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Abstract We propose camera models for cameras that are
equipped with lenses that can be tilted in an arbitrary direc-
tion (often called Scheimpflug optics). The proposed models
are comprehensive: they can handle all tilt lens types that are
in common use for machine vision and consumer cameras
and correctly describe the imaging geometry of lenses for
which the ray angles in object and image space differ, which
is true for many lenses. Furthermore, they are versatile since
they can also be used to describe the rectification geometry
of a stereo image pair in which one camera is perspective and
the other camera is telecentric. We also examine the degen-
eracies of the models and propose methods to handle the
degeneracies. Furthermore, we examine the relation of the
proposed camera models to different classes of projective
camera matrices and show that all classes of projective cam-
eras can be interpreted as cameras with tilt lenses in a natural
manner. In addition, we propose an algorithm that can cali-
brate an arbitrary combination of perspective and telecentric
cameras (no matter whether they are tilted or untilted). The
calibration algorithm uses a planar calibration object with
circular control points. It is well known that circular control
points may lead to biased calibration results. We propose
two efficient algorithms to remove the bias and thus obtain
accurate calibration results. Finally, we perform an extensive
evaluation of the proposed camera models and calibration
algorithms that establishes the validity and accuracy of the
proposed models.
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1 Introduction

One problem that often occurs when working on machine
vision applications that require large magnifications is that
the depth of field becomes progressively smaller as the mag-
nification increases. Since for regular lenses the depth of field
is parallel to the image plane, problems frequently occur if
objects that are not parallel to the image planemust be imaged
in focus. Section 2 describes some of the applications where
this problem occurs.

It is well known that the depth of field can be centered
around a world plane that is tilted with respect to the image
plane. This can be achieved by tilting the lens with respect to
the image plane. This is the well-known Scheimpflug prin-
ciple, which is described in detail in Sect. 3.

When working with tilt lenses, the fact that the ray angles
in the object and image space of a lens may differ becomes
crucial. Section 4 describes the principles of geometric optics
that cause ray angles to be different. This section also shows
that there are four kinds of lenses that are in common use:
entocentric lenses (perspective in object and image space,
with possibly differing ray angles), image-side telecentric
lenses (perspective in object space, orthographic in image
space), object-side telecentric (orthographic in object space,
perspective in image space), and bilateral telecentric (ortho-
graphic in object and image space). Each of these kinds of
lenses can be tilted, which obviously results in a different
imaging geometry for each lens type.

A review of existing camera models for tilt lenses (cf.
Sect. 5) has revealed several important shortcomings. We
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therefore propose a comprehensive camera model for tilt
lenses, consisting of a camera model for each of the four
kinds of possible tilt lenses, that removes these shortcom-
ings (see Sect. 7 for the proposed models and Sect. 6 for the
regular models on which the models we propose are based).

We will also examine under which conditions the parame-
ters of the proposed models can be determined uniquely and
under which conditions degeneracies occur (Sect. 7.2). Fur-
thermore, we will show in Sect. 8 that all types of projective
cameras can be regarded as tilt cameras in a natural manner.

The camera model we propose is versatile. We show in
Sect. 12 that the model can also be used to describe the recti-
fication geometry of a stereo image pair of a perspective and
a telecentric camera.

We also describe an algorithm that is capable of calibrat-
ing an arbitrary combination of perspective and telecentric
cameras (Sect. 9). Furthermore, we describe two computa-
tionally efficient and accurate algorithms to remove the bias
from circular control points (Sect. 10). Finally, we test the
proposed camera models on many real lenses (Sect. 11).

2 Applications

In cameras that are equipped with regular lenses, the por-
tion of the object space that is imaged in focus is parallel to
the image plane. The depth of field, i.e., the range of object
distances that appear focused in the image, is proportional
to the inverse of the square of the magnification of the lens
(Lenhardt 2006, Chapter 4.2.13.2). As usual, magnification
is defined as the ratio of the size of the image of an object to
the size of the object, where size denotes the distance to the
optical axis (Lenhardt 2006, Chapter 4.2.3). Consequently,
the larger the magnification of the camera, the smaller the
depth of field is.

The small depth of field at high magnifications becomes
problematic whenever it is necessary to image objects in
focus that lie in or close to a plane that is not parallel to
the image plane. With regular lenses, this is only possi-
ble by reducing the size of the aperture stop (typically, the
diaphragm), i.e., by increasing the f -number of the lens.
However, there is a limit to this approach for two reasons.
First, if the aperture stop is made too small, the image will
appear blurred because of diffraction (Lenhardt 2006, Chap-
ters 4.3.4–4.3.7). Second, a small aperture stop causes less
light to reach the sensor. Consequently, high-powered illu-
mination is required to achieve reasonable exposure times,
especially when images of moving objects must be acquired.

There are numerous practical applications inwhich a plane
in object space that is not parallel to the image plane must
be imaged in focus. One example is stereo reconstruction,
where typically the cameras are used in a converging setup.
As shown in Fig. 1, this setup causes the volume in object

Fig. 1 A regular stereo setup with converging cameras. The image
planes are visualized by thick solid lines. The depth of field of the two
cameras is visualized by dashed lines. The common depth of field is
visualized by the gray rhombus. The angles of the two cameras are
exaggerated to display the common depth of field more clearly. The
surface to be reconstructed is visualized by a thick solid line

space for which both cameras produce a sharp image to be
a rhomboid-shaped infinite prism. This problem is typically
ignored at small magnifications because the common depth
of field is large enough. For large magnifications (e.g., larger
than 0.1), however, the volume is small enough to cause sig-
nificant defocus.

One method to cause the volumes in object space that are
imaged in focus to become parallel is to use shift lenses,
i.e., lenses that are shifted with respect to the sensor, while
the optical axis remains perpendicular to the sensor (Willert
1997; Prasad 2000). One major problem is that this approach
requires imaging obliquely through the lens, which increases
vignetting and optical aberrations and thus decreases image
quality (Willert 1997; Prasad 2000). In contrast, using the
converging stereo configuration avoids these problems since
the rays pass through the lens at angles close and symmetric to
the optical axis, i.e., in the area for which lenses are designed
to have little aberrations. Furthermore, shifting the lens is
impossible if telecentric lenses are used in the stereo setup.
Here, obviously, a converging geometrymust be used to have
any parallax in the images.

Another application where a tilted object plane must be
imaged in focus is sheet-of-light 3D reconstruction. Here, a
laser with a cylindrical lens projects a laser line onto objects
in the world and a camera acquires images of the reflections
of the laser line (Gross 2005, Chapter 16.6.1; Beyerer et al.
2016, Chapters 7.3.1 and 7.3.2; Li et al. 2007; Legarda et al.
2011). The projection of the laser line forms a plane in space
that is not perpendicular to the optical axis of the camera.
Different object distances cause different displacements of
the laser line in the image, which allow a 3D reconstruction
of the scene. To obtain maximum accuracy, it is necessary
that the laser line is in focus for all 3D depths that must
be reconstructed, i.e., the entire 3D laser plane emitted by
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the projector should ideally be in focus. In particle image
velocimetry applications, the laser sheet approach is com-
binedwith a stereo camera setup (Willert 1997; Prasad 2000).
This allows the out-of-plane motion component of the veloc-
ity vector of the particles to be determined.

Another application where it is important to image a plane
in focus that is tilted with respect to the image plane is fringe
projection (Gross 2005, Chapter 16.6.2; Beyerer et al. 2016,
Chapter 7.3.4; Albers et al. 2015; Peng et al. 2015). Here, a
2D projector replaces one of the cameras of a stereo camera
setup. Consequently, this application is geometrically equiv-
alent to the stereo camera setup described above.

3 Tilt Lenses and the Scheimpflug Principle

It is well known that an arbitrary plane in object space can be
imaged in focus by tilting the lens with respect to the image
plane (Gross 2005, Chapter 10.5.2). This principle is tradi-
tionally credited to Theodor Scheimpflug, who filed a series
of Austrian, British, and US patents on the subject in 1902–
1904. The patents were granted in 1904–1906 (Scheimpflug
1902a, b, c, 1903a, b, c, 1904). However, the principle was
already known to Jules Carpentier, who filed for and received
a British patent that describes the principle in 1901 (Carpen-
tier 1901). To Scheimpflug’s credit, he worked out the optical
and mathematical principles in detail in his patents, whereas
Carpentier simply stated the Scheimpflug principle without
any proof.

If a thin lens model is assumed, the Scheimpflug princi-
ple states the following:1 The object plane (the plane that
is in focus), the thin lens’s plane, and the image plane must
all meet in a single line. This version of the Scheimpflug
principle appears in (Carpentier 1901). The line of intersec-
tion is often called the Scheimpflug line (Evens 2008a, b;
Merklinger 2010), while Scheimpflug calls it the axis of
collineation. In his original Austrian patents, Scheimpflug
uses a thick lens model,2 for which the condition must be
modified as follows: the Scheimpflug line is split into two
lines, one in each principal plane of the lens, that are conju-
gate to each other, i.e., have the same distance and orientation
with respect to the principal points of the lens (see Fig. 2).
The angles of the object and image planes with respect to the
principal planes can be derived from the lens equation and
are given by (Scheimpflug 1904):

tan τ ′ = f

a − f
tan τ, (1)

1 The optics terms in this section will be explained in Sect. 4.
2 In his British and US patents, he also mentions the thin lens model.
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Fig. 2 The Scheimpflug principle. S and S′ are the object-side and
image-side Scheimpflug lines
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Fig. 3 Refocusing by moving the image plane with respect to the prin-
cipal plane P ′ from IP1 to IP2 rotates the object plane that is in focus
from OP1 to OP2 around the hinge line H

where f is the focal length of the lens, τ is the angle of the
object planewith respect to the object-side principal plane, τ ′
is the angle of the image plane with respect to the image-side
principal plane, and a is the distance of the intersection point
of the optical axis with the object plane from the object-side
principal point.

If a plane that is parallel to the image plane is drawn
through the object-side principal point, and this plane is
intersected with the object-side focal plane, a straight line is
obtained (see Fig. 3). This construction can also be performed
analogously on the image side of the lens. Scheimpflug calls
these lines the counter axes,while in current publications they
are called hinge lines (Evens 2008a, b; Merklinger 2010) or
pivot lines (Wheeler 2003). The object-side hinge line H
has an important geometric significance: if the image is refo-
cused (either by changing the distance of the image plane
with respect to the image-side principal point or by changing
the focus setting on the lens, which effectively moves the
location of the principal planes), the object plane will rotate
around the object-side hinge line if the tilt of the image plane
remains fixed (Wheeler 2003; Evens 2008a, b; Merklinger
2010). Furthermore, the depth of field is an infinite wedge-
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Fig. 4 A stereo setup with converging cameras and image planes tilted
according to the Scheimpflug principle. The image planes are visualized
by thick solid lines. The depth of field of the two cameras is visualized
by dashed lines, which emanate from the hinge lines. The common
depth of field is visualized by the gray rhombus. The angles of the two
cameras are exaggerated to display the common depth of field more
clearly. The surface to be reconstructed is visualized by a thick solid
line

shaped region that has the hinge line as its edge (Wheeler
2003; Evens 2008a, b; Merklinger 2010). This can also be
seen from Fig. 3. If we interpret the image planes IP1 and
IP2 as the limits of the depth of focus, the limits of the depth
of field are given byOP1 andOP2.3 Note that positioning the
image plane parallel to the principal planes moves the hinge
and Scheimpflug lines to infinity, and produces the regular
depth-of-field geometry.

With the Scheimpflug principle, it is obvious how to solve
the focusing problems in the above applications. For exam-
ple, for stereo cameras, the image planes must be tilted as
shown in Fig. 4. A similar principle holds for fringe projec-
tion systems. For sheet-of-light systems, the object plane in
Fig. 4 corresponds to the laser plane and there is only one
camera.

To construct a camera with a tilted lens, there are sev-
eral possibilities. One popular option is to construct a special
camera housing with the desired tilt angle, to which the lens
can be attached. This is typically done for specialized appli-
cations for which the effort of constructing the housing is
justified, e.g., specialized sheet-of-light or fringe-projection
sensors. In these applications, the lens is typically tilted
around the vertical or horizontal axis of the image, as required
by the application.Another possibility is to use aScheimpflug
adapter that allows an arbitrary lens to be attached to a reg-
ular camera. Again, often only horizontal or vertical tilt is
supported. The most versatile option is to use lenses that
have been designed specifically to be tilted in an arbitrary
direction. In machine vision parlance, these lenses are typi-
cally called Scheimpflug lenses or Scheimpflug optics. They
are available as perspective or telecentric lenses. In the con-

3 This is an approximation that is accurate enough formost applications.
The actual shape of the depth of field is slightly more complicated, as
discussed by Evens (2008b).

B BAA

Fig. 5 Examples for a machine vision tilt lens (left) and an SLR tilt
lens (right). In both cases, the letter A denotes a lock mechanism that
can be unlocked (a screw for the machine vision lens and a lever for the
SLR lens). After unlocking, the upper part of the lens can be rotated
with respect to the part of the lens that is attached to the camera housing
to determine the direction into which the lens is tilted. The letter B
denotes the mechanism by which the lens can be tilted (a screw for the
machine vision lens and a knob for the SLR lens)

sumer SLR camera market, these lenses are typically called
tilt/shift lenses or perspective correction lenses (although,
technically, perspective correction only requires that the lens
can be shifted). Since the ability to tilt the lens is the impor-
tant feature for the purposes of this paper, we will call these
lenses tilt lenses from now on.

Figure 5 shows examples for a machine vision and an
SLR tilt lens. In both cases, one first selects the direction
into which the lens should be tilted by rotating the entire
lens assembly, except the part that is attached to the camera
housing, and then tilts the lens into that direction. Ideally, a
camera model would represent these two tilt parameters in a
natural manner that is easy to understand for the user.

4 Required Principles of Geometric Optics

The pinhole model is in widespread use in machine and com-
puter vision tomodel the projection that standard perspective
lenses perform. It is a convenient model that is an abstraction
of the projection that happens in a real lens. To develop a pro-
jection model for tilt lenses, the pinhole model is inadequate,
as we will discuss in this section.

It is well known from Gaussian optics (Lenhardt 2006,
Chapter 4.2.11) that any assembly of lenses can be regarded
as a single thick lens. The thick lensmodel is characterized by
certain cardinal elements, whose main purpose is to simplify
ray tracing through the lens (Lenhardt 2006, Chapter 4.2.4).
The principal planes P and P ′ are perpendicular to the optical
axis. A ray that enters the object-side principal plane P exits
the image-side principal plane P ′ at the same position with
respect to the optical axis (however, in general not at the
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Fig. 6 The geometry of a thick lens

same angle).4 The principal points are the intersections of
the principal planes with the optical axis. The focal points
F and F ′ lie on the optical axis at distances f and f ′ from
P and P ′. For lenses that have the same medium, e.g., air,
on both sides of the lens, f and f ′ have the same absolute
value.5 A ray that is parallel to the optical axis in image space
or object space passes through F or F ′, respectively. Finally,
the nodal points N and N ′ lie on the optical axis and have
the property that a ray that passes through one nodal point
emerges at the other nodal point with the same direction. For
lenses that have the same medium on both sides of the lens,
the nodal points coincide with the principal points.

Figure 6 displays a thick lens with its cardinal elements
and three rays that show the three most important principles
derived from the above properties (Lenhardt 2006, Chap-
ter 4.2.4):

– A ray that is parallel to the optical axis in object space
passes through the image-side focal point.

– A ray that is parallel to the optical axis in image space
passes through the object-side focal point.

– A ray that passes through a nodal point exits at the other
nodal point with unchanged direction.

If the thick lens model is simplified to the thin lens model,
the two principal planes coincide and the two nodal points
collapse to the center of the thin lens (Lenhardt 2006, Chap-
ter 4.2.5). While the above three rules remain valid, they
simplify. In particular, the third rule simplifies to: a ray that
passes through the center of a thin lens does not change its
direction. At first glance, this appears to be very similar to
the ray geometry of a pinhole camera. It might, therefore,
seem obvious to define the projection center of a thin lens as
the center of the lens (see, e.g., Hanning 2011, Chapter 2.2).
Similarly, for a thick lens, it might seem obvious to define
that there are two projection centers: the two nodal points
(see, e.g., Mikhail et al. 2001, Chapter 4.3). These defini-

4 Note that P may be closer to the image plane than P ′.
5 Various sign conventions are in common use. For example, according
to DIN 1335:2003-12 (2003), f is negative and f ′ positive. In this
paper, we use the convention that both f and f ′ are positive.

EXP

N F’F N’

ENPAS

Fig. 7 The pupils and cardinal elements of a real system of lenses. AS
is the aperture stop (a diaphragm); ENP is the entrance pupil; EXP is
the exit pupil

tions mainly would be motivated by the desire to preserve
the property of pinhole cameras that the ray directions are
identical on both sides of the pinhole.

It is, however, incorrect to regard a thin or thick lens as a
pinhole camera. The projection properties of a lens are deter-
mined by one essential element of the lens that is neglected
by both the thin and thick lensmodels: the aperture stop. If an
object is imaged through a lens, a cone of rays is emitted from
the object, passes through the lens, and is imaged sharply in
the image plane. The aperture stop is the opening in the lens
that restricts the diameter of the cone of rays (Lenhardt 2006,
Chapter 4.2.12.2). Thus, it is the analog of the pinhole in a
pinhole camera. The virtual image of the aperture stop by all
optical elements that come before it (i.e., lie on the object
side of the aperture stop) is called the entrance pupil, while
the virtual image of the aperture stop by all optical elements
that come behind it (i.e., lie on the image side of the aperture
stop) is called the exit pupil. Figure 7 shows the cardinal ele-
ments of a real system of lenses along with the aperture stop
(diaphragm) and the two pupils.

The cone of rays emitted by the object seems to pass
through the entrance pupil and seems to emerge from the
exit pupil. A ray that passes through the center of the aper-
ture stop is called a chief ray. Since it lies in the center of the
cone of rays (with respect to the plane of the aperture stop), it
is the analog of the ray through the pinhole of a pinhole cam-
era (Lenhardt 2006, Chapter 4.2.12.4). Note that the chief ray
also passes through the center of the entrance and exit pupils
(because they are the virtual images of the aperture stop).

The placement of the aperture stop is crucial for the pro-
jection properties of a lens. The aperture stop essentially acts
as a filter that filters out certain rays in object space.

Often, the aperture stop is placed between the two focal
points of the lens, resulting in an entocentric lens (Lenhardt
2006, Chapter 4.2.14.1), as shown in Fig. 8. In entocentric
lenses, the entrance and exit pupils lie at finite positions and
between the object and the image plane. One important point
to note here is that the angle of the chief ray in object space
in general is different from the angle of the chief ray in image
space (Lenhardt 2006,Chapter 4.2.12.3). Because of the third
rule above, the angles would only be identical if the aperture
stop were located in one of the principal planes.
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Fig. 8 An entocentric lens. O1 and O2 are two different object posi-
tions; AS is the aperture stop; IP is the image plane. For simplicity, only
the chief rays are displayed. The image of O1 is in focus, while the
image of O2 is blurred. Note that the image of O2 is larger than the
image of O1
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Fig. 9 An object-side telecentric lens. O1 and O2 are two different
object positions; AS is the aperture stop; IP is the image plane. For
simplicity, only the chief rays are displayed. The image of O1 is in
focus, while the image of O2 is blurred. Note that the images of O1 and
O2 have the same size

The aperture stop can also be placed at one of the focal
points. If an infinitely small aperture stop is positioned at the
image-side focal point, according to the first rule above, only
rays parallel to the optical axis in object space can pass the
aperture stop, i.e., the lens performs a parallel projection in
object space (Lenhardt 2006, Chapter 4.2.14.1). The entrance
pupil is the virtual image of the aperture stop and is therefore
located at infinity (the exit pupil is at a finite location; in this
simplified model, it lies at the aperture stop; in a real lens,
there could be some optical elements behind the aperture
stop). Because the entrance pupil lies at infinity, these lenses
are called object-side telecentric. In real lenses, the aperture
stop has finite size to allow enough light to reach the sensor.
This does not change the telecentric properties (Lenhardt
2006, Chapter 4.2.14.2). However, the chief ray is replaced
by a cone of rays that has the chief ray as its center. This
causes a finite depth-of-focus and depth-of-field. An object-
side telecentric lens is shown in Fig. 9.

In an analogous manner, if the aperture stop is positioned
at the object-side focal point, by the second rule above, only
rays that are parallel to the optical axis in image space can
pass the aperture stop. The entrance pupil remains finite,
while the exit pupil moves to infinity. These kinds of lenses
are called image-side telecentric. Lenses that are designed for
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F
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Fig. 10 An image-side telecentric lens. O1 and O2 are two different
object positions; AS is the aperture stop; IP is the image plane. For
simplicity, only the chief rays are displayed. The image of O1 is in
focus, while the image of O2 is blurred. Note that the image of O2 is
larger than the image of O1
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Fig. 11 A bilateral telecentric lens. O1 and O2 are two different object
positions; AS is the aperture stop; IP is the image plane. For simplicity,
only the chief rays are displayed. The image of O1 is in focus, while
the image of O2 is blurred. Note that the images of O1 and O2 have the
same size

digital sensors are often image-side telecentric or nearly so
to avoid pixel vignetting (the effect that solid-state sensors
are less sensitive to rays that impinge on the sensor non-
perpendicularly). An image-side telecentric lens is shown in
Fig. 10.

If an object-side telecentric lens is modified by placing a
second lens assembly behind the image-side focal point in
such a way that the object-side focal point of the second lens
coincides with the image-side focal point of the first lens, i.e.,
if the object-side focal point of the second lens lies in the cen-
ter of the aperture stop of the first lens, we obtain a bilateral
telecentric lens (Lenhardt 2006, Chapter 4.2.14.2). This con-
struction essentially is identical to attaching an image-side
telecentric lens to anobject-side telecentric lens (with a single
aperture stop, of course). In bilateral telecentric lenses, both
the entrance and exit pupils are located at infinity. The advan-
tage of bilateral telecentric lenses over object-side telecentric
lenses is that the telecentricity is achieved more accurately
since the circle of confusion for bilateral telecentric lenses is
more symmetric and suffers less from lens aberrations than
for object-side telecentric lenses. Figure 11 shows the ray
geometry of a bilateral telecentric lens.

As a final example, the aperture stop can be placed behind
the image-side focal point, as shown in Fig. 12. This causes
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Fig. 12 A hypercentric lens. O1 and O2 are two different object posi-
tions; AS is the aperture stop; IP is the image plane. For simplicity, only
the chief rays are displayed. The image of O1 is in focus, while the
image of O2 is blurred. Note that the image of O2 is smaller than the
image of O1

the entrance pupil to lie in object space. If an object is placed
between the entrance pupil and the lens, this configuration
has the effect that objects that are closer to the camera appear
smaller in the image. The canonical example is an image
of a die that is oriented parallel to the image plane. This
lens geometry enables five of the six sides of the die to be
seen in the image. These types of lenses are typically called
hypercentric lenses (Lenhardt 2006, Chapter 4.2.14.1; Gross
2005, Chapter 10.3.9; Beyerer et al. 2016, Chapter 3.4.6).

As these examples have shown, simply moving the aper-
ture stop completely changes the projection properties of the
lens, even if all the cardinal elements remain unchanged.
This shows that neither the nodal points (in the thick lens
model) nor the center of the lens (in the thin lens model)
can be the projection centers of the lens. The actual projec-
tion centers of the lens that explain the projection behaviors
that were described above are the centers of the entrance and
exit pupils (Lenhardt 2006, Chapter 4.2.12.4; Luhmann et al.
2014, Chapter 3.3.2.2; Evens 2008b, Section 10). In particu-
lar, the center of the entrance pupil is the relevant projection
center for many computer and machine vision applications
since it determines the ray geometry in object space. For
example, the center of the entrance pupil is the point around
which a camera must be rotated to create a panorama image
(Evens 2008b, Section 10).

Note that all the lens models described above are very dif-
ferent from the pinhole model. First, there are two projection
centers. Second, in general the ray angles in image space
and object space are different. This is the case even for ento-
centric lenses. An explanation of how the pinhole model is
connected to entocentric lenses is given by Lenhardt (2006,
Section 4.2.12.4) and Steger et al. (2008, Chapter 2.2.2). To
map the entocentric lensmodel to the pinholemodel,wemust
ensure that the object and image side ray angles are identi-
cal. All the ray angles ω in object space must remain fixed
since they are determined by the geometry of the objects in
the scene. Therefore, the center of the entrance pupil must
remain fixed. We can, however, move the exit pupil to the

y

d
EXP ENP

ω′ω″ y’
ω

d’
c

QQ’

Fig. 13 Modeling an entocentric lens as a pinhole lens. ENP and EXP
are the entrance and exit pupils with centers Q and Q′. The chief ray
enters the entrance pupil at an angle ω and exits from the exit pupil
at a different angle ω′. An object of size y is projected to an image
of size y′. The distance from the object to the entrance pupil is d, the
distance from the exit pupil to the image is d ′. To simulate a pinhole
lens, Q′ virtually must be moved to Q. To make the image-side ray
angle ω′′ identical to ω, the image plane must be moved to a distance
c (the principal distance) from Q, while keeping y′ fixed. Note that c
and d ′ differ substantially

same position as the entrance pupil. Finally, if the image
plane is perpendicular to the optical axis, we can move the
image plane to a position where the image-side ray anglesω′′
become identical to the object-side ray angles ω, while keep-
ing the image size y′ fixed. This is shown in Fig. 13. Note
that this construction even works for image-side telecentric
lenses.

For lenses that are telecentric in object space (object-side
and bilateral telecentric lenses), we can also pretend that the
image space rays have the same angle as the object space
rays if the image plane is perpendicular to the optical axis.
For bilateral telecentric lenses, this is tautologically true. For
object-side telecentric lenses, we can move the image plane
to infinity to achieve this. Hence, for both lens types, we can
assume that the camera performs an orthographic projection.

If the image plane is tilted with respect to the optical axis,
these convenient abstractions unfortunately no longer work
correctly. From the examples above, it is obvious that tilting
the image plane causes perspective or affine distortions of
the image. In this case, it is essential to be able to model the
ray geometry in image space correctly to obtain the correct
perspective. Let us imagine that the camera is acquiring an
image of a square that is perpendicular to the optical axis
with a tilted image plane. For an entocentric lens, the image
of the square will be a trapezoid.6 However, if we do not
model the ray geometry in image space correctly, the trape-
zoid will have the wrong shape.7 If we use an image-side
telecentric lens, the image of the square will be a rectangle.

6 This assumes that the tilt is in the direction of one of the axes of the
square. If not, a general quadrilateral will result.
7 This is clear from Fig. 13. If we imagine the image plane tilted by the
same angle, the fact that d ′ and c differ will cause different perspective
distortions that are similar to acquiring images of a tilted plane with
different focal lengths with a regular lens, while keeping the size of the
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Therefore, we can see that while the pinhole model is able
to model entocentric and image-side telecentric lenses cor-
rectly if the image plane is perpendicular to the optical axis,
this clearly is no longer the case for tilt lenses (tilted image
planes). Similarly, for bilateral telecentric lenses, the image
of the square is a rectangle, while for object-side telecentric
lenses, it is a trapezoid. Again, it is evident that the ortho-
graphic projection model is inadequate for tilt lenses. From
this discussion, it is clear that the projection center that is
relevant for modeling the tilt correctly is the center of the
exit pupil and its geometric relation to the image plane.

We close this section by mentioning that the ray angles
ω and ω′ (cf. Fig. 13) are related to the pupil magnification
factor mp by (see Lenhardt 2006, Chapter 4.2.12.3)

tanω

tanω′ = mp, (2)

where mp is the diameter of the exit pupil divided by the
diameter of the entrance pupil. Consequently, whenever the
entrance and exit pupils have different sizes, the ray angles
in object and image space will be different. Therefore, by
simply looking at the lens from the front and back, we can
easily determine whether the ray angles are different.

5 Related Work

5.1 Related Work on the Calibration of Cameras with
Tilt Lenses

In this section, we will discuss previous approaches to the
calibration of cameras with tilt lenses. We will only discuss
approaches that provide an explicit geometric camera model
and that calibrate the model parameters. For example, we
will not discuss approaches that only compute a rectifica-
tion from the image plane to the laser plane (Willert 1997;
Walker 2002; Konrath and Schröder 2000, 2002), or that do
not describe how the camera parameters are calibrated (Four-
nel et al. 2003).

A review of existing approaches has shown that there are
problems that occur frequently. To avoid tedious repetitions,
rather than discussing the existing approaches individually,
we discuss the problems and list the approaches together
with the problems. Every existing approach discussed below
exhibits at least two of the problems.

It is interesting to note that there is no single approach
that can handle all the lens types that are relevant for
machine vision applications (perspective, image-side tele-
centric, object-side telecentric, and bilateral telecentric, as

Footnote7 continued
plane identical in the image (see, e.g., Faugeras and Luong 2001, Figure
4.21 or Hartley and Zisserman 2003, Figure 6.7).

discussed in Sect. 4). Existing approaches always deal with
a single lens type. Perspective lenses are treated in (Gerdes
et al. 1993a, b; Gennery 2001, 2006; Fournel et al. 2004,
2006; Louhichi et al. 2006, 2007; Haig et al. 2006; Li et al.
2007;Wang et al. 2008; Legarda et al. 2011, 2013; Hamrouni
et al. 2012; Astarita 2012; Cornic et al. 2015; Fasogbon et al.
2015; Albers et al. 2015; Kumar and Ahuja 2014a, b, 2015)
and object-side telecentric lenses in (Peng et al. 2015). There
are no approaches for image-side and bilateral telecentric
lenses.

As discussed in Sect. 3, a lens can typically be tilted in
an arbitrary direction (see also Walker 2002). Yet, there are
approaches that only model a lens tilt in one direction. For
some approaches (Fournel et al. 2006; Louhichi et al. 2006,
2007; Astarita 2012), it is unclear in which direction the tilt
is modeled, but there is only a single tilt parameter, which
precludes tilting in an arbitrary direction. Furthermore, Li
et al. (2007) only model a tilt around the x-axis, while Haig
et al. (2006) only model a tilt in the direction of gravity.

More importantly, almost all of the approaches that han-
dle perspective lenses do not model different ray angles in
object and image space (Gerdes et al. 1993a, b; Gennery
2001, 2006; Fournel et al. 2004, 2006; Louhichi et al. 2006,
2007; Haig et al. 2006; Li et al. 2007; Wang et al. 2008;
Legarda et al. 2011, 2013; Hamrouni et al. 2012; Astarita
2012; Kumar and Ahuja 2014b; Cornic et al. 2015; Fasog-
bon et al. 2015; Albers et al. 2015). The only exception is
the approach by Kumar and Ahuja (2014a, 2015).8 Their
camera model, however, is unnecessarily complex and con-
tains redundant parameters. In their approach, the tilt and
differing ray angles are modeled by at least four parameters,
whereas three are sufficient, as will be described in Sect. 7.
Furthermore, the model requires data to be specified that few
lens manufacturers provide, such as the distances from the
two principal planes to the respective pupils. This makes it
impractical to use for typical machine vision users.

As will be shown in this paper, the model of the mapping
of tilted lenses includes important degeneracies that imply
that certain parameters of the model cannot be determined
uniquely. These degeneracies are not analyzed by any exist-
ing approach (Gerdes et al. 1993a, b; Gennery 2001, 2006;
Fournel et al. 2004, 2006; Louhichi et al. 2006, 2007; Haig
et al. 2006; Li et al. 2007; Wang et al. 2008; Legarda et al.
2011, 2013; Hamrouni et al. 2012; Astarita 2012; Cornic

8 The work byKumar andAhuja (2014a, 2015) is based on the work by
Aggarwal and Ahuja (2002), which points out some anomalies that can
happen if different ray angles in object and image space are not modeled
correctly. They only propose a calibration for the subset of parameters
that model the different ray angles in object and image space, i.e., they
do not describe a complete calibration of tilt cameras. The calibration
requires a complex and elaborate setup. Since this makes it impractical
to use for typical machine vision users, we do not include it in the above
discussion.
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et al. 2015; Fasogbon et al. 2015; Albers et al. 2015; Peng
et al. 2015; Kumar and Ahuja 2014a, b, 2015).

The failure to model the different ray directions in object
and image space together with the failure to exclude certain
interior orientation parameters in degenerate cases, which
would be necessary to handle the degenerate cases correctly,
as shown in Sect. 7, means that most existing camera models
can only handle the case of horizontal and vertical tilts with-
out excessive residual errors (Gerdes et al. 1993a, b; Gennery
2001, 2006; Fournel et al. 2004, 2006; Louhichi et al. 2006,
2007; Haig et al. 2006; Li et al. 2007; Wang et al. 2008;
Legarda et al. 2011, 2013; Hamrouni et al. 2012; Astarita
2012; Kumar and Ahuja 2014b; Cornic et al. 2015; Fasog-
bon et al. 2015; Albers et al. 2015). However, in this case the
camera parameters will not correspond to the correct values,
even if the model returns small residual errors.

Another problem is that many approaches parameterize
the tiltmapping byEuler angles (Gerdes et al. 1993a, b;Wang
et al. 2008; Legarda et al. 2011, 2013; Hamrouni et al. 2012;
Cornic et al. 2015; Fasogbon et al. 2015; Albers et al. 2015;
Peng et al. 2015;Kumar andAhuja 2014a, b, 2015).As canbe
seen from the example lenses in Sect. 3, this kind of parame-
terization is unintuitive for the user if the tilt is not horizontal
or vertical.

A few of the proposed approaches use a self-calibration
method in which the coordinates of the control points of the
calibration object are determined alongwith the camera para-
meters. It is well known that self-calibration cannot recover
the scale of the scene, i.e., of the calibration object (Hart-
ley and Zisserman 2003, Chapters 10.2 and 19.1; Luhmann
et al. 2014, Chapter 4.4). This fact is ignored in (Fournel
et al. 2006; Louhichi et al. 2006; Hamrouni et al. 2012).
It is acknowledged implicitly in (Louhichi et al. 2007) or
explicitly in (Fournel et al. 2004; Cornic et al. 2015), but
no calibration for the undetermined scale is provided. How-
ever, it is known from photogrammetry that some form of
measured distances or control points, e.g., a scale bar, are
necessary to recover the scale (Luhmann et al. 2014, Chap-
ters 4.4.3, 7.3.1.5, and 7.3.2.1; Haig et al. 2006). Known
control points or distances effectively constitute a calibra-
tion object. Therefore, we might as well use a calibration
object with known control points.

Some of the calibration approaches use circular control
points. It is well known that this may lead to biased calibra-
tion results if the bias is not taken into account and removed
(Heikkilä 2000).Many of the existing approaches exhibit this
problem (Gennery et al. 1987; Gennery 2001, 2006; Four-
nel et al. 2004; Louhichi et al. 2006, 2007; Li et al. 2007;
Haig et al. 2006; Legarda et al. 2011; Astarita 2012; Cornic
et al. 2015; Albers et al. 2015; Peng et al. 2015). In some
approaches, the bias is taken into account (Legarda et al.
2013; Fasogbon et al. 2015), albeit in an inefficient manner

by the methods of Datta et al. (2009) or Vo et al. (2011), to
be discussed in Sect. 5.2.

Finally, some approaches inherently require a 3D calibra-
tion object (Gerdes et al. 1993a, b; Gennery 2001, 2006).
This is a disadvantage in many machine vision applications
because 3D calibration objects are more expensive to manu-
facture accurately and they are sometimesmore cumbersome
to handle for the users.

5.2 Related Work on the Bias Removal for Circular
Control Points

It is well known that there are two kinds of bias that may
affect the location of the projection of circular control points
in the image. First, in an ideal pinhole camera that does not
have lens distortions, the projection of the circular control
point into the image is an ellipse. The center of the ellipse is
typically used as the projected center of the corresponding
control point. However, the projection of the center of a circle
in 3D in general is not the center of the ellipse in the image
(Lenz 1988, Chapter 10.5; Lenz and Fritsch 1990; Ahn et al.
1999; Heikkilä 2000; Mallon and Whelan 2007). Therefore,
using the centers of the ellipses introduces a bias in the control
point locations in the image that affects the accuracy of the
camera calibration. LikeMallon andWhelan (2007), we will
call this bias the perspective bias.

Second, if the lens exhibits lens distortions, the projection
of a circle in 3D into the image typically is no longer an
ellipse. Thus, if the camera calibration assumes an ellipse in
the image to perform the extraction of control points, e.g.,
by fitting an ellipse to the control point’s edges in the image
(Heikkilä 1997, Chapter 2; Lanser 1997, Chapter 3.2.1.1) or
by using gray value moments (Mallon and Whelan 2007),
there will be a further bias that can affect the accuracy of
the calibration (Lenz 1988, Chapter 10.5; Lenz and Fritsch
1990; Mallon and Whelan 2007). Like Mallon and Whelan
(2007), we will call this bias the distortion bias.

The simplest approach to deal with the bias is to ignore it.
As discussed in Sect. 5.1, this is a popular approach.

A slightly more elaborate approach is to require that the
circles of the control points must be small enough that the
perspective bias (and, consequently, the distortion bias) is
sufficiently small (Dold 1996, 1997; Ahn et al. 1999; Mal-
lon and Whelan 2007). Furthermore, Dold (1997) and Ahn
et al. (1999) claim that, while the perspective bias negatively
affects the interior and exterior orientation of the cameras
in the calibrated setup, a 3D reconstruction obtained from
the biased orientation parameters is largely unaffected by the
bias. It was later shown by Otepka (2004) that this assertion
is not true in general.

The approaches by Fournel et al. (2006) and Hamrouni
et al. (2012), mentioned in Sect. 5.1, use the intersection
points of bitangents to the circular marks as control points.
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While these points are invariant to projection, they are not
invariant to lens distortion, i.e., some bias remains.

An elegant solution to remove the perspective bias was
proposed in (Heikkilä 1997, Chapter 3.5; Heikkilä 2000).
The camera is first calibrated using the biased ellipse centers.
Then, the calibrated camera parameters are used to determine
the ellipse centers by projecting the control point borders into
the image and determining their centers analytically. Fur-
thermore, the projection of the center of the control point
is determined analytically. These two points define an offset
that is used to correct the extracted ellipse center and then to
perform the calibration again using the thus corrected control
points. For self-calibration, a similar approach is proposed by
(Otepka 2004; Otepka and Fraser 2004). Since the distortion
bias is not handled by these approaches, it can be expected
that some bias remains in the calibrated camera parameters.

We now turn to approaches that address the perspective as
well as the distortion bias.

The effect of perspective and distortion bias is analyzed in
(Lenz 1988, Chapter 10.5; Lenz and Fritsch 1990). Approx-
imate formulas (based on several simplifications of the
problem) are given that allow to predict the two kinds of
bias if the interior and exterior orientation of the camera are
known. Lenz (1988, Chapter 10.5) describes an approach to
reduce the bias. The camera is first calibrated with the biased
control point locations. Then, the approximations to the two
kinds of bias are predicted and are applied to the control
point locations. No analysis of how the accuracy of the cam-
era parameters is improved by this approach is performed.
Since the two kinds of bias are treated only in an approxi-
mate manner, it can be assumed that some residual bias is
still present in the camera parameters.

The approach by Douxchamps and Chihara (2009) fol-
lows the same general steps that the above approaches use
(iteration of the camera calibration and the improvement of
the control point positions). The improvement of the con-
trol point locations is performed by computing a synthetic
template of the control point based on the current orientation
parameters and then maximizing the correlation of the tem-
plate and the image around the current estimate of the control
point location. The computation of the synthetic template is
based on a kind of ray tracing algorithm and therefore is
computationally very expensive. This makes the approach
unattractive for time-critical applications.

Finally, the approaches by Datta et al. (2009) and Vo et al.
(2011) also follow the general scheme of iterating the camera
calibration and the improving the control point positions. The
difference is that the control point correction is performed
by removing the lens distortions from each calibration image
and projecting it into a plane that is parallel to the image plane
using the current interior and exterior orientation parameters.
The positions of the control points are then extracted in the
rectified images and are projected into the image. The control

points are extracted either through ellipse fitting (Datta et al.
2009) or through template matching (Datta et al. 2009; Vo
et al. 2011). Since these approaches rely on rectifying all cal-
ibration images once per outer iteration and then performing
the control point extraction anew for each rectified image,
they are very time-consuming, and therefore unattractive for
time-critical applications.

6 Models for Cameras with Regular Lenses

6.1 Camera Models

The models for cameras with tilt lenses that will be proposed
in Sect. 7 are all extensions of models for cameras with regu-
lar lenses. Therefore, we will discuss these models first. Our
presentation is based on the description in (Steger et al. 2008,
Chapter 3.9), but extends that description to the multi-view
stereo case.

Suppose the multi-view stereo setup consists of nc cam-
eras. In the calibration, we use no images of a calibration
object in different poses and acquire images of the calibra-
tion object with nc cameras. The calibration object has its
own coordinate system. Each pose l (l = 1, . . . , no) of the
calibration object defines a transformation from the calibra-
tion object coordinate system to a camera coordinate system
of camera k (k = 1, . . . , nc). In applications, often a cer-
tain pose of the calibration object is used to define a world
coordinate system (Steger 1998, Chapter 3.9.4)

First, a point po = (xo, yo, zo)� given in the calibration
object coordinate system at pose l is transformed into a point
pl in some reference camera coordinate system using a rigid
3D transformation:

pl = Rlpo + tl , (3)

where tl = (tl,x , tl,y, tl,z)� is a translation vector and Rl
is a rotation matrix that is parameterized by Euler angles:
Rl = Rx (αl)Ry(βl)Rz(γl). Without loss of generality, we
can assume that the reference camera coordinate system is
that of camera 1. As usual, if we represent the points by
homogeneous coordinates, we can write the transformation
in (3) as a 4 × 4 homogeneous matrix:

pl = Hlpo =
(
Rl tl
0� 1

)
po. (4)

Next, the point pl is transformed into the camera coordi-
nate system of camera k using

pk = Rkpl + tk, (5)
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where Rk = Rx (αk)Ry(βk)Rz(γk) and tk = (tk,x , tk,y, tk,z)�
describe the relative pose of camera k with respect to cam-
era 1. Again, we can represent this transformation by a
homogeneous matrix Hk . Note that, with the above conven-
tion, Rk = I and tk = 0 for k = 1. Thus, if we only calibrate
a single camera, the transformation in (5) is redundant an can
be omitted. We will make use of this fact below to simplify
the discussion where appropriate.

As discussed in Sect. 4, the relevant projection center for
modeling the pose of the camera is the center of the entrance
pupil. Therefore, we assume that the origin of the camera
coordinate system is the center of the entrance pupil of the
respective camera and that the z axis of the camera coordinate
system points along the optical axis towards the scene.

Next, the point pk = (xk, yk, zk)� is projected into the
image plane. For lenses that are perspective in object space
(i.e., perspective and image-side telecentric lenses), the pro-
jection is given by:

(
xu
yu

)
= c

zk

(
xk
yk

)
, (6)

where c is the principal distance. Note that we use the
assumption that the ray angles in image space and object
space are identical, which is a valid assumption since in this
section we model the image plane as perpendicular to the
optical axis (see the discussion in Sect. 4). If we use homo-
geneous coordinates, we can represent the projection in (6)
by the 3 × 4 matrix

Pp =
⎛
⎝ c 0 0 0
0 c 0 0
0 0 1 0

⎞
⎠ . (7)

For lenses that are telecentric in object space (i.e., object-side
and bilateral telecentric lenses), the projection is given by:

(
xu
yu

)
= m

(
xk
yk

)
, (8)

where m is the magnification of the lens. Again, we use the
assumption that the ray angles in image space and object
space are identical. If we use homogeneous coordinates, we
can represent the projection in (8) by the 3 × 4 matrix

Po =
⎛
⎝m 0 0 0

0 m 0 0
0 0 0 1

⎞
⎠ . (9)

Conceptually, the undistorted point (xu, yu)� is then dis-
torted to a point (xd, yd)�. In our approach, two distortion
models are supported. The first model has been called the
division model by Fitzgibbon (2001). It was in common use,

however, more than a decade before the term division model
was coined (Lenz 1987, 1988; Lenz and Fritsch 1990; Lanser
et al. 1995; Lanser 1997; Blahusch et al. 1999). In the divi-
sionmodel, the undistorted point (xu, yu)� is computed from
the distorted point as follows:

(
xu
yu

)
= 1

1 + κr2d

(
xd
yd

)
, (10)

where r2d = x2d + y2d . The division model has the advantage
that it can be inverted analytically. The distorted point can be
computed by:

(
xd
yd

)
= 2

1 + √
1 − 4κr2u

(
xu
yu

)
, (11)

where r2u = x2u + y2u . Note that the division model only
supports radial distortion.

The second model that is supported is the polynomial
model proposedbyBrown (1966, 1971),whichmodels radial
as well as decentering distortions. The undistorted point is
computed by:

(
xu
yu

)
=

⎛
⎜⎜⎜⎝
xd

(
1 + K1r2d + K2r4d + K3r6d

)
+ (

P1(r2d + 2x2d ) + 2P2xdyd
)

yd
(
1 + K1r2d + K2r4d + K3r6d

)
+ (

2P1xdyd + P2(r2d + 2y2d )
)

⎞
⎟⎟⎟⎠ . (12)

The polynomial model cannot be inverted analytically. The
computation of the distorted point from the undistorted point
must be performed by a numerical root finding algorithm.
This is significantly slower than the analytical inversion in
the division model.

In our experience, these two models are accurate enough
to handle all lenses that are typically encountered in machine
vision applications. However, it would be easy to extend the
cameramodel withmore general models that treat distortions
as transformations in the image plane, e.g., the rational dis-
tortion model (Claus and Fitzgibbon 2005), should the need
arise.

Finally, the distorted point (xd, yd)� is transformed into
the image coordinate system:

(
xi
yi

)
=

⎛
⎜⎜⎝

xd
sx

+ cx

yd
sy

+ cy

⎞
⎟⎟⎠ . (13)

Here, sx and sy denote the pixel sizes on the sensor (more
accurately: the pixel pitch) and (cx , cy)� is the principal
point. Note that x refers to the horizontal axis of the image
(increasing rightward) and y to the vertical axis (increas-
ing downward). If we use homogeneous coordinates, we can
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represent the transformation in (13) by the 3 × 3 calibration
matrix

K =
⎛
⎝1/sx 0 cx

0 1/sy cy
0 0 1

⎞
⎠ . (14)

The camera model therefore consists of the following
parameters:

– The six parameters of the exterior orientation (model-
ing the pose of the calibration objects in the no images):
αl , βl , γl , tl,x , tl,y , and tl,z .

– The six parameters of the relative orientation of the nc
cameras with respect to camera 1: αk, βk, γk, tk,x , tk,y ,
and tk,z .

– The interior orientation of each camera (for simplic-
ity, we omit the subscripts k here): c or m; κ or
K1, K2, K3, P1, P2; sx , sy, cx , and cy .

The above parameterization is very intuitive for machine
vision users. All parameters have a physical meaning that is
easy to understand.Approximate initial values for the interior
orientation parameters can simply be read off the data sheets
of the camera (sx , sy) and the lens (c orm) or can be obtained
easily otherwise (the initial values for the principal point can
be set to the center of the image and the distortion coefficients
can typically be set to 0). Furthermore, the calibration results
are easy to check for validity.

6.2 Model Degeneracies

Remark 1 The camera models above are overparameterized.
We cannot determine c or m, sx , and sy uniquely since they
functionally depend on each other. We can solve this prob-
lem by leaving sy at the initial value the user specifies. This
is a valid approach since camera signals are always transmit-
ted line-synchronously, i.e., the acquired image necessarily
has the same vertical pixel pitch as the image on the sensor.
For sx , this is not always the case. If the image is trans-
mitted via an analog signal, the image may not be sampled
pixel-synchronously by the frame grabber (Steger et al. 2008,
Chapter 3.9).

Another method to remove the overparameterization that
is frequently used is to move the parameters c and m from
the projection equations (6) and (8) to the transformation into
the pixel coordinates (13). Therefore, (6) becomes

(
xu
yu

)
= 1

zk

(
xk
yk

)
(15)

with projection matrix

Pp =
⎛
⎝ 1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎠ , (16)

(8) becomes

(
xu
yu

)
=

(
xk
yk

)
(17)

with projection matrix

Po =
⎛
⎝ 1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎠ , (18)

and (13) becomes

(
xi
yi

)
=

(
ax xd + cx
ay yd + cy

)
(19)

with calibration matrix

K =
⎛
⎝ax 0 cx

0 ay cy
0 0 1

⎞
⎠ , (20)

where, (ax , ay) = (c/sx , c/sy) for cameras that are perspec-
tive in object space and (ax , ay) = (m/sx ,m/sy) for cameras
that are telecentric in object space. We have used this kind
of parameterization in the past for telecentric cameras (Ste-
ger et al. 2008, Chapter 3.9; Blahusch et al. 1999). However,
feedback from users has shown us that this mingling of para-
meters is difficult to use for many users.

The interesting aspect of the above discussion is that we
are free to use the parameters c andm in the projection matri-
ces or the calibration matrices according to our needs. This
enables us to separate all the parts of themodel that are purely
image-based transforms from everything that requires the
poses and the projection. We will make use of this fact in
several proofs below. Note that if we move c and m to the
calibration matrix, we must scale the distortion coefficients
appropriately. For example, κ and K1 must be divided by c2

or m2, K2 must be divided by c4 or m4, etc.

Remark 2 For lenses that are telecentric in object space, it is
impossible to determine the principal point (cx , cy)� unique-
ly if there are no distortions. In other words, the principal
point is solely determined by the distortions for this kind of
lenses. If there are no distortions, the cameras are actually
affine cameras in the sense of (Hartley and Zisserman 2003,
Chapter 6.3). For these cameras, (cx , cy) and (tl,x , tl,y)�
have the same effect. As described in (Hartley and Zisser-
man 2003, Chapter 6.3.3), the appropriate solution is to leave
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(cx , cy)� at the initial values specified by the user (typically,
the center of the image).

Remark 3 As described in Sect. 9, we calibrate the cameras
using a planar calibration object. For perspective lenses, it
is well known that for some configurations of poses of the
calibration object, not all parameters of the cameramodel can
be determined simultaneously (Sturm and Maybank 1999).
These degeneracies must be taken into account by the user
when acquiring images of the calibration object.

Remark 4 For telecentric lenses, the poseparameter tl,z obvi-
ously cannot be determined. We arbitrarily set it to 1m. In
addition, in a multi-view setup, the relative pose parameters
(tk,x , tk,y, tk,z) cannot be determined uniquely since all cam-
eras can be moved arbitrarily along their optical axes without
changing the image geometry. To provide a well-defined rel-
ative pose, we move the origins of the camera coordinate
systems along the respective optical axes to a sphere with
radius 1m. The center of the sphere is given by a point that
lies at a distance of 1m on the optical axis in front of the
reference camera.

Remark 5 For telecentric cameras and planar calibration
objects, the rotation part of the pose can only be determined
up to a twofold ambiguity from a single camera. For example,
a plane rotated by αl = 20◦ looks identical to a plane rotated
by αl = −20◦. This essentially is the same as a Necker
reversal (Hartley and Zisserman 2003, Chapter 14.6). In a
multi-view setup, these individual pose ambiguities can be
resolved, albeit only up to an overall Necker reversal, which
will have to be resolved manually by the user.

7 Models for Cameras with Tilt Lenses

7.1 Camera Models

Wewill nowextend the cameramodels of Sect. 6 to handle tilt
lenses correctly. To do so, we must model the transformation
that occurs when the image plane is tilted for lenses that are
telecentric in image space (image-side telecentric and bilat-
eral telecentric lenses) and for lenses that are perspective in
image space (perspective and object-side telecentric lenses).

The camera models in Sect. 6 have proven their ability to
model standard cameras correctly for many years. Therefore,
the tilt camera models should reduce to the standard models
if the image plane is not tilted. From the discussion at the end
of Sect. 4, we can see that the parameters c andm essentially
model the ray angles in object space correctly.9 Furthermore,

9 For telecentric cameras, the rays are all parallel since they go through
the center of the entrance pupil at infinity. Hence, they are all translated
with respect to eachother.A translation can also be regarded as a rotation

as discussed by Sturm et al. (2010, Page 43), the distortion
models discussed above essentially model distortions of ray
angles with respect to the optical axis. In the above distor-
tion models, the rays in image space are represented by their
intersections with a plane that is perpendicular to the optical
axis. This is convenient for untilted image planes, since this
plane is already available: it is the image plane. Since the
optical axis of the lens is unaffected by a tilt of the image
plane, we can still use the above mechanism to represent the
distortions, which models the distortions of ray angles with
respect to the optical axis by way of their intersections with a
plane that is perpendicular to the optical axis. Since the actual
image plane is now tilted, the untilted image plane becomes a
virtual image plane that is used solely for the purpose of rep-
resenting ray angles with respect to the optical axis and thus
to compute the distortions. Consequently, these two parts of
the model, i.e., the modeling of the ray angles in object space
by c or m and the modeling of the distortions in a plane that
is perpendicular to the optical axis, can remain unchanged.

Both tilt models therefore work by projecting a point from
a virtual image plane that is perpendicular to the optical axis
to the tilted image plane. Therefore, we first describe how
we can model the pose of the tilted image plane in a manner
that is easy to understand for the user. As discussed at the
end of Sect. 3, almost all tilt lenses work by first selecting
the direction in which to tilt the lens and then tilting the
lens. The selection of the direction in which to tilt essentially
determines a rotation axis n in a plane orthogonal to the
optical axis, i.e., the untilted image plane, and then rotating
the image plane around that axis. Let the image coordinate
system of the untilted image plane be given by the vectors
xu and yu. We can extend this image coordinate system to
a 3D coordinate system by the vector zu, which points back
to the scene along the optical axis. Figure 14 displays the
untilted image plane and this coordinate system in medium
gray. The axis n around which the image plane is tilted can
be parameterized by the angle ρ (0 ≤ ρ < 2π ) as follows:

n =
⎛
⎝ cos ρ

sin ρ

0

⎞
⎠ . (21)

If we rotate the coordinate system (xu, yu, zu) by the tilt angle
τ (0 ≤ τ < π/2) around n, the coordinate axes (xt, yt, zt) of
the tilted imageplane are given in the coordinate systemof the
untilted image plane by (see Spong et al. 2006, Chapter 2.5.3)

around a point at infinity. Therefore,whenwe speak about ray angles,we
will use this extended interpretation of the term angle to avoid tedious
repetitions of the same case distinctions.
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Fig. 14 The projection of a point pu from the untilted image plane to a
point pt in the tilted image plane for a camera that is telecentric in image
space. The coordinate system of the untilted image plane is given by
(xu, yu, zu), that of the tilted image plane by (xt, yt, zt). The camera’s
viewing direction is along the zu axis, which points towards the scene.
The rotation axis around which the image plane is tilted is given by n,
which forms an angle ρ with xu. The image plane is tilted by the angle
τ around the axis n. The direction of the light ray is indicated by the
vertical arrow, which goes through the image-side projection center
(the exit pupil), located at infinity. Note that the image plane is shown
in its correct orientation in the camera: upside-down

Rt = (
xt yt zt

) =
⎛
⎝ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎞
⎠

=
⎛
⎝ c2ρ(1 − cτ ) + cτ cρsρ(1 − cτ ) sρsτ

cρsρ(1 − cτ ) s2ρ(1 − cτ ) + cτ −cρsτ
−sρsτ cρsτ cτ

⎞
⎠ , (22)

where cθ = cos θ and sθ = sin θ . Note that the rotation
matrix Rt also represents a transformation of points from the
tilted coordinate system (xt, yt, zt) to the untilted coordinate
system (xu, yu, zu).

Note that the semantics of the tilt parameters are quite easy
to understand. A rotation angle ρ = 0◦ means that the lens
(i.e., the optical axis) is tilted downwards by τ with respect
to the camera housing, for ρ = 90◦, it is tilted leftwards, for
ρ = 180◦ upwards, and for ρ = 270◦ rightwards.

To project a point pu = (xu, yu)� from the untilted image
plane to a point pt = (xt, yt)� in the tilted image plane, it is
easiest to consider the inverse of this projection, i.e., to com-
pute the orthographic projection from the tilted to the untilted
image plane. It is well known that the orthographic projection
of one vector onto another vector is given by the scalar prod-
uct of the two vectors and that a linear transformation is given
by projecting the axes of one coordinate system onto the axes
of the other coordinate system (see, e.g., Spong et al. 2006,
Chapter 2.2). Therefore, to compute the transformation from
the tilted image plane to the untilted image plane, we must
compute the projections (scalar products) of xt and yt onto xu
and yu. For example, the element h11 of the projection matrix

is the projection of xt onto xu. Since xu = (1, 0, 0)� and
xt = (r11, r21, r31)� in the coordinate system of the untilted
image plane, the projection is given by xt ·xu = r11. If we do
this for all the x and y coordinate system vectors, we see that
the inverse tilt transformation is an affine transformation:

H−1
o =

⎛
⎝ r11 r12 0
r21 r22 0
0 0 1

⎞
⎠ . (23)

Therefore, the transformation from untilted to tilted image
coordinates for lenses that are telecentric in image space is
given by

Ho =

⎛
⎜⎜⎝

r22
r11r22 − r12r21

− r12
r11r22 − r12r21

0

− r21
r11r22 − r12r21

r11
r11r22 − r12r21

0

0 0 1

⎞
⎟⎟⎠ . (24)

We have pt = Hopu. We insert this tilt transformation into
the camera model between the distortion (10)–(12) and the
transformation to the image coordinate system (13). Conse-
quently, the world points are projected to the untilted image
plane, distorted within the untilted image plane, transformed
to the tilted image plane, and then transformed to the image
coordinate system. Note that the tilt transformation is invari-
ant to the choice of units. Consequently, the fact that we can
move c or m to the transformation to the image plane, men-
tioned at the end of Sect. 6, is still valid.

We now turn to cameras with lenses that are perspective
in image space. Here, we must be able to model the different
ray angles in object and image space correctly. From the dis-
cussion in Sect. 4 and Fig. 13, it is evident what must be done
to model the different ray angles correctly: we must locate
the untilted image plane at the true distance from the center
of the exit pupil. This distance was called d ′ in Fig. 13. For
simplicity, we will call it d from now on. We will refer to d
as the image plane distance. We require 0 < d < ∞. Fig-
ure 15 displays this geometry. Points in object space are first
projected to a virtual image plane that is orthogonal and lies
at a distance c from the projection center O . Obviously, this
causes the object and image space ray angles to be identical
(ω′′ = ω) and therefore causes the object space ray angles ω

to bemodeled correctly. Tomodel the image space ray angles
correctly, the virtual image plane is shifted to a distance d
(which corresponds to d ′ in Fig. 13), resulting in the correct
image space ray angles ω′ �= ω.10 Note that this shift does
not change the virtual image in any way. Next, the points are
distorted in the virtual image plane. With the virtual image
at its correct distance d, the plane can now be tilted by the
correct tilt angle τ .

10 Geometrically, this can also be regarded as an orthogonal projection
from the virtual image plane at c to that at d.
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Fig. 15 The ray geometry of the perspective tilt camera model. Points
in object space are first projected to a virtual image plane that is orthog-
onal and lies at a distance c from the projection center O . This causes
the object and image space ray angles to be identical (ω′′ = ω) and
therefore causes the object space ray angles ω to be modeled correctly.
To model the image space ray angles correctly, the virtual image plane
is shifted to a distance d (which corresponds to d ′ in Fig. 13), resulting
in the correct image space ray angles ω′ �= ω. Next, the points are dis-
torted in the virtual image plane. With the virtual image at its correct
distance d, the plane can now be tilted by the correct tilt angle τ

With this, the major difference to the telecentric model,
as shown in Fig. 16, is that the image-side projection center
(the center of the exit pupil) lies at a finite distance d in front
of the image plane.

As shown in Fig. 16, the coordinate systems (xu, yu, zu)
and (xt, yt, zt) have the same meaning as in the telecentric
case. If we shift the two coordinate systems to the projection
center and construct another coordinate system (xs, ys, zs) in
the tilted image plane that is parallel to (xt, yt, zt) and lies
at the perpendicular projection of the projection center into
the tilted image plane, we see that (xu, yu, zu) and (xs, ys, zs)
are equivalent to two perspective cameras that are rotated
around their common projection center. Therefore, we can
construct two calibration matrices Ku and Ks and a rotation
matrix R that relate the two cameras. Then, the projection
from (xu, yu, zu) to (xs, ys, zs) is given by KsRK−1

u (Hartley
and Zisserman 2003, Chapter 8.4.2). Finally, we must shift
(xs, ys, zs) to (xt, yt, zt) by a translation o within the tilted
image plane. This translation can bemodeled by a translation
matrix T. Thus, the complete projection is given by

Hp = TKsRK
−1
u . (25)

The calibration matrix Ku is obviously given by

Ku =
⎛
⎝ d 0 0
0 d 0
0 0 1

⎞
⎠ . (26)

The distance ds of (xs, ys, zs) from the projection center is
the orthogonal projection of the vector d = (0, 0, d)� onto
the axis zs = zt , i.e., ds = d · zt = dr33, with the rotation
matrix Rt as defined in (22). Therefore, we have

up
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Fig. 16 The projection of a point pu from the untilted image plane
to a point pt in the tilted image plane for a camera that is perspective
in image space. The coordinate system of the untilted image plane is
given by (xu, yu, zu), that of the tilted image plane by (xt, yt, zt). The
camera’s viewing direction is along the zu axis, which points towards
the scene. The rotation axis around which the image plane is tilted is
given by n, which forms an angle ρ with xu. The image plane is tilted by
the angle τ around the axis n. These two coordinate systems can also be
attached to the image-side projection center (the center of the exit pupil)
as (x′

u, y
′
u, z

′
u) and (x′

t, y
′
t, z

′
t). The distance from the projection center

to the intersection of the optical axis with the untilted and tilted image
planes is d. The coordinate system (xs, ys, zs) lies in the tilted image
plane at the perpendicular projection of the projection center. It lies
at the distance ds from the projection center, has the same orientation
as (xt, yt, zt), and is offset from this coordinate system by the vector
o. Note that the image plane is shown in its correct orientation in the
camera: upside-down

Ks =
⎛
⎝dr33 0 0

0 dr33 0
0 0 1

⎞
⎠ . (27)

The rotation matrix R in (25) must transform points from
(xu, yu, zu) to points in (xs, ys, zs), i.e., in (xt, yt, zt). As dis-
cussed above, the matrix Rt in (22) performs the inverse of
this transformation. Thus,

R = R�
t . (28)

Finally, the translation vector o is the negative of the orthogo-
nal projection of d onto xt and yt , i.e., o = −(d ·xt, d ·yt)� =
−(dr31, dr32)�. Therefore,

T =
⎛
⎝ 1 0 −dr31
0 1 −dr32
0 0 1

⎞
⎠ . (29)

123



136 Int J Comput Vis (2017) 123:121–159

By Substituting (26)–(29) into (25), we obtain

Hp =
⎛
⎝ r11r33 − r13r31 r21r33 − r23r31 0
r12r33 − r13r32 r22r33 − r23r32 0

r13/d r23/d r33

⎞
⎠ . (30)

As above, we insert this tilt transformation into the camera
model between the distortion (10)–(12) and the transforma-
tion to the image coordinate system (13).

7.2 Model Properties and Degeneracies

Proposition 1 The tilt cameramodels reduce to the standard
camera models if the image plane is not tilted.

Proof Inserting τ = 0 into (22), we obtain Rt = I. There-
fore, Ho = I and Hp = I. �	
Corollary 1 For lenses that are perspective in image space,
the image plane distance d cannot be determined if the image
plane is not tilted.

Proof This is obvious from Proposition 1 and the discussion
in Sect. 4. This also means that the user should select the
standard perspective camera model if there is no tilt. �	
Remark 6 A consequence of Corollary 1 is that the smaller
τ is, the less precisely d can be determined. If the calibration
has converged with a small RMS error, this is of no con-
cern since the calibrated system will be consistent with the
imaging geometry.

Proposition 2 The tilt homographies in (24) and (30) are
consistent with each other, i.e., Hp → Ho as d → ∞.

Proof By substituting (22) into (24) and (30) and simplifying
the trigonometric terms, we obtain

Ho =

⎛
⎜⎜⎜⎝

c2ρcτ + s2ρ
cτ

cρsρ(cτ − 1)
cτ

0

cρsρ(cτ − 1)
cτ

s2ρcτ + c2ρ
cτ

0
0 0 1

⎞
⎟⎟⎟⎠ (31)

and

Hp =
⎛
⎝ c2ρcτ + s2ρ cρsρ(cτ − 1) 0
cρsρ(cτ − 1) s2ρcτ + c2ρ 0

sρsτ /d −cρsτ /d cτ

⎞
⎠ . (32)

If we dehomogenize Hp by dividing by cτ , the result follows.
�	
Remark 7 Lenses with d ≥ 1000m can be regarded as tele-
centric in image space for all practical purposes.

Remark 8 It is trivial to show that in the perspective tilt cam-
eramodel, c andd are related to the pupilmagnification factor
(2) by

mp = d

c
. (33)

Proposition 3 If we denote the orthographic tilt homogra-
phy in (31) as Ho(ρ, τ ) to make the parameters explicit, we
have

Ho(ρ,−τ) = Ho(ρ, τ ) (34)

Ho(ρ + π, τ) = Ho(ρ, τ ) (35)

Ho(ρ + π, τ) = Ho(ρ,−τ). (36)

Proof This follows directly from (31). �	
Remark 9 Proposition 3 shows that we cannot determine the
tilt of the image plane uniquely for lenses that are telecentric
in image space, even ifwe require τ > 0.This is obvious from
the geometry of the orthographic tilt homography. Note that
this is the image space analog of the degeneracy described
in Remark 5. The ambiguity can be resolved if we require
0 ≤ ρ < π . In practice, however, this would confuse the
users, who typically would be surprised to have ρ reduced to
this range if they specified a value of ρ outside this interval
as the initial value (e.g., if the calibration returned that the
lens is tilted right when the initial values specified that it is
tilted left). Since the calibration will typically converge to
the same half space in which the initial ρ was specified, we
do not reduce ρ modulo π .

Proposition 4 If we denote the perspective tilt homography
in (32) as Ho(ρ, τ, d) to make the parameters explicit, we
have

Hp(ρ,−τ, d) = Hp(ρ + π, τ, d) (37)

Hp(ρ, τ,−d) = Hp(ρ,−τ, d) (38)

Hp(ρ, τ,−d) = Hp(ρ + π, τ, d). (39)

Proof This follows directly from (32). �	
Remark 10 Proposition 4 shows that there are no degen-
eracies in the perspective tilt homography if we require
0 ≤ τ < π/2, 0 ≤ ρ < 2π , and d > 0.

Proposition 5 If a lens that is perspective in image space
is tilted around the horizontal or vertical axis, i.e., if ρ ∈
{0, π/2, π, 3π/2}, the values of τ, d, sx , and sy cannot be
determined uniquely. This degeneracy can be resolved if the
pixel aspect ratio is known.

Proof Wewill only prove the caseρ = 0. The other cases can
be proved in an analogous manner. The calibration matrix K
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in (14) can be split into a scaling and a translation part. Only
the scaling part is relevant for this proof, i.e., we can set
cx = cy = 0. If we multiply K(sx , sy) and Hp(0, τ, d), we
obtain

K(sx , sy)Hp(0, τ, d) =
⎛
⎝ cos τ/sx 0 0

0 1/sy 0
0 − sin τ/d cos τ

⎞
⎠ . (40)

Suppose one set of parameters (sx,1, sy,1, τ1, d1) is given.
We want to find a different solution (sx,2, sy,2, τ2, d2). Since
(40) represents a homogeneous matrix, we require

K(sx,1, sy,1)Hp(0, τ1, d1) = sK(sx,2, sy,2)Hp(0, τ2, d2),

(41)

where s is a scaling factor. This results in four equations:

cos τ1/sx,1 = s cos τ2/sx,2 (42)

1/sy,1 = s/sy,2 (43)

sin τ1/d1 = s sin τ2/d2 (44)

cos τ1 = s cos τ2. (45)

We can select one of the four parameters on the right hand
side of (41) arbitrarily, e.g., τ2. We can then solve (45) for s:

s = cos τ1

cos τ2
. (46)

Substituting cos τ1 from (45) into (42) and solving for sx,2
yields

sx,2 = sx,1. (47)

Substituting s from (46) into (43) and solving for sy,2 yields

sy,2 = sy,1
cos τ1

cos τ2
. (48)

Finally, substituting s into (44) and solving for d2 yields

d2 = d1
tan τ2

tan τ1
. (49)

Therefore, we can find a valid solution for any chosen τ2 by
(47)–(49). From (48), we see that a unique solution can be
enforced by requiring sy,2 = sy,1, i.e., by assuming that the
aspect ratio of the pixels is known. �	
Remark 11 We have shown that Proposition 5 holds under
the assumption that sx and sy can vary. As discussed in
Remark 1, this implies that the degeneracy is present even if
sy is fixed since the effect of sx and sy can also be modeled
by c or m and sx .

Remark 12 Instead of selecting τ2, we could also have
selected d2 and solved for the remaining parameters. In par-
ticular, we would then have obtained

τ2 = arctan

(
d2
d1

tan τ1

)
. (50)

If we regard d1 = d as the true image plane distance and
imagine that we force the image space ray angles to be iden-
tical to the object space ray angles by setting d2 = c, we can
see that the tilt angle τ2 will be incorrect if d �= c. For exam-
ple, if d is actually three times as large as c and if τ1 = 5◦,
we have τ2 ≈ 1.67◦. From (48), it follows that sy,2 will be
wrong by about −0.34 %.

Remark 13 Proposition 5 and Remark 12 show that for all
the perspective tilt camera models that force the ray angles
in object and image space to be identical (see Sect. 5.1),
the following properties hold if the ray angles are actually
different:

– If the tilt is in the vertical or horizontal direction and the
approach calibrates the pixel aspect ratio, the calibration
will converge with a low RMS error, i.e., the model will
be consistentwith the imaging geometry, but the tilt angle
and the aspect ratio of the pixels will be wrong.

– If the tilt is in the vertical or horizontal direction and
the approach does not calibrate the pixel aspect ratio, the
calibration will converge with a large RMS error, i.e., the
model will be inconsistent with the imaging geometry,
and at least the tilt angle will be wrong.

– If the tilt is not in the vertical or horizontal direction, the
calibration will converge with a large RMS error, i.e., the
model will be inconsistent with the imaging geometry,
and at least the tilt angle will be wrong.

Remark 14 Proposition 5 shows that the aspect ratio must
be fixed in the calibration if the tilt is in the horizontal or
vertical direction. This means that the user must exclude sy
from being calibrated if the tilt is close to the horizontal or
vertical direction.

Remark 15 The degeneracy in Proposition 5 is the image
space analog to the fact that a regular camera cannot be cal-
ibrated from a single image of a planar calibration object
that is rotated around the horizontal or vertical image axis,
even if the principal point is known, as shown by Sturm and
Maybank (1999).

Proposition 6 For a lens that is telecentric in image space,
the parameters c or m, ρ, τ, sx , and sy cannot be determined
uniquely (even if sy is fixed). This degeneracy can be resolved
if sx is known.

123



138 Int J Comput Vis (2017) 123:121–159

Proof For tilts in the horizontal or vertical direction, it is
obvious thatHo simply scales the image by a factor of 1/ cos τ

in the horizontal or vertical direction. Obviously, this can
also be modeled by c or m and sx . Fixing sx removes this
degeneracy. For tilts in any other direction, the claim follows
from Theorems 1 and 2, to be discussed in Sect. 8. �	
Remark 16 While the parameterization in (22) is very easy
to understand for users, it has the disadvantage that ρ is unde-
termined if τ = 0. We could simply set ρ = 0 in this case,
but this does not work in the camera calibration, where both
parameters must be optimized. Therefore, internally we use
the Rodrigues parameterization (Lenz 1988, Chapter 10.2;
Morawiec and Field 1996), also called Gibbs or Cayley para-
meterization (Bauchau andTrainelli 2003). Here, the rotation
is parameterized by r = (rx , ry, rz)� = n tan(τ/2). In our
case, rz = 0 and we have:

Rt = 1

1 + r2x + r2y

×
⎛
⎝1 + r2x − r2y 2rxry 2ry

2rxry 1 − r2x + r2y −2rx
−2ry 2rx 1 − r2x − r2y

⎞
⎠ . (51)

The only singularity of the Rodrigues parameterization
occurs for τ = ±π , a case that is of no interest to us. We
convert the initial values of τ and ρ specified by the user to
r for the calibration and convert the calibrated r back to τ

and ρ on output. The price we pay to avoid the singularity is
that the user no longer can force the tilt to occur in a partic-
ular direction since the tilt direction and tilt angle are jointly
modeled by r and cannot be excluded separately from the
optimization.

Remark 17 In the camera models we have proposed, the
principal point is the intersection of the optical axis with
the image plane. This point is sometimes called the auto-
collimation point in photogrammetry (Luhmann et al. 2014,
Chapter 3.3.2.2).

8 Tilt Cameras in Projective Geometry

As discussed in Sects. 6 and 7, the proposed models for cam-
eras with tilt lenses can be represented by matrices if there
are no distortions. In this section, we are only interested in a
single camera with a single pose. Therefore, we will denote
the pose matrix by Hw. Thus, a perspective tilt lens camera
is given by the camera matrix

Ppp = KHpPpHw, (52)

where K,Hp,Pp, and Hw are given by (20), (32), (16), and
(4), respectively. An image-side telecentric tilt lens camera

is given by

Ppo = KHoPpHw, (53)

where Ho is given by (31). An object-side telecentric tilt lens
camera is given by

Pop = KHpPoHw, (54)

where Po is given by (18). Finally, a bilateral telecentric tilt
lens camera is given by

Poo = KHoPoHw. (55)

In this section, we will examine how tilt cameras are
related to projective cameras, affine cameras, and general
cameras at infinity (see Hartley and Zisserman 2003, Chap-
ters 6.1–6.3). In particular, we examine the question whether
these three camera types can be interpreted as cameras with
tilt lenses. The proofs of the theorems we will present make
use of the dual image of the absolute conic (DIAC) (Hartley
and Zisserman 2003, Chapter 8.5), given by

ω∗ = PQ∗∞P�, (56)

where Q∗∞ = diag(1, 1, 1, 0) is the canonical form of the
absolute dual quadric (Hartley and Zisserman 2003, Chapter
3.7). (The function diag constructs a diagonal matrix with the
specified elements.) This will allow us to remove the exterior
orientation from the equations to be solved. If we denote the
entries of P by pi j , the elements ωi j of the DIAC ω∗ are
given by

ωi j =
3∑

k=1

pik p jk (57)

Note that ω∗ is a symmetric matrix.

Theorem 1 Every affine camera can be regarded as a bilat-
eral telecentric tilt camera with square pixels and principal
point at (0, 0)�.

Proof See Appendix A.1. �	
Remark 18 This proves Proposition 6 for bilateral telecen-
tric tilt cameras, even if the pixels are non-square and if
there are distortions. Let us assume that the pixels are non-
square and that the aspect ratio b of the pixels is known and
fixed. This can be modeled by a calibration matrix of the
form diag(ba, a, 1). We can multiply the camera matrix M
by diag(1/b, 1, 1) from the left to obtain a camera matrix
with square pixels and then apply the approach given in the
proof of Theorem 1. If there are distortions, Proposition 6 is
true since the distortions are merely a transformation within
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the untilted image plane. Consequently, they do not alter the
essential projection properties of the camera, i.e., for bilateral
telecentric tilt lenses, the locations of the entrance and exit
pupil at infinity are not altered by the distortions. Therefore,
the exterior orientation and the pose of the image plane are
invariant to distortions.

Theorem 2 Every finite projective camera can be regarded
as an image-side telecentric tilt camera with square pixels.

Proof See Appendix A.2. �	
Remark 19 This proves Proposition 6 for image-side tele-
centric tilt cameras, even if the pixels are non-square and
if there are distortions. The argument is almost identical to
Remark 18. The only modification is that we must multiply
KcM from the left by the matrix diag(1/b, 1, 1), where Kc is
given by (103).

Theorem 3 Every general camera at infinity can be regard-
ed as an object-side telecentric tilt camera.

Proof See Appendix A.3. �	
Remark 20 The space of general cameras at infinity has ten
degrees of freedom: twelve for the entries of the camera
matrix less one for the arbitrary scale of the matrix less one
for the constraint that the left 3× 3 submatrix is singular. To
remove the scale factor, one can also normalize the camera
matrix by ‖M‖F = 1 using the Frobenius norm. Therefore,
the space of general cameras at infinity can also be regarded
as a subspace (given by det M3 = 0) of the unit sphere S11 in
R
12 with antipodes identified (the latter is isomorphic to the

projective space P11(R)).
Theorem 3 establishes a minimal parameterization of the

non-degenerate part of this space in terms of the parameters
ax , ay, τ, ρ, d, tx , ty , and three rotation parameters using a
set of maps that are parameterized by a finite set of values
of (cx , cy)�. This shows that the space has dimension 10,
except in its degenerate part.

Corollary 2 Every projective camera can be regarded as a
tilt camera.

Proof This follows from Theorems 1–3. Affine cameras can
be regarded as bilateral telecentric tilt cameras, general cam-
eras at infinity can be regarded as object-side telecentric tilt
cameras, and finite projective cameras can be regarded as
image-side telecentric tilt cameras. �	

9 Calibration

The camera calibration is performed using a planar calibra-
tion object. The advantages of planar calibration objects are

Fig. 17 An example of the planar calibration object

that they are easier to manufacture accurately and that they
can be handled more easily by the users. Furthermore, with
planar calibration objects, it is very easy to define a plane
in the world by simply placing the calibration object onto
the plane of interest in the world. With this, it is possible to
measure in world coordinates within the plane with a single
camera, as described by Steger et al. (2008, Chapter 3.9.4).
Another distinctive advantage of planar calibration objects is
that they can be used conveniently in backlight applications
if the calibration object is opaque and the control points are
transparent (see, e.g., Steger et al. 2008, Chapter 4.7).

The calibration object uses a hexagonal layout of control
points, as shown in Fig. 17. The hexagonal layout provides
the highest density of control points of any layout. The cali-
bration object has five finder patterns, indicated by the small
dark circleswithin the control points, that facilitate the unique
determination of the pose of the calibration object even if it
is only partially visible in the image. This is advantageous
since the calibration object can imaged such that it covers the
entire field of view of the camera. This increases the accuracy
with which the camera parameters, in particular, the distor-
tion parameters, can be determined.

Let the known 3D coordinates of the centers of the con-
trol points of the calibration object be denoted by p j ( j =
1, . . . , nm).11 As described in Sect. 6, the user conceptually
acquires no images of the calibration object with each of the
nc cameras. The calibration object, however, does not need
to be visible in all images simultaneously. If the calibration
object is outside the field of view of a particular camera for
a particular pose, no image needs to be acquired. There sim-
ply will be no observation of the calibration object in this
case, which will be modeled appropriately in the optimiza-
tion. However, there must be a chain of observations of the
calibration object in multiple cameras that connects all the
cameras. As described in Sect. 6, the pose (exterior orien-
tation) of the calibration object in the reference camera is

11 The calibration algorithm actually supports more than one calibra-
tion object. However, since this would make the notation even more
complex, we will only discuss the case of a single calibration object.
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denoted by Hl (l = 1, . . . , no) and the relative orientation of
the cameras with respect to the reference camera is denoted
by Hk (k = 1, . . . , nc). Let us denote the corresponding para-
meters by the vectors el and rk . Let the interior orientation
of camera k be denoted by the vector ik . Furthermore, let the
projection from world coordinates to the undistorted image
plane, i.e., (3), (5), and, depending on the camera model, (6)
or (8), be denoted by πu. Let the projection from the image
coordinate system back to the undistorted image plane, i.e.,
the inverse of (13), optionally the inverse of (24) or (30),
depending on the camera model, and (10) or (12), depending
on the camera model, be denoted by π−1

i . In addition, let
v jkl denote a function that is 1 if the control point j of the
observation l of the calibration object is visible with cam-
era k, and 0 otherwise. The user effectively specifies the kl
part of this function (albeit in a user-friendly manner) during
the acquisition of the calibration images. The j part of this
function is automatically determined during the extraction of
the images of the control points, denoted by p jkl , from the
calibration images.

To calibrate an arbitrary combination of cameras, the fol-
lowing function is minimized:

ε2 =
no∑
l=1

nc∑
k=1

nm∑
j=1

v jkl‖π−1
i (p jkl , ik) − πu(p j , el , rk, ik)‖22.

(58)

The minimization is performed by a suitable version of the
sparse Levenberg–Marquardt algorithms described in (Hart-
ley and Zisserman 2003, Appendix A6).12

The points p jkl are extracted by fitting ellipses (Fitzgib-
bon et al. 1999) to edges extracted with a subpixel-accurate
edge extractor (Steger 1998, Chapter 3.3; Steger 2000). As
discussed in Sect. 5.2, this causes a bias in the point positions.
Section 10 will explain how this bias can be removed.

The Levenberg–Marquardt algorithm requires initial val-
ues for the camera parameters. One advantage of the camera
model proposed in Sects. 6 and 7 is that the initial values for
the interior orientation parameters can be directly obtained
from the specifications of the camera and lens. For exam-
ple, the initial values of sx and sy can be read off from the
data sheet of the camera since they are the pixel size of the
sensor elements. The initial value of c or m can be obtained

12 Like the vast majority of publications that describe the Levenberg–
Marquardt algorithm, Hartley and Zisserman (2003, Appendix A6)
only describe the minimization of residuals of the form ‖y − f (x)‖22.
However, the Levenberg–Marquardt algorithm can be used to mini-
mize general squared residuals, and in particular residuals of the form
‖g(x, y)− f (x)‖22 that is used in (58) (Nocedal andWright 2006, Chap-
ter 10).

from the lens barrel or from the data sheet of the lens.13

Some lens manufacturers provide Gaussian optics data for
their lenses. If the lens manufacturer provides the distance of
the exit pupil from the image plane, that value can be used
as the initial value for d. If not, for perspective lenses the
user can roughly estimate the pupil magnification factor mp

by eye by looking at the lens from the front and back and
then use d = mpc as the initial value for perspective lenses.
For object-side telecentric lenses, the initial value for d typ-
ically corresponds roughly to the flange focal distance (for
example, in the order of 20–50mm for a C mount camera,
for which the flange focal distance is 17.526mm). Initial val-
ues for τ and ρ are typically known from the considerations
that led to the use of the tilt lens in the first place, i.e., from
the Scheimpflug principle and Eq. (1). The initial value of
(cx , cy)� can be set to the center of the image and the ini-
tial values for the distortion parameters can be set to 0. In
our experience, the choice of the initial parameters is not
particularly critical as long as the initial value is within a rel-
atively large factor, typically more than 5, of the actual value.
Therefore, for example, the initial value of d for perspective
tilt lenses can usually be set to the initial value of c.

One advantage of using circular marks is that initial para-
meters for the exterior orientation of the calibration object in
each camera can be directly inferred form the shapes of the
ellipses in the images (Lanser 1997, Chapter 3.2.1.2; Lanser
et al. 1995). Initial values for the relative orientations of the
cameras can be computed based on the initial values for the
exterior orientations.

The calibration algorithm allows to exclude any parameter
of the interior, exterior, and relative orientation globally or
individually for each camera. The sole exception is that the
tilt anglesρ and τ can only be excluded jointly. This is a result
of the implementation choice that internally the Rodrigues
parameterization is used to represent the tilt angles (see
Remark 16). The parameter exclusion mechanism is used
to handle all the generic degeneracies described in Sects. 6.2
and 7.2 automatically. For example, sx is excluded automat-
ically if the user selects a bilateral or image-side telecentric
tilt lens (see Proposition 6). Degeneracies that occur only for
certain imaging geometries (e.g., the degeneracy described in
Proposition 5 and Remarks 11, 12, and 14) must be handled
by the user.

The proposed calibration algorithm provides some fea-
tures that are novel and useful for the users. First of all, an
arbitrary combination of perspective and telecentric cameras
can be calibrated simultaneously, including their relative ori-
entation. This facilitates a multi-view stereo reconstruction
using an arbitrary combination of cameras. We will discuss
this aspect inmore detail in Sect. 12. Second, the formulation

13 The focal length or magnification is typically printed onto the lens
barrel by the manufacturers.
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in (58) ofminimizing the error in the undistorted image plane
allows an arbitrary mixture of distortion models to be cali-
brated efficiently. In contrast, the typical projection to the
image coordinate system would mean that the polynomial
distortion model would have to be evaluated by a numerical
root finding algorithm, which is significantly less efficient.
Finally, the fact that the layout of the calibration object was
designed so that it can fill the entire field of view and to
maximize the density of the control points means that fewer
calibration images must be acquired by the user to achieve
the desired accuracy.

10 Bias Removal

In this section, we will describe two approaches to remove
the control point bias.

The first approach is an extension of the approach
by Heikkilä (2000). As discussed in Sect. 5.2, Heikkilä’s
approach does not consider distortion bias, which means that
it does not fully remove the bias. Therefore, we extend his
approach to correctly handle the distortion bias. The core
idea to achieve this was already described by Lanser (1997,
Chapter 3.2.1).14 To remove the distortion bias, we transform
the extracted subpixel-accurate control point contours to the
undistorted image plane with the transformation π−1

i (see
Sect. 9) using the current set of interior orientation parame-
ters. Ellipses are then fitted to the undistorted control point
contours. Afterwards, the bias correction computed by the
algorithm of Heikkilä (2000) is applied to the results of the
ellipse fitting.15 The complete algorithm first calibrates the
cameras using the biased control point positions, applies
the bias correction, and calibrates the cameras anew using
the unbiased control point positions. The second step could
be iterated. However, this typically results in insignificant
improvements of the camera parameters, and therefore is not
done in our implementation.

The above algorithm provides very accurate results, as the
experiments below show. However, it does not work for line-
scan cameras since for these cameras there is no undistorted
image plane to which the contours could be rectified.16 The
second approach we propose can also be used for line-scan
cameras. It basically is an efficient version of the approaches
proposed by Datta et al. (2009) and Vo et al. (2011). To
remove the bias, we transform the control point contours
back to the plane of the calibration object with the approach

14 Lanser, however, did not realize that his idea can be used to remove
the distortion bias iteratively.
15 This is only done for lenses that are perspective in object space. For
lenses that are telecentric in object space, there is no perspective bias.
16 The line-scan camera model we use is described in Steger et al.
(2008, Chapter 3.9.2).

described by Steger et al. (2008, Chapter 3.9.4) using the cur-
rent estimates of the interior orientation of the camera and
the exterior orientation of the calibration object. Then, circles
are fitted to the rectified contours. Finally, the centers of the
fitted circles are projected to the undistorted image plane or
the image coordinate system, as required. The camera is first
calibrated using the biased control point positions, the bias
is removed, and the camera is calibrated anew. The results
of this approach are equally accurate as those of the first
approach. For historical reasons, we use the first approach
for area-scan cameras and the second approach for line-scan
cameras.

To examine the potential accuracy improvement that can
be achieved by the bias removal, we constructed a synthetic
example in which we tried to maximize the perspective and
distortion bias. We simulated a 20 megapixel camera with
the same sensor specifications as a Canon EOS 6D and a
very wide-angle 17mm tilt/shift lens. To maximize the over-
all bias, we simulated a very large pincushion distortion.
To maximize the perspective bias, 16 calibration images in
which the calibration object was tilted by up to 45◦ and cov-
ered a large part of the field of view were simulated with an
algorithm that assumes a perfect camera (no noise, 100 %
fill factor, linear gray value response; see Steger et al. 2008,
Chapter 3.7.4). This resulted in a diameter of the control
points between 60 and 330 pixels in the calibration images, a
perspective bias of up to 2.5 pixels (standard deviation (SD)
≈ 0.2 pixels), a distortion bias of up to 4.5 pixels (SD ≈ 0.4
pixels), and an overall bias of up to 6 pixels (SD ≈ 0.5 pix-
els). As can be seen from the standard deviations, despite the
effort to maximize the bias, for most control points the bias
is less than 1 pixel.

Since wide-angle lenses typically exhibit a barrel distor-
tion, we also simulated this kind of distortion. This resulted
in a perspective bias of up to 1.5 pixels (SD≈ 0.15 pixels),17

a distortion bias of up to 1.1 pixels (SD ≈ 0.1 pixels), and
an overall bias of up to 0.7 pixels (SD ≈ 0.1 pixels). As can
be seen, the distortion bias of barrel distortions cancels the
perspective bias to some extent. Therefore, it is important to
note that barrel distortions do not simulate the worst case.

The ground truth camera parameters and the results of
the calibration without and with bias removal are displayed
in Table 1. In addition to the interior orientation parameters,
Table 1 also lists themaximum translation and angle errors of
the exterior orientations of the calibration object. They were
calculated by inverting the calibrated exterior orientations
and composing them with the true exterior orientations. This

17 The perspective bias is smaller for barrel distortions than for pincush-
ion distortions since we distort the projected points and fitted ellipse
centers by the radial distortions to measure them in the same space as
the distortion bias, which we necessarily must measure after the radial
distortions have been applied.
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Table 1 Results of the bias
removal

Ground truth Biased results Unbiased results

RMS error (Pixel) 0.074351 0.002860

c (m) 0.024 0.023983795 0.024000059

κ (m−2) 500 500.5791428 499.9993895

d (m) 0.05 0.049999964 0.050000069

τ (◦) 15 14.99723759 15.00000603

ρ (◦) 30 30.02069524 29.99994620

sx (µm Pixel−1) 6.55 6.55015328 6.54999932

sy (µm Pixel−1) 6.55 6.55000000 6.55000000

cx (Pixel) 2636 2635.928262 2636.000462

cy (Pixel) 1874 1873.942690 1874.000215

εt (mm) 0.1871209 0.0005827

εa (◦) 0.0084054 0.0000463

RMS error (Pixel) 0.021138 0.003161

c (m) 0.024 0.024000152 0.023999991

κ (m−2) −500 -499.8946020 -500.0000536

d (m) 0.05 0.049997673 0.049999958

τ (◦) 15 14.99988942 14.99999604

ρ (◦) 30 30.00203993 30.00003883

sx (µm Pixel−1) 6.55 6.55002037 6.55000049

sy (µm Pixel−1) 6.55 6.55000000 6.55000000

cx (Pixel) 2636 2635.988750 2635.999484

cy (Pixel) 1874 1873.950543 1874.000014

εt (mm) 0.0328418 0.0001116

εa (◦) 0.0072942 0.0000341

The maximum translation error of the calibrated exterior orientations of the calibration object is given by εt
and the maximum angle error by εa. The table shows the results of two experiments: a camera with a
pin-cushion distortion (κ = 500) and a camera with barrel distortion (κ = −500)

allows us to measure the errors in the coordinate system of
the calibration object. The translation error is the length of
the translation of the combined pose. To compute the angle
error, the rotation of the combined pose is converted into an
angle/axis representation and the absolute value of the angle
is used as the angle error.

As can be seen from Table 1, the bias removal reduces the
relative errors by 2–4 orders of magnitude in this example.
A second iteration of the bias removal would only reduce the
errors further by a factor of 2–3 and therefore is not worth-
while.We also note that the errors in the biased results are 1–2
orders of magnitude smaller if a barrel distortion of the same
magnitude is used, while the errors in the unbiased results
are up to one order of magnitude smaller.

The proposed approach to remove the bias is computa-
tionally very efficient. The calibration without bias removal
requires 30ms (excluding the time necessary to extract the
control points in the calibration images). Including the bias
removal increases the runtime by 700ms. The transforma-
tion of the control point contours requires approximately
11ms per image. In contrast, the approaches by Datta et al.

(2009) and Vo et al. (2011) would necessitate transforming
the calibration images, which would require approximately
650ms per image in our software. In addition, the control
point extraction would have to be executed again for the rec-
tified images. This would require approximately 300ms per
image in our software. Therefore, the proposed approach is
more than 20 times more efficient than the approaches by
Datta et al. (2009) and Vo et al. (2011).

11 Experiments

The proposed camera models have been evaluated exten-
sively on numerous lenses. Standard SLR lenses were
attached to a Novoflex Balpro T/S bellows, equipped with
Nikon F-mount lens and camera adapters. This setup allows
us to turn any Nikon SLR lens into a tilt/shift lens. However,
since the minimum extension of the bellows that facilitates
a tilt of approximately 5◦ is about 3cm, the bellows acts
like an extension tube. Thus, for lenses with a short focal
length, the minimum object distance becomes impractically
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small, whichmeans that this setup only works for lenses with
a sufficiently large focal length (larger than about 70mm).
Furthermore, we tested many commercially available SLR
tilt/shift lenses. In addition, we constructed a special cam-
era housing with a bellows that enabled us to attach most
C-mount machine vision lenses to the housing and to be able
to tilt the lenses around the vertical axis. In this section, we
will present the most salient evaluation results.

Figure 18 shows a Sigma 150mm F2.8 macro lens and a
Nikon D3 camera attached to the Novoflex Balpro T/S bel-
lows. The focus was set to a distance close to the minimum
object distance of the lens. The lens has a focusing mecha-
nism where the entrance pupil recedes within the lens as the
focus is adjusted from infinity to the minimum object dis-
tance, whereas the exit pupil’s size grows and its position
remains approximately unchanged. This suggests that the
lens has a principal distance that differs significantly between
the infinity and near focus settings. At the chosen focus set-
ting, the entrance pupil appears significantly larger than the
exit pupil. Table 2 displays the calibration results using this
setup.

To obtain a baseline for the RMS error, an experimentwith
no tilt (τ ≈ 0) was performed. With the proposed camera
model, this resulted in anRMSerror of 0.12552.As described
in Remark 6, d cannot be determined reliably if τ ≈ 0. This
is why d has converged to an essentially arbitrary value in
this case. Table 2 shows that, with the proposed perspective
tilt camera model, the RMS error only increases slightly if
the camera is tilted by an angle of τ ≈ 6◦ around the axes
ρ ≈ 90◦ and ρ ≈ 135◦. The calibration results reflect that
the entrance and exit pupils have different sizes. The image
plane distance d is significantly smaller than the principal
distance c. By (33), the pupil magnification factor of this
lens at this particular focus setting is ≈0.3. Note that the
principal distance c is much larger than the nominal 150mm
because of the focusing mechanism of the lens and because
the bellows acts as an extension tube.

Themiddle and lower parts of Table 2 display the results of
calibrating the camera with a tilt camera model that enforces
equal ray angles in object and image space. In themiddle part,
sx is fixed (enforcing square pixels), while sx is optimized in
the lower part. As predicted by Remark 13, if sx is fixed, a
large RMS error results if the lens is tilted in any direction. If
sx is optimized, the RMS error for the tilt around the vertical
axis is much smaller (albeit not as small as for the proposed
tilt camera model because the lens has distortions), while the
RMS error of the diagonal tilt remains large. In both cases, a
tilt angle τ that deviates significantly from the nominal value
is returned.

As a further example for SLR lenses, a Nikon AF-S
Micro-Nikkor 105mm f/2.8G was calibrated with a near
focus setting, resulting in a pupil magnification factor of
≈0.73. Furthermore, two standard machine vision lenses

Fig. 18 The experimental setup used to obtain the results in Table 2. A
Sigma 150mmF2.8macro lens and aNikonD3 camerawere attached to
the Novoflex Balpro T/S bellows. The image also shows the calibration
object

were tested. For a Cosmicar/Pentax C1614-M 16mm lens, a
pupil magnification factor of ≈3 was obtained, while for a
Cosmicar B1214D-2 12.5mm it was ≈2.7. All of these SLR
and machine vision lenses cannot be modeled correctly by
camera models that force the ray angles in object and image
space to be identical. A third machine vision lens, a Schnei-
der Kreuznach BK-Makro CPN-S 50mm lens, has a pupil
magnification factor so close to 1 that it could be calibrated
correctly with a traditional tilt camera model.

When a Nikon PC-E Nikkor 24mm f/3.5D tilt/shift lens
(the lens that is shown in the right image of Fig. 5) was
mounted on a Nikon D3 camera and calibrated with the
perspective tilt lensmodel, the image plane distance d consis-
tently converged to values ≥1060 m. Therefore, the lens was
calibratedwith the image-side telecentric tilt lensmodel. The
tilt angle was adjusted to ≈0◦ and ≈6◦ using the tilt scale
on the lens. The results are displayed in Table 3. From the
top part of the table, we can see that the RMS errors increase
somewhat if the lens is tilted. Nevertheless, the tilt angles are
very consistent with the nominal tilt angles.
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Table 2 Calibration results with a Nikon D3 camera and a Sigma
150mm F2.8 macro lens attached to a Novoflex Balpro T/S bellows

Proposed perspective tilt camera model

τ ≈ 0◦ τ ≈ 6◦ τ ≈ 6◦
ρ ≈ 90◦ ρ ≈ 135◦

RMS error (Pixel) 0.12552 0.14296 0.13522

c (m) 0.429985 0.431056 0.429849

K1 (m−2) −3.44217 −1.95776 −1.51355

K2 (m−4) 6224.19 1488.87 −706.09

K3 (m−6) −4904890.6 1567851.4 3261860.5

P1 (m−2) 0.0067018 −0.0077062 −0.0021945

P2 (m−2) −0.0008882 −0.0011449 −0.0040797

d (m) 0.000765 0.129138 0.138867

τ (◦) 0.00351 5.73583 6.12792

ρ (◦) 286.6215 87.0059 133.2228

sx (µm Pixel−1) 8.45 8.45 8.45

sy (µm Pixel−1) 8.45 8.45 8.45

cx (Pixel) 2125.07 1554.51 1609.62

cy (Pixel) 1471.31 1479.47 968.19

Camera model with equal ray angles, sx fixed

τ ≈ 0◦ τ ≈ 6◦ τ ≈ 6◦

ρ ≈ 90◦ ρ ≈ 135◦

RMS error (Pixel) 0.13177 0.66399 1.73470

c (m) 0.431159 0.435400 0.422823

K1 (m−2) −1.45076 1.20055 −5.65209

K2 (m−4) −105.82 −1221.96 1041.01

K3 (m−6) 36541.1 159947.8 −91270.8

P1 (m−2) −0.0206285 0.1662838 0.1190503

P2 (m−2) −0.0048866 −0.0088579 0.1226469

τ (◦) 4.17771 17.74642 14.85163

ρ (◦) 281.95401 88.68077 146.67340

sx (µm Pixel−1) 8.45 8.45 8.45

sy (µm Pixel−1) 8.45 8.45 8.45

cx (Pixel) 4144.37 −2866.07 685.62

cy (Pixel) 1751.24 1427.25 −2005.61

Camera model with equal ray angles, sx optimized

τ ≈ 0◦ τ ≈ 6◦ τ ≈ 6◦

ρ ≈ 90◦ ρ ≈ 135◦

RMS error (Pixel) 0.12649 0.20292 1.59371

c (m) 0.430459 0.431696 0.425048

K1 (m−2) −2.32917 −1.85163 −6.93979

K2 (m−4) 1017.87 934.69 3177.50

K3 (m−6) −407686.6 1446855.5 −623427.6

P1 (m−2) 0.0055757 −0.0060708 0.1448057

P2 (m−2) 0.0229290 −0.0123213 0.0522046

τ (◦) 2.32281 18.67772 15.53254

ρ (◦) 235.7823 89.30650 157.62229

sx (µm Pixel−1) 8.45957 8.86725 8.28404

sy (µm Pixel−1) 8.45000 8.45000 8.45000

cx (Pixel) 2179.88 1416.39 705.32

cy (Pixel) −201.90 1544.09 −1411.09

Table 3 Calibration results with a Nikon D3 camera and a Nikon PC-E
Nikkor 24mm f/3.5D tilt/shift lens

Proposed image-side telecentric tilt camera model

τ ≈ 0◦ τ ≈ 6◦ τ ≈ 6◦
ρ ≈ 270◦ ρ ≈ 330◦

RMS error (Pixel) 0.10965 0.17466 0.17374

c (m) 0.0275712 0.0275857 0.0275460

K1 (m−2) 85.04494 80.56032 82.35937

K2 (m−4) 5921.84 36041.03 21691.21

K3 (m−6) 4374052.8 −35282927.4 −12617450.7

P1 (m−2) −0.0063425 0.0717010 0.0665242

P2 (m−2) −0.0033489 −0.0059848 0.0317831

τ (◦) 0.76712 5.80991 5.86474

ρ (◦) 29.1497 268.3920 299.2761

sx (µm Pixel−1) 8.45 8.45 8.45

sy (µm Pixel−1) 8.45 8.45 8.45

cx (Pixel) 2139.80 1745.03 1808.66

cy (Pixel) 1406.30 1398.72 1198.77

Camera model with equal ray angles, sx fixed

τ ≈ 0◦ τ ≈ 6◦ τ ≈ 6◦

ρ ≈ 270◦ ρ ≈ 330◦

RMS error (Pixel) 0.11391 0.43223 0.41050

c (m) 0.0275301 0.0279162 0.0278926

K1 (m−2) 84.10718 93.29245 93.94938

K2 (m−4) 13265.11 −10120.40 −24810.57

K3 (m−6) −12975174.6 −28823291.0 416994.8

P1 (m−2) −0.0277049 0.4894341 0.4279702

P2 (m−2) 0.0451126 −0.0144357 0.2361730

τ (◦) 1.19386 9.37088 9.51047

ρ (◦) 23.23408 268.82579 300.08426

sx (µm Pixel−1) 8.45 8.45 8.45

sy (µm Pixel−1) 8.45 8.45 8.45

cx (Pixel) 2112.73 2293.13 2289.54

cy (Pixel) 1469.51 1387.42 1477.57

Camera model with equal ray angles, sx optimized

τ ≈ 0◦ τ ≈ 6◦ τ ≈ 6◦

ρ ≈ 270◦ ρ ≈ 330◦

RMS error (Pixel) 0.11278 0.19790 0.40034

c (m) 0.0275227 0.0276073 0.0281010

K1 (m−2) 84.15884 80.84468 96.92907

K2 (m−4) 12761.93 34023.77 −47844.93

K3 (m−6) −12004974.3 −33947307.4 33119191.5

P1 (m−2) −0.0331286 0.0565760 0.5362288

P2 (m−2) 0.0333186 −0.0357765 0.1826242

τ (◦) 1.01722 0.86247 11.55105

ρ (◦) 35.24591 155.88407 288.36630

sx (µm Pixel−1) 8.45039 8.40596 8.47532

sy (µm Pixel−1) 8.45000 8.45000 8.45000

cx (Pixel) 2106.06 1723.56 2453.06

cy (Pixel) 1454.08 1354.72 1414.04
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Themiddle and lower parts of Table 3 display the results of
calibrating the lens with a camera model that enforces equal
ray angles in object and image space. Again, as predicted by
Remark 13, the RMS errors are large if the lens is tilted and
sx is fixed, while the error for the tilt around the vertical axis
is smaller if sx is optimized. As before, the tilt angles deviate
significantly from their nominal values.

The fact that the Nikon 24mm tilt/shift lens is image-
side telecentric piqued our interest and we calibrated further
SLR tilt/shift lenses. It turned out that the Nikon PC-EMicro
Nikkor 45mm f/2.8D, the Nikon PC-E Micro Nikkor 85mm
f/2.8D, the Canon TS-E 17mm f/4L, and the Canon TS-E
24mm f/3.5L II lenses all are telecentric in image space.18

Furthermore, a calibration of the standard machine vision
lens Pentax C815B showed that this lens, too, is image-side
telecentric. Again, none of these lenses can be calibrated
correctly by a tilt camera model that forces rays to have the
same angle in object and image space.

As a final example, Table 4 displays the results of cali-
brating two object-side telecentric lenses. The lenses were
mounted onto the special camera housing described at the
beginning of this section. Apart from facilitating tilts around
the vertical axis, the camera housing also allows the position
of the image plane to be adjusted, thereby facilitating a focus-
ing of the lens to object planes with different distances.19 The
image plane was adjusted to a slightly larger distance than
the nominal 17.526mm of a standard C-mount lens to allow
a large tilt of the lenses. Note that this increases the magni-
fication of the lenses slightly. The camera uses an IDS uEye
UI-1222LE sensor. The lenses were tilted around the verti-
cal axis by the maximum angle the camera housing allowed
(≈ 14◦ for both experiments; because of different image
plane positions, the angle differed between the experiments).
The Vicotar T201/0.19 lens has a nominal magnification of
0.19. The nominal magnification of the V.S. Technologies L-
VS-TC017 lens is 0.17. The calibrated tilt angles are close to
the expected values. Furthermore, as expected, the calibrated
magnifications are slightly larger than the nominal values. In
this experiment, the division model was sufficient to model
the lenses accurately.

12 Rectification of Stereo Images of a Perspective
and a Telecentric Camera

With the results of the calibration approach discussed in
Sects. 9 and 10, a stereo reconstruction can be performed.

18 Unfortunately, we could not obtain the remaining SLR tilt/shift
lenses, the Canon TS-E 45mm f/2.8 and the Canon TS-E 90mm f/2.8.
However, it would not be far-fetched to conjecture that they also are
telecentric in image space.
19 Telecentric lenses usually have a fixed working distance.

Table 4 Calibration results with two object-side telecentric lenses: a
Vicotar T201/0.19 and a V.S. Technologies L-VS-TC017 lens

T201/0.19 L-VS-TC017

RMS error (Pixel) 0.03742 0.12973

m (Scalar) 0.2157109 0.1977478

κ (m−2) 199.485 −2994.678

d (m) 0.0432999 0.0298853

τ (◦) 15.11307 13.38796

ρ (◦) 91.81762 92.27376

sx (µm Pixel−1) 6.0 6.0

sy (µm Pixel−1) 6.0 6.0

cx (Pixel) 135.79 200.73

cy (Pixel) 185.09 175.52

Stereo algorithms require that the images are rectified in such
a manner that the epipolar lines in the rectified images are
horizontal and at the same row coordinate. For pairs of per-
spective and and pairs of telecentric cameras,20 the geometry
of the stereo rectification iswell understood (Hartley andZis-
serman 2003, Chapter 11.12). For a stereo image pair of a
perspective and a telecentric camera, we could, in principle,
use any of the homography-based algorithms that are capable
of handling this configuration correctly, e.g., (Gluckman and
Nayar 2001). However, these approaches are purely based
on 2D projective transformations, which gives us no insight
about the 3D geometry of the problem. We will show below
that the rectification of a perspective and a telecentric stereo
image pair will lead to a kind of object-side telecentric lens
that we have not considered so far.

The stereo geometry of a perspective and a telecentric
camera is shown in Fig. 19. Without loss of generality, we
can assume that the perspective camera is the first camera
and that it lies to the left of the second, telecentric, camera.
In principle, the stereo geometry is analogous to that of two
perspective cameras. The base b connects the two projec-
tion centers o1 and o2. The difference is that o2 lies in the
plane at infinity π∞. Therefore, b is parallel to the optical
axis a2 of the telecentric camera. The two images must be
projected onto a common image plane that is parallel to b.
Consequently, the rectified image plane, the base b, and the
optical axis a2 all intersect in o2. The orientation of the recti-
fied image plane has one degree of freedom: it can be rotated
around b. We select the normal of the rectified image plane to
point from o1 to the point on a2 that has the shortest distance

20 In this section, the terms perspective and telecentric refer to the
object-side projection characteristics of the lenses. The image-side pro-
jection characteristics are immaterial for the discussion in this section.
Everything we describe in this section works for lenses that are per-
spective or telecentric in image space, no matter whether they are tilted
or not.
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Fig. 19 The geometry of rectifying a stereo image pair of a perspective
and a telecentric camera. The perspective camera is described by its
projection center o1, its optical axis a1, its image plane i1, its principal
point p1, its principal distance c, and its camera coordinate system, of
which only the z1 axis is shown. The telecentric camera is described by
its projection center o2, lying in the plane at infinity π∞, its optical axis
a2, its image plane i2, its principal point p2, and its camera coordinate
system, of which only the z2 axis is shown. As described in Remark 4,
the origin of the camera coordinate system lies at a finite location.
The relative orientation of the telecentric camera with respect to the
projective camera is given by Rr and tr . The base of the stereo system
is the line b that connects o1 and o2. It intersects i2 in the epipole e2.
The base b is parallel to a2. The rectifying image plane is parallel to
b and to a2. Its normal is given by z′1. The rectifying image plane, a2,
and b all intersect in o2. The rectified image of i1 is i′1, that of i2 is
i′2. The rectification of the perspective camera image is performed by a
standard rotation of the image plane around the projection center o1 and,
possibly, a change of the principal distance. The new principal point is
denoted by p′

1. To rectify i2, a perspective projection of i2 onto i
′
2 must

be performed. Its projection center o′
2 must lie on b. The distance d of

o′
2 from e2 can be chosen arbitrarily. The principal point of i′2 is given

by p′
2. The distance t of i′1 and i′2 from b can be chosen arbitrarily.

Note that the rectified telecentric camera with principal point e2, virtual
image plane i2, and image plane i′2 is an object-side telecentric camera
with an image plane tilted by 90◦ and shifted by t

from o1. This results in smaller perspective distortions than
other choices of the normal.

The rectification of the perspective camera is the usual
rotation of the camera around o1 and, possibly, a change
of the principal distance. The new viewing direction of the
rectified camera is z′1, which is also the normal of the rectified
image plane. The axis x′

1 of the rectified camera coordinate

system of the perspective camera (not shown in Fig. 19) must
be parallel to b. The axis y′

1 must be chosen as y′
1 = z′1 × x′

1.
The rectification of the telecentric camera is more inter-

esting. We must perspectively project the image i2 onto the
rectified image plane, resulting in the image i′2. Note that i′2
is orthogonal to i2, i.e., is rotated by 90◦ with respect to i2.
Clearly, the perspective center o′

2 of this projection must lie
on the base b for the epipolar lines to become parallel and
horizontal.21 The intersection of b with i2 is the epipole e2.
The distance d of o′

2 from e2 is a parameter that can be cho-
sen freely. Small values of d lead to narrow rectified images,
large values of d to wide images. We choose d such that i′2
has the same width as i′1 to cause the perspective distortions
in both rectified images to be approximately equal. The dis-
tance t of the rectified images planes to the base is another
free parameter. We simply set it to c, i.e., to the principal dis-
tance of the perspective camera. Other choices of t > 0 are
possible, but would simply scale the rectified images. Note
that the rectified telecentric camera with principal point e2,
virtual image plane i2, and image plane i′2 is an object-side
telecentric camera with an image plane tilted by 90◦ and
shifted by t . Its optical axis b is shifted from the optical axis
of the original telecentric camera by the vector e2−p2, where
p2 is the principal point of the original camera.

The camera model of the rectified telecentric camera can-
not be represented by themodel for object-side telecentric tilt
cameras described in Sect. 7. The model of Sect. 7 describes
the tilted image plane by three parameters in an affine para-
meterization. This is analogous to describing the tilted image
plane by z = ax + by + d. Obviously, this parameterization
can represent all planes that are not perpendicular to the plane
z = 0, while it cannot represent planes that are perpendic-
ular to z = 0. Therefore, we must extend the model for tilt
homographies to handle image planes that are tilted by 90◦
and shifted by t with respect to the original principal point.22

The geometry of projecting a point from an untilted image
plane to an image plane that is tilted by 90◦ is shown in
Fig. 20. Unlike for tilts smaller than 90◦, the origin of the
tilted coordinate system (xt, yt, zt) does not coincide with
that of the untilted coordinate system (xu, yu, zu) because the
optical axis intersects the tilted image plane at infinity. There-
fore, we use the traditional principal point as the reference
point of the tilted image plane. The geometry is equivalent
to a camera that rotates around the projection center and
changes its principal distance from d to t . Thus, the projec-
tion can be modeled by the homography

21 The projection center must lie in the plane spanned by b and y′
1 for

the epipolar lines to become parallel. Furthermore, it must lie in the
plane spanned by b and z′1 for the epipolar lines to become horizontal.
Therefore, it must lie on b.
22 As noted above, the translation by t can be regarded as a rotation
around o2 in the plane at infinity π∞.
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Fig. 20 The projection of a point pu from the untilted image plane to a
point pt in an image plane that is tilted by 90◦. The camera is perspective
in image space. The coordinate system of the untilted image plane is
given by (xu, yu, zu), that of the tilted image plane by (xt, yt, zt). The
untilted camera’s viewing direction is along the zu axis, which points
towards the scene. The vectorn, which forms an angleρ withxu, denotes
the direction along which the two image planes intersect. The tilted
image plane is shifted by the distance t in the direction perpendicular to
n. These two coordinate systems can also be attached to the image-side
projection center as (x′

u, y
′
u, z

′
u) and (x′

t, y
′
t, z

′
t). The distance from the

projection center to the intersection of the optical axis with the untilted
image plane is d

H90◦ = KtR
�K−1

u , (59)

where Ku is given by (26) and Kt is given by

Kt =
⎛
⎝ t 0 0
0 t 0
0 0 1

⎞
⎠ . (60)

The rotation matrix R is given by expressing (xt, yt, zt) in
terms of (xu, yu, zu). Since zu is the base of the stereo system,
we obviously must choose xt parallel to zu. One choice is
to set xt = zu = (0, 0, 1)�. As shown in Fig. 20, we can
set yt = n, where n is given by (21). Finally, we can set
zt = n⊥ = (− sin ρ, cos ρ, 0)�. A second choice is given
by xt = −zu, yt = −n, and zt = n⊥. Substituting the two
choices into (59), we obtain two possible homographies:

H90◦ =
⎛
⎜⎝

0 0 t
t
d cos ρ t

d sin ρ 0

− 1
d sin ρ 1

d cos ρ 0

⎞
⎟⎠ (61)

and

H90◦ =
⎛
⎜⎝

0 0 −t
− t

d cos ρ − t
d sin ρ 0

− 1
d sin ρ 1

d cos ρ 0

⎞
⎟⎠ (62)

The appropriate choice is (61) if the telecentric camera is
to the left of the perspective camera and (62) otherwise. We
also note that (62), for t < 0, is identical to (61), for t > 0,
and vice versa. Therefore, we only need either (61) or (62)
and can select the appropriate solution via the sign of t . The
vector n is given by the projection of z′1 into the undistorted
image plane of the telecentric camera, rotated by −π/2.

With this, a point in the image plane i2 is projected into
the rectified image plane i′2 by the following transformations.
First, the point is transformed into the undistorted image
plane of the telecentric camera by the inverse of (13), option-
ally the inverse of (24) or (30), depending on the camera
model, and (10) or (12), depending on the distortion model.
Next, the point is translated by the offset of the epipole e2.
Let the coordinates of the epipole in the undistorted image
plane be denoted by (ex , ey)�. Since the coordinates of the
principal point p2 in the undistorted image plane are (0, 0)�,
the translation vector is (−ex ,−ey)�. The translated point is
then projected into the rectified image plane by (61) or (62).
Finally, the projected point is transformed into the image
coordinate systemof the rectified imageby (13). To transform
points from i′2 into i2, which is required for image rectifi-
cation, the inverses of the above transformations must be
applied in the reverse order.

There are some free parameters in the above transfor-
mations that still must be determined. First, to prevent the
rectified images from becoming too wide, we select sx and
sy such that the pixels in the rectified images are approx-
imately the same size as the pixels in the original images.
This is done by projecting a square of size 1 in the center of
both rectified images back to the original images and using
the inverse of the average of the resulting side lengths of
the transformed squares as the scaling factors for sx and sy ,
respectively. Next, we select cy of the two cameras equal
based on the intersection of the bounding boxes of the two
rectified images to ensure that the epipolar lines have the
same row coordinate. Finally, the values of cx are determined
based on the individual bounding boxes of the two rectified
images.

A synthetic example for the rectification of a stereo image
pair of a perspective and a telecentric camera is shown in
Fig. 21. The cameras are tilted by an angle of 45◦ with respect
to each other. To show the epipolar lines for selected points
before and after rectification, we use simulated images of a
calibration object that we used previously (Steger et al. 2008,
Chapter 3.9). This calibration object has fewer control points
than the calibration object shown in Fig. 17, which allows us
to display the epipolar lines corresponding to the centers of
the control points. The images were created with synthetic
camera parameters, i.e., the images in Fig. 21 are not used
for calibration. Theymerely serve to have clearly identifiable
points (the centers of the control points) for which the epipo-
lar lines can be displayed. Figure 21 shows that the epipolar
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Fig. 21 A synthetic example for the rectification of a stereo image pair
of a perspective and a telecentric camera. The image of the perspective
camera, along with the epipolar lines through the centers of the control
points, is shown in a, the image of the telecentric camera is shown in b.
The corresponding rectified images and epipolar lines are shown in c,
d

lines of the original images are slanted and those of the rec-
tified images are horizontal and at the same row coordinates,
illustrating that the rectification algorithm described above
works correctly.

A real example for the rectification of a stereo image
pair of a telecentric and a perspective camera and for the
corresponding 3D reconstruction is shown in Fig. 22. Both
cameraswere equippedwith an IDSuEyeUI-1222LE sensor.
The telecentric camera was not tilted and used a V.S. Tech-
nologies L-VS-TC017 lens. The perspective camera used the
special housing, described in Sect. 11, that allows the lens to
be tilted around the vertical axis. The camera was equipped
with a Cosmicar B1214D-2 12.5mm lens with a 2mm exten-
sion tube, tilted by ≈3.5◦. The stereo setup was calibrated
with the approach described in Sect. 9. The calibrated rel-
ative pose of the perspective camera with respect to the
telecentric camera was computed as tx = −46.00mm, ty =
6.41mm, tz = 19.23mm, α = 3.38◦, β = 37.39◦, and
γ = −2.66◦. Figure 22a, b shows two images of a printed
circuit board (PCB) acquired with this setup. The telecentric
camera looks perpendicularly onto the PCB, the perspective
camera at an angle of ≈37◦. Figure 22c, d displays the rec-
tified images. To show that the calibration and rectification
worked correctly, the stereo disparities computed from the
two rectified images are shown in Fig. 22e. A perspective
view of the metric 3D reconstruction is displayed in Fig. 22f.
Note that all components on the PCB (ICs, resistors, and
capacitors) have been reconstructed correctly. The surfaces
of the components and the PCB itself are perfectly flat. There
are a few mismatches that are caused by specular reflections,
mainly on the leads of the IC, and by the large occlusion in the

Fig. 22 A real example for the rectification of a stereo image pair of
a telecentric and a perspective camera and for the corresponding 3D
reconstruction. a Image of the telecentric camera, which looks per-
pendicularly at a PCB. b Image of the perspective tilt camera, which
looks at the PCB at an angle of ≈37◦. c Rectified telecentric image. d
Rectified perspective image. e Computed stereo disparities. f Visual-
ization of the computed metric 3D reconstruction. For better visibility,
the reconstructed surface has been colored according to the z value of
the reconstruction in the camera coordinate system of the telecentric
camera. Darker surface colors correspond to points that are closer to
the telecentric camera

lower left part of the perspective image. Overall, the recon-
struction is of very high quality, showing that the calibration
and rectification work correctly.

Remark 21 It might appear that (61) and (62) lead to a com-
pletely new camera model for object-side telecentric tilt
cameras. However, this is not the case. If (61) or (62) are
inserted into (54), a camera matrix M that lies in the set D of
Lemma 2 in Appendix A.3 is obtained. Computing the DIAC
of such a camera matrix M results in:

ω∗
H90◦ =

⎛
⎜⎜⎜⎝

c2x
d2

cx cy
d2

cx
d2

cx cy
d2

c2y+a2y t
2

d2
cy
d2

cx
d2

cy
d2

1
d2

⎞
⎟⎟⎟⎠ . (63)

The DIAC is independent of ρ and tautologically fulfills
equations (105) and (106). Equation (107), however, eval-
uates to a2y t

2/d4 and, therefore, is only fulfilled if ay =
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0, t = 0, or d = ∞. These cases, however, cannot occur
since we must require t �= 0 and d < ∞ for H90◦ and ay �= 0
for K, and therefore M, to be regular. Thus, the decomposition
result from Lemma 2 can be applied. In particular, the matrix
M that arises from the rectification can be interpreted as an
object-side telecentric tilt camera with cos ρ = 0.

As an example, consider an object-side telecentric tilt
camera for rectification, using (62) as the tilt homography,
with interior orientation parameters m = 1, d = 0.02, t =
0.015, ρ = 300◦, sx = sy = 2 × 10−5, (cx , cy)� =
(1500, 1000)�, and a pose given by α = 30◦, β =
−20◦, γ = 10◦, and (tx , ty, tz)� = (0.158, 0.078, 0)�. By
the decomposition in the proof of Lemma 2, this camera
can be represented by a regular object-side telecentric tilt
camera with parameters m = 1, d = 0.01118034, τ =
48.189685◦, ρ = 90◦, sx = 1 × 10−5, sy = 1.333333 ×
10−5, (cx , cy)� = (0, 1000)�, and a pose given by α =
16.164849◦, β = −32.081247◦, γ = −20.733967◦, and
(tx , ty, tz)� = (0.165832,−0.011450, 0)�. Needless to say,
the parameters of the regular object-side telecentric tilt cam-
era are extremely unintuitive. Therefore, while Theorem 3
and, in particular, Lemma 2 show that no special camera
model for object-side telecentric tilt cameras for rectifica-
tion would be required, it is preferable to have an explicit
model for rectification because this facilitates an intuitive
interpretation of the geometric parameters.

Remark 22 The above discussion shows that the rectified
telecentric camera can be regarded as an object-side telecen-
tric tilt camera. Obviously, the rectified perspective camera
can also be regarded as a perspective tilt camera. This also
applies in the case of two perspective cameras. For a stereo
system with two telecentric cameras, the images also must
be projected onto a common image plane. This projection
can be represented by rotations around the optical axis of the
two cameras since the only property that must be fulfilled is
that the lines of the images are parallel to the direction that
connects the two projection centers in the plane at infinity.
The fact that, seemingly, there is no tilt involved is a con-
sequence of Proposition 6. The tilt that would occur in the
projection onto the common image plane can be compen-
sated by changing sx appropriately. Since sx can be chosen
freely anyway, the rectification by a rotation around the opti-
cal axis effectively is a tilt that is being undone by virtually
selecting a smaller sx . This shows that, for all combinations
of camera types, stereo rectification involves cameras with
tilt lenses in a very natural manner.

13 Conclusions

We have proposed models for cameras with tilt lenses that
correctly model the imaging geometry of lenses for which

the ray angles in object and image space differ. The models
cover all lens types that are in commonuse formachine vision
and consumer cameras: entocentric, image-side telecentric,
object-side telecentric, and bilateral telecentric lenses. We
have shown that the tilt can be modeled by orthographic or
perspective homographies that project points fromanuntilted
virtual image plane to the tilted image plane. An important
aspect of the parameterization of the tilt homographies is
that their parameters are easy to understand for the user.
Furthermore, we have analyzed the degeneracies of the pro-
posed camera models and have described how they can be
handled automatically or manually by the user. The analy-
sis of the degeneracies also has led to theorems that show
that all finite projective cameras, affine cameras, and gen-
eral cameras at infinity, i.e., all projective cameras, can be
regarded as cameras with tilt lenses. Each theorem provides
a minimal parameterization of the respective class of cam-
era matrices. In addition, we have proposed two efficient and
accurate algorithms to remove the perspective and distortion
bias from the positions of circular control points, and thus
to increase the accuracy of the calibration results. The pro-
posed algorithms are at least an order of magnitude faster
than the existing approaches that are capable of compensat-
ing perspective anddistortion bias. Experiments have verified
that the proposed cameramodels achieve accurate calibration
results on numerous configurations of cameras and tilt lenses.
The experiments also have shown that the cameramodels that
were proposed up to now are unable to model many exist-
ing lenses correctly. Finally, we have described a geometric
algorithm to rectify a stereo image pair of a perspective and a
telecentric camera. This has led us to an interesting subclass
of the tilt camera models: an object-side telecentric camera
with an image plane that is tilted by 90◦.
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Appendix

A.1 Proof of Theorem 1

An affine camera is represented by a camera matrix of the
form

M =
⎛
⎝m11 m12 m13 m14

m21 m22 m23 m24

0 0 0 1

⎞
⎠ , (64)
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for which the top left 2 × 3 submatrix has rank 2 (Hartley
and Zisserman 2003, Chapter 6.3.4).

Since we assume square pixels and the principal point at
(0, 0)�, the calibration matrix in (55) is given by

K =
⎛
⎝a 0 0
0 a 0
0 0 1

⎞
⎠ . (65)

If we denote the elements of the tilt homography Ho in
(31) by hi j , the elements of the rotation matrix in Hw by ri j ,
and the translation vector in Hw by (tx , ty, tz)�, (55) results
in the following camera matrix

Poo =
⎛
⎝ p11 p12 p13 p14

p21 p22 p23 p24
0 0 0 1

⎞
⎠ , (66)

where

pi j = a(hi1r1 j + hi2r2 j ) (67)

pi4 = a(hi1tx + hi2ty) (68)

for i ∈ {1, 2} and j ∈ {1, 2, 3}.
To prove the theorem, we will show Poo = M for an arbi-

trary affine camera matrix M, i.e., we will show that every M
can be uniquely decomposed into the parameters of Poo. To
do so, we first remove the pose parameters from Poo and M
by computing their DIACs. Let us denote the DIAC of M by
ω∗
M and the DIAC of the camera matrix (66) by ω∗

P. We must
show that

ω∗
P = ω∗

M. (69)

If we denote the elements of ω∗
M by ωi j , (69) results in the

following three equations, as a result of applying (57) to (66):

ω11 = −a2 cos2 ρ sin2 τ − a2

cos2 τ
(70)

ω22 = −a2 sin2 ρ sin2 τ − a2

cos2 τ
(71)

ω12 = −a2 cos ρ sin ρ sin2 τ

cos2 τ
, (72)

where cos2 θ and sin2 θ are abbreviations for (cos θ)2 and
(sin θ)2, respectively.

We can solve (72) for a2:

a2 = − ω12 cos2 τ

cos ρ sin ρ sin2 τ
. (73)

Substituting a2 into (70) and (71) and simplifying yields

ω12(cos
2 ρ sin2 τ − 1) − ω11 cos ρ sin ρ sin2 τ = 0 (74)

ω12(sin
2 ρ sin2 τ − 1) − ω22 cos ρ sin ρ sin2 τ = 0. (75)

By subtracting (75) from (74), we obtain

ω12(1−2 sin2 ρ) sin2 τ +(ω22−ω11) cos ρ sin ρ sin2 τ = 0.

(76)

Let us assume for the moment that sin τ �= 0. Then,

ω12(1 − 2 sin2 ρ) + (ω22 − ω11) cos ρ sin ρ = 0. (77)

This can be transformed to

2ω12 cos(2ρ) − (ω11 − ω22) sin(2ρ) = 0, (78)

i.e.,

tan(2ρ) = 2ω12

ω11 − ω22
. (79)

To handle the case sin τ = 0, we note that if sin τ = 0, ω12 =
0 and ω11 = ω22 = a2. Conversely, if ω12 = 0 and ω11 =
ω22, (72) can be transformed to a2 sin(2ρ) sin2 τ = 0 and
the result of subtracting (71) from (70) can be transformed to
a2 cos(2ρ) sin2 τ = 0. Since cos(2ρ) and sin(2ρ) are never
simultaneously 0, we must either have a = 0 or sin τ = 0.
Sincewe assume thatM is regular,a = 0 cannot occur.Hence,
sin τ must be 0. Consequently, ifω12 = 0 andω11 = ω22, we
cannot determine ρ uniquely and can set it to 0. Otherwise,
we can use (79) to find a solution for ρ. The special case can
even be subsumed into the general case if we solve (79) for
ρ by the two-argument arctangent function

ρ = 1

2
atan2(2ω12, ω11 − ω22) (80)

since atan2(0, 0) = 0 by definition. A second possible solu-
tion is given by

ρ = 1

2
atan2(−2ω12, ω22 − ω11). (81)

We will show below that (81) is always the correct solution.
Next, we add (74) and (75) and obtain

(
ω12 − (ω11 + ω22)

2
sin(2ρ)

)
sin2 τ − 2ω12 = 0. (82)

Substituting ρ from (81) into (82) and using sin(atan2(±y,
±x)) = ±y/

√
x2 + y2, we obtain

⎛
⎝ω12 + (ω11 + ω22)ω12√

(ω22 − ω11)2 + 4ω2
12

⎞
⎠ sin2 τ − 2ω12 = 0. (83)
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Solving for sin2 τ results in

sin2 τ =
2
√

(ω22 − ω11)2 + 4ω2
12√

(ω22 − ω11)2 + 4ω2
12 + ω11 + ω22

. (84)

The right hand side of (84) is obviously≥0. Furthermore, we
can tentatively assume

2
√

(ω22 − ω11)2 + 4ω2
12√

(ω22 − ω11)2 + 4ω2
12 + ω11 + ω22

≤ 1. (85)

Simplifying (85) algebraically shows that this is equivalent
to ω2

12 ≤ ω11ω22. This is nothing more than the Cauchy–
Schwarz inequality. Therefore, the right hand side of (84) is
≤1 and (84) can always be solved for τ :

τ = arcsin

⎛
⎜⎜⎝

√√√√√√
2
√

(ω22 − ω11)2 + 4ω2
12√

(ω22 − ω11)2 + 4ω2
12 + ω11 + ω22

⎞
⎟⎟⎠. (86)

To prove that (80) is always the incorrect solution for ρ, we
substitute it into (82) and proceed as before to obtain

sin2 τ =
2
√

(ω22 − ω11)2 + 4ω2
12√

(ω22 − ω11)2 + 4ω2
12 − ω11 − ω22

. (87)

The right hand sides of (84) and (87) have different signs if
their product is negative. Computing this product results in

(ω22 − ω11)
2 + 4ω2

12

ω2
12 − ω11ω22

. (88)

The nominator is obviously ≥0. If it is 0, we have sin τ = 0
(see the discussion above), i.e., (84) and (87) return the same
solution. Therefore, we can assume that the nominator is>0.
Because of the Cauchy–Schwarz inequality, the denominator
is ≤0. If the denominator were 0, M would be singular since
the first row of the left 3 × 3 submatrix of M would depend
linearly on the second row. Consequently, the denominator
is always <0 and therefore (87) has no solution except when
sin τ = 0. This shows that (86) is the only correct solution
for τ .

Finally, we can substitute (81) and (86) into (73) and sim-
plify to obtain

a =
√√√√ 2(ω11ω22 − ω2

12)√
(ω22 − ω11)2 + 4ω2

12 + ω11 + ω22

. (89)

Equations (81), (86), and (89) show that the interior ori-
entation of the camera, i.e., the matrices K (see (65)) and Ho
(see (31)), can be determined uniquely.

To determine the pose parameters, we canmultiplyM from
the left by H−1

o K−1. This results in

H−1
o K−1M =

⎛
⎝ r11 r12 r13 tx
r21 r22 r23 ty
0 0 0 1

⎞
⎠ . (90)

The missing third row of the rotation matrix can be recon-
structed by the vector product of the first two rows. This
matrix can then be converted into any convenient rotation
parameterization, e.g., Euler angles. Since the orthographic
projection in object space (8), and therefore also (68), does
not depend on tz , we can set tz to any value, e.g., to 0. �	

A.2 Proof of Theorem 2

A finite projective camera is represented by an arbitrary
homogeneous 3 × 4 matrix

M =
⎛
⎝m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

⎞
⎠ (91)

for which the left hand 3 × 3 submatrix M3 is non-singular
(Hartley and Zisserman 2003, Chapter 6.1). We assume
det(M3) > 0. If not, we multiply M by −1.

Since we assume square pixels, the calibration matrix in
(53) is given by

K =
⎛
⎝a 0 cx
0 a cy
0 0 1

⎞
⎠ . (92)

If we denote the elements of the tilt homography Ho in
(31) by hi j , the elements of the rotation matrix in Hw by ri j ,
and the translation vector in Hw by (tx , ty, tz)�, (53) results
in the following camera matrix

Ppo =
⎛
⎝ p11 p12 p13 p14

p21 p22 p23 p24
p31 p32 p33 p34

⎞
⎠ , (93)

where

p1 j = a(h11r1 j + h12r2 j ) + cxr3 j (94)

p2 j = a(h21r1 j + h22r2 j ) + cyr3 j (95)

p3 j = r3 j (96)

p14 = a(h11tx + h12ty) + cx tz (97)

p24 = a(h21tx + h22ty) + cytz (98)
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p34 = tz (99)

for j ∈ {1, 2, 3}.
To prove the theorem, we will show sPpo = M for an

arbitrary finite projective camera matrix M, i.e., we will show
that every M can be uniquely decomposed into the parameters
of Ppo. Here, s �= 0 is a scaling factor that accounts for the
fact that M is homogeneous.

Since (r31, r32, r33)� has length 1, s can be computed as

s =
√
m2

31 + m2
32 + m2

33. (100)

In the following, we assume that M has been normalized by
dividing it by s. We then have

tz = m34. (101)

Next, we compute the DIACs of Ppo and the normalized
M and require ω∗

P = ω∗
M. If we denote the elements of ω∗

M by
ωi j , we obtain

(cx , cy)
� = (ω13, ω23)

�. (102)

Hence, we have determined three of the eleven camera para-
meters: cx , cy , and tz .

We can now normalize Ppo and M to have a principal point
of (0, 0)� by multiplying them on the left by

Kc =
⎛
⎝ 1 0 −cx
0 1 −cy
0 0 1

⎞
⎠ . (103)

The matrix KcPpo has the form

Npo = KcPpo =
⎛
⎝n11 n12 n13 n14
n21 n22 n23 n24
n31 n32 n33 n34

⎞
⎠ , (104)

where ni j = a(hi1r1 j + hi2r2 j ), j ∈ {1, 2, 3}, and ni4 =
a(hi1tx + hi2ty) for i ∈ {1, 2}. Therefore, the first two rows
of Npo have the same structure as (66). Consequently, we can
use the same approach as in Appendix A.1 to compute the
remaining eight camera parameters. �	

A.3 Proof of Theorem 3

Wewill split the proof ofTheorem3 into twoparts.As already
shown in Proposition 5, the perspective tilt homographies
that are used in the model for general cameras at infinity
exhibit certain degeneracies that must be taken into account.
Therefore, we will provide separate lemmas and proofs for
the non-degenerate and degenerate cases. In the following,
we denote the space of general cameras at infinity by SM.

Lemma 1 Every M ∈ S∗
M = SM\D, where D is a set of

measure 0, can be regarded as an object-side telecentric tilt
camera. Here, a matrix M ∈ SM lies in D if the DIAC ω∗

M
of M with elements ωi j satisfies at least one of the following
equations

ω12ω33 − ω13ω23 = 0, (105)

ω11ω33 − ω2
13 = 0, (106)

ω22ω33 − ω2
23 = 0. (107)

Proof We will prove this lemma by giving a set of maps
A = {φi }i∈I , where I is a finite set of indices, that maps
every matrix M ∈ S∗

M uniquely to the parameters of an
object-side telecentric tilt camera. Here, the maps φi are
homeomorphisms defined onUi ⊂ S∗

M, with
⋃

i∈I Ui = S∗
M.

First, note that D is indeed a set ofmeasure 0. This follows
from the implicit function theorem applied to the function
defined by the left hand side of each of the Eqs. (105)–(107).
It states that one of the entries mi j of M can be expressed by
the other entries mi j involved in the equation to obtain the
matrices that fulfill that equation. Now, this set of matrices is
exactly the set we denoted by D and it has one dimension less
than SM. Thus, 
(D) = 0, where 
(·) denotes the Lebesgue
measure on R

n with n = dim(SM).
A general camera at infinity is represented by an arbitrary

homogeneous 3 × 4 matrix

M =
⎛
⎝m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

⎞
⎠ (108)

for which the left hand 3 × 3 submatrix M3 is singular, i.e.,
for which det(M3) = 0 (Hartley and Zisserman 2003, Chap-
ter 6.3.6).

If we denote the elements of the tilt homography Hp in
(32) by hi j , the elements of the rotation matrix in Hw by ri j ,
and the translation vector in Hw by (tx , ty, tz)�, (54) results
in the following camera matrix

Pop =
⎛
⎝ p11 p12 p13 p14

p21 p22 p23 p24
p31 p32 p33 p34

⎞
⎠ , (109)

where

p1 j = (h11r1 j + h12r2 j )ax + (h31r1 j + h32r2 j )cx (110)

p2 j = (h21r1 j + h22r2 j )ay + (h31r1 j + h32r2 j )cy (111)

p3 j = h31r1 j + h32r2 j (112)

p14 = (h11tx + h12ty)ax + (h31tx + h32ty + h33)cx (113)

p24 = (h21tx + h22ty)ay + (h31tx + h32ty + h33)cy (114)

p34 = h31tx + h32ty + h33 (115)

for j ∈ {1, 2, 3}.
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Because the matrix M that represents the general camera
at infinity is only defined up to scale, we can assume that
|mi j | ≤ 1,∀i, j . If not, we scale M by a suitable factor. For
the elementsωi j of the DIACω∗

M of M, it follows that |ωi j | ≤
3,∀i, j .

We will now show that sPop = M (s > 0). To do so, we
first remove the pose parameters from Pop and M by comput-
ing their DIACs. Let us denote the DIACs by ω∗

P and ω∗
M,

respectively. Then, we must show that

s2ω∗
P = ω∗

M. (116)

If we denote the elements of ω∗
M by ωi j and define d ′ = 1/d,

(116) results in the following six equations:

ω11 = s2a2x (1 − cos2 ρ sin2 τ) + 2s2axcxd
′ sin ρ sin τ

+ s2c2xd
′2 sin2 τ (117)

ω22 = s2a2y(1 − sin2 ρ sin2 τ) + 2s2aycyd
′ cos ρ sin τ

+ s2c2yd
′2 sin2 τ (118)

ω33 = s2d ′2 sin2 τ (119)

ω12 = −s2axay cos ρ sin ρ sin2 τ + s2axcyd
′ sin ρ sin τ

− s2aycxd
′ cos ρ sin τ + s2cxcyd

′2 sin2 τ (120)

ω13 = s2axd
′ sin ρ sin τ + s2cxd

′2 sin2 τ (121)

ω23 = −s2ayd
′ cos ρ sin τ + s2cyd

′2 sin2 τ, (122)

where cos2 θ and sin2 θ are abbreviations for (cos θ)2 and
(sin θ)2, respectively.

We have six equations containing eight unknown parame-
ters. Until now, we have not distinguished between SM and
S∗
M.
We will now derive the finite set of maps A on the set

S∗
M. To do so, we will need to fix some parameters in order to

decompose thematrix uniquely.We choose to fix the location
of the principal point (cx , cy)�, i.e., our setA will effectively
be parameterized by (cx , cy)�:

φ(cx ,cy)i : Ui → R
n, i ∈ I, (123)

where I is a finite set of indices.
By using (117)–(122), we can describe the set D of mea-

sure 0 that we excluded from SM in the parameter space. We
have

ω12ω33 − ω13ω23 = −s4axayd
′2 cos ρ sin ρ sin2 τ

×(sin2 τ − 1) (124)

ω11ω33 − ω2
13 = −s4a2xd

′2 sin2 τ

×(cos2 ρ sin2 τ + sin2 ρ − 1) (125)

ω22ω33 − ω2
23 = −s4a2yd

′2 sin2 τ

×(sin2 ρ sin2 τ + cos2 ρ − 1). (126)

Thus, D corresponds to the set in the parameter space where
sin τ = 0, sin τ = 1, sin ρ = 0, or cos ρ = 0. Therefore, we
assume that sin τ �= 0, sin τ �= 1, sin ρ �= 0, and cos ρ �= 0,
i.e., τ �= kπ, τ �= (4k + 1)π/2, and ρ �= kπ/2, k ∈ Z.

Furthermore, we assume that M is indeed a general camera
at infinity. In particular, we assume that M does not represent
an affine camera since Theorem 1 already proves that every
affine camera can be interpreted as a bilateral telecentric tilt
camera. This implies that ω33 > 0 and we can substitute
(119) into (121) and (122) and solve for sin ρ and cos ρ,
respectively:

sin ρ = ω13 − cxω33

sax
√

ω33
(127)

cos ρ = cyω33 − ω23

say
√

ω33
. (128)

We can now substitute (127), (128), and (119) into (120)
and solve for sin2 τ :

sin2 τ = ω12ω33 − (cxω23 + cyω13)ω33 + cxcyω2
33

ω13ω23 − (cxω23 + cyω13)ω33 + cxcyω2
33

. (129)

Obviously, 0 ≤ sin2 τ ≤ 1 must hold to be able to solve
(129) for τ . Actually, we need to guarantee 0 < sin2 τ <

1 since we excluded the cases sin τ = 0 and sin τ = 1.
Equation (129) only depends on cx and cy (besides M), which
we can now choose such that 0 < sin2 τ < 1 holds.

Note that in (129), both in the numerator and in the denom-
inator the same terms are added to ω12ω33 and ω13ω23,
respectively. To find suitable values for cx and cy, we will
consider different cases. The easiest case is 0 < ω12ω33

ω13ω23
< 1.

In this case, we can set (cx , cy)� = (0, 0)�.
One special case that we must examine is ω12 = 0. Then,

ω12ω33
ω13ω23

= 0, but since we assume sin τ �= 0, we cannot set

(cx , cy)� = (0, 0)�. Because M /∈ D, (105) does not hold,
which implies in this case that ω13 �= 0 and ω23 �= 0. Then,
without loss of generality, we can set cy = 0 and choose
cx < 0 arbitrarily if ω13 > 0 and cx > 0 arbitrarily if
ω13 < 0. Alternatively, we could set cx = 0 and choose
cy < 0 if ω23 > 0 and cy > 0 if ω23 < 0.

Now, assume that ω12ω33
ω13ω23

/∈ [0, 1]. We will derive inequal-
ity conditions for cx and cy that are of the form |cx,y | >

|ωi j/ωkl |. Because we want to show that one can choose
(cx , cy) from a finite set of possible values in order to obtain
sin2 τ between 0 and 1 from (129), we want to prevent |cx |
and |cy | from going to infinity, i.e., to prevent the relevant
ωi j in the denominator from lying arbitrarily close to 0. Thus,
instead of differentiating between ωi j = 0 and ωi j �= 0 we
will distinguish the cases |ωi j | > ε and |ωi j | ≤ ε for some
arbitrary but fixed ε > 0. Here, we can choose ε > 0 small
enough such that ω33 > ε. Such an ε exists since we assume
ω33 > 0, as already mentioned above.

123



154 Int J Comput Vis (2017) 123:121–159

Let us examine the case |ω23| > ε in detail. We can set
cy = 0. For cx , we distinguish the following cases (keep in
mind that ω33 > 0):

– ω12ω33
ω13ω23

< 0

– ω12 < 0. Then, ω12ω33 < 0 < ω13ω23. We want to
choose cx such that the numerator of sin2 τ is positive.
Then, also the denominator is positive and still greater
than the numerator and 0 < sin2 τ < 1. Thus, we
must choose:

cx

{≤ −3/ε < ω12/ω23 if ω23 > 0
≥ 3/ε > ω12/ω23 if ω23 < 0

. (130)

– ω12 > 0. Then, ω12ω33 > 0 > ω13ω23. We want to
choose cx such that the numerator of sin2 τ is nega-
tive. Then, also the denominator is negative and still
smaller than the numerator and 0 < sin2 τ < 1. Thus,
we must choose:

cx

{≥ 3/ε > ω12/ω23 if ω23 > 0
≤ −3/ε < ω12/ω23 if ω23 < 0

. (131)

– ω12ω33
ω13ω23

> 1

– ω12 < 0. Note that, since ω12ω33 < 0, also ω13ω23

must be < 0 for their ratio to become positive. Then,
ω12ω33 < ω13ω23 < 0. We want to choose cx such
that the numerator of sin2 τ is positive. Then, also
the denominator is positive and still greater than the
numerator and 0 < sin2 τ < 1. Thus, we must
choose:

cx

{≤ −3/ε < ω12/ω23 if ω23 > 0
≥ 3/ε > ω12/ω23 if ω23 < 0

. (132)

– ω12 > 0. Since ω12ω33 > 0, also ω13ω23 must
be > 0 for their ratio to become positive. Then,
ω12ω33 > ω13ω23 > 0. We want to choose cx such
that the numerator of sin2 τ is negative. Then, also
the denominator is negative and still smaller than
the numerator and 0 < sin2 τ < 1. Thus, we must
choose:

cx

{≥ 3/ε > ω12/ω23 if ω23 > 0
≤ −3/ε < ω12/ω23 if ω23 < 0

. (133)

In each case, the second inequality follows from |ω12| ≤ 3
and |ω23| > ε.

Summarized, if |ω23| > ε, we can choose:

cx = k · 3
ε

· sgn(ω12ω23) (134)

cy = 0 (135)

for some k ≥ 1.

Now let us consider the case |ω23| ≤ ε. We see that if
|ω13| > ε, we can switch the roles of cx and cy and ω13 and
ω23 and obtain:

cx = 0 (136)

cy = k · 3
ε

· sgn(ω12ω13) (137)

for some k ≥ 1.
We can summarize the choice of (cx , cy)� for some k ≥ 1

as follows:

ω33 > ε cx cy

ω12 �= 0, |ω23| > ε k · 3/ε · sgn(ω12ω23) 0
ω12 �= 0, |ω13| > ε 0 k · 3/ε · sgn(ω12ω13)

ω12 = 0, |ω13| > ε −k · 3/ε · sgn(ω13) 0
ω12 = 0, |ω23| > ε 0 −k · 3/ε · sgn(ω23)

Note that the last line is redundant and is included only for
reasons of symmetry. As discussed above, ω12 = 0 implies
that bothω13 andω23 are �= 0 and hence their absolute values
are > ε (under the assumption that sin τ �= 0).

If now both |ω23| ≤ ε and |ω13| ≤ ε, we must choose
cx �= 0 and cy �= 0 to obtain sin2 τ ∈ [0, 1]. Note that we
still assume ω33 > ε. We will only derive a valid choice for
ω12ω33
ω13ω23

< 0 in detail here. Again, we distinguish different
cases:

– ω12 < 0, ω23 ≥ 0.Wewant to choose cx and cy such that
the numerator of sin2 τ is positive. Then, also the denom-
inator is positive and still greater than the numerator and
0 < sin2 τ < 1. Thus, we start with setting cx = c/ε
with c > ε. With this, we can write the numerator of
(129) as

ω12ω33 − c

ε
ω23ω33 − cyω13ω33 + cy

c

ε
ω2
33

≥ ω12ω33 − cω33 − cyω13ω33 + cy
c

ε
ω2
33 (138)

!
> 0,

which can be reformulated as

cy >
c − ω12

c
ε
ω33 − ω13

(139)

because c
ε
ω33 − ω13 ≥ 0. Using the fact that |ωi j | ≤ 3,

we have (c− ω12)/(
c
ε
ω33 − ω13) ≤ (c+ 3)/(c− ε) and

we can choose

cy >
c + 3

c − ε
. (140)
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– ω12 < 0, ω23 < 0. Again, we want to choose cx and cy
such that the numerator of sin2 τ is positive. To be able
to do a similar estimate as in (138), we set cx = −c/ε
with c > ε. Then, we have

ω12ω33 + c

ε
ω23ω33 − cyω13ω33 − cy

c

ε
ω2
33

≥ ω12ω33 − cω33 − cyω13ω33 − cy
c

ε
ω2
33

!
> 0, (141)

which can be reformulated as

cy <
c − ω12

− c
ε
ω33 − ω13

(142)

because − c
ε
ω33 − ω13 ≤ −c + ε < 0. Furthermore, we

have (c − ω12)/(− c
ε
ω33 − ω13) ≥ (c + 3)/(ε − c) and

we can choose

cy <
c + 3

ε − c
. (143)

– ω12 > 0, ω23 ≥ 0. Here, wewant the numerator of sin2 τ

to be negative. We set cx = −c/ε with c > ε. Then, we
have

ω12ω33 + c

ε
ω23ω33 − cyω13ω33 − cy

c

ε
ω2
33

≤ ω12ω33 + cω33 − cyω13ω33 − cy
c

ε
ω2
33 (144)

!
< 0,

which can be reformulated as

cy >
−c − ω12

− c
ε
ω33 − ω13

(145)

because − c
ε
ω33 − ω13 ≤ −c + ε < 0. Furthermore, we

have (−c− ω12)/(− c
ε
ω33 − ω13) ≤ (c+ 3)/(c− ε) and

we can choose

cy >
c + 3

c − ε
. (146)

– ω12 > 0, ω23 < 0. Again, we want the numerator of
sin2 τ to be negative. We set cx = c/ε with c > ε. Then,
we have

ω12ω33 − c

ε
ω23ω33 − cyω13ω33 + cy

c

ε
ω2
33

≤ ω12ω33 + cω33 − cyω13ω33 + cy
c

ε
ω2
33

!
< 0, (147)

which can be reformulated as

cy <
−c − ω12
c
ε
ω33 − ω13

(148)

because c
ε
ω33 −ω13 ≥ c− ε > 0. Furthermore, we have

(−c−ω12)/(
c
ε
ω33 −ω13) ≥ (c+ 3)/(ε − c) and we can

choose

cy <
c + 3

ε − c
. (149)

For the case ω12ω33
ω13ω23

> 1, we obtain exactly the same valid
choices for cx and cy depending on the signs of ω12 and ω23.
Thus, for some c > ε and k > 1, we can summarize:

|ω23| ≤ ε,

|ω13| ≤ ε,

ω33 > ε

cx cy

ω12 > 0 ω23 ≥ 0 −c/ε k · (c + 3)/(c − ε)

ω23 < 0 c/ε k · (c + 3)/(ε − c)
ω12 < 0 ω23 ≥ 0 c/ε k · (c + 3)/(c − ε)

ω23 < 0 −c/ε k · (c + 3)/(ε − c)

Now, it only remains to examine the case |ω23| ≤
ε, |ω13| ≤ ε, and |ω33| ≤ ε. This means that the entries
of the last row of M3, tend to 0 since we can choose ε

arbitrarily small. The matrix M thus is not a general cam-
era at infinity anymore, but an affine camera and we can
apply the decomposition result for affine cameras from
Theorem 1.

Consequently,we can conclude that, ifM indeed represents
a general camera at infinity and not an affine camera, the
principal point (cx , cy)� can be chosen from a finite set of
possible values. These values are not unique since we have
two degrees of freedom for c and k. But we can fix these
parameters and thus obtain the foundation for the index set
of A on S∗

M that maps the matrix M to the parameters of the
object-side telecentric tilt camera.

Setting the values for cx and cy according to the compu-
tations above for which (129) fulfills the condition sin2 τ ∈
(0, 1), we can solve (129) for τ . We have

τ = arcsin

√
ω12ω33 − (cxω23 + cyω13)ω33 + cxcyω2

33

ω13ω23 − (cxω23 + cyω13)ω33 + cxcyω2
33

(150)

and we can continue deriving the remaining unknown para-
meters. We can solve (121) and (122) for sax and say ,
respectively:
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sax = ω13 − cxω33

sin ρ
√

ω33
, (151)

say = cyω33 − ω23

cos ρ
√

ω33
, (152)

and substitute (151) and (152) into (117) and (118), respec-
tively, which we can both solve for cos2 ρ:

cos2 ρ = ω11ω33 − ω2
13

c2x c
2
τω

2
33 + (ω11 − 2cxc2τω13)ω33 − s2τ ω2

13

(153)

cos2 ρ = c2τ (ω
2
23 − 2cyω23ω33 + c2yω

2
33)

c2yc
2
τω

2
33 + (ω22 − 2cyc2τω23)ω33 − s2τ ω2

23

,

(154)

where c2τ = cos2 τ and s2τ = sin2 τ .
Therefore, we have two possible solutions for cos2 ρ. To

show that both equations lead to the same value of cos2 ρ,
we must show that the right hand sides of (153) and (154) are
identical. In fact, this is a consequence of M3 being singular.
To see this, one can expand the DIAC elements ωi j in terms
of the matrix elements mi j , express one of them, e.g., m33,
by the others by means of det M3 = 0, and substitute that
together with (150) into (153) and (154). Since this is very
tedious, it is best done using a computer algebra system. This
shows that (153) and (154) are identical.

Furthermore, it must hold that 0 ≤ cos2 ρ ≤ 1 to be able
to solve (153) for ρ. We can reformulate (153) as follows:

cos2 ρ = ω11ω33 − ω2
13

cos2 τ(cxω33 − ω13)2 + ω11ω33 − ω2
13

. (155)

Using the Cauchy–Schwarz inequality, which implies ω2
13 ≤

ω11ω33, we can see directly from (155) that 0 ≤ cos2 ρ ≤ 1
holds. Indeed, it even holds that 0 < cos2 ρ < 1 since we
know that (106) does not hold and therefore ω2

13 is strictly
smaller than ω11ω33. We then have

ρ = arccos

√
ω11ω33 − ω2

13

cos2 τ(cxω33 − ω13)2 + ω11ω33 − ω2
13

.

(156)

However, this returns ρ only between 0 and π/2. To deter-
mine ρ between 0 and 2π , we can examine the signs of (121)
and (122). This shows that

– 0 < ρ < π/2 if ω13 − cxω33 ≥ 0 and ω23 − cyω33 ≤ 0,
– π/2 < ρ < π if ω13 − cxω33 ≥ 0 and ω23 − cyω33 ≥ 0,
– π < ρ < 3π/2 ifω13−cxω33 ≤ 0 andω23−cyω33 ≥ 0,
– 3π/2 < ρ < 2π ifω13−cxω33 ≤ 0 andω23−cyω33 ≤ 0.

Note that we cannot determine s from (117)–(122). We
can therefore initially set s = 1 and solve (151) and (152)
for ax and ay as well as (119) for d ′.We can now compute the
tilt homographyH and the calibrationmatrixK. Conceptually,
we obtain

H =
⎛
⎝ h11 h12 0

h21 h22 0
sh31 sh32 h33

⎞
⎠ (157)

and

K =
⎛
⎝sax 0 cx

0 say cy
0 0 1

⎞
⎠ , (158)

where s is the true scaling factor. By multiplying Pop and M
from the left by H−1K−1, we obtain

H−1K−1M =
⎛
⎝r11 r12 r13 tx
r21 r22 r23 ty
0 0 0 s

⎞
⎠ . (159)

Consequently, the scale factor s can be obtained from the
element (3, 4) of this matrix. The true values of d ′, ax , and
ay can be obtained by dividing the preliminary values derived
above by s. The missing third row of the rotation matrix can
be reconstructed by the vector product of the first two rows.
Since the orthographic projection in object space (8), and
therefore also (110)–(115), do not depend on tz , we can set
tz to any value, e.g., to 0.

This gives us the set of maps A = {φi }i∈I that is defined
on S∗

M. We have seen that with A any matrix M ∈ S∗
M can

be decomposed into the parameters of an object-side tele-
centric tilt camera by giving an explicit computation of the
parameters. �	
Lemma 2 Any matrix M ∈ D = SM\S∗

M can be regarded
as an object-side telecentric tilt camera, i.e., there exist
mappings that map M to the parameter space of object-side
telecentric tilt cameras. In contrast to Lemma 1, these map-
pings are not unique.

Proof We now consider the set D of matrices that we have
excluded from SM in Lemma 1.

In the proof of Lemma 1, we have shown that the set D is
described by sin τ = 0, sin τ = 1, sin ρ = 0, or cos ρ = 0
in the parameter space.

Let us start by examining the case sin τ = 0, i.e., τ =
kπ, k ∈ Z. It is easy to see that sin τ = 0 is equivalent to
ω12 = ω13 = ω23 = ω33 = 0. Consequently, the camera is
an affine camera, which we have excluded from the theorem.
Affine cameras can be decomposed using the decomposition
in the proof of Theorem 1.

123



Int J Comput Vis (2017) 123:121–159 157

Next, assuming sin τ �= 0, we consider the cases sin τ =
1, sin ρ = 0, or cos ρ = 0. We have already seen that the
following equations hold:

ω12ω33 − ω13ω23 = −s4axayd
′2 cos ρ sin ρ sin2 τ

×(sin2 τ − 1) (160)

ω11ω33 − ω2
13 = −s4a2xd

′2 sin2 τ

×(cos2 ρ sin2 τ + sin2 ρ − 1) (161)

ω22ω33 − ω2
23 = −s4a2yd

′2 sin2 τ

×(sin2 ρ sin2 τ + cos2 ρ − 1). (162)

Because we assume s > 0, ax > 0, ay > 0, and d ′ > 0, we
have:

– ω12ω33 − ω13ω23 = 0 ⇔ sin τ = 1, cos ρ = 0, or
sin ρ = 0,

– ω11ω33 − ω2
13 = 0 ⇔ sin τ = 1 or cos ρ = 0,

– ω22ω33 − ω2
23 = 0 ⇔ sin τ = 1 or sin ρ = 0.

Therefore, if (105)–(107) hold, we are in the case sin τ = 1
and can, for example, ignore (117), (118), and (120) since
they are redundant to (119), (121), and (122). By setting s =
1, we can solve (119) for d ′. Then, we are left with (121) and
(122). We can, for example, set cx = 0, cy = 0, ρ = kπ/4
for k ∈ {1, 3, 5, 7}, depending on the signs of ω13 and ω23,
and then solve (121) and (122) for ax and ay . We can then
proceed as in the proof of Lemma 1 to compute (159) and
determine the pose parameters and the true values of s, d ′, ax ,
and ay .

Furthermore, if (105) and either (106) or (107), but not
both, hold, we have the case that cos ρ = 0 or sin ρ = 0,
respectively, and sin τ �= 1. We will only describe the case
cos ρ = 0 in detail here. The case sin ρ = 0 can be handled
analogously.

If cos ρ = 0, (122) reduces to

ω23 = s2cyd
′2 sin2 τ. (163)

Since we have an explicit equation for cy here, we cannot
apply the approach from the proof of Lemma 1, where we
gave a finite set of possible values for cx and cy .

By substituting s2d ′2 sin2 τ with ω33, we can solve (163)
directly for cy . To obtain a unique solution, we can require
cx = 0, which reduces (117) and (121) to

ω11 = s2a2x (164)

ω13 = s2axd
′ sin ρ sin τ. (165)

We can solve (164) for ax by setting s = 1. From the sign of
ω13, we can determine ρ: ρ = π/2 if ω13 > 0 and ρ = 3π/2
if ω13 < 0.

Rearranging (118) leads to

cos2 τ = ω22 − c2yω33

s2a2y
. (166)

Thus, τ and ay cannot be determined simultaneously (which
was to be expected because of Proposition 5). To solve this
degeneracy, we can choose ay such that cos2 τ ∈ [0, 1] since
we have one degree of freedom left. We can, for example,

set ay = k
√

ω22 − c2yω33 for k > 1. This can be done since,

because of (163) and the Cauchy–Schwarz inequality, the
term in the square root is always nonnegative and even posi-
tive because we know that (107) does not hold. Then τ only
depends on k. We can solve (166) for τ and (119) for d ′ and
then proceed as usual to compute (159) and determine the
true values of s, d ′, ax , and ay .

Thus, in contrast to the computation of the parameters
in the proof of Theorem 3, we must fix three instead of two
parameters here, namely cx (for cos ρ = 0) or cy (for sin ρ =
0), ρ, and k=̂τ , to get a set of maps that maps D uniquely to
the parameter space.

These decompositions of M ∈ D form the mappings from
D to the parameter space of object-side telecentric tilt cam-
eras. �	
Remark 23 There are degeneracies in the set D = SM\S∗

M
that do not allow the unique decomposition into the minimal
parameterization. This is a kind of singularity and therefore
not the whole set SM can be described by a continuation
from S∗

M to SM of the finite set of maps A = {φi }i∈I that
was derived in the proof of Lemma 1.

Remark 24 The proof of Lemma 1 provides an algorithm
to decompose a general camera at infinity into the para-
meters of an object-side telecentric tilt camera using the
minimum number of 10 parameters using a finite set of maps.
As a consequence, the camera parameters of the decompo-
sition may not correspond to the geometric intuition one
might have about a particular problem. If it is desired to
decompose a general camera at infinity into geometrically
intuitive parameters, the principal point must be known, at
least approximately. Then, the general camera at infinity can
be normalized to this principal point by multiplying it from
the left with a suitable calibration matrix that moves the prin-
cipal point to (0, 0)�. This allows the decomposition with
(cx , cy)� = (0, 0)� in the proof of Lemma 1 to be used.
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