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Abstract The visual extent of an object reaches beyond the
object itself. This is a long standing fact in psychology and
is reflected in image retrieval techniques which aggregate
statistics from the whole image in order to identify the ob-
ject within. However, it is unclear to what degree and how
the visual extent of an object affects classification perfor-
mance. In this paper we investigate the visual extent of an
object on the Pascal VOC dataset using a Bag-of-Words im-
plementation with (colour) SIFT descriptors.

Our analysis is performed from two angles. (a) Not know-
ing the object location, we determine where in the image
the support for object classification resides. We call this the
normal situation. (b) Assuming that the object location is
known, we evaluate the relative potential of the object and
its surround, and of the object border and object interior. We
call this the ideal situation. Our most important discover-
ies are: (i) Surroundings can adequately distinguish between
groups of classes: furniture, animals, and land-vehicles. For
distinguishing categories within one group the surround-
ings become a source of confusion. (ii) The physically rigid
plane, bike, bus, car, and train classes are recognised by in-
terior boundaries and shape, not by texture. The non-rigid
animals dog, cat, cow, and sheep are recognised primarily
by texture, i.e. fur, as their projected shape varies greatly.
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(iii) We confirm an early observation from human psychol-
ogy (Biederman in Perceptual Organization, pp. 213-263,
1981): in the ideal situation with known object locations,
recognition is no longer improved by considering surround-
ings. In contrast, in the normal situation with unknown ob-
ject locations, the surroundings significantly contribute to
the recognition of most classes.

Keywords Content based image retrieval - Visual extent -
Context

1 Introduction

It is widely acknowledged that the visual extent of an ob-
ject extends beyond the object itself (e.g. Bar 2004; Bie-
derman 1981; Oliva and Torralba 2007; Wolf and Bileschi
2006). Nevertheless, in the early days of computer vision
the visual extent of the object was sought to be precisely
confined to its silhouette. And for good reasons as object
boundaries (i) are more stable against lighting changes than
the rest of the surface, (ii) indicate the object geometry di-
rectly, and (iii) reduce the processing requirements. This led
to the idea that an object should be correctly segmented be-
fore it can be recognised. But the general task of finding the
contour-bounded location of an object is very hard to solve
and not really necessary for object recognition (Smeulders
et al. 2000). In recent years, the use of powerful local de-
scriptors, the increasing size of datasets to learn from, and
the great advances in statistical pattern recognition have cir-
cumvented the necessity to know the object location before
object-based image classification.

The first step on the road to less localisation of the ob-
ject was to use local region descriptors in a specific spa-
tial arrangement (Agarwal et al. 2004; Burl et al. 1998;
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Fergus et al. 2003). This allowed the object to be found
based on only its discriminative features. The second step
was the introduction of the Bag-of-Words method (Sivic and
Zisserman 2003), which selects interesting regions, converts
them to visual words, and uses word counts followed by a
spatial verification step to retrieve matching image regions.
In the third step, Csurka et al. (2004) generalised Bag-of-
Words to image classification and removed the spatial veri-
fication, relying on interest point detectors to extract visual
words from the object. In the final step, the quantity of vi-
sual words was found to be more important than the quality
of the location of the visual words (Jurie and Triggs 2005;
Nowak et al. 2006). Therefore these words are no longer ex-
tracted at salient points but on a dense, regular grid. This
has caused the last notion of object location to be lost in the
Bag-of-Words representation which therefore mixes con-
text and object indiscriminately. This is the state-of-the-art
of image classification in 2009 (Everingham et al. 2010;
Smeaton and Over 2006).

While discarding the object location has its advantages, it
is also unsatisfactory. On the one hand, discarding the object
location leads to computational benefits and a natural incor-
poration of context. On the other hand, it is unclear how
much information is lost by discarding the object location:
the object features of a small object in a large field of view
are drowned in the information of its surroundings. There-
fore this paper investigates the question: What is the visual
extent of an object? This paper is an extension of Uijlings et
al. (2009). Specifically, we investigate the relative influence
of the object and its surroundings, and of the object interior
and object border.

2 Related Work

The influence of context on recognition was researched ear-
lier in human vision. Most notably, Biederman (Biederman
1981) considered five types of relations between the object
and its context: (1) Support reflects that objects do not float
in the air. (2) Interposition deals with occlusion. (3) Prob-
ability is the likelihood that an object is present given the
context. (4) Position is the location within the image (e.g. a
knife can be found next to a fork). And (5) size is the familiar
size of the object. He measured the time it took for humans
to identify objects violating one or more of the constraints,
which reflects the difficult of identification. In this paper we
focus on Biederman’s probability by automatic rather than
human vision, leaving the remaining four to another occa-
sion. We measure the difficulty of identification in terms of
classification accuracy.

Oliva and Torralba (2007) give a good overview of work
in visual cognition and cognitive neuroscience on visual

context and place this in light of recent advances in com-
puter vision. They conclude that although real-world rela-
tionships between individual objects seems the most com-
plete way to describe context, context is already described
effectively by its global statistics which ignores object iden-
tities and their relations. This was also observed in earlier
experimental work in computer vision by Wolf and Bileschi
(2006), who showed that high-level semantic context (i.e.
the co-occurrence of buildings, trees, sky, etc.) provided no
additional information over low-level image statistics. In our
paper, we represent context as a Bag-of-Words representa-
tion which can be seen as a form of low-level global image
statistics.

The use of the term “context” in computer vision is rather
broad. To make the terminology more precise, Divvala et al.
(2009) identify several types of context as used in the com-
puter vision community. These include Local Pixel Con-
text (Carbonetto et al. 2004; Dalal and Triggs 2005; Fulk-
erson et al. 2009; Gould et al. 2009; Shotton et al. 2009),
2D scene gist context (Oliva and Torralba 2001), 3D geo-
metric context (Hoiem et al. 2008; Nedovi¢ and Smeulders
2010), and semantic context (Malisiewicz and Efros 2009;
Rabinovich et al. 2007; Singhal et al. 2003). In their def-
inition the Local Pixel Context captures the contextual in-
formation in terms of low-level image statistics while Se-
mantic Context captures contextual information in terms
of meaningful categories (e.g. scene class or object class).
In accordance with the best image retrieval methods, in
this paper we study the visual extent of an object through
the use of low-level features rather than semantics; we do
not use region class labels as in Markov Random Fields
or Conditional Random Fields (Carbonetto et al. 2004;
Shotton et al. 2009) and we do not use a scene label, but we
directly use the features which we extract from the image.

Zhang et al. (2007) studied the influence of context in
their work. They concluded that the influence of context is
marginal within the Bag-of-Words framework. However, the
dataset on which they tested it consists of only four classes.
On the larger and more diverse Pascal 2010 dataset, we will
challenge this finding and investigate whether the influence
of context in the Bag-of-Words framework is significant.

Tuytelaars and Schmid (2007) visualised a pixel-wise
classification based on visual words. Using a large visual vo-
cabulary extracted from a regular lattice, they calculated the
likelihood of each visual word belonging to an object. Using
an independence assumption on the visual words in the im-
age, they used this likelihood to calculate for each pixel the
probability of belonging to a certain object class. This led to
an increased insight in Bag-of-Words. Similarly, in our pa-
per we calculate for each pixel how much it contributes to
the classifier output. However, as we calculate this contri-
bution from the complete image representation rather than
the individual visual words, we do not use an independence

@ Springer



48

Int J Comput Vis (2012) 96:46-63

assumption. Instead, we provide a direct visualisation of the
classification of a state-of-the-art Bag-of-Words framework.

Blaschko and Lampert (2009) employed context to im-
prove object localisation. But rather than only relying on
only global context, they explicitly optimise over the amount
of local context around the object. In this paper we use
global context, but we investigate the influence of amount
of context relative to the size of the object.

Harzallah et al. (2009) successfully combined object lo-
calisation with object classification for content based image
retrieval. Their work can be interpreted as combining object
features from the localised object with context features taken
from the whole image. Within video, Ullah et al. (2010) au-
tomatically created object/surround distinctions using mo-
tion and object detectors, successfully improving over their
normal Bag-of-Words baseline. Both works show that mod-
elling the object location improves results. In this paper we
provide an upper bound of retrieval performance when the
object is localised, and compare this with the improvements
obtained by Harzallah et al. (2009). Note however, that we
give this upper bound while using bounding boxes. As Mal-
isiewicz and Efros (2007) showed, this bound is even higher
when the object is localised by an accurate segmentation.

3 Methodology

This paper investigates the visual extent of an object in im-
age classification. Over the years, the Bag-of-Words method
has been established as the best framework in the major re-
trieval benchmarks such as the TRECVID high-level fea-
ture extraction task for retrieving video (Smeaton and Over
2006) and the Pascal VOC Classification task for retriev-
ing images (Everingham et al. 2010). In this paper we build
on our state-of-the-art Bag-of-Words pipeline which won
the Pascal VOC 2008 classification task and which was a
runner-up in 2009.

We follow two lines in our investigation, visualised in
Fig. 1. The first line is the normal situation where we apply
a visual concept detection algorithm and determine which
image parts contribute how much in identifying the target
object. The second line is the ideal situation where we use
the known object locations to isolate the object, surround,
and object interior and object border. For each of these im-
age parts we create a separate representation and examine
their retrieval performance. The first line shows what cur-
rently is measured, and the second reveals what could be
measured.

We investigate the visual extent of an object in the Bag-
of-Words framework in terms of the object surround, object
border, and object interior. We split this in two separate ex-
periments. In one experiment we investigate the influence of
the surround with respect to the complete object. In the other
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experiment we investigate the influence of the object border
with respect to the object interior.

We use the ground truth object locations to isolate the ob-
ject from its surround in both lines of our investigation. As
the Bag-of-Words framework thrives using lots of data, we
use a large dataset where the locations are given in terms of
bounding boxes. To make a better distinction between ob-
ject and surround and object interior and object border, we
also perform the analysis on a smaller dataset where the lo-
cations are given in terms of a segmentation. In the normal
situation we make the distinction between object/surround
and interior/border after classification on the test set only. In
the ideal situation we make this distinction beforehand on
both the training and test set. When there are multiple in-
stances of the same class we combine their measurements to
avoid measuring object features in its surround.

3.1 Dataset

We choose to use datasets from the widely used Pascal VOC
challenge as this allows for a good interpretation and com-
parison with respect to other work. We benchmark our Bag-
of-Words algorithm on the Pascal VOC 2007 classification
challenge to show our framework is competitive. Our analy-
sis is done on two Pascal VOC 2010 datasets. First, we use
the classification dataset which provides the object locations
in terms of bounding boxes. In this dataset we emphasise
quantity of annotations over the quality of annotations. Sec-
ond, we use the segmentation dataset which is much smaller
but provides more accurate object locations in terms of seg-
ments. For the Pascal VOC 2010 datasets we use the prede-
fined train set for training and the val set for testing.

The Pascal VOC datasets we use consist images from
www.flickr.com, containing twenty different object classes:
aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair,
cow, dining-table, dog, horse, motorbike, person, potted-
plant, sheep, sofa, train, and TV/monitor. Some images con-
tain multiple classes. The 2010 classification set consist of
4998 train images and 5105 val images. The 2010 seg-
mentation set consists of 964 train images and 964 val
images.

Classification performance of the Pascal VOC dataset is
measured by the interpolated Average Precision of a ranked
list. In this paper we use the more standard Average Pre-
cision as it enables us to create a confusion matrix as we
present shortly. The Average Precision is defined as

L fexi)

AP = — 1

— Z s (1)
i=1

where: n is the number of images. m is the number of

images of class c. x; is the i-th image in the ranked list
X ={x1,...,x,}. Finally, f. is a function which returns the
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classification scores in the ideal situation
when the object locations are known.

Fig. 1 The two main lines of our analysis: The ideal line on the left
uses the ground truth object locations to divide the image into object
and surround, and object interior and object border before classifica-
tion. The normal line on the right first classifies the image, projects

number of images of class ¢ in the first i images if x; is of
class ¢ and 0 otherwise. This measure has range (0, 1] where
a higher number means better performance.

3.2 Evaluation Matrix

To facilitate analysis, we developed a confusion matrix
based on the Average Precision, which we call Confusion
Average Precision Matrix or CAMP. The CAMP includes
the Average Precision in its diagonal elements and, similar
to a confusion matrix, shows which classes are confused.
We define the confusion or off-diagonal elements of the
CAMP as the total loss of Average Precision of encounter-
ing a specific non-target class in the ranked list. To calculate
the loss we traverse the ranked list in decreasing order of im-
portance. When a non-target class is encountered at position
i, the loss L is the difference between the AP assuming a
perfect ranking from position i and the AP assuming a per-
fect ranking from position i 4 1. More formally, let fc be a
function which returns the number of examples of class c in

classification scores in the normal situation
when the object locations are not known.

the classification score back on the image and then aggregates classi-
fier scores over the object and surround, and object interior and object
border

the first i entries in the ranked list, and let r = m — fc (x7).
Now we can calculate the loss L at position i as

LS+ e fexi) +
b= Zi+j—1 ]2 it ) @

j=1

The total confusion with a non-target class d is the sum of
loss to that class, calculated by le, cqg L(x;). As we measure
confusion in terms of loss, by definition the AP plus the sum
of the loss over all classes adds to one.

3.3 Bag-of-Words Framework

A condense overview of our Bag-of-Words implementation
(Uijlings et al. 2010) is given in Table 1. We sample small
regions at each pixel which is an extreme form of sam-
pling using a regular, dense grid (Jurie and Triggs 2005;
Nowak et al. 2006). From these regions we extract SIFT
(Lowe 2004) and four colour SIFT variants (van de Sande
et al. 2010) which have been shown to be superior for image
retrieval (Mikolajczyk and Schmid 2005; van de Sande et
al. 2010; Zhang et al. 2007). Thus we use intensity-based
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SIFT, opponent-SIFT, rg-SIFT (normalised RGB), RGB-
SIFT, and C-SIFT. Normally, SIFT consists of 4 by 4 sub-
regions. However, we want our descriptors to be as small
as possible in our experiments to be able to make the dis-
tinctions between object interior, object border, and object
surround as crisp as possible. We therefore extract SIFT fea-
tures of 2 by 2 subregions, which degrades performance no
more than 0.02 MAP as shown in Sect. 4.1. The size of such
SIFT patch is 8 by 8 pixels. We later verify our results on
normal 4 x 4 SIFT, which is 16 by 16 pixels.

For the creation of a visual vocabulary we use a Random
Forest (Moosmann et al. 2006) in combination with PCA on
the descriptors to reduce the dimensionality by a factor 2.
This yields equally accurate results as using a k-means vi-
sual vocabulary, yet is much faster (Moosmann et al. 2006;
Uijlings et al. 2010). Our Random Forest consists of 4 trees
of depth 10, resulting in a total size of 4,096 visual words.
To train a tree from the Random Forest we use the ex-
tremely randomised trees algorithm (Geurts et al. 2006), us-
ing 500,000 labelled descriptors sampled randomly from the
training set, where the labels are obtained from the annota-
tion at image level.

For classification we use a Support Vector Machine
(SVM), which is currently the most popular classifier in
Bag-of-Words due to its robustness against large feature
vectors and sparse data. The x2 kernel was found to be
the best choice for the kernel function (Jiang et al. 2007,
Zhang et al. 2007). However, we use the Histogram Intersec-
tion based SVM, which allows us to back-project the output
of the classifier onto the image as we explain in Sect. 3.4.1.
By taking the square root of the visual word histograms be-
fore normalisation we compensate for high frequent visual
words, which makes the Histogram Intersection kernel al-
most as good as the x 2 kernel (Uijlings et al. 2010). In fact,
when we sample visual words every pixel, both the x? ker-
nel and the histogram intersection kernel yield similar accu-
racy.

The original Bag of Words framework is orderless.
Therefore Lazebnik et al. (2006) introduced a weak spa-
tial order by using their spatial pyramid, in which an im-
age is divided into regular subregions. Visual word fre-
quency histograms are obtained from each region sepa-
rately. We use the spatial pyramid in half of our exper-
iments. In the normal setting we create visual word his-
tograms for the whole image and a subdivision into three
horizontal segments, shown to be a good division by sev-
eral researchers (Marszalek et al. 2007; Tahir et al. 2008;
Uijlings et al. 2010). In the ideal setting we divide the image
into the three subregions representing surround, object inte-
rior and object border by using the ground truth bounding
boxes. To keep the total size of the final histogram represen-
tations similar we refrain from using the spatial pyramid in
the ideal setting. This omission means that the upper bound
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Table 1 Overview of our Bag-of-Words implementation. In our two
lines of analysis we divide the image into subregions by either using
the Spatial Pyramid or the ground truth object locations

Descriptor extraction ~ Word assignment Classification

o SVM:
— Hist Int kernel

o PCA dimension

reduction by 50%

e Sampling each pixel
e Size: 8 x 8 pixels
e Random Forest:

e Descriptors: e Image Divisions:

-2 x 2 SIFT 4 binary decision * Spatial Pyramid
—2 x 2 opp-SIFT trees of depth 10 -1x1,1x3
-2 x 2rg-SIFT * Ground truth loc.
—2 x 2 RGB-SIFT — object/surround
-2 x2C-SIFT — interior/border

of retrieval performance in the ideal setting is underesti-
mated. It does not influence the general conclusions of this

paper.
3.4 Analysis Without Knowing the Object Location

The line of analysis where the object locations are unknown
shows how all parts of the image are used for classification
by current state-of-the-art methods. We first classify images
using a standard, state-of-the-art Bag-of-Words framework.
After classification, we project the output of the classifier
back onto the image to obtain a visualisation of pixel-wise
classifier contributions; the sum of the pixel-wise contribu-
tions is equal to the output of the original classifier, which
measures the distance to the decision boundary.

After we have created the pixel-wise classifier contribu-
tions, we use the ground truth object locations to determine
how much each image part (i.e. surround, object, object in-
terior, object border) contributes to the classification. When
an image contains multiple objects of the same class, we
add contributions of all its locations together. When an im-
age contains the target class, its location is used to make the
distinction into object, surround, object interior, and object
border. If the image does not contain the target class, we use
the class with the highest classification contribution to make
this distinction. This allows us to create a partitioning for
both target and non-target images, which we need in order
to calculate the Average Precision that is defined over the
whole dataset (there is no “true” partitioning into the object
and its surround for non-target images).

3.4.1 Back-projection of the Classifier Score

We want to determine the relative contribution of each pixel
in the image. This requires dissecting the classification func-
tion to determine the relative contribution of each visual
word in the image. We follow Maji et al. (2008) to rewrite
the Histogram Intersection kernel, but in principle any addi-
tive kernel can be used (Vedaldi and Zisserman 2010).



Int J Comput Vis (2012) 96:46-63

51

The classification function for a Support Vector Machine
can be written as (Bishop 2006)

h(x)=b+ > ajtik(x,z)), (©)
j=1

where x = {x1, ..., x,} is the vector to be classified, z; =
{z1j, ..., znj} is the j-th support vector, ; is its correspond-
ing positive weight, t; € {—1, 1} is its corresponding label,
m is the number of support vectors, and k(-, -) is a kernel
function. For the Histogram Intersection kernel

k(x,z) =) min(xi. z:), 4)

i=1

the classification function can be written as (Maji et al.
2008)

m
h(x)=b+ > a;tik(x,z;)
j=1

:b+ZZajtjmin(x,-,z,-j). 5)

i=1 j=1

As the outer sum in (5) is over the visual words, the contri-
bution per visual word channel wj; is calculated as

m
w; =Zajl‘jmin(xi,zij)~ ©

j=1

Within an image there are often multiple visual words
having the same identity i. We evenly distribute the contri-
bution w; over all visual words with identity i. This gives us
per visual word in the image its contribution to the classifier
score. Using the locations of the patches which generated
the visual words, we can project these contributions back
onto the image. Examples are shown in Fig. 3.

3.5 Analysis Using the Ideal Object Location

In this line of analysis we use the known object locations
to create different representations of the surround, object,
object interior, and object border in both the training and
test set, yielding hypothetical classification scores. We as-
sign descriptors to an image part based on its centre point.
For example, a descriptor is considered to come from an ob-
ject when its centre is contained within the bounding box
of that object. We use the ground truth object locations to
create a separate visual word histogram for each of the im-
age parts and analyse their retrieval performance. We create
combinations by concatenating these word histograms.
Again, if an image contain multiple objects of the same
class we combine their visual word histograms by adding

them together. If the image contains the target class its loca-
tion is used to divide the image into object, surround, object
interior, and object border. If the image does not contain the
target class, the class with the highest classification score is
used to make this distinction. Note that if we would only use
the locations and not the labels, i.e. we would always select
the class with the highest classification score regardless if
that is the target class or not, accuracy could only improve:
in the rare cases that a non-target class has a higher classi-
fication score than the target class in that same image, the
positive image will have a higher ranking. Hence the scores
presented in this paper for the ideal setting can be seen as an
upper bound if the locations of the objects are known.

3.6 Distinguishing Object, Surround, Interior, and Border

For boxes, the ground truth locations separate the object
from the surround. Note that the nature of the boxes cause
some surround to be contained in the object. To separate the
object interior from the object border, we define an object
interior box as being a factor n smaller than the complete
object box while its centre pixel remains the same. To de-
termine the interior box we use the idea that object border
contains the shape and the object interior contains texture
and interior boundaries, which should be complementary.
Separating complementary information should yield better
results for the combination, hence we find the optimal inte-
rior boxes by optimising classification accuracy over n on
the training set using cross-validation. We found a factor 0.7
to be optimal. This means that 49% of the object is interior
and the rest border.

For segments the Pascal VOC dataset only annotates the
interior of the object while there is a 5 pixel zone around
where the borders of the objects are. We want to ensure that
no surround descriptors measure this border zone, and no
interior descriptors measure this border zone. As we use the
middle of our descriptor as point of reference in the ideal sit-
uation, we extend this border zone with half our descriptor
size both inwards and outwards. Extending the border out-
wards yields our outlines of the object. Extending the border
inwards yields the separation between object interior and
object border. Our object border hence becomes 13 pixels
wide. We measured that on average over all objects, 46% of
the object becomes interior and the rest border.

4 Results
4.1 Classification Without Knowing the Object Location
We first benchmark our Bag-of-Words system on the Pas-

cal VOC 2007 dataset, on which most results are pub-
lished. For our normal Bag-of-Words system where we do
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Fig. 2 Average Precision
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not know the object location we achieve an accuracy of
0.57 MAP, sufficiently close to recent state-of-the-art Bag-
of-Word scores obtained by Harzallah et al. (2009) and
van de Sande et al. (2010), which are respectively 0.60 MAP
and 0.61 MAP. To enable back-projection with (6) we use
the Histogram Intersection kernel instead of the widely ac-
cepted X2 kernel (Harzallah et al. 2009; Jiang et al. 2007,
van de Sande et al. 2010; Zhang et al. 2007). This does not
influence classification accuracy: with the x 2 kernel perfor-
mance stays at 0.57 MAP. Instead, most of the difference
in accuracy between our work and Harzallah et al. (2009),
van de Sande et al. (2010) can be attributed to our use of
2 x 2 SIFT patches: using the four times as large 4 x 4 SIFT
descriptor results in a classification accuracy of 0.59 MAP.
However, in most of our experiments we favour small SIFT
descriptors to minimise the overlap between object and sur-
round, and interior and border descriptors. From now on all
results are reported on the Pascal VOC 2010 dataset using
2 x 2 SIFT descriptors, unless otherwise noted.

Figure 2 shows the confusion matrix of the normal Bag-
of-Words system on the 2010 train+val set. One can see
that the classes can be roughly divided into three clusters
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predicted class

where most of the confusion concentrates: furniture, ani-
mals, and land-vehicles. The classes aeroplane, boat, and
person behave differently and cannot be grouped. The high
confusion with the person class in the right column of Fig. 2
can be explained by the many person images in the dataset.
We will use the identified categories in subsequent analysis.

To conclude, we have verified that our Bag-of-Words sys-
tem is state of the art and we have identified categories to
facilitate subsequent analysis.

4.1.1 Localising the Classifier Contributions

We now investigate qualitatively where the Bag-of-Words
classifier obtains the evidence to classify images. We do this
for both 2 x 2 SIFT used in most of our paper and the more
widely used 4 x 4 SIFT. We use the method described in
Sect. 3.4.1 and show results for top-ranked images (accord-
ing to 2 x 2 SIFT) of the classes aeroplane, boat, cat, car,
person, and sofa in Fig. 3.

We first observe that the difference between the use of
4 x 4 and 2 x 2 SIFT descriptors is very small. The former
seems to be a blurred version of the latter. Hence the follow-
ing observations hold for both types of descriptors.
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Fig. 3 Pixel-wise contribution to the classification for top ranked im-
ages for the categories boat, cat, car, motorbike, person, and sofa. The
original image is followed by the contribution of 2 x 2 and 4 x 4 SIFT
respectively. Dark-blue means a negative and light-yellow means a

We can see that, generally, in the Bag-of-Words method
often small details give either a high positive or high nega-
tive contribution to the classifier output. However, while de-
tails often stretch beyond the size of the descriptor patch, as
seen for example in the ropes of the boats or the contours of
the cars and persons, they never coherently cover a complete

positive contribution to the classifier. Notice that high positive or high
negative contributions are often located on small details. The 4 x 4
SIFT images resemble a blurred version of their 2 x 2 counterparts

object or object part. The contours of the cars come closest,
but these contours are frequently interrupted by small details
with a strong negative response. In homogeneous regions the
responses show a considerable amount of noise, as seen for
example in the erratic responses of the sky in the boat im-
ages. This is possibly caused by local normalisation of the
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descriptors. Of course, the Bag-of-Words method was de-
signed to work on local details but these visualisations show
just how fragmented these details are.

For the boat class, water and sky yield both strong posi-
tive and negative contributions with an overall positive con-
tribution. The horizon line, often sky-water, consistently
yields positive information. This shows why sky and wa-
ter are good contextual indicators of boat. Within the boat
only the ropes and masts have a positive response, while
their hulls have a strong negative response. In fact, the over-
all contribution within the boat region is negative(!). This
shows that a boat is recognised only by the water and is
therefore purely recognised by its function (being in the wa-
ter).

For the cat images the fur is most discriminative. But like
the sky, fur consists of a mix of positive and negative con-
tributions which has a net positive contribution. This sug-
gests that for these kinds of textures looking at small image
patches is suboptimal. Furthermore the shape of the cat is
not important. We see similar behaviour for the other ani-
mals, but for horse the shape of the legs are also important.
This suggests that most animals are recognised based on tex-
ture rather than shape.

For car, the largest positive contribution to the classifier
score is concentrated on the contours and interior bound-
aries. For the contours especially the roof of the car, the
nose, and the wheels yield high positive information. For the
interior boundaries the positive information often is concen-
trated on the lights, grill, bumper, and window-hood bound-
ary. The importance of the contours suggests that cars are
mainly recognised through their shape and interior bound-
aries.

In the motorbike images, all parts of the motorbike give
an equal amount of positive information to the classifier
score. Only the front wheel gives generally a strong posi-
tive contribution. The highest ranked negative examples of
motorbike suggest that the strong response of its front wheel
causes the confusion with the bicycle class shown in Fig. 2.

For person both its contours and inner boundaries are im-
portant. The shoulders, upper sides of the head, and the col-
lar/neck boundary often yield a strong positive contribution.
The clothes are mildly but erratically positive, yet their over-
all response is large because of the size of their surface.

In the sofa images primarily true vertical and tilted hori-
zontal edges are important, which may be caused by a sofa
or more likely a whole living room in perspective.

4.2 Classification in Ideal Setting with Known Object
Location

In this experiment we use the object location to create a

separate representation for the surrounding and the object,
where the representation of the object may be split into the
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interior and the border of the object. We compare this with
the results of normal situation where the object location is
not known.

Figure 4 compares the performance of the normal situa-
tion in which the object location is not known with the ideal
situation where the object location is known. Clearly, for all
classes knowledge of the object location greatly increases
performance. The overall accuracy of the normal situation
is 0.54 MAP, the accuracy of the ideal situation when mak-
ing the distinction between object and surround is 0.68 MAP
(where no Spatial Pyramid is applied to the object). When
creating separate representations for the surround, object
interior, and object border performance increases to 0.73
MAP. This shows that the potential gain of knowing the ob-
ject locations is 0.19 MAP in this dataset.

Similarly, on the segmentation dataset, in the normal sit-
uation where the object location is not known the classifica-
tion accuracy is 0.44 MAP. When separating the object from
the surround accuracy rises to 0.62 MAP. If we make a sep-
aration between surround, object interior, and object border
accuracy improves to 0.69 MAP.

The huge difference between the accuracy without and
without knowing the object location shows that the classi-
fier cannot distinguish if visual words belong to the object or
surround. We investigate the cause by determining for each
visual word the probability that it occurs in an object (i.e.
in any of the specified object classes), which is visualised
in Fig. 5. This graph shows that 1% of the words have a
larger than 90% probability of describing background. We
found that these words describe mostly homogeneous tex-
ture (e.g. sky). In contrast, no single word has a larger than
90% probability of occurring on an object and less than 2%
of the visual words occur on an object more than 75% of
the cases. Note that these numbers are the same when using
4 x 4 SIFT. This means that no visual words exclusively de-
scribes objects and that these visual words are less specific
than generally thought.

Results in this section suggest that performance for Bag-
of-Words could be improved when the object location is ex-
plicitly modelled. Indeed, the work of Harzallah et al. (2009)
combined a system for object detection, i.e. localising and
classifying objects within images, and a Bag-of-Words ob-
ject classification system by fusing their respective classifier
outputs. In effect the object detection system explicitly mod-
elled the object location on which it based its classification.
The combination allowed them to successfully improve the
classification score by 0.04 MAP to 0.64 MAP on the Pascal
VOC 2007 dataset. However, our experiments on the Pascal
VOC 2007 dataset result in an improvement of 0.20 MAP
yielding an upper bound of 0.77 MAP if the object locations
are known. This bound also applies if the labels are not used
to select the object location as explained in Sect. 3.5. This
means that while the work of Harzallah et al. (2009) is en-
couraging, there is still a lot of room for improvement in
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Fig. 4 A comparison of the
normal situation when the
object location is unknown and
the ideal situation where the
object location is known.
Accuracy over all classes for the
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Fig. 5 The probability of each visual word belonging to an object. The
dotted red line is the prior probability. Contrary to general belief, visual
words are not very object specific as only 2% of the visual words have
a higher than 75% probability to come from an object

the Bag-of-Words classification framework by attempting to
locate the object within the image.

4.3 Discussion on Object Versus Surround

We now proceed to discuss the relative influence of the ob-
ject and its surroundings. We do this first using boxes on the
large Pascal VOC classification set. Then we perform the
same on segments using the smaller Pascal VOC segmenta-
tion set.

0.2

1 1
0.4 0.5 0.6 0.9 1

Average Precision

0.3 0.7 0.8

4.3.1 Object Versus Surround Using Boxes

Figure 6 plots the Average Precision for the object against
the surround and against the combination of the object and
surround for the normal situation where the object location
is unknown, Fig. 7 plots the same for the ideal setting where
the object location is known.

In Fig. 6(a) one can see that for boat and bottle the sur-
roundings are more used than the object for classification in
the normal situation. For boat this confirms that it is recog-
nised by only water and sky as seen in Fig. 3.

The retrieval performance when using only the surround
is low for more than half of the classes in the normal set-
ting. Only bus, boat, bottle, bird, chair, train, and plane
yield reasonable performance. The performance for person
looks also reasonable, but is close to its random score of
0.37 AP. In contrast, when training and learning on the iso-
lated surroundings, Fig. 7(a) shows that many classes can be
retrieved a lot better. Thus, while the surroundings contain
information, it is normally not the focus of the classifier.

In Fig. 6(b) we see that the combination of object and
surround is better than using the object alone for more than
half of the classes. This is not surprising as the classifier
was learned on the combination. However, for the classes
plant, table, bike, car, motor, dog, person, and tv/monitor
the performance of the combination is equal to using only
the object. For these classes the classifier learns to ignore
the surround.

When the objects are considered localised in Fig. 7(b),
for all classes except bird and table, using surroundings in
addition to the object does not yield much improvement over
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Fig. 6 The retrieval performance of the object, surround, and its com-
bination in the normal setting where the object locations are unknown.
(a) The surround versus the object. For bottle and boat the surround is
more important than the object itself. (b) The object versus the combi-
nation of object and surround. For bike, car, dog, motor, plant, person,
table, and tv/monitor the performance of the object is very similar to
the combination, suggesting context is mostly ignored by the classifier

using the object alone. Interestingly, this agrees with the re-
search on human vision of Biederman (1981), who found
that objects viewed in isolation are recognised equally well
as objects viewed in proper context.
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Fig. 7 The retrieval performance of the object, surround, and its com-
bination in the ideal setting with known object locations. (a) The sur-
round versus the object. For all classes the object is more important
than the surround. For all classes performance increases significantly
over Fig. 6(a). (b) The object versus the combination of object and
surround. For most classes performance is similar for the object and
the combination. Hence if the object location is considered known, the
surround adds little information

Intuitively, the relative size of the object and its surround
will impact the results. To see how, we analysed results on
two subsets of the images: one where 5-20% of the image
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is object, and one where 5-20% of the image consists of the
surround. In the normal situation, when the images consist
mostly of object, only the bus, boat, plane, and train class
can be still reasonably recognised by their surround. For the
classes bottle, bird, and chair more surround is needed to
adequately recognise them. For the images with large ob-
jects, adding the surrounding yields no performance im-
provements over using the object alone in the normal situa-
tion. When the objects within the images are small, perfor-
mance drops using only the object features. However, many
classes can still better be recognised by the object features:
bike, bus, car, motor, plane, cat, dog, horse, plant, table, tv,
and person are all better recognised by their object features
than their surround. Except for horse, plane, bus, using the
now large surround in addition to the object still does not
improve recognition performance.

In the ideal setting, for both the sets with large and small
surround, the surround does not add any extra information to
using the object alone, except again for the bird and fable.
For the set with a large surround, the relative performance of
the object and surround is similar to Fig. 7(a). When using
only the surround for classification, recognition for images
with a large surround is on average 0.11 AP higher than on
the images with a small surround. In contrast, using only the
object for classification, recognition for images with a large
object is on average only 0.03 AP higher than for the images
with a small object region, where most benefits are for the
classes bird (0.19 AP), chair (0.42 AP), and table (0.16 AP).
We conclude that the size of the surround matters in both the
normal and ideal situation. For objects its size only matters
in the normal situation: once the object is localised, for most
objects a larger size does not result in better recognition.

We now continue with analysing the confusion matri-
ces of using only object or surround in the idealised setting
when the objects location is known, which are visualised
in Fig. 8. The confusion matrix of using only surround in
Fig. 8(a) looks similar to the confusion matrix of the normal
setting in Fig. 2. Again, most of the confusion is concen-
trated within the furniture, animals, and land-vehicle cate-
gories. This means that each category shares context, which
obviously is the case. For the car class something interesting
happens. One can see that the car context is strongly con-
fused as context for other classes, but not vice versa. This
suggests that while the contexts of bicycle, bus, and motor-
bike are disjunct, the car context includes them all. Indeed,
in this dataset the motorbike context is dominated by the
countryside and the bus-context is dominated by urban en-
vironments, whereas the car occurs in both.

Figure 8(b) displays the confusion matrix when only ob-
Jject descriptors are used. Most notably, the confusion within
the furniture and land-vehicle category is very low, which
means that confusion within these two categories is mainly
caused by the surroundings. Although without the surround

bicycles continue to be confused with motorbikes, and buses
with trains. For animals, within category confusion is still
high. This means that both context and object are a source
of confusion. Intuitively, object descriptors cause confusion
because most of the animals are furry and have similar
shapes (four legs and a head). In Sect. 4.4 we will see what
causes most confusion: fur or shape.

4.3.2 Object Versus Surround Using Segments

We repeated the experiments to analyse the influence of the
object and the surround, but this time on fewer data but using
more accurate object locations in terms of segments.

The comparison of the influence between the object and
its surround in the normal situation for segments looks simi-
lar to Fig. 6(a), except that performance of using only the ob-
ject is worse. Hence with fewer training examples the clas-
sifier is still able to learn the appearance of the surrounding
but has less success in learning the appearance of the ob-
ject itself. This means that the appearance of the context is
simpler than that of an object. In effect, this also means that
cow, sofa, bird, and chair join the boat and bottle class in
that their surroundings are more important than the object
itself when using fewer training examples.

Figure 9(a) shows that the combination of object and sur-
round is better than using the object alone for more than
half of the classes, similar as with the larger dataset on the
boxes (Fig. 6(b)). Again, for motor, dog, and plant adding
the surroundings does not help. For bike, and v using also
the surroundings has even a negative effect.

In the ideal situation, when comparing object and sur-
round again the results are similar to Fig. 7(b). Again, most
classes can be retrieved reasonably by their surround. How-
ever, in contrast to Fig. 7(a), boat and bird can be recognised
equally well by their object as by their surround when this
distinction is made more accurate by a segmentation. This
suggests that part of the classification performance for using
only object using a bounding box can be attributed to the
inclusion of a bit of context.

Figure 9(b) compares the accuracy of the segmented ob-
ject with the combination of the segmented object and its
surround. We see that now beside bird, also the classes boat,
chair, plant, table and train benefit from the inclusion of the
surround. These classes all have a high variability in appear-
ance, and are difficult to recognise in isolation. To verify
whether this change in behaviour comes from the omission
of any context while using segments, we repeated the exper-
iment on the segmentation dataset but using boxes. Results
were the same. Hence we conclude that the behaviour results
from using fewer training examples: to accurately learn the
appearance of these relatively difficult classes more training
data is needed.
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Fig. 8 Confusion matrices when using only the descriptors from the
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Surround descriptors only. (b) Object descriptors only. Using only sur-
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animal, and vehicle category. These categories therefore share context.
In contrast, when using only object descriptors there is only a signif-
icant confusion within the animal category. This shows that animals
share many object features, but furniture and vehicles do not
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Fig. 9 Influence of the object and its surround analysed using segments. Results are similar to Figs. 6(b) and 7(b)
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4.3.3 Conclusion Object Versus Surround

In the normal situation where the object location is unknown
the surroundings contribute significantly to classification for
more than half of the classes. For the classes boat and bird
the surroundings are even more important then the object it-
self. This means that the findings of Zhang et al. (2007) that
the Bag-of-Words framework can learn to ignore the sur-
roundings holds for some classes, but does not generalise
to all classes in larger datasets. In contrast, in the ideal set-
ting when the object locations are known, the surroundings
add little additional information for most classes which is in
accordance with human vision (Biederman 1981). Finally,
the surroundings are a source of confusion within the fur-
niture, animal, and land-vehicle categories, but the object
itself only causes confusion within animals.

4.4 Discussion on Interior Versus Border

We now discuss the relative influence of the interior and the
border of the object. As the segmentation yields a more ac-
curate distinction than the boxes, we will first discuss the re-
sults on the segmented object locations. Afterwards we will
verify the observations on the larger dataset using boxes.

4.4.1 Interior Versus Border Using Segments

Figure 10 plots the Average Precision for the interior against
the border and against the combination of the interior and
border for the normal situation with unknown object loca-
tions. Figure 11 plots the same for the ideal situation with
known object locations.

First we look at the animal classes cat, cow, dog, horse,
and sheep. In both the normal and ideal situation, we see
from Figs. 11(a) and 10(a) that the interior contains signifi-
cantly more information than the border. In Figs. 11(b) and
10(b) we can see that adding the border as additional infor-
mation does not improve results, except for the horse when
the object location is known. We conclude that the animals
are recognised not based on their contours but on their inte-
rior. Hence the animals are recognised based mostly on their
fur, which was observed earlier for cat in Fig. 3.

We now consider the vehicles car, bus, and train. In
Figs. 11(a) and 10(a) we see that also for these classes the
interior is more important than the border, yet in contrast
with the animals, the border alone still yields good accuracy.
As seen in Fig. 11(b), when the object location is unknown,
using the border and the interior yields little improvements
over using the interior alone. But Fig. 10(b) shows that when
the object location is known, using the border in addition
to the interior yields improvements of around 10% for car,
bus, and train. Hence both the border (shape) and interior
for these classes are important, where the visualisations of
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Fig. 10 The retrieval performance of the object interior, object border,
and their combination in the normal situation with unknown object lo-
cations. (a) Object border versus object interior. The animal classes
dog, cat, cow, sheep, and horse are best recognised by their interior.
(b) Object interior versus the combination. Performance of the animal
classes does not improve while using the border in addition to the inte-
rior

the classifier contributions in Fig. 3 suggest that the interior
is important because of their well-defined interior bound-
aries.
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Fig. 11 The retrieval performance of the interior, border, and their
combination in the idealised setting where the object locations are con-
sidered known. (a) Object border versus object interior. Most animal
classes are best recognised by their interior. Most vehicle classes as
well yet these are also recognised well by only their border. (b) Object
interior versus the combination. For the animal classes, using the bor-
der in addition to the interior does not yield additional information. For
the vehicle classes, the combination of the interior and border do yield
improvements
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For bike and plane, Figs. 11(a) and 10(a) show that the
border is more important than their interior. In fact, plane
is the only class where, when the object location is known,
using the interior in conjunction with the border yields no
improvements over using the border alone. For bike both
the interior and border are important when the location is
known. Hence bike and plane are rigid classes with a well-
defined shape which can be recognised best by their border,
while for bike the interior is also important.

The classes chair, plant, and sofa are the only classes that
behave different in the normal and ideal situation. When the
object location is unknown, Fig. 11(a) shows that the bor-
der yields more information than the interior. In contrast, for
these classes when the location is known the interior yields
more information in Fig. 10(a). This suggest that while the
interior yields enough information to discriminate between
classes, it yields not enough information to discriminate be-
tween the class and the background which is necessary in
the normal situation when the object location is unknown.
Indeed, intuitively, plant resembles any background vegeta-
tion and sofa may resemble carpet of curtains in the back-
ground.

4.4.2 Interior Versus Border Using Boxes

Figures 12 and 13 show the performance of using only the
interior versus the performance of using only the surround
when this distinction is made using bounding boxes. The
tendencies are similar as in the situation where the segmen-
tation is used to make the distinction. Again, for the animal
classes cat, dog, horse, and sheep the interior is more impor-
tant than the border. However, the border now has a higher
performance because for the large, more easily recognisable
objects it includes more of the object interior. For the bus,
car, train, and plane classes both the interior and the border
are equally good for predicting the object class, which cor-
responds with our earlier observation that these rigid classes
can be recognised by their well-defined shape as well as their
interior borders.

For bike the interior is now more important. This is be-
cause the segmentation accurately outlines the wire-frame
leaving little surface for the interior. The fact that the inte-
rior is important using boxes just shows the importance of
the inner frame and parts of the spokes.

4.4.3 Discussion and Conclusion Interior Versus Border

The object interior consists of texture and of interior bound-
aries, reasonably captured by a Bag-of-Words representa-
tion. However, this representation may be less appropriate
for the object boundary as the object shape is intuitively
better represented by larger fragments with more geomet-
ric constraints. However, we saw from Fig. 3 that this rep-
resentation still highlights large parts of object boundaries



Int J Comput Vis (2012) 96:46-63 61
; Unknown Object Location (Box) ; Ideal Object Location (Box)
erso'h
09f 0.9f +p.-'
lane
erson car,, +P
osl +P 08} #bus
= . = Jplant 4V
kel : kel sheep -
= 071 lane = 0.71 motor,, + =
2 +p>._ 2 * cat %train
E bus £ bike . 4boat
S5 06F motor ’ S5 0.6F horsg T -
p cat, ) = doas’ 4chair
i 2 F
9 train, car ke " "bottle
g 05f d g 057 tablé *pirg
o +909, table . < -
o - 4bike o
o 041 hors it g 041 " sof
= g +p‘Iant o 4sofa
S g3l chair 2 g3l cow
z 03 sheepf my z 03 A
. bird
0.2F ‘boat’+gcn 0.2+
. 4bottle
0.1F cow 0.1t
o . 1 1 1 1 1 1 1 1 1 J O . 1 1 1 1 1 1 1 1 1
0O 01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1

Average Precision for Border

Fig. 12 The retrieval performance of the object interior, object border,
and their combination for the normal situation with unknown object
locations. The distinction is made through boxes. Similar to using seg-
ments (Fig. 10), the animal classes dog, cat, horse, and sheep are better
recognised by their interior

extending beyond the size of the local patch. Hence while
the conclusions made on the relative contribution of the bor-
der and the interior may not extend to object recognition in
general, it will still be indicative of the relative difficulty of
obtaining information of the object border and object inte-
rior.

To conclude, our analysis of the object border and ob-
ject interior showed that the non-rigid animal classes cat,
cow, dog, horse, and sheep are mostly recognised by their
fur while their shape adds little information. The excep-
tion is the horse whose legs likely contribute. For the rigid
classes bike, bus, car, and train, both interior boundaries and
the border or shape information is used for recognition. For
plane only the shape is sufficient for recognition.

4.5 Using 4 x 4 SIFT

The results presented in this paper were based mostly on
a 2 x 2 SIFT descriptor, as this small descriptor enabled a
more crisp separation of the different image parts, especially
for the interior/border distinction. To investigate the influ-
ence of this choice, we repeated some experiments using the
larger 4 x 4 SIFT. For the object/surround distinction we re-
peated the experiment where the location is given by boxes.
For the interior/border distinction we repeated the experi-
ment where the location is given by a segmentation.

For the distinction between object and surround using
boxes, results are almost identical to the ones presented in

Average Precision for Border

Fig. 13 The retrieval performance of the interior, border, and their
combination in the idealised setting where the object locations are con-
sidered known. The distinction is made in terms of boxes. The animal
classes dog, cat, horse, and sheep are best recognised by their interior.
The vehicle classes car, bus, and plane are recognised equally well by
the interior as their border

this paper. For the normal situation this should come as
no surprise given the similarities in the visualisation of the
pixel-wise contribution in Fig. 3. For the ideal situation re-
call that a box already includes some surround. Descriptors
within the box will measure a bit more of the surround but
not significantly. Descriptors outside the box can measure
slightly bigger parts of the object but most of the descriptor
is still used for measuring the surround. Overall, using 4 x 4
SIFT yields figures nearly identical to the ones presented in
Figs. 6 and 7 and does not affect our conclusions.

For the distinction between interior and border, we care-
fully made our interior such that it does not contain any bor-
der. For the larger descriptor, this means that we had to make
our interior smaller such that is was only on average 35%
of the total size of the object. In both the normal and ideal
situation all tendencies are very similar: The border alone
becomes slightly more predictive of the class, while the pre-
dictive power of the interior remains approximately the same
for all classes except bike and plant. For bike this is because
half of the classes lose all of its interior. Again, for the ani-
mal classes cat, cow, dog, and sheep adding the border to the
interior does not yield significant improvements over using
the interior alone.

Summarised, results are almost the same when using 4 x
4 SIFT. Hence our conclusions remain valid for this larger,
more commonly used descriptor.
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5 Discussion and Conclusion

This paper investigated the visual extent of an object in
terms of the object and its surround, and in terms of the ob-
jectinterior and the object border. Our investigation was per-
formed from two perspectives: The normal situation where
the location of the objects are unknown, and an ideal situa-
tion with known object locations.

For the normal perspective we visualised in Sect. 4.1.1
how the Bag-of-Words framework classifies images. These
visualisations indicate that the support for the classifiers
is found throughout the whole image occurring indiscrimi-
nately in both the object and its surround, supporting the no-
tion that context facilitates image classification (Divvala et
al. 2009; Oliva and Torralba 2007). While for some classes
with a highly varying surround Bag-of-Words learns to ig-
nore the context, as observed by Zhang et al. (2007), this
does not generalise to all classes. We found that the role of
the surroundings is significant for many classes, to the point
where for boat and bottle they are even more important for
recognition than the object itself. For boat the object area is
even a negative indicator of its presence.

At the same time, we have demonstrated in Fig. 7(b) that
when the object locations are known a priori, the surround-
ings do not help to increase the classification performance
significantly. After ideal localisation, regardless of the size
of the object, the object appearance alone predicts its pres-
ence equally well as the combination of the object appear-
ance and the surround.

We showed that no visual words uniquely describe only
object or only surround. However, by making the distinction
between object and surround explicit using the object lo-
cations, performance increases significantly by 0.20 MAP.
This suggests that modelling the object location can lead
to further improvements within the Bag-of-Words frame-
work, where we see the work of Harzallah et al. (2009) as a
promising start.

Regarding the surround the following view arises. The
surroundings are indispensable to distinguish between
groups of classes: furniture, animals, and land-vehicles.
When distinguishing among the classes within one group
the surroundings are a source of confusion.

Regarding the object features, we have observed differ-
ences how classes are being recognised: (1) For the phys-
ically rigid aeroplane, bicycle, bus, car, and train classes
interior and exterior boundaries are important, while texture
is not. (2) The non-rigid animals dog, cat, cow, and sheep
are recognised primarily by their fur while their projected
shape varies greatly. While SIFT feature values respond to
interior boundaries, exterior boundaries, and texture at the
same time, the recognition differences suggest that using
more specialised features could be beneficial.

@ Springer

Bag-of-Words with SIFT measure texture, interior object
boundary fragments, and shape boundary fragments as lo-
cal details. For identifying the context of an image this is
adequate, especially considering that context partially con-
sists of shapeless mass-goods such as grass, sky, or water. In
contrast, for objects features more spatial consistency could
help. This suggests that future features would render more
improvements on recognising objects than on recognising
context. Intuitively, this means that when the exact object
location is known, context helps less for recognition than
our experiment in Fig. 7(b). This is consistent with the ob-
servation by Biederman (1981) in human vision that objects
viewed in isolation are recognised as easily as objects in
proper context.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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