunction of pred-
icates to represent (a portion of) the semantics of a sentence.
Object instances in a sentence fill the arguments of the
predicates in that sentence. An object instance that fills the
arguments of multiple predicates is said to be coreferenced.
For a coreferenced object instance, only one track is codis-
covered. For example, a sentence like The person is placing

1 For clarity, in the remainder of this paper, we refer to object proposals
for a single frame as object candidates, and object tubes or tracks across
a video as object proposals.

the mouthwash next to the cabbage in the sink implies the
following conjunction of predicates:

down(mouthwash) ∧ near(mouthwash, cabbage)

In this case, mouthwash is coreferenced by the predicates
down (fills the sole argument) and near (fills the first argu-
ment). Thus only one mouthwash track will be produced,
simultaneously constrained by the two predicates (Fig. 3,
yellow track). This coreference mechanism plays a crucial
role in the codiscovery process. It tells us that there is exactly
one mouthwash instance in the above sentence: the mouth-
wash that is being placed down is identical to the one that is
placed near the cabbage. In the absence of such a coreference
constraint, the only constraint between these two potentially
different instances of the object class mouthwash would be
that they are visually similar. Stated informally in English,
this would be:

The cabbage is near a mouthwash that is similar to
another mouthwash which is placed down.

Not only does this impose an unnecessarily weaker con-
straint between cabbage and mouthwash, it also fails to
correctly reflect the sentence semantics.

Following Lin et al. (2014), Kong et al. (2014), and Plum-
mer et al. (2015), our procedure for extracting predicates
from a sentence consists of two steps: parsing and transfor-
mation/distillation. We first use the Stanford parser (Socher
et al. 2013) to parse the sentence. We then employ a set of
rules to transform the parsed results to ones that are (1) per-
tinent to visual analysis, (2) related to a prespecified set of
object classes, and (3) distilled so that synonyms are mapped
to a common word. These rules simply encode the syntac-
tic variability of how objects fill arguments of predicates.
They do not encode semantic information that is particular
to specific video clips or datasets. For example, in the sen-
tence A young man put down the cup, the adjective young is
not relevant to our purpose of object codiscovery and will be
removed. In the sentence The person is placing the mouth-
wash in the sink, the object sink is not one of the prespecified
object classes. In this case, we simply ignore the extraneous
objects that are out of scope.2 Thus for the phrase placing
the mouthwash in the sink in the above sentence, we only
extract the predicate down(mouthwash). Finally, synonyms
introducedbydifferent annotators, e.g.,person,man,woman,
child, and adult, are all mapped to a common word (person).
This mapping process also applies to other parts of speech,

2 We do not attempt to discover objects corresponding to all nouns
in any arbitrary sentential description of any arbitrary video. This is
obviously beyond the state of the art. Rather, we demonstrate that the
constraint provided by sentence semantics can significantly aid video
object discovery in many instances.
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including verbs, prepositions, and adverbs. This transforma-
tion/distillation process never yields stronger constraint and
usually yields weaker constraint than that implied by the
semantics of the original sentences.

While we employ a set of manually designed rules, the
whole transformation/distillationprocess is automatic,which
allows us to handle sentences of similar structure with the
same rule(s). To eliminate the manually designed rules, one
could train a semantic parser (Wong and Mooney 2007;
Clarke et al. 2010). However, modern semantic parsers are
domain specific, and no existing semantic parser has been
trained on our domain. Training a new semantic parser
usually requires a parallel corpus of sentences paired with
intended semantic representations. Semantic parsers are
trained with corpora like PropBank (Palmer et al. 2005)
that have tens of thousands of manually annotated sentences.
Gathering such a large training corpus would be overkill for
our experiments that involve only a few hundred sentences,
especially since such is not our focus or contribution. Thus
we employ simpler handwritten rules to automate the seman-
tic parsing process for our corpora in this paper. Nothing, in
principle, precludes using a machine-trained semantic parser
in its place. However, we leave that to future work.

The predicates used to represent sentence semantics are
formulated around a set of primitive functions on the argu-
ments of the predicate. These produce scores indicating how
well the arguments satisfy the constraint intended by the
predicate. Figure 4 defines all 36 predicates used to repre-
sent sentence semantics in our experiments. Figure 5 defines
all 12 primitive functions used to formulate these predi-
cates.

While our predicates are manually designed, they are
straightforward to design and code. The effort to do so (sev-
eral hundred lines of code) could be even less than that of
designing a machine learning model that handles the three
datasets in our experiments. The reasonwhy this is the case is
that the predicates encode only weak constraints. Each pred-
icate uses at most four primitive functions (most use only
two). The primitive functions are simple, e.g., the temporal
coherence (tempCoher) of an object proposal, the average
flow magnitude (medFlMg) of a proposal, or simple spa-
tial relations like distLessThan/distGreaterThan between
proposals. Unlike features used to support activity recogni-
tion or video captioning, these primitive functions need not
accurately reflect every nuance of motion and changing spa-
tial relations between objects in the video that is implied
by the sentence semantics. They need only reflect a weak
but sufficient level of the sentence semantics to help guide
the search for a reasonable assignment of proposals to nouns
during codiscovery. Because of this important property, these
primitive functions are not as highly engineered as theymight
appear to be. Our predicates are general in nature and not spe-
cific to specific video samples or datasets.

3.2 Generating Object Proposals

To generate object proposals, we first generate N object can-
didates for each video frame and construct proposals from
these candidates. To support codiscovery of multiple station-
ary and moving objects, some of which might not be salient
and some of which might be occluded for part of the video,
our method for generating object candidates must be general
purpose: it cannot make assumptions about the video (e.g.,
simple background) or exhibit bias towards a specific cate-
gory of objects (e.g., moving objects). Thus methods (Xiao
and Lee 2016) that depend on object salience or motion anal-
ysis would not suit our purpose. We use EdgeBoxes (Zitnick
and Dollár 2014) to obtain the N/2 top-ranking object can-
didates and MCG (Arbelaez et al. 2014) to obtain the other
half, filtering out candidates larger than 1/20 of the video-
frame size to focus on small and medium-sized objects. This
yields NT object candidates for a video with T frames. We
then generate K object proposals from these NT candidates.
To obtain object proposals with object candidates of consis-
tent appearance and spatial location, one would nominally
require that K � NT . To circumvent this, we first randomly
sample a frame t from the videowith probability proportional
to the average magnitude of optical flow (Farnebäck 2003)
within that frame. Then, we sample an object candidate from
the N candidates in frame t . To decide whether the object is
moving or not, we sample from {moving,stationary}with
distribution

{ 1
3 ,

2
3

}
. We sample a moving object candidate

with probability proportional to the average flow magnitude
within the candidate. Similarly, we sample a stationary
object candidate with probability inversely proportional to
the average flow magnitude within the candidate. The sam-
pled candidate is then propagated (tracked) bidirectionally
to the start and the end of the video. We use the CamShift
algorithm (Bradski 1998) to track both moving and sta-
tionary objects, allowing the size of moving objects to
change during the process, but requiring the size of sta-
tionary objects to remain constant. Stationary objects
are tracked to account for noise or occlusion that manifests as
smallmotion or change in size.We track stationary objects
in RGB color space andmoving objects in HSV color space.
Generally, RGB space is preferable to HSV space because
HSV space is noisy for objects with low saturation (e.g.,
white, gray, or dark) where the hue ceases to differentiate.
However, HSV space is used for moving objects as it is
more robust to motion blur. RGB space is used for station-
ary objects because motion blur does not arise. We do not
use optical-flow-based tracking methods since these meth-
ods suffer from drift when objects move quickly. We repeat
this sampling and propagation process K times to obtain K
object proposals {pk} for each video. Examples of the sam-
pled proposals (K = 240) are shown as black boxes in the
middle column of Fig. 3.
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Fig. 4 Our predicates and their
semantics. The primitive
functions used to compute the
predicates are defined in Fig. 5.
The symbol p denotes an object
proposal, p(t) denotes frame t of
an object proposal, and p(L)

and p(−L) denote averaging the
score of a primitive function
over the first and last L frames
of a proposal respectively. When
there is no time superscript
on p, the score is averaged over
all frames (e.g., behind). The
last eleven predicates only apply
to the subset of MPII-Cooking
(Sect. 4.2), where h represents
the trajectory of the actor’s hand
over the video frames. Of these,
the first seven were added to
perform the experiment in
Sect. 4.2 and the next four were
added to perform the experiment
in Sect. 4.3. The portion of the
expressions highlighted in red
indicates that portion used in the
FLOW experiment described in
Sect. 4.1 (Color figure online)

3.3 Similarity Between Object Proposals

We compute the appearance similarity of two object propos-
als as follows.We first uniformly sample M boxes {bm} from
each proposal p along its temporal extent. For each sampled

box, we extract PHOW (Bosch et al. 2007) and HOG (Dalal
and Triggs 2005) features to represent its appearance and
shape. We also do so after we rotate this detection by 90◦,
180◦, and 270◦. Then, we measure the similarity g between
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Fig. 5 The primitive functions used to compute the predicates defined in Fig. 4

a pair of detections bm1 and bm2 with:

g(bm1 , bm2 ) = max
i, j∈{0,1,2,3}

1

2

(
gχ2(roti (bm1 ), rot j (bm2 ))

+gL2(roti (b
m
1 ), rot j (bm2 ))

)

where roti i = 0, 1, 2, 3 represents rotation by 0◦, 90◦, 180◦,
and 270◦, respectively. We use gχ2 to compute the χ2 dis-
tance between the PHOW features and gL2 to compute the
Euclidean distance between the HOG features, after which
the distances are linearly scaled to [0, 1] and converted to log
similarity scores. Finally, the similarity between two propos-
als p1 and p2 is taken to be:

g(p1, p2) = median
m

g(bm1 , bm2 )

3.4 Joint Inference

We extract object instances from the sentences and model
them as vertices in a graph. (See all 15 classes for our new
dataset, all 5 classes for our subset of CAD-120, and all 7
classes for the subset of MPII-Cooking in Sect. 4.) Each ver-
tex v can be assigned one of the K proposals in the video that
is paired with the sentence in which the vertex occurs. The
score of assigning a proposal kv to a vertex v is taken to be the
unary predicate score hv(kv) computed from the sentence (if
such exists, or otherwise 0). We construct an edge between
every twoverticesu andv that belong to the sameobject class.
We denote this class membership relation as (u, v) ∈ C . The
score of this edge (u, v), when the proposal ku is assigned to
vertex u and the proposal kv is assigned to vertex v, is taken
to be the similarity score gu,v(ku, kv) between the two pro-
posals, as described in Sect. 3.3. Similarly, we also construct
an edge between two vertices u and v that are arguments of
the same binary predicate.We denote this predicate member-

ship relation as (u, v) ∈ P . The score of this edge (u, v),
when the proposal ku is assigned to vertex u and the pro-
posal kv is assigned to vertex v, is taken to be the binary
predicate score hu,v(ku, kv) between the two proposals, as
described in Sect. 3.1. Our problem, then, is to select a pro-
posal for each vertex that maximizes the joint score on this
graph, i.e., solving the following optimization problem for a
CRF:

max
k

∑

v

hv(kv)+
∑

(u,v)∈C
gu,v(ku, kv)+

∑

(u,v)∈P
hu,v(ku, kv)

(1)

where k is the collection of the selected proposals for all
the vertices. This discrete inference problem can be solved
approximately by Belief Propagation (Pearl 1982). In the
experiment, we use the OpenGM (Andres et al. 2012) imple-
mentation to find the approximate solution.

Conceptually, this joint inference does not require sen-
tences for every video clip. In such a case where some
video clips are not described with sentences, we would
only have the similarity score g in Eq. 1 for these clips,
and would have both the similarity and predicate scores for
the rest. This flexibility allows our method to work with
videos that do not exhibit apparent semantics or exhibit
semantics that can only be captured by extremely com-
plicated predicates or models. Furthermore, our semantic
factors h can cooperate with other forms of constraint or
knowledge, such as the pose information used by Srikan-
tha and Gall (2014, 2017), by having additional factors in
the CRF to encode such constraint or knowledge. Potentially
this would further boost the performance of object codiscov-
ery.
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4 Experiments

We evaluated our method on three datasets. The first was
a newly collected dataset that was filmed in 6 different
scenes (four in the kitchen, one in the basement, and one
outside the garage) of a house. The lighting conditions
vary greatly across the different scenes, with the basement
the darkest, the kitchen exhibiting modest lighting, and
the garage the brightest. Within each scene, the lighting
often varies across different video regions. We assigned 5
actors (four adults and one child) with 15 distinct everyday
objects (bowl, box, bucket, cabbage, coffee grinder, cooler,
cup, gas can, juice, ketchup, milk, mouthwash, pineapple,
squash, and watering pot), and had them perform different
actions which involve interaction with these objects. No spe-
cial instructions were given to the actors; we did not ask
them to move slowly or to prevent the objects from being
occluded. The actors often are partially outside the field of
view.3 The filming was performed using a normal consumer
camera that introduces motion blur on the objects when the
actors move quickly. We downsampled the filmed videos to
768× 432 and divided them into 150 short video clips, each
clip depicting a specific event lasting between 2 and 6 s
at 30 fps. The 150 video clips constitute a total of 12,509
frames.

The second dataset was a subset of of CAD-120 (Koppula
et al. 2013). We constructed this subset by selecting video
clips both where individual clips contain multiple object
classes and where individual clips contain multiple instances
of the same class, to demonstrate the ability of our method
to handle both of these situations. The dataset contains 75
clips. These clips have spatial resolution 640 × 480, each
clip depicting a specific event lasting between 3 and 5 s at
30 fps. The 75 video clips constitute a total of 8,854 frames,
and contain 5 distinct object classes, namely bowl, cereal,
cup, jug, and microwave.

The third datasetwas a subset ofMPII-Cooking (Rohrbach
et al. 2012). The subset contains 233 video clips with spatial
resolution 1624 × 1224. Each clip depicts a cooking activ-
ity lasting between 1 and 71s at 30 fps. The 233 video clips
constitute a total of 70,259 frames, and contain 7 distinct
object classes, namely bowl, bread, grater, plate, spice-
holder, squeezer, and tin. The original dataset is not provided
with sentential annotation. Nonetheless, its video content
does describe motion and changing spatial relations between
objects. Thus we were able to annotate and use it for com-
parison with prior work.

These three datasets served to perform two distinct kinds
of evaluation with two different objectives: evaluation of

3 Note that the datasets used by Srikantha and Gall (2014, 2017) do not
exhibit this property. Indeed, their method employs human pose which
requires that the human be sufficiently visible to estimate such.

novel functionality and comparisonwith prior work. The first
two datasets supported the former while the third dataset
supported the latter. We employed the same experimental
setup for the first two datasets. This setup evaluated using
language to support simultaneous codiscovery of multiple
object classes, particularly when individual video clips can
depict multiple classes or multiple instances of the same
class.We know of no prior work that can do this. Since it was
not possible to evaluate this capability via comparison with
prior work, we instead compared our full method with four
variants that alternatively disable different portions of the
scoring function. This helped understand the relative impor-
tance of different components of the framework. The third
dataset allowed us to perform an apples-to-apples compari-
son of our method with Prest et al. (2012) and Srikantha and
Gall (2014, 2017), particularly measuring the improvement
in performance that resulted from the addition of sentential
semantics. For this apples-to-apples comparison, like Prest
et al. (2012) and Srikantha and Gall (2014, 2017), we only
codiscovered one object class at a time, using their prede-
fined codetection splits. In other words, this evaluation did
not make use of interaction between object classes during the
codiscovery process.

4.1 Our New Dataset and the Subset of CAD-120

Neither our new dataset nor CAD-120 include sentential
annotation. Therefore we employed Amazon Mechanical
Turk (AMT)4 to obtain three distinct sentences, by three
different workers, for each video clip in each dataset. This
yielded 450 sentences for our new dataset and 225 sentences
for our subset of CAD-120. AMT annotators were simply
instructed to provide a single sentence for each video clip that
described the primary activity taking place among objects
from a common list of object classes that occur in the entire
dataset. The collected sentenceswere then all converted to the
predicates in Fig. 4 using the methods of Sect. 3.1. We pro-
cessed each of the two datasets three times, each time using
a different set of sentences produced by different workers;
each sentence was used in exactly one run of the experi-
ment.

As discussed in Sect. 5, our method requires that the
dataset contain sufficient linguistic and visual evidence to
support codiscovery. If we were to allow annotators to
describe any object appearing in any video clip, the anno-
tation might contain sentences referring to rare objects with
insufficient evidence, violating property IV. Or it might con-
tain sentences referring to objects that are too small to be
detected by current object proposal mechanisms, violating
property III. Thus we provided the list of object classes to

4 https://www.mturk.com/mturk/.
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the annotators to focus the annotation on objects that our
method can process.

We divided each corpus into codiscovery sets, each set
containing a small subset of the video clips. (For our new
dataset, some clips were reused in different codiscovery sets.
For CAD-120, each clip was used in exactly one codiscov-
ery set.) Three primary criteria were used to split a dataset
into codiscovery sets. First, we sought codiscovery sets
containing object classes exhibiting mutual spatio-temporal
interaction. Without the potential for interaction, joint codis-
covery would degenerate into independent codiscovery. For
example,mouthwash and gas can rarely interact so including
both in the same codiscovery set would offer no potential to
demonstrate joint codiscovery. Second, we sought to ensure
that some codiscovery sets contained a mix of videos filmed
in different backgrounds. This was done to demonstrate that
our method does not rely on simple background modeling
(e.g., background subtraction). Finally, we sought to ensure
that each codiscovery set contained sufficient visual and lin-
guistic evidence for each object class mentioned as a noun in
the sentential annotation for video clips in that codiscovery
set.

We processed each codiscovery set for each corpus and
each set of sentential annotations (run) independently, each
with a distinct CRF. Table 1 summarizes the number of
video clips in each codiscovery set for each corpus, the
backgrounds contained in each codiscovery set for our new
dataset (where k, b, and g denote kitchen, basement, and
garage, respectively), and the number of vertices in the
resulting CRF for each run of each codiscovery set of each
corpus.

We evaluated the resulting codiscovery by measuring
the fraction of overlap with human annotation using the
standard intersection-over-union (IoU) measure: the ratio
of the area of the intersection of two boxes to the area
of their union. Human-annotated boxes around objects are
provided with CAD-120. For our new dataset, these were
obtained with AMT. We obtained five bounding-box anno-
tations for each target object in each video frame. We asked
annotators to annotate the referent of a specific highlighted
word in the sentence associated with the video contain-
ing that frame. Thus the annotation reflects the semantic
constraint implied by the sentences. This resulted in 5 ×
289 = 1445 human annotated tracks. This human annota-
tion exhibits inherent ambiguity: different annotators tend
to (1) annotate different parts of an object, and (2) anno-
tate partially occluded objects differently. Informal visual
observation of a rendering of the annotated boxes indi-
cated that the second case happens more frequently. To
quantify such ambiguity, we computed intercoder agreement
between the human annotators for our dataset. We com-
puted 5×4

2 = 10 IoU scores for all box pairs produced by
the 5 annotators in every frame and averaged them over

the entire dataset, obtaining an overall human-human IoU
of 0.72.5

We compared human annotation against our full method
and four variants that alternatively disable different portions
of the scoring function in our codiscovery framework, as
summarized below:

SIM FLOW SENT SIM+FLOW SIM+SENT
(our full method)

Flow score? No Yes Yes Yes Yes
Similarity score? Yes No No Yes Yes
Sentence score? No Partial Yes Partial Yes

The SIM variant uses the similarity measure but no sen-
tential information. This method is similar to prior video
codetectionmethods that employ similarity and the candidate
confidence score output by object candidate generationmeth-
ods to perform codetection. When the candidate confidence
score is not discriminative, as is the casewith our datasets, the
prior methods degrade to SIM. The FLOW variant exploits
only binary movement information from the sentence indi-
cating which objects are probably moving and which are
probably not (i.e. using only the functions medFlMg and
tempCoher as highlighted in red in Fig. 4), without simi-
larity or any other sentence semantics (thus “partial” in the
table). The SIM+FLOW variant adds the similarity score on
top of FLOW. The SENT variant uses all possible sentence
semantics but no similarity measure. The SIM+SENT vari-
ant is our full method that employs all scores. All the above
variants were applied to each run of each codiscovery set of
each dataset. Except for the changes indicated in the above
table, all other parameters were kept constant across all such
runs, thus resulting in an apples-to-apples comparison of the
results. In particular, N = 500, K = 240, M = 20, and
L = 15 (see Sect. 3 for details).

We quantitatively evaluated our full method and each of
the variants by computing IoUframe, IoUobject, IoUset, and
IoUdataset for each variant for each dataset as follows. Given
a codiscovered box for an object in a video frame, and the
corresponding set of annotated bounding boxes (five boxes
for our new dataset and a single box for CAD-120), we com-
puted IoU scores between the codiscovered box and each
of the annotated boxes, and took the averaged IoU score
as IoUframe. Then IoUobject was computed as the average of
IoUframe over all the codiscovered boxes for the object track,
one for each frame. Then IoUset was computed as the aver-
age of IoUobject over all the object tracks in a codiscovery

5 All datasets reported in this paper, including videos, codetection sets,
sentences or predicates, and bounding-box annotation, are available at
our project page http://upplysingaoflun.ecn.purdue.edu/~yu239/cccp/
sentence-codiscovery.html.
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Fig. 6 IoUset scores for all five variants of our method on different runs of different codiscovery sets on two datasets. (top) Our new dataset,
codiscovery sets 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. (bottom) Our subset of CAD-120, codiscovery sets 1, 2, 3, 4, and
5

set. Finally IoUdataset was computed as the average of IoUset

over all runs of all codiscovery sets for a dataset.
For our full method, IoUdataset was 0.423 on our new

dataset and 0.373 on our subset of CAD-120. We computed
IoUset for each variant on each run of each codiscovery
set in each dataset as shown in Fig. 6. The first variant,
SIM, using only the similarity measure, completely failed
on this task as expected. However, combining SIM with
either FLOW or SENT improved their performance. More-
over, SENT generally outperformed FLOW, both with and
without the addition of SIM. Weak information obtained
from the sentential annotation that indicated whether the
object was moving or stationary, but no more, i.e. the dis-
tinction between FLOW and SENT, was helpful in reducing
the object proposal search space, but without the similar-
ity measure, the performance was still quite poor (FLOW).
Thus one can get moderate results by combining just SIM
and FLOW. But to further boost performance, more sentence
semantics is needed, i.e. replacing FLOW with SENT. Fur-
ther note that for our new dataset, SIM+FLOWoutperformed
SENT, but for CAD-120, the reverse was true. This seems to
be the case because CAD-120 has greater within-class vari-
ance so sentential information better supports codiscovery
than image similarity. However, over-constrained semantics
can, at times, hinder the codiscovery process rather than
help, especially given the generality of our datasets. This
is exhibited, for example, with codiscovery set 4 ( ) on run 1

of the CAD-120 dataset, where SIM+FLOW outperforms
SIM+SENT.Thus it is important to only imposeweak seman-
tics on the codiscovery process.

Also note that there is little variation in IoUset across dif-
ferent runswithin a dataset. Recall that the different runswere
performed with different sentential annotations produced by
different workers on AMT. This indicates that our approach
is largely insensitive to the precise sentential annotation.

To evaluate the performance of our method in simply find-
ing objects, we computed codiscovery accuracy Accframe,
Accobject, Accset, and Accdataset for each dataset as follows.
Given an IoU threshold, Accframe for a particular codis-
covered box in a particular frame was taken to be 1 if
IoUframe for that box and frame was greater than the thresh-
old, and 0 otherwise. Then Accobject was computed as the
average of Accframe over all the codiscovered boxes for the
object track, one for each frame. Then Accset was com-
puted as the average of Accobject over all the object tracks
in a codiscovery set. Finally Accdataset was computed as the
average of Accset over all runs of all codiscovery sets for
a dataset. By adjusting the IoU threshold from 0 to 1, we
obtained an Acc-vs-threshold curve for each of the vari-
ants (Fig. 7). It can be seen that the codiscovery accuracy
of our full method is consistently higher than that of the
variants under varying IoU thresholds. With IoU thresh-
olds between 0.3 and 0.4, our full method typically yielded
codiscovery accuracy (i.e., Accdataset) between 0.7 and 0.8
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Fig. 7 The codiscovery accuracy curves for all five variants of our method on our new dataset (top) and our subset of CAD-120 (bottom)

on our new dataset and between 0.5 and 0.6 on our subset
of CAD-120. Figure 8 illustrates some codiscovered object
examples from both our new dataset and the subset of CAD-
120. For more examples, we refer the reader to our project
page.5

4.2 The Subset of MPII-Cooking

Weused the codiscovery sets and humanbounding-box anno-
tation from Srikantha and Gall (2014) to process a subset of
the MPII-Cooking dataset. The same subset was used by
Srikantha and Gall (2014, 2017) for object codetection. The
original subset contained 9 object classes. However, Srikan-
tha and Gall (2014, 2017) excluded pan and whisker from
their evaluation, considering only 7 object classes. We did
so as well, to perform an apples-to-applies comparison. Fur-
thermore, unlike when using our method to process our new
dataset and our subset of CAD-120, where we codiscovered
multiple object classes per codiscovery set, each provided
codiscovery set for the subset of MPII-Cooking supports
codiscovery of a single object class and there is a single codis-
covery set for each class. We processed the codiscovery sets
independently, each set with a distinct CRF. Table 2 contains
the number of video clips in each codiscovery set. Since each
codiscovery set supports codiscovery of a single object class,
and we only attempted to codiscover a single instance of that
class for each clip, the number of vertices in each CRF was
equal to the number of videos in that codiscovery set.

The original subset ofMPII-Cooking does not include any
sentential annotation for the video clips. However, a spe-
cial property of the subset is that all the video clips in each
particular codiscovery set depict the same cooking activity
(Table 2). Prest et al. (2012) and Srikantha and Gall (2014,
2017) took advantage of this property to codetect the object
that ismanipulated by the person in that activity. For example,
the bread instances to be codetected all participate in the sea-
soning bread activity; the grater instances to be codetected
all participate in the grating activity. We also took advan-
tage of this property to ease the task of pairing video clips
with semantic constraint. Since all clips in a codiscovery set
depict the same activity and are used to codiscover the same
object class, we bypassed the steps of collecting sentential
descriptions of the clips from AMT and converting such to
predicates and instead annotated all clips in a given codiscov-
ery set with the same manually constructed conjunction of
predicates. This allowed as close to an apples-to-apples com-
parison with Prest et al. (2012) and Srikantha andGall (2014,
2017) as possible, designed to precisely measure the added
benefit of using weak semantic constraint on the codiscovery
process.6 The seven sets of predicates are listed in Table 2.

6 The MPII-Cooking dataset has a small number of clips relative to
the number of distinct object classes that appear in the clips. Eliciting
unconstrained sentential descriptions fromAMTworkers for these clips
would run the risk of violating properties I–IV from Sect. 5. Further,
sentences that do not describe the target object for each codiscovery set
would preclude an apples-to-apples comparison with Prest et al. (2012)
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bowl box

bucket cabbage

coffee grinder cooler

cup gas can

juice ketchup

milk mouthwash

pineapple squash

watering pot

bowl cereal

cup jug

microwave

Fig. 8 Examples of the 15 codiscovered object classes in our new
dataset (top) and the 5 codiscovered object classes in our subset of
CAD-120 (bottom). The left image for each object class is a sample
frame from one of the video clips from which the codiscovery was
obtained. While in some examples the objects are occluded, rotated,

poorly lit, or blurred due to motion, they are still successfully codiscov-
ered. (For demonstration purposes, the discoveries are slightly enlarged
to include the surrounding context. For the quantitative evaluation, the
original bounding boxes were used)

123



Int J Comput Vis (2017) 124:312–334 327

Table 2 The experimental setup of the 7 codiscovery sets for the subset of MPII-Cooking

Set # # of Videos Object Activity Representation of activity in terms of predicates

1 45 Bowl Filling bowl belowHand(p) ∧ inMove(p)

2 40 Bread Seasoning bread touchHand(p) ∧ aboveMove(p)

3 37 Grater Grating nearHand(p) ∧ belowHand(p) ∧ inMove(p)

4 41 Plate Filling plate belowHand(p) ∧ inMove(p)

5 26 Spiceholder Fetching spiceholder approachHand(p) ∧ aroundMove(p)

6 27 Squeezer Squeezing fruit belowHand(p) ∧ aboveMove(p)

7 17 Tin Opening tin BelowHand(p) ∧ nearHand(p) ∧ aroundMove(p)

Only one object class is codiscovered in each codiscovery set. The common cooking activity depicted by the clips in each set is listed. Note that
because only one object is codiscovered in each clip, the semantic representation for the activity is constructed from unary predicates that all refer
to that same object

Since only a single unambiguous manual semantic annota-
tion was provided for each codiscovery set, only a single run
was performed on the subset of MPII-Cooking.

We made two modifications to our codiscovery method
to process the subset of MPII-Cooking. First, we employed
a different object candidate generation process. Second, we
formulated semantic descriptions out of seven new unary
predicates (aboveMove, aroundMove, inMove, touch-
Hand,nearHand,belowHand, andapproachHand), the
last four of which constrain the trajectory of the actor’s hand
(Fig. 4; Table 2). Both of these make use of annotation of
the actor’s hand position in each frame of each video clip.
The MPII-cooking dataset is provided with annotation of the
actor’s joint positions (including the hand positions) in each
frame. Srikantha andGall (2014, 2017) also avail themselves
of this information. Except for these modifications, all other
processing was identical to that of our new dataset and the
subset of CAD-120.

The first modification was needed because the objects to
be codiscovered in this dataset are significantly smaller than
those in our new dataset and the subset of CAD-120. The
original object candidate generation methods (Zitnick and
Dollár 2014; Arbelaez et al. 2014) were unable to reliably
produce candidates corresponding to the target codetection
objects. Instead, following Srikantha and Gall (2014, 2017),
we exploited the estimated human pose information provided
with theMPII-Cooking dataset to constrain the search region
for object candidates. For each video clip, we limited consid-
eration to a region covering the actor’s hand trajectory over
the entire clip. Within that region, we considered bound-
ing boxes around each of N = 200 superpixels (Achanta
et al. 2012) as object candidates. K = 100 object proposals

Footnote 6 continued
and Srikantha and Gall (2014, 2017). Asking the AMT workers to
provide sentences that describe interaction with just the target object
would likely yield the same semantic description as the ones that we
manually constructed as those are the only activities taking place with
those object class in the specific codiscovery sets.

were formed from these objects candidates as for the previ-
ous two datasets using the same mechanism from Sect. 3.2.
The resulting new mechanism was able to reliably produce
candidates corresponding to the target codetection object.
Note that the modularity of our approach facilitates replac-
ing individual components such as the candidate or proposal
generation mechanisms.

The second modification was necessary to provide the
semantic primitives needed to encode the kinds of activ-
ity depicted in the subset of MPII-Cooking. These were
also formulated around the hand trajectory information pro-
vided with the dataset and included four new predicates
(touchHand, nearHand, belowHand, and approach-
Hand) that constrain the spatio-temporal relationship
between an object proposal and the hand trajectory over the
course of a video clip (Fig. 4). Again note that the modular-
ity of our approach facilitates addition of new predicates to
enlarge the semantic annotation space.

We compared the resulting codiscoveries against the
human annotation provided by Srikantha and Gall (2014).
Each video clip is provided with a single human-annotated
track of bounding boxes around the target object in each
frame. Like before, we evaluated both fraction of overlap
with IoU scores and codetection accuracy with Acc, doing
so for all five variants of our method (Figs. 9, 10). The same
broad pattern of results was obtained as before: (1) SIM
completely failed; (2) combining SIM with either FLOW
or SENT improved performance; (3) SENT outperformed
FLOW both with and without SIM; and (4) SIM+FLOW
yieldedmoderate results, but not as good as SIM+SENT. Fig-
ure 11 illustrates some codiscovered object examples from
the subset of MPII-Cooking. For more examples, we refer
the reader to our project page (see footnote 5).

Table 3 compares our IoUdataset score with those of Prest
et al. (2012) and Srikantha andGall (2014, 2017), as reported
by Srikantha and Gall (2017). It is not possible to provide
a breakdown by codetection set (IoUset) as neither Prest
et al. (2012) nor Srikantha and Gall (2014, 2017) provide
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Fig. 9 IoUset scores for all five variants of our method on the seven
codiscovery sets 1, 2, 3, 4, 5, 6, and 7 of the subset of
MPII-Cooking

Fig. 10 The codiscovery accuracy curves for all five variants of our
method on the subset of MPII-Cooking

such information. Note that our full method, SIM+SENT,
by achieving an IoUdataset of 0.358, outperformed both Prest
et al. (2012) and Srikantha and Gall (2014, 2017), but the
variants with only partial scoring functions did not.

4.3 Simultaneous Multi-Class Object Codiscovery on
the Subset of MPII-Cooking

The experiment on the subset of MPII-Cooking reported in
Sect. 4.2 conducted an apples-to-apples comparison with
prior work (Prest et al. 2012; Srikantha andGall 2014, 2017),
but did not showcase the ability of our method to codiscover
instances of different classes simultaneously, both within a
single video and across a codiscovery set. While we did
demonstrate this ability on both our new dataset and the

bowl

bread

grater

plate

spiceholder

squeezer

tin

Fig. 11 Examples of the 7 codiscovered object classes in the subset
of MPII-Cooking. The left image for each object class is a sample
frame from one of the video clips from which the codiscovery was
obtained.While in some examples the objects are occluded, are blurred,
or exhibit high visual variance, they are still successfully codiscovered.
(For demonstration purposes, the discoveries are slightly enlarged to
include the surrounding context. For the quantitative evaluation, the
original bounding boxes were used)

subset of CAD-120, we conducted a further experiment to
illustrate this ability on the subset of MPII-Cooking. For
this experiment, we added four new predicates (behind,
frontOf, leftOf, and rightOf) to our inventory (Fig. 4)
to allow description of the spatial relations between multi-
ple instances of the 7 object classes within individual video
clips. We added the new predicates for the 107 out of the 233
clips that depict multiple instances of these 7 object classes
within the same clip. Then the whole dataset was partitioned
in 10 disjoint codiscovery sets (Table 4) using the following
three criteria: (1) each codiscovery set contained at least two
different object classes, (2) at least approximately one third
of the clips within each set involved activity specified by the
new predicates, and (3) the frequencies of the object classes
within each set were roughly the same. The only exception
to the first criterion above is the tenth set, that only contains
spiceholder. While there are often several instances of spice-
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Table 3 IoUdataset scores for all five variants of our method along with three prior methods on the subset of MPII-Cooking

SIM FLOW SENT SIM+FLOW Prest et al. (2012) Prest et al. (2012)
(Modified)

Srikantha and
Gall (2014)

Srikantha and
Gall (2017)

SIM+SENT
(our full method)

IoUdataset 0.001 0.102 0.146 0.326 0.023 0.221 0.342 0.348 0.358

The modified Prest et al. (2012) employs the tube sampling method of Srikantha and Gall (2014). The original tube generation method of Prest
et al. (2012) extracts motion segments as object proposals, which often fails to work on this dataset
Bold value indicates the highest IoU score

Table 4 The experimental setup of the 10 codiscovery sets for the simultaneous multi-class object codiscovery experiment performed on the subset
of MPII-Cooking

Simultaneous multi-class object codiscovery on the subset of MPII-Cooking, codiscovery set #

1 2 3 4 5 6 7 8 9 10

Objects Bowl Bowl Bowl Plate Bread Bowl Bowl Bowl Bowl Spiceholder

Bread Bread Plate Spiceholder Plate Bread Bread Plate Bread

Plate Grater Squeezer Squeezer Plate Plate Plate

Plate Tin Grater Tin

# of Videos 24 25 21 18 29 25 28 22 19 22

# Vertices 36 34 36 29 37 39 37 36 26 30

holder in the same video clip, objects of this class have little
interaction with objects of other classes. Since some object
classes (e.g., bowl, bread, and plate) have more video clips
than others, these classes were assigned to more codiscovery
sets. Since the original dataset did not provide human annota-
tion for the bounding boxes of the additional objects in each
video, the annotation was augmented with this information.
The same method with the same parameters was applied to
these codiscovery sets yielding IoUset scores of 0.300, 0.271,
0.309, 0.264, 0.319, 0.412, 0.315, 0.372, 0.361, and 0.215
respectively, and an IoUdataset score of 0.314. Figure 12 illus-
trates some codiscovered object examples from performing
simultaneous multi-class object codiscovery on the subset
of MPII-Cooking. For more examples, we refer the reader
to our project page (see footnote 5). While this problem is
far more difficult than that in Sect. 4.2, our method yields
multiple objects for nearly half of the video clips, with only
slightly lower IoUdataset (0.314 vs. 0.358). We know of no
other existing codetection method that is able to perform this
task.

4.4 Failure Cases Analysis

While our object codiscoverymethod has obtained promising
results on all three datasets, it sometimes fails for a variety
of reasons (Fig. 13) . One reason is the weak visual fea-
ture representation used by our similarity measure: the HOG
and PHOW features are limited in their ability to represent
and distinguish generic image patches. Thus image regions
with similar shapes, colors, or textures could be easily con-

fused. We tried using deep learning features like VggNet
(Simonyan and Zisserman 2015). However, the pretrained
deep learning models we tried also suffer from this prob-
lem.Without fine-tuning or supervised training, thesemodels
also can confuse two similar image patches, e.g., the cutting
board instance in Fig. 13a and some of the bread instances
in Fig. 11. Another failure case occurs when a large object to
be codiscovered is always largely occluded in the examples
in the codetection set. In this case, the CRF tends to select
the unoccluded part of that object in order to satisfy the sim-
ilarity measure across the different video clips. This occurs,
for example, in Fig. 13b, where the microwave is always
occluded by an object like cup or bowl being placed in or
removed from the microwave. The inference algorithm thus
selects the upper part of themicrowave as the final codiscov-
ered result, since it still fits the scoring function. Even though
this is not a complete failure, it yields a very low IoU score.
Finally, incorrect sentential annotation can negatively impact
the codiscovery results. For example, in Fig. 13c, the worker
annotated a partially incorrect sentence: The person poured
milk next to the ketchup.While the actor is indeed pouring the
milk, the ketchup is, in fact, far away from the milk carton.
In this case, the predicate score overpowers the similarity
score and a proposal close to themilk is selected for ketchup.
The sentential annotation obtained from AMT for our new
dataset and the subset of CAD-120 contains several incorrect
sentences.

The above three failure modes appear to account for the
majority of the failure cases.Addressing thefirst failuremode
would require a more powerful discriminative feature repre-
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Fig. 12 Examples of codiscovering multiple object classes in a video clip from the subset of MPII-Cooking. When there are several instances of
the target object class in the video (e.g., two plates in the first example), discovering any of them is considered to be correct

Fig. 13 Some failure cases of our codiscovery method. The method fails to work properly on some clips due to: a difficulty of discriminating
image patches (bread vs. plate), b large occlusion (microwave), and c incorrect sentential annotation (ketchup). See Sect. 4.4 for details

sentation for image patches, a difficult open problem. The
second failure mode might be addressed with a good object-
nessmeasure that rewardswhole objects and penalizes object
parts. But this too is a difficult open problem. The third fail-
ure mode might be addressed with techniques to detect and
ignore outliers. We leave these nontrivial improvements to
future work.

5 Discussion

It is common in computer vision to evaluate newmethods by
comparisonwith existingmethods on existing datasets. There
are a large number of video datasets used for activity recog-
nition and video captioning. There are also datasets used for
image and video codetection. The common datasets, how-
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ever, are ill-suited for the kind of sentence-directed object
codiscovery pursued here. Our approach takes advantage of
datasets with the following properties:

(I) It applies to video that depicts motion and changing
spatial relations between objects.

(II) The video is paired with temporally aligned sentences
that describe that motion and those changing spatial
relations. Providing such temporal alignment alleviates
the need to automatically solve the alignment problem
(Zhu et al. 2015; Bojanowski et al. 2015).

(III) The objects to be codiscovered are detectable by exist-
ing object proposal methods.

(IV) There is sufficient linguistic and visual evidence across
the dataset for each class to be codiscovered. For each
object class, the dataset contains a sufficient number of
clips that all involve instances of that class participating
in the described activity.

It is not possible to evaluate our method on existing image
codetection or captioning datasets because they lack prop-
erty I. It is not possible to evaluate our method on existing
video corpora that do not include sentences because they
lack property II. While, in principle, it could be possible to
augment an existing video corpus with newly collected sen-
tential annotation, as discussed below, not all video corpora
are amenable to such.

Sentential annotation is available for some video datasets,
like M-VAD (Torabi et al. 2015) and MPII-MD (Rohrbach
et al. 2015). However, the vast majority of the clips annotated
with sentences in M-VAD (48,986) and MPII-MD (68,337)
do not satisfy properties I and II. We searched the senten-
tial annotation provided with each of these two corpora for
all instances of twelve common English verbs that represent
the kinds of verbs that describe motion and changing spatial
relations between objects (Table 5). We further examined ten
sentences for each verb from each corpus, together with the
corresponding clips, and found that only ten out of the 240
examined satisfied properties I and II. Moreover, none of
these ten video clips satisfied property IV.

Sentential annotation is not available for some other video
datasets, like Hollywood 2 (Marszałek et al. 2009) and the
YouTube-Object dataset used by Prest et al. (2012), Joulin
et al. (2014), and Kwak et al. (2015). However, the kinds of
activity depicted in the YouTube-Object dataset cannot eas-
ily be formulated in terms of descriptions of object motion
and changing spatial relations; the video clips usually depict
a single object located in the center of the field of view
which does not participate in activity that can be described by
meaningful sentences that describe its interaction with other
objects in the field of view.A similar situation occurswith the
Hollywood 2 dataset. Of the twelve classes (AnswerPhone,

Table 5 Instances of twelve common English verbs in M-VAD and
MPII-MD and the fraction of ten such instances that satisfy properties I
and III

M-VAD MPII-MD

Add 89 0/10 120 0/10

Carry 74 1/10 273 2/10

Lift 435 1/10 374 0/10

Load 48 0/10 89 0/10

Move 332 0/10 1106 0/10

Pick 366 1/10 703 1/10

Pour 95 0/10 207 1/10

Put 294 1/10 921 0/10

Rotate 27 0/10 13 0/10

Stack 91 0/10 56 0/10

Take 1058 0/10 1786 0/10

Unload 1 0/10 11 2/10

DriveCar, Eat, FightPerson, GetOutCar, HandShake, Hug-
Person, Kiss, Run, SitDown, SitUp, and StandUp) in that
dataset, only four (AnswerPhone,DriveCar,GetOutCar, and
Eat) satisfy property I. Of these, three classes (AnswerPhone,
DriveCar, and GetOutCar) always depict a single object
class, and thus are ill suited for codetecting anything but
the two fixed classes phone and car. The one remaining class
(Eat) fails to satisfy property IV. This same situation occurs
with essentially all standard datasets used for activity recog-
nition, likeUCFSports (Rodriguez et al. 2008) andHMDB51
(Kuehne et al. 2011).

The standard sources of naturally occurring video for
corpora used within the computer-vision community are
Hollywood movies and YouTube video clips. However, Hol-
lywood movies, in general, mostly involve dialog among
actors, or generic scenery and backgrounds. At best, only
small portions of most Hollywood movies satisfy property I,
and such rarely is reflected in the dialog or script, thus failing
to satisfy property II. We attempted to gather a codiscovery
corpus from YouTube. But again, about a dozen students
searching YouTube for depictions of about a dozen common
English verbs, examining hundreds of hits, found that fewer
than 1% satisfied property I and none satisfied property IV.

While most existing datasets within the computer-vision
community do not satisfy properties I–IV, we believe that
these properties are nonetheless reflective of the real nat-
ural world. In the real world, people interact with everyday
objects (in their kitchen, basement, driveway, andmany simi-
lar locations) all of the time. It is just that people don’t usually
record such video, let alonemakeHollywoodmovies about it
or post it on YouTube. Further, people rarely describe such in
naturally occurring text in movie scripts or in text uploaded
to YouTube. Yet, children—and even adults—probably learn
names of newly observed objects by observing people in their
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environment interacting with those objects in the context of
dialog about such. Thus we believe that our problem is a nat-
ural reflection of the kinds of learning that people employ
to learn to recognize newly named objects. Contemporary
to our work, Sigurdsson et al. (2016) proposed an inter-
esting new dataset Charades in which hundreds of people
record videos in their homes acting casual every activities.
We leave the application of our method to this dataset for
future work.

It is also instructive to consider our experience extending
our method to process the subset ofMPII-Cooking. Perform-
ing object codiscovery on this dataset is difficult for two
reasons. First, the objects are small. Second, there is large
within-class variation that weakens the similarity measure.
To overcome these challenges, Srikantha and Gall (2014,
2017) exploit human pose data in three ways. First, they take
the functionality of an object proposal in a cooking activ-
ity to be related to its position relative to human pose and
assume that object instances of the same class have simi-
lar functionality. Second, they employ the distance between
the object proposal and the locally active end effector as
a unary proposal score, encouraging the selection of the
object being manipulated. Third, they explicitly penalize the
selection of body parts as codetection solutions, since body
parts are dominant in parts of input videos and yield high
scores with their scoring functions. These heuristics utilize
all eight joints in the human pose information provided with
theMPII-Cooking dataset. In contrast, our approach required
two simple modifications to process this dataset: focusing a
more sensitive candidate generation process on the region
around the hands and the addition of four new predicates
(touchHand, nearHand, belowHand, and approach-
Hand) to encode the semantics of the depicted activity in
terms of the spatio-temporal relationship between an object
proposal and the hand trajectory. Moreover, our approach
only utilized the hand trajectory in the human pose infor-
mation, not the other joints. The modular design of our
framework allowed us to easily make these minor modifi-
cations. We believe that our approach is more principled,
more general, and easier to code than the heuristics employed
by Srikantha and Gall (2014, 2017). Moreover, our method
significantly outperformed Srikantha and Gall (2014, 2017)
despite using less human pose information.

Finally, while our current approach relies on a manually
designed semantic parser and manually designed predicates,
the general idea of using semantic information about the
activity in video to assist object codiscovery is compati-
ble with machine learned semantic parsers and predicates.
Automatically learning a parser and predicates for object
codiscovery is a challenging yet interesting topic that needs
our further investigation in the future. We hope that our cur-
rent instantiation of the general idea will provide insight for
other researchers in this field.

6 Conclusion

We have developed a new framework for object codiscovery
in video, namely, using language semantics to guide codis-
covery. Our framework is able to simultaneously codiscover
multiple object classes and multiple instances of the same
class within a single video as well as multiple instances
of different classes across video clips on three datasets.
Our experiments indicate that weak sentential information
can significantly improve the results. This demonstrates that
language semantics, when combined with typical computer-
vision problems, could provide the capability of high-level
reasoning that yields better solutions to these problems.
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