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Abstract We present a novel method to auto-calibrate gaze
estimators based on gaze patterns obtained from other view-
ers. Our method is based on the observation that the gaze
patterns of humans are indicative of where a new viewer will
look at. When a new viewer is looking at a stimulus, we first
estimate a topology of gaze points (initial gaze points). Next,
these points are transformed so that they match the gaze pat-
terns of other humans to find the correct gaze points. In a
flexible uncalibrated setup with a web camera and no chin
rest, the proposed method is tested on ten subjects and ten
images. Themethod estimates the gaze points after looking at
a stimulus for a few secondswith an average error below4.5◦.
Although the reported performance is lower than what could
be achieved with dedicated hardware or calibrated setup, the
proposed method still provides sufficient accuracy to trace
the viewer attention. This is promising considering the fact
that auto-calibration is done in a flexible setup , without the
use of a chin rest, and based only on a few seconds of gaze ini-
tialization data. To the best of our knowledge, this is the first
work to use human gaze patterns in order to auto-calibrate
gaze estimators.
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1 Introduction

Gaze estimation is the process of determining where a per-
son is looking at in a predefined plane. It is an important
task in computer vision and has numerous applications: i.e.
human–computer interaction, assisting disabled users (e.g.
eye typing) (Majaranta and Rih 2002), and human behavior
analysis (Smith et al. 2008).

In general, gaze estimation methods fall into two cate-
gories: (1) appearance-based methods (Hansen et al. 2002;
Lu et al. 2011; Valenti and Gevers 2012; Sugano et al. 2014)
and (2) 3D-eyemodel-basedmethods (Villanueva et al. 2006;
Guestrin and Eizenman 2006, 2008; Chen and Ji 2011; Drae-
los et al. 2015; Xiong et al. 2015). The former class extracts
features from images of the eyes and map them to points
on the gaze plane (i.e. gaze points). The latter aims to con-
struct a 3D model of the eye to estimate the visual axis.
Then, the intersection of the axis and the gaze plane deter-
mines the gaze point. Regardless of which gaze estimation
method is used, a calibration procedure is always needed.
The calibration can be camera-based (estimating the camera
parameters), geometric calibration (estimating the relation-
ships between the scene components like the camera, the
gaze plane, and the user), personal calibration (determining
the angle between visual and optical axes), or gaze mapping
correlation (Hansen and Ji 2010). An overview of the dif-
ferent approaches of gaze estimation and calibration can be
found in Hansen and Ji (2010).

3D-eye models require special equipment like cameras
with multiple light sources and infrared. The costs and the
usage requirements (infrared, for example, is not reliable
when used outdoors) limit their range of applicability. On
the other hand, appearance-based approaches are less accu-
rate than 3D-eye-models and less invariant to head pose
changes. Yet, low-cost cameras are common and sufficient
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Fig. 1 (Taken from Judd et al. 2009). Examples where saliency models do not match the human fixations. Bright spots indicate the saliency model
predictions and the red dots refer to the human gaze points (Color figure online)

for appearance-based approaches which makes them suit-
able for applications where high accuracy is not essential.
Consider for example an application of people looking at
advertisements for market research. Asking each participant
to buy dedicated cameras or to do the experiment in the
lab is time consuming and costly. Because low-cost cam-
eras are integrated in almost every laptop or tablet nowadays,
appearance-basedmethods aremore suitable in such an appli-
cation.

Besides the choice of the recording equipment, the
adopted approach allows for a certain level of flexibility
in the setup and calibration. During calibration, users are
usually asked to fixate their gaze on certain points while
images of their eyes are captured. This procedure is cum-
bersome and sometimes impractical. In case of, for example,
tracing costumers’ attention in shopping malls, estimating
the gaze points or regions should be done passively. Hence,
some approaches propose methods to reduce the number
of calibration points. However, in the case of passive gaze
estimation, the calibration should be done completely auto-
matically without an active calibration procedure imposed
on the user.

Some recent studies focus on visual saliency informa-
tion in images and videos to avoid applying active human
calibration. Sugano et al. (2010, 2013) treat saliency maps
extracted from videos as probability distributions for gaze
points. Gaussian process regression is used to learn the map-

ping between the images of the eyes and the gaze points.
Chen and Ji (2011) use 3D models of the eye and incre-
mentally estimate the angle between the visual and optical
axes by combining the image saliency with the 3D model.
The argument for using saliency is that people look at salient
regions with higher probability than other regions. However,
as shown in Judd et al. (2009), the computational saliency
models do not frequently match the actual human saccades
(Fig. 1). We propose that the gaze patterns of several view-
ers provide important cues for the auto-calibration of new
viewers. This is based on the assumption that humans pro-
duce similar gaze patterns when they look at a stimulus. The
assumption is supported by Judd et al. (2009), where the
authors show that fixation locations of several humans are
strongly indicative, in general, of where a new viewer will
look at. To the best of our knowledge, our work is the first
to use human gaze patterns in order to auto-calibrate gaze
estimators.

In this paper, which is an extension of our previous work
(Alnajar et al. 2013), we present a novel approach to auto-
calibrate gaze estimators based on the similarity of human
gaze patterns. In addition, wemake use of the topology of the
gaze points. Consider, in a fully uncalibrated setting, a person
following a stimulus from left to right. It would be difficult
to indicate where the gaze points are on the gaze plane. How-
ever, their relative locations can still be inferred and used for
auto-calibration. In a fully uncalibrated setting, when a new
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Fig. 2 Graphical illustration of the proposed method. Template gaze
patterns refer to the gaze points of other individuals for the same gaze
plane (display). When a new user looks at the stimulus, his or her ini-

tial gaze points are first estimated which preserves the relative locations
between the gaze points. These points are transformed so that theymatch
the template gaze patterns

subject looks at a stimulus, initial gaze points are inferred.
Then, a transformation is computed to map the initial gaze
points to match the gaze patterns of other users. In this way,
we use all the initial gaze points to match the human gaze
patterns instead of using each gaze point at the time. Conse-
quently, the transformed points represent the auto-calibrated
estimated gaze points.

The rest of the paper is organized as follows. The pro-
posed method is explained in Sect. 2. Next, we describe the
experimental setup and evaluation in Sect. 3. The results are
discussed in Sect. 4. Finally, the conclusions are given in
Sect. 5.

2 Auto-Calibrated Gaze Estimation Using Human
Gaze Patterns

We start from the observation that gaze patterns of individ-
uals are similar for a certain stimulus (Judd et al. 2009).
Although, there is no guarantee that people always look at
the exact same regions, human gaze patterns will provide
important cues about the locations of the gaze points of a
new observer. The pipeline of the proposed method is as fol-
lows:when a newuser is looking at a stimulus, the initial gaze
points are computed first. Then, a transformation is inferred
which maps the initial gaze points to gaze patterns of other
individuals. In this paper, we consider transformations which
combine translation and scaling (per dimension). Including

other transformations like rotation or shearingmay yield bet-
ter mapping. However, they are not taken into account, since
(1) translation and scaling aremore common for gaze estima-
tion, and (2) to reduce the search space. Figure 2 illustrates
the pipeline.

2.1 Gaze Points Initialization

Thefinal gaze points should eventuallymatch the humangaze
patterns. However, we need to start from an initial estima-
tion of the gaze points. Hereafter, we present two methods
to achieve this: estimation of initial gaze points from eye
templates and estimation based on 2D-manifold.

2.1.1 Eye Templates

In this approach, the eye images of a (template) subject are
captured while fixating the eyes on points on a gaze plane.
The images of the eyes of a new user are captured and com-
paredwith the template eye images. The idea is to reconstruct
eye images based on the eye image templates. Note that here
the eye templates are captured once for a single subject.When
a new subject uses the gaze estimator, his or her eye images
are compared with the already-collected eye templates. This
is different from the traditional calibration-based gaze esti-
mator where the eye templates are captured and stored for
each subject and/or each different setting. The process can
be performed at the raw intensity level or at the feature level.
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Fig. 3 The projection of features of 9 eye images on a 2-D manifold (red, left) and the positions of the corresponding gaze points on the gaze plane
(blue, right). The 2D manifold is computed using 800 eye images corresponding to various locations on the gaze plane (Color figure online)

We will refer to both eye image representations as feature
vectors. Consider {ti } to be the template feature vectors, and
{pi } denotes the corresponding gaze points. Furthermore,
{wi } corresponds to the computed weights to reconstruct the
feature vector of a new eye image t̂:

t̂ =
∑

i

wi ti s.t.
∑

i

wi = 1. (1)

Then the corresponding gaze point p̂ for t̂ is calculated as
follows:

p̂ =
∑

i

wi pi . (2)

To find the weights {wi }, Tan et al. (2002) suggest to first
select a subset of {ti } where the first and the second neigh-
bors of the sample (in feature space) are used for training.
The weight values are then computed as in Roweis and Saul
(2000). Lu et al. (2011) select only the direct neighbors as a
training subset. Here, we select only the direct neighbors as
in Lu et al. (2011).

For a new user, potentially in a different unknown scene
setup, the initial gaze points will be incorrect (without cal-
ibration). However, the relative locations between the gaze
points are preserved.

2.1.2 2D Manifold

In their work, Lu et al. (2011) find that the (template)
eye features correspond to a 2D manifold while retaining
most of the important information about the relative eye
movements. The reason is that eyes move, in the appearance-
based representation, in two degrees of freedom. Figure 3
shows the projection of features of nine eye images on a
2D manifold and their corresponding nine gaze points on
the gaze plane. It can be derived that the feature projec-
tions preserve the relative locations of the corresponding gaze
points.

The 2D manifold can be obtained by projecting the
template features on the first two principal components.

However, the locations on the 2D manifold may be inter-
changed, transposed, or rotated when compared with the
corresponding gaze points. For example, when the eyes
move mainly vertically, the first principal component rep-
resents the pupil changes on the Y dimension and the
second principal component represents the X dimension.
Hence, the projected locations need to be transposed. As
this step is performed once offline, the projected locations
are checked once and transformed to match the corre-
sponding gaze points locations. As in the eye templates
method, this procedure is followed once with a single (tem-
plate) subject. When a new user looks at a stimulus, the
eye features are projected on the offline-learned 2D man-
ifold and the projected values are treated as initial gaze
points.

The previous two methods (eye templates and 2D mani-
fold) provide a way to find the initial gaze points. In the next
section, we explain how to map these points to match the
template (human) gaze patterns.

2.2 Gaze Points Mapping

Judd et al. (2009) show that the fixation points of several
humans correspond strongly with the gaze points of a new
user. We aim to exploit this observation to perform calibra-
tionwithout the need for active user participation. To this end,
we transform the initial (uncalibrated) gaze points so they
match the template gaze patterns for a stimulus. By apply-
ing the aforementioned transformation, we aim to transfer
the gaze points to their correct positions without explicit
calibration. We present two different methods to find the
transformation: K-closest points and mixture model fitting.
Let the set P = {p1,p2, . . . .pM} denotes the gaze patterns
of M users (hereafter, we call them template gaze patterns)
where pu = {pu1 , pu2 , . . . .puSu} consists of the Su gaze points
of user u. Let p = {p1, p2, . . . .pS} be the initial gaze point
set for a new user. The following two methods aim to trans-
form and hence match p with the template gaze patterns P.
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2.2.1 K-Closest Points

Thismethod aims tofind amappingwhichminimizes the sum
of distances for each point p j ∈ p to its K closest neighbors
of P. Assume � is the set of all mappings. The method tries
to find a mapping φ̄ ∈ � which satisfies:

φ̄ = argmin
φ

L(p,P, φ), (3)

where

L(p,P, φ) =
S∑

j=1

K∑

k=1

‖φ(p j ) − N (φ(p j ),P, k)‖. (4)

N (p j ,P, k) is the k closest point from P to p j . φ̄ is the
computed mapping and p̄ = φ̄(p) represents the mapped
auto-calibrated gaze points. Note that we match the initial
gaze points p with all the gaze patterns in P simultaneously.
To find p̄ and φ̄, we adopt a gradient-descent approach.
To search for a local minimum (or maximum) using gra-
dient descent methods, first, the gradient of the objective
function is computed w.r.t to the corresponding parameters.
Second, the parameters step toward the negative (positive)
direction of the gradient in case of cost (reward) function.
These two steps are repeated multiple times (epochs). We
restrict the transformation to translation and scaling. The

transformation of a point p =
[
x
y

]
by φ = [s1, s1, h1, h1] is

φ(p) =
[
s1 0
0 s2

]
· p +

[
h1
h2

]
=

[
s1.x + h1
s2.y + h2

]
.

Here, we assume the origin to be the mean of p. The
parameter set φ is updated based on the derivative of the
cost function L w.r.t φ:

φ ← φ − γ∇φL, (5)

where γ is the learning rate and:

∇φL =

⎡

⎢⎢⎢⎣

∂L
∂h1
∂L
∂h2
∂L
∂s1
∂L
∂s2

⎤

⎥⎥⎥⎦ . (6)

The derivative w.r.t h1 is computed as follows:

∂L
∂h1

=
S∑

j=1

K∑

k=1

∂‖φ(p j ) − N (φ(p j ),P, K )‖
∂h1

. (7)

Let N (φ(p j ),P, K ) = {g1, g2, . . . .gK }, then:

∂L
∂h1

=
S∑

j=1

K∑

k=1

∂ 2
√

(φ(p j )x − gx,k)2 + (φ(p j )y − gy,k)2

∂h1
,

(8)

∂L
∂h1

=
S∑

j=1

K∑

k=1

s1.px, j + h1 − gx,k
2
√

(φ(p j )x − gx,k)2 + (φ(p j )y − gy,k)2
.

(9)

and

∂L
∂s1

=
S∑

j=1

K∑

k=1

s1.p2x, j + h1.px, j − gx,k .px, j

‖φ(p j ) − gk‖ . (10)

∂L
∂h2

and ∂L
∂s2

can be derived in a similar manner.

2.2.2 Mixture Model

For the K-closest points method, the matching is measured
by the distance between each point of the initial gaze set
and its closest neighbors in the template gaze patterns. Here,
the initial gaze points are mapped to match a mixture model
which is fit to the template gaze patterns. More specifically,
we first model the template gaze patterns by a Gaussian mix-
ture model. Next, the initial gaze points are transformed so
that the probability density function of the transformed points
is maximized. Formally, the method searches for a mapping
φ̄ ∈ � so that:

φ̄ = argmax
φ

S∑

j=1

pd f (φ(p j )), (11)

where

pd f (p) =
K∑

k=1

ωkN (p|μk, �k), (12)

and

N (p|μ, �) = 1√
(2π)2|�| exp

(
−1

2
(p − μ)T�−1(p − μ)

)
.

(13)

K is the number of model components, ωk is the mixing
coefficient of the kth Gaussian component N (μk, �k) with
μk mean and �k covariance matrix. φ̄ is computed again by
a gradient descent approach. The parameter set φ is updated
as follows:

φ ← φ + γ∇φF , (14)
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where F is the reward function we aim to maximize:

F =
S∑

j=1

K∑

k=1

ωkN (φ(p j )|μk, �k). (15)

The derivative w.r.t h1 is computed as follows:

∂F
∂h1

=
S∑

j=1

K∑

k=1

ωk

∂ωk
1√

(2π)2|�k |
exp

(− 1
2 (φ(p j ) − μk

)T
�−1

k (φ(p j ) − μk))

∂φ(p j )

∂φ(p j )

∂h1
.

(16)

∂F
∂h1

=
S∑

j=1

K∑

k=1

ωk
1√

(2π)2|�k |
exp

(
−1

2
(φ(p j ) − μk

)T

�−1
k (φ(p j ) − μk))

+
S∑

j=1

K∑

k=1

∂(− 1
2 (φ(p j ) − μk)

T�−1
k (φ(p j ) − μk))

∂φ(p j )

∂φ(p j )

∂h1
(17)

∂F
∂h1

=
S∑

j=1

K∑

k=1

ωkN (φ(p j )|μk, �k) +
S∑

j=1

K∑

k=1

(−(φ(p j ) − μk)
T�−1

k ) ·
[
1
0

]
. (18)

and

∂F
∂s1

=
S∑

j=1

K∑

k=1

ωkN (φ(p j )|μk, �k)

+
S∑

j=1

K∑

k=1

(−(φ(p j ) − μk)
T�−1

k ) ·
[
p j,x

0

]
. (19)

∂F
∂h2

and ∂F
∂s2

can be derived in a similar manner.

3 Experimental Results

In this section, we describe the experimental setup and the
data used to evaluate the performance of ourmethod. Thefirst
ten images of the eye tracking dataset of Judd et al. (2009)
are used as stimuli (Fig. 4). The dataset has the advantage
of containing the eye tracking data of 15 subjects for 1003
images collected from Flickr and LabelMe (Russell et al.
2005). Hence, this data is used as template gaze patterns.
The dataset contains landscape and portrait images with a
1024 × 768 resolution. The images contain multiple objects
and they do not necessarily contain faces or objects centered
in the middle of the image, representing a realistic stimuli
set.

To obtain the ground truth for a new user, the Tobii T60XL
gaze estimator (http://www.tobii.com/) is used. It uses four
infrared diodes mounted at the bottom of a 24 inch display
with a resolution of 1920 × 1200 pixels. The reported error
of the gaze estimator is within 1◦.

The design of the scene setup is to allow the subjects to
look at the stimuli without hard constrains e.g. using a chin
rest or sitting at a fixed distance from the stimuli. To collect
the eye images, a web camera is mounted above the screen
to record the face of the subject. The eye image resolution is
around 60×30. The coordinates and direction of the camera
is unknown with regard to the gaze plane and can change for

each new subject. Ten subjects were asked to sit where they
wanted but within the allowed range of the Tobii system. The
subject’s distance from the display ranged from 55 to 75 cm.
No chin rest is used in the experiments. Heads of the subjects
are allowed to move during the experiment.

The subjects were asked to look at each image for 3 s fol-
lowed by 1s of showing a gray image. No specific task was
asked and the subjects freely viewed the stimuli. The record-
ing of each subject is stored and later analyzed to estimate the
gaze points. We follow Lu et al. (2011) to extract the images
of the eyes. For each of the ten stimuli, the first correspond-
ing web camera frame is taken as an input by the landmarker
(Zhu andRamanan 2012) to detect the eye corners. In Sugano
et al. (2013), the eye corners are detected using the OMRON
OKAO vision library. To detect the eye corners for the sub-
sequent frames, we apply template matching using the eye
corners of the first frame (for each stimulus) as templates.
The eye images are then cropped from the corner and resized
to 70 × 35. Histogram equalization is applied to alleviate
illumination changes. Regarding the gradient descent search
in the matching methods, the number of epochs is set to 50.
To prevent over downscaling the initial gaze points, we set
a lower bound of scaling equal to 90% of the scale of the
template gaze patterns.

3.1 Results on Artificially Distorted Data

Our assumption is that a collection of gaze patterns of indi-
viduals can be used to automatically infer the gaze calibration
of a new user. In this section, we validate the assumption on
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Fig. 4 The 10 images used as
stimuli in our experiments. The
images show landscapes and
street views where multiple
objects are present in the scene
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artificially distorted data. More specifically, we use the eye
tracking dataset in Judd et al. (2009) and apply a distortion to
the subject fixations. The distorted fixations are considered
as a simulation of the initial (uncalibrated) gaze points. For
each stimulus, we apply a random translation and scaling to
the fixation set of each subject. Then, the proposed methods,
i.e. K-closest points and mixture model methods are used to
transform the distorted gaze points to their correct locations.
The first 30 images in the dataset are used in this experiment.
For each image, we tested the subjects with 10 or more fixa-
tions. We discarded the images where the number of subjects
(10 or more fixations) was below 6 to ensure sufficient gaze
patterns. Using the K-closest points, the mean error across
all images is 3.3◦, while the error is 3.5◦ using the mix-
ture model fitting (the scene setup details can be found in
Judd et al. (2009)). The same procedure is applied on the
ground truth gaze points obtained from our collected data.
For this dataset, the K-closest points and mixture model fit-
ting obtained accuracies of 2.6◦ and 2.4◦ respectively. The
results show the validity of the proposed methods to bring
the distorted (uncalibrated) gaze points closer to their correct
locations for different sets of template gaze patterns. Regard-
ing the parameter setting, we set K in the K-closest points
method to 5 and the number of Gaussian components to 7.
We examined different values of K and components number
and the performance difference was not significant.

3.2 Results on Real Data

The previous section shows how artificially distorted gaze
points can be transformed to their correct locations with suf-
ficient accuracy using the K-closest points. In this section,
we use the aforementioned collected data to automatically
calibrate the gaze estimator and find the gaze points from the
videos acquired from a web camera. We apply the K-closest
points and mixture model methods (Sects. 2.1.1 and 2.1.2)
to find the initial gaze points.

For the eye templates method, 25 eye templates were cap-
tured while a subject was fixating their eyes at 25 points on a
21.5 inch display. This process is followed once for a single
(template) subject. Therefore, reconstructing an eye image
of a new subject from the eye templates will not be optimal
due to the changes in eye appearance between the template
subject and the other subjects. However, we assume that it
still gives a good representation of the topology of the gaze
points. As in Lu et al. (2011) we divide the eye image into a
5 × 3 grid and sum up the intensity of the pixel inside each
grid cell. The resulting 15 values constitute the feature vector
of the eye image.

Regarding the 2D manifold method, a template subject
was asked to look at random points on the screen while his
face was video recorded. The eye images are cropped and
their feature vectors are computed as previously explained.

Table 1 Accuracies over different methods and template gaze pattern
sets

Template gaze
patterns from Judd et al.
(2009)

Template gaze
patterns
from our data

KCP GMM KCP GMM

Eye templates 4.6◦ 4.6◦ 4.7◦ 4.7◦

2D manifold 4.2◦ 4.3◦ 4.4◦ 4.5◦

KCPdenotesK-closest pointsmethod,GMMrefers toGaussianmixture
model fitting. The best accuracy is yielded using 2D manifold and K-
closest points

Then, the feature vectors are projected on the first two princi-
pal components to constitute a 2D-manifold. The eye images
of a new subject (while looking at a stimulus) are cropped.
Then the feature vectors are extracted and projected on the
same manifold to determine their relative locations. The dis-
tances between the initial gaze points are significantly larger
than the actual corresponding gaze points. Yet, this will not
affect the results as the initial gaze pointswill be scaled down,
while finding the mapping, to match the initial gaze points
with the template gaze patterns.

We select the gaze template patterns in twoways: First, we
use the fixation points provided by the eye tracking dataset
(Judd et al. 2009). Second, the ground truth of our collected
data (via the Tobii gaze estimator) is used. In the second case,
for each subject, we consider the gaze points of the other
subjects as template gaze patterns. The K-closest points and
the mixture model fitting methods are applied to the initial
gaze points. Table 1 shows the results.

The results show that theK-closest pointsmethod achieves
lower error than using the mixture model method while 2D
manifold outperforms eye templates for both template gaze
pattern sets. The best accuracy (4.2◦) is obtained using the
K-closest points and 2D manifold. Table 2 shows the results
per subject/stimulus. Figure 5 shows the results for the first
four images with subjects 3 and 7.

Regarding the template gaze patterns, the accuracies are
similar for both sets (the eye tracking dataset of Judd et al.
(2009) and our collected dataset) with a slight improvement
when using the gaze patterns from Judd et al. (2009) dataset.
The template gaze pattern sets were collected in two different
experiments on two different groups of subjects. This is inter-
esting as it shows the general similarity of gaze patterns and
hence suggests the validity of using them in auto-calibration
regardless of the viewers. The gaze estimation accuracies
vary for different subjects. The relatively lower accuracies
for some subjects might be either due to errors in estimating
the initial gaze points, i.e. because of eye appearance vari-
ations with the template subject eye templates which leads
to incorrect initialization, or because of the gaze behavior of
the subjects and its variation with the template gaze patterns.
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The stimuli set contains landscape and street view images,
which makes the auto-calibration more challenging than
images with clearly salient objects that humans usually focus
on. Yet, the reported accuracy (4.2◦) and the results in Fig. 5
show the validity of our approach.

Finally, we conduct an experiment to investigate the influ-
ence of the number of subjects on the calibration error. More
specifically, we vary the number of template gaze patterns
starting from 1 and increasing by 2 to reach to 15 patterns
(corresponding to the 15 subjects in the dataset (Judd et al.
2009)). The results are shown in Fig. 6. As expected, the
more template gaze patterns (and users) the lesser the error.
Interestingly, with only one template gaze pattern, the result-
ing error is 4.8◦ which can be still valuable for attention
estimation.

3.3 Gaze Estimation Error versus Image Content

Theprimaryobservationbehindourmethod is the similarities
between the gaze patterns of different viewers when looking
at the same stimulus (Judd et al. 2009). These patternsmay be
influenced by the complexity or the scattering of the stimulus.
This may, consequently, affect the gaze estimation error. In
this section, we look further into the relationship between
the image complexity and the auto-calibration performance
(measured by the gaze estimation error).

A number of approaches are proposed to model image
statistics (i.e. complexity) (Geusebroek and Smeulders 2005;
Scholte et al. 2009; Torralba and Oliva 2003). Here, first, we
follow the approach of Geusebroek and Smeulders (2005)
and Scholte et al. (2009) by fitting a Weibull distribution
to the contrast values of the stimulus image. The Weibull
distribution is defined as:

f (x) = C exp

(
−

∣∣∣∣
x − μ

β

∣∣∣∣
γ )

. (20)

where C is a normalization constant and μ, β, and γ are
the parameters of the Weibull distribution corresponding to
the location, the scale, and the shape respectively. β and γ

indicate some perceptual characteristics of the image such
as regularity, coarseness, roughness, and contract (Geuse-
broek and Smeulders 2005; Tamura et al. 1978). Geusebroek
and Smeulders (2005) and Scholte et al. (2009) found that
images which correspond to low values of beta and gamma
represent isolated objects in a plain background while their
content changes gradually to contain multiple objects with
higher values of beta and gamma. This suggests that image
complexity can be characterized by the Weibull parameters.
More importantly, the Weibull parameters, gamma and beta,
highly correlate with neural responses in the early visual sys-
tem (Scholte et al. 2009).
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Fig. 5 Gaze estimation results for the first four images with subjects
3 (right column) and 7 (left column). The red traces represent the esti-
mated gaze points while the blue traces represent the ground truth

obtained from the Tobii gaze estimator. The results are achieved using
2D-manifold and K-closest points (Color figure online)
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Fig. 6 Gaze estimation error versus number of template gaze patterns

Another approach is measuring the “density” of objects in
the scene.Our rationale here is that themore objects the scene
contains, themore complex the image content is. Sincewe are
not interested in particular objects, we use general-purpose
object proposal methods (e.g. Selective Search Uijlings et al.
2013).

To evaluate the relationship between the image complexity
and the gaze estimation error, we compute the correlation
between the predicted gaze error and the corresponding beta
and gamma parameters of a stimulus. Since we do not have
the estimation error for all 1003 stimuli, we artificially distort
the ground truth by random transformations (translation and
scaling) and applying the mapping algorithm to transform
the gaze points back to their correct positions (similar to the
experiment in Sect. 3.1). The gaze estimation error, here,
is associated with only the gaze mapping error (i.e. feature
extraction and initialization error is not applied)whichmakes
the correlationmore indicative.We select the 50 sampleswith
highest errors and the 50 samples with the lowest errors to
show how the error correlate with the image complexity.

Using the object proposal as a complexity measure, the
results do not indicate a significant correlation (r < 0.1)
between the calibration error and the complexity of the
image. When using Weibull distribution fitting, with α =
0.01, the results show a correlation of (r = 0.3) which indi-
cates an effect of image complexity (characterized byWeibull
parameters as in Scholte et al. 2009; Geusebroek and Smeul-
ders 2005) and the auto-calibration performance and, hence,
the gaze estimation error.

3.4 Gaze Patterns versus Saliency Maps

Our approach consists primarily of two parts: first, finding a
topology of the gaze points and, second, mapping this point
topology to the gaze patterns of other users. In this section,we
compare the gaze patterns with the computational saliency as

Fig. 7 Gaze estimation error after incrementally updating the template
gaze patterns with estimated gaze points. Saliency information (Harel
et al. 2006) is used a starter gaze pattern

a cue source for mapping the point topology. To this end, we
simply substitute the gaze patterns with saliency information
(Harel et al. 2006). The results show an error of 4.7◦ when
using the saliency information compared to 4.2◦ when using
the gaze patterns of other users.

The previous results show the advantage of using the gaze
patterns over the saliency maps. An intuitive step is to com-
bine the saliency information with the gaze patterns of other
users. However, here, we relax some of the prerequisites and
assume that the accurate gaze patterns of other users are
unavailable and, instead, the estimated ones are utilized and
modified gradually. The assumption is that even if the gaze
points are estimated, they still provide some cues for other
uncalibrated gaze points.More specifically, themethod starts
with saliency information (Harel et al. 2006) as the first tem-
plate gaze pattern. For each new user, the gaze points are
estimated and added to the template gaze patterns. After a
certain number of users, since the template gaze patterns are
modified, the gaze points of all users are re-estimated. Hence,
the accuracy is improving gradually. In the experiments, the
gaze points are re-estimated after 10 users. This process is
repeated a number of times. The gaze estimation error over
the iterations is plotted in Fig. 7. Table 3 shows the errors
after 10 iterations per user/stimulus. The results show that
the error decreases gradually when adding or updating esti-
mated gaze points. After 10 iterations, the error decreases
from 4.7◦ to 4.3◦. This suggests the advantage of adding
“estimated” gaze points to the saliency information.

3.5 Initialialization Error versus Mapping Error

The previous experiments show how our method achieves,
using visual features, an error of 4.2◦ without any kind of
active calibration. Early steps of cropping the eye regions
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and extracting the visual features are likely to introduce some
noise which propagates to later steps and, consequently, con-
tributes to the final error. In this experiment, we aim to give
analysis of the contributions of initialization and optimiza-
tion steps to the overall gaze estimation error. To this end,
we use the relative movements of eye centers provided by
Tobii’s infrared diodes as initial gaze points for the new
users. Note that these are not the ground truth gaze points
provided by the actively-calibrated Tobii system but just the
changes of eye center positions measured by the infrared
diodes. Since the infrared diodes produce more accurate and
stable measurements than an RGB webcamera (especially
when the head moves slightly during recording), we assume
that such measurements alleviate the influence of initial gaze
points estimation error. Please note that this is different
from the experiment in Sect. 3.1, where the ground truth
is distorted and realigned by the auto-calibration method. In
this experiment, the measurements are more robust than the
ones obtained by the RGB webcamera, however, they are
still prone to some form of noise. Using K-closest points,
the error drops to 3.1◦. The results show that part of the
gaze estimation error is attributed to noise in the feature
extraction step (and hence the initial gaze point estima-
tion).

3.6 Temporal Gaze Patterns

Besides the spacial cues the gaze patterns provide us to
auto-calibrate gaze estimation systems, here, we argue that
tempral information can further improve the calibration and
hence the performance. Therefore, as a proof of concept,
we employ this information to correct the calibrated (esti-
mated) gaze patterns. To this end, for each subject-stimulus
test case, we learn the temporal patterns from the template
gaze patterns and use them to update the predicted gaze
points. More specifically, our training data is the sampled
subsequences of T points from all the template gaze pat-
terns, denoted as SS. For the newly estimated gaze sequence,
for each subsequence, ss, we find the closest subsequence
ssclosest from SS and update the next point with a factor of
γ :

ssnewT = γ ssoldT + (1 − γ )ssclosestT (21)

We set T to 5 and γ to 0.5. ssT is the last point of ss. The
closest subsequence is selected using straightforward KNN.
The overall error drops to 4.1◦ which suggests the impact of
temporal information.

3.7 Comparison to the State-of-the-Art

We compare our method with existing state-of-the-art auto-
calibration approaches. The recent work of Chen and Ji
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(2011) uses a single camera with multiple infrared lights to
reconstruct the 3D eye model. They use saliency information
to estimate the angle between the visual and optical axes. The
authors reported less than 3◦ error using five images and five
subjects. Clearly, the comparison with this method is not fea-
sible as the authors use different equipment to reconstruct an
accurate 3D eye model.

Sugano et al. (2013) adopt an appearance-based gaze
estimator and use visual saliency for auto-calibration. The
authors reported an error of 3.5◦. However, their experimen-
tal setup differs from ours in the following aspects: First, a
chin rest is used in Sugano et al. (2013) to fixate the head
during the experiment while the subjects in our experiment
do not use any tool to fixate their heads. Second, the authors
in Sugano et al. (2013) ask the subjects to look at a num-
ber of 30 s videos for training (5–20 videos), while in our
method the subject needs to look at a single image for 3 s.
Images contain less cues than videos inwhichmoving objects
attract the viewers attention. However, experimenting on still
images is more natural and requiring motion in the scene
limits the applicability of the gaze estimator. Finally, Sug-
ano et al. analyze the performance variations with respect
to different number of training videos. When training on 5
videos (each lasts 30 s), the average error is about 5.2◦ (the
exact accuracy is not reported as the results are plotted on a
graph). While our method achieves an average error of 4.2◦
by looking at a single image for 3 s.

4 Discussion

Our method provides sufficient accuracy to predict the areas
of attention with a flexible setup and a webcam. This is espe-
cially important for tasks where gaze estimation is required
with no active participation from the user and using off-the-
shelf hardware. In this work, we propose a flexible setup and
use low-cost publicly available web cameras. There is a trend
nowadays to use eye gaze estimation for electronic consumer
relationship marketing which aims to employ information
technology to understand and fulfill the needs of the con-
sumers (Wedel and Pieters 2008). These applications usually
collect the data passively without active user participation.
Our method is suitable for such applications. Tracing con-
sumers attention when shopping in malls or when exploring
advertisements on their laptops are examples of use.

When compared with saliency information, the gaze pat-
terns of other users produce lower error. We further relax the
prerequisite of having accurate gaze patterns and substitute
them with estimated gaze points of the subsequent subjects.
By gradually updating the template gaze patterns (using the
estimated gaze points), the gaze estimator is gradually auto-
calibrated and the accuracy improves.

5 Conclusion

We presented a novel method to auto-calibrate gaze esti-
mators in an uncalibrated setup. Based on the observation
that humans produce similar gaze patterns when looking
at a stimulus, we use the gaze patterns of individuals to
estimate the gaze points for new viewers without active cal-
ibration.

The proposed method was tested in a flexible setup using
a web camera without a chin rest. To estimate the gaze
points, the viewer needs to look at an image for only 3 s
without any explicit participation in the calibration. Eval-
uated on 10 subjects and 10 images showing landscapes
and street views, the proposed method achieves an error
of 4.2◦. A number of experiments were conducted to give
further insight into the method and its contribution in dif-
ferent cases. When relaxing some prerequisites and using
estimated gaze points (compared to accurate gaze patterns),
the gaze estimator was auto-calibrated gradually and so
the accuracy improved. The estimation error was compa-
rable to the one with accurate gaze patterns. Experiments
show that the heterogeneity between the gaze patterns of
the viewers has an impact on the auto-calibration error. To
the best of our knowledge, this is the first work to use
human gaze patterns in order to auto-calibrate gaze estima-
tors.
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