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Abstract We present practical algorithms for stratified au-
tocalibration with theoretical guarantees of global optimal-
ity. Given a projective reconstruction, we first upgrade it to
affine by estimating the position of the plane at infinity. The
plane at infinity is computed by globally minimizing a least
squares formulation of the modulus constraints. In the sec-
ond stage, this affine reconstruction is upgraded to a metric
one by globally minimizing the infinite homography relation
to compute the dual image of the absolute conic (DIAC).
The positive semidefiniteness of the DIAC is explicitly en-
forced as part of the optimization process, rather than as a
post-processing step.

For each stage, we construct and minimize tight convex
relaxations of the highly non-convex objective functions in
a branch and bound optimization framework. We exploit the
inherent problem structure to restrict the search space for
the DIAC and the plane at infinity to a small, fixed num-
ber of branching dimensions, independent of the number of
views. Chirality constraints are incorporated into our convex
relaxations to automatically select an initial region which is
guaranteed to contain the global minimum.
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1 Introduction

This paper proposes practical algorithms that provably solve
well-known formulations for both affine and metric upgrade
stages of stratified autocalibration to their global optimum.

Given n feature correspondences across n views of a
scene, it is well-known that a projective reconstruction may
be computed that differs from the true scene by an arbitrary
4×4 linear transformation, or homography (Faugeras 1992;
Hartley et al. 1992). A projective reconstruction may be up-
graded to a metric one, which differs from the true scene
by a similarity transformation, using a priori knowledge of
a few scene characteristics, such as the angles between a
few 3D lines. An alternative approach to estimate the 4 × 4
transformation that restores the metric scene is through sim-
ple assumptions on the internal parameters of the cameras
used to image the scene, such as their constancy across
different views, or the rectangularity of the image pixels.
The latter approach is called autocalibration, or camera self-
calibration, which forms the subject of this paper.

A typical approach to calibrating a camera involves us-
ing several images of a known calibration grid. Once a cor-
respondence can be ascertained between scene points (or
higher order features like curves) and their counterparts on
the image plane, it is straightforward to recover the cam-
era parameters. The term autocalibration stems from its key
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premise that it obviates the requirement for an explicit cal-
ibration grid. Instead, it tries to locate the image of the so-
called absolute conic, which is an imaginary object on the
plane at infinity, whose location stays fixed in any metric
reconstruction. Its image can be shown to be related to the
internal parameters of the camera, so locating the image of
the absolute conic is equivalent to calibrating the camera.

The method of autocalibration presented in this paper is
a stratified one, whose first step upgrades the projective re-
construction to an affine one, while the next step performs
the upgrade to a metric reconstruction. An affine reconstruc-
tion restores certain aspects of the scene, such as parallelism
between 3D lines, while the metric reconstruction restores
characteristics such as exact angles and length ratios.

The affine upgrade, which is arguably the more difficult
step in stratified autocalibration, is succinctly computable
by estimating the position of the plane at infinity in a pro-
jective reconstruction, for instance, by solving the modulus
constraints (Pollefeys and Gool 1999). Previous approaches
to minimizing the modulus constraints for several views rely
on local, gradient-based methods with random reinitializa-
tions. These methods are not guaranteed to perform well for
such non-convex problems. Moreover, in our experience, a
highly accurate estimate of the plane at infinity is imperative
to obtain a usable metric reconstruction.

The metric upgrade step involves estimating the intrinsic
parameters of the cameras, which is commonly approached
by estimating the dual image of the absolute conic (DIAC).
A variety of linear methods exist towards this end, how-
ever, they are known to perform poorly in the presence of
noise (Hartley and Zisserman 2004). Perhaps more signifi-
cantly, most methods a posteriori impose the positive semi-
definiteness of the DIAC, which might lead to a spurious
calibration. Thus, it is important to impose the positive semi-
definiteness of the DIAC within the optimization, not as a
post-processing step.

This paper proposes global minimization algorithms for
both stages of stratified autocalibration that furnish theoret-
ical certificates of optimality. That is, they return a solution
at most ε away from the global minimum, for arbitrarily
small ε. Our solution approach relies on constructing effi-
ciently minimizable, tight convex relaxations to non-convex
programs and using them in a branch and bound framework
(Horst and Tuy 2006; Tawarmalani and Sahinidis 2002). A
preliminary version of this paper appeared in (Chandraker et
al. 2007b).

A significant drawback of local methods is that they crit-
ically depend on the quality of a heuristic initialization. To
be considered truly optimal, an algorithm must converge to
the global optimum regardless of the choice of initialization.
Branch and bound methods require a demarcated region
of the search space as initialization. Arbitrarily choosing a
small initial region might compromise optimality, since the

true solution might lie outside that chosen region. On the
other hand, choosing a very large region might lead to a pon-
derous convergence rate for the branch and bound algorithm.

On the other hand, in this paper, we use chirality con-
straints derived from the scene to compute a theoretically
correct initial search space for the plane at infinity, within
which we are guaranteed to find the global minimum (Hart-
ley 1998; Hartley et al. 1999). In practice, for a moderate
number of cameras, the initial region determined by the chi-
rality constraints are tight enough to allow rapid conver-
gence of the search algorithm. Our initial region for the met-
ric upgrade is intuitively specifiable as conditions on the in-
trinsic parameters of the camera and can be wide enough to
include any practical case.

A crucial concern in branch and bound algorithms is
the exponential dependence of the worst case time com-
plexity on the number of branching dimensions. The num-
ber of branching dimensions in most computer vision prob-
lems scales with the number of points and views, which
can quickly translate into an impractical branch and bound
search. In this paper, we exploit the inherent problem struc-
ture of autocalibration to restrict our branching dimensions
to a small, fixed number, independent of the number of
views. In our experiments, this allows the runtime of algo-
rithms proposed in this paper to scale gracefully with the
number of views.

In summary, our main contributions are the following:

– Highly accurate recovery of the plane at infinity in a pro-
jective reconstruction by global minimization of the mod-
ulus constraints.

– Highly accurate estimation of the DIAC by globally solv-
ing the infinite homography relation.

– A general exposition on novel convexification methods
for global optimization of non-convex programs.

The outline of the rest of the paper is as follows. Section 2
describes background relevant to autocalibration and Sect. 3
outlines the related prior work. Section 4 is a brief overview
of branch and bound algorithms. Section 5 describes the
general strategy that we employ for constructing the convex
relaxation of a non-convex function, while Sects. 6 and 7
describe our global optimization algorithms for estimating
the plane at infinity and the DIAC, respectively. Section 8
presents experiments on synthetic and real data and Sect. 9
concludes with a discussion of further extensions.

2 Background

Unless stated otherwise, we will denote 3D world points X
by homogeneous 4-vectors and 2D image points x by homo-
geneous 3-vectors. Let P̂i , i = 1, . . . ,m, be Euclidean cam-
eras parameterized as 3 × 4 matrices, that observe a scene
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composed of 3D points ̂bXj , i = 1, . . . , n, resulting in im-
age points xij consistent with perspective projection:

xij = P̂i
̂Xj , i = 1, . . . ,m, j = 1, . . . , n, (1)

where the above equality holds up to a scale factor. Then, a
projective reconstruction can be computed as a set of cam-
eras Pi , i = 1, . . . ,m and a set of points Xj , j = 1, . . . , n

satisfying the following equalities up to a scale factor:

xij = PiXj , i = 1, . . . ,m, j = 1, . . . , n. (2)

A factorization-based approach that extends the affine fac-
torization method of (Tomasi and Kanade 1992) to the pro-
jective case is presented in (Sturm and Triggs 1996).

From (1) and (2), it is apparent that the projective recon-
struction is related to the Euclidean one by an arbitrary 4×4
homography:

Pi = P̂iH−1, i = 1, . . . ,m,

Xj = ĤXj , j = 1, . . . , n.
(3)

Given a projective reconstruction, autocalibration seeks to
estimate the best homography H that upgrades the recon-
struction to a metric one.

A more detailed discussion of the material in this section
can be found in (Hartley and Zisserman 2004).

2.1 The Infinite Homography Relation

The Euclidean camera is parametrized as P̂= K[R|t] where
the 3 × 3 rotation matrix R and the 3 × 1 translation vector
t constitute the exterior orientation, while the 3 × 3 upper-
triangular matrix K encodes the intrinsic parameters of the
camera.

We can always perform the projective reconstruction
such that P1 = [I|0]. Let the world coordinate system be
aligned with the first (world) camera, i.e. P̂1 = K1[I|0].
Then, it can be easily shown that H has the form

H=
[

K1 0

−p�K1 1

]

, (4)

where π∞ = (p,1)� is the location to which the plane at in-
finity moves in the projective reconstruction from its canon-
ical position (0,0,0,1)�. Thus, the aim of autocalibration is
to recover the plane at infinity and the intrinsic parameters.

Let Pi = [Ai |ai] where Ai is a 3 × 3 matrix and ai is
a 3 × 1 vector. Let P̂i = Ki[Ri |ti]. Then, assuming that the
internal parameters of the camera remain the same across all
the views, that is, Ki = K, we have

ω∗ = (Ai − aip�)ω∗(Ai − aip�)�, (5)

where ω∗ = KK� is a 3×3 homogeneous, symmetric matrix
that denotes the dual image of the absolute conic (DIAC).

Note that equality in (5) is up to a scale factor. Since Hi∞ =
(Ai − aip�) is precisely the homography induced between
the views P1 = [I|0] and Pi = [Ai |ai] by the plane at infin-
ity (p,1)�, it is called the infinite homography (Hartley and
Zisserman 2004).

2.2 Modulus Constraints

It follows from (3) and (4) that, for the case of constant in-
trinsic parameters,

KR= (Ai − aip�)K.

Thus, noting that the infinite homography is conjugate to a
rotation matrix and must have eigenvalues of equal moduli,
one can relate the roots of its characteristic polynomial

det(λI− (Ai − aip�)) = λ3 − αiλ
2 + βiλ − γi (6)

to derive the so called modulus constraint (Pollefeys and
Gool 1999):

γiα
3
i = β3

i , (7)

where αi,βi, γi are affine functions of the coordinates
{p1,p2,p3} of the plane at infinity. Three views suffice to
restrict the solution space to a 43 = 64 possibilities (actually
21, see Schaffalitzky 2000), which can in theory be extracted
using continuation methods.

2.3 Chirality Bounds on Plane at Infinity

Chirality constraints demand that the reconstructed scene
points lie in front of the camera. While a general projective
transformation may result in the plane at infinity splitting
the scene, a quasi-affine transformation is one that preserves
the convex hull of the scene points X and camera centers C.
A transformation Hq that upgrades a projective reconstruc-
tion to quasi-affine can be computed by solving the so-called
chiral inequalities. A subsequent affine centering, Ha , guar-
antees that the plane at infinity in the centered quasi-affine
frame, v = (HaHq)−�π∞, cannot pass through the origin.
So it can be parametrized as (v1, v2, v3,1)� and bounds on
vi in the centered quasi-affine frame can be computed by
solving six linear programs:

min/max vi

subject to Xq�
j v > 0, j = 1, . . . , n

Cq�
k v > 0, k = 1, . . . ,m

⎫

⎪

⎬

⎪

⎭

i = 1,2,3, (8)

where Xq
j and Cq

k are points and camera centers in the quasi-
affine frame. We refer the reader to (Hartley 1998; Nistér
2004) for a thorough treatment of the subject.
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3 Previous Work

Approaches to autocalibration (Faugeras et al. 1992) can
be broadly classified as direct and stratified. Direct meth-
ods seek to compute a metric reconstruction by estimat-
ing the absolute conic. This is encoded conveniently in the
dual quadric formulation of autocalibration (Heyden and
Åström 1996; Triggs 1997), whereby an eigenvalue decom-
position of the estimated dual quadric yields the homog-
raphy that relates the projective reconstruction to Euclid-
ean. Linear methods (Pollefeys et al. 1998) as well as more
elaborate SQP based optimization approaches (Triggs 1997)
have been proposed to estimate the dual quadric, but perform
poorly with noisy data. Methods such as (Manning and Dyer
2001) which are based on the Kruppa equations (or the fun-
damental matrix), are known to suffer from additional am-
biguities (Sturm 2000).

This work primarily deals with a stratified approach
to autocalibration (Pollefeys and Gool 1999). It is well-
established in literature that, in the absence of prior informa-
tion about the scene, estimating the plane at infinity repre-
sents the most significant challenge in autocalibration (Hart-
ley et al. 1999). The modulus constraints (Pollefeys and
Gool 1999) are a necessary condition for the coordinates of
the plane at infinity. Local techniques are used in (Pollefeys
and Gool 1999) to estimate the coordinates of the plane at
infinity by minimizing a noisy overdetermined system in the
multi-view case.

An alternate approach to estimating the plane at infinity
exploits the chirality constraints. The algorithm in (Hartley
et al. 1999) computes bounds on the plane at infinity and a
brute force search is used to recover π∞ within this region.
It is argued in (Nistér 2004) that it might be advantageous to
use camera centers alone when using chirality constraints.

Several linear methods exist for estimating the DIAC
(Hartley and Zisserman 2004) for the metric upgrade, but
they do not enforce its positive semi-definiteness. The only
work the authors are aware of which explicitly deals with
this issue is (Agrawal 2004), which is formulated under the
assumption of known principal point and zero skew. The in-
terested reader is referred to (Hartley and Zisserman 2004)
and the references therein for a more detailed overview of
literature relevant to autocalibration.

Of late, there has been significant activity towards de-
veloping globally optimal algorithms for various problems
in computer vision. The theory of convex linear matrix in-
equality (LMI) relaxations (Lasserre 2001) is used in (Kahl
and Henrion 2005) to find global solutions to several op-
timization problems in multiview geometry, while (Chan-
draker et al. 2007a) discusses a direct method for autocal-
ibration using the same techniques. Triangulation and re-
sectioning are solved with a certificate of optimality us-
ing convex relaxation techniques for fractional programs

in (Agarwal et al. 2006). Several geometric problems in
computer vision, when posed in the L∞-norm, can be
solved to their global optimum using techniques of quasi-
convex optimization (Kahl 2005; Sim and Hartley 2006;
Agarwal et al. 2008). A survey of some of the recent work in
developing optimal algorithms for multiview geometry can
be found in (Hartley and Kahl 2007).

An interval analysis based branch and bound method for
autocalibration is proposed in (Fusiello et al. 2004), however
the fundamental matrix based formulation does not scale
well beyond a small number of views. Gröbner basis meth-
ods have been used to achieve optimal solutions for sev-
eral geometric reconstruction problems, such as triangula-
tion (Stewénius et al. 2005), but they do not scale well for
more than a very few number of views.

Branch and bound as a solution paradigm has been used
for a diverse range of applications in computer vision,
such as feature selection (Zongker and Jain 1996), geo-
metric matching (Breuel 2002), image segmentation (Gat
2003), contour tracking (Freedman 2003), object localiza-
tion (Lampert et al. 2008) and so on. A branch and bound
method for Euclidean registration problems is presented in
(Olsson et al. 2009).

4 Branch and Bound Theory

Branch and bound algorithms are non-heuristic methods
for global optimization of non-convex problems (Land and
Doig 1960). They maintain a provable upper and/or lower
bound on the (globally) optimal objective value and ter-
minate with a certificate proving that the solution is ε-
suboptimal (that is, within ε of the global optimum), for ar-
bitrarily small ε. For greater details on the branch and bound
framework for global optimization, we refer the reader to
standard texts such a (Horst and Tuy 2006).

Consider a multivariate, non-convex, scalar-valued ob-
jective function f (x), for which we seek a global mini-
mum over a rectangle Q0. Branch and bound algorithms re-
quire an auxiliary function flb(Q) which for every region
Q ⊆ Q0, satisfies two properties:

(L1) The value of flb(Q) is always less than or equal to the
minimum value fmin(Q) of f (x) for all x ∈ Q.

(L2) Let |Q| denote the size of a rectangle, which in our
case, is the length of the longest edge. Then the relax-
ation gap f (x) − flb(x) monotonically decreases as a
function of |Q|.

Note that while (L1) is a basic stipulation for a convex un-
derestimator, (L2) is a Cauchy continuity requirement spe-
cific to branch and bound algorithms. Indeed, several popu-
lar convex underestimators such as linear matrix inequality
(LMI) relaxations (Lasserre 2001) and sum-of-squares re-
laxations for polynomial systems (Prajna et al. 2002) do not
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Fig. 1 The basic mechanism of global optimization using a branch
and bound framework, illustrated for a univariate function

satisfy this requirement, thus they are rendered unsuitable
for our purposes.

Computing the value of flb(Q) is referred to as bounding,
while choosing and subdividing a rectangle is called branch-
ing. The basic mechanism of a branch and bound routine
is illustrated for the case of a univariate function in Fig. 1.
The choice of the rectangle picked for refinement and the
actual subdivision itself are essentially heuristic. We con-
sider the rectangle with the smallest minimum of flb as the
most promising to contain the global minimum and subdi-
vide it into k = 2 rectangles along the largest dimension.
A key consideration when designing bounding functions is
the ease with which they can be estimated. So, it is desirable
to design flb(Q) as the solution of a convex optimization
problem for which efficient solvers exist (Boyd and Vanden-
berghe 2004). In the following sections, we present branch
and bound algorithms based on such constructions.

Although guaranteed to find the global optimum (or a
point arbitrarily close to it), the worst case complexity of a
branch and bound algorithm is exponential. While this may
initially appear to be discouraging, we will show in our ex-
periments that exploiting problem structure leads to fast con-
vergence rates in practice.

5 Constructing Convex Relaxations

In this section, we will outline our general strategy for the
construction of a convex underestimator for an arbitrary
non-convex function. This strategy will be employed to un-
derestimate the objective functions that arise in both the
affine and metric upgrade stages of autocalibration.

Let us consider the following unconstrained, non-linear
least squares problem:

min
x

m
∑

i=1

(fi(x) − μi)
2, (9)

where μi ∈ R and x ∈ R
k , k ≥ 1. Then, an equivalent con-

strained optimization problem is:

min
x,si

∑

i

(si − μi)
2

subject to si = fi(x).

(10)

Suppose we can construct a convex underestimator conv(fi)

and a concave overestimator conc(fi) for the function fi(x).
Then, the following convex optimization problem mini-
mizes the same objective as (10), but with a “relaxed” con-
straint set:

min
x,si

∑

i

(si − μi)
2

subject to conv(fi) ≤ si ≤ conc(fi).

(11)

Consequently, the minimum attained by the problem (11)
will always be at least as low as the minimum attained by
(10). In effect, we have constructed a convex problem whose
minimum always underestimates the minimum of the non-
convex problem we wished to optimize. The solution to (11)
corresponds to the construction of the lower bounding func-
tion flb discussed in Sect. 4.

An intuitive illustration of the procedure is depicted for
a 1-D function in Fig. 2. While the variable s is allowed
to attain values only on the graph of the function f (x) in
the original problem (10), it can attain any value within the
larger region between the convex and concave relaxations in
the relaxed problem (11).

6 Global Estimation of Plane at Infinity

6.1 Traditional Solution

Given exactly three views, the modulus constraints of (7)
correspond to a system of three quartic polynomials in three
variables, for which the 64 roots may be found, typically us-
ing continuation methods. Also for the three-view case, an
additional cubic equation available from the modulus con-
straints (Schaffalitzky 2000) can be used to eliminate sev-
eral spurious solutions, reducing the number of possible so-
lutions to 21.

When more than three views are present, the modulus
constraints from all the views may be used in a least squares
framework for greater accuracy and robustness:

min
p1,p2,p3

m
∑

i=1

(γiα
3
i − β3

i )2. (12)
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Fig. 2 (a) The objective function of the non-linear least squares prob-
lem min(f (x) − μ)2 is linearized by replacing the non-linear function
f (x) by a scalar variable s and introducing an equality constraint
s = f (x). (b) Convex and concave relaxations are constructed for the
function f (x). For the functions encountered in this paper, Appendix A

demonstrates the construction of tight, piecewise linear relaxations.
(c) Instead of being limited to the curve s = f (x), the constraint set is
expanded into the relaxed region between the convex under-estimator
and the concave over-estimator

A gradient-based optimization routine, such as (Levenberg
1944; Marquardt 1963), may be used to obtain a locally op-
timal solution to the above problem. In (Pollefeys and Gool
1999), several random initializations for the Levenberg-
Marquardt algorithm are used to enhance the chances of
converging to a global optimum.

6.2 Problem Formulation

Note that the cost function in (12) is a polynomial and some
recent work in computer vision (Kahl and Henrion 2005;
Chandraker et al. 2007a) exploits convex linear matrix in-
equality (LMI) relaxations to achieve global optimality in
polynomial programs. However, this is a degree 8 polyno-
mial in three variables, which is far beyond what present-
day solvers can handle (Henrion and Lasserre 2003; Prajna
et al. 2002).

We instead consider the equivalent formulation:

min
p1,p2,p3

m
∑

i=1

(γ
1/3
i αi − βi)

2, (13)

for which the global minimum is estimated using the method
outlined in this section. Please refer to Sect. 9 for further
discussions on this reformulation.

6.3 Convex Relaxation

As an illustration of higher-level concepts, we show con-
struction of convex under-estimators for the non-convex ob-
jective in (13). The actual objective we minimize incorpo-
rates chirality bounds and is derived in Sect. 6.4.

Let us suppose it is possible to derive a convex under-
estimator conv(γi

1/3αi) and concave over-estimator
conc(γi

1/3αi) for γ
1/3
i αi . Then the following convex op-

timization problem underestimates the solution to (13):

min
p1,p2,p3

m
∑

i=1

(si − βi)
2

subject to conv(γi
1/3αi) ≤ si ≤ conc(γi

1/3αi).

(14)

As shown in Appendix A.3, our convex and concave relax-
ations for functions of the form x1/3y are piecewise linear
and representable using a small set of linear inequalities.
Thus the above optimization problem is a convex quadratic
program that can be solved using a quadratic programming
(QP) or a second order cone programming (SOCP) solver.

Given bounds on {p1,p2,p3}, a branch and bound algo-
rithm can now be used to obtain a global minimum to the
modulus constraints. All that remains to be shown is that
it is possible to estimate an initial region which bounds the
coordinates of π∞.

6.4 Incorporating Bounds on the Plane at Infinity

One way to derive bounds on the coordinates of the plane
at infinity is by using the chirality conditions overviewed in
Sect. 2.3. Let v be the plane at infinity in the centered quasi-
affine frame, where v = (v1, v2, v3,1)�, so that we can find
bounds on each vi . However, the modulus constraints re-
quire that the first metric camera be of the form K[I|0] and
the first projective camera have the form [I|0], which might
not be satisfiable in a centered quasi-affine frame, in gen-
eral. Thus, we need to use the bounds derived in the cen-
tered quasi-affine frame within the modulus constraints for
the original projective frame.

The centered quasi-affine reconstruction differs from the
projective one by a transformation Hqa = HaHq , where Hq

takes the projective frame to some quasi-affine frame and
Ha is the affine centering in that quasi-affine frame. Let hi be
the i-th column of Hqa , then we have pi = h�

i v/h�
4 v. Recall
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that, for the j -th view, αj , βj and γj are affine expressions in
p1, p2 and p3 (Pollefeys and Gool 1999). Then, for instance,

αj = αj1p1 + αj2p2 + αj3p3 + αj4 (15)

= aj (v)

d(v)
, (16)

where, aj (v) = αj1h�
1 v + αj2h�

2 v + αj3h�
3 v + αj4h�

4 v and
d(v) = h�

4 v. Similarly, let

βj = bj (v)

d(v)
, (17)

γj = cj (v)

d(v)
, (18)

where aj (v), bj (v), cj (v), d(v) are linear functions of v. In
the following, for the sake of brevity, we will drop the ref-
erence to v and just use aj , bj , cj , d . Now the optimization
problem (13) can be rewritten as

min
v1,v2,v3

∑m
j=1(c

1/3
j aj − d1/3bj )

2

d8/3

subject to li ≤ vi ≤ ui, i = 1,2,3.

(19)

Introducing new scalar variables for some of the non-linear
terms, the above is equivalent to

min
v1,v2,v3

r

subject to r · e ≥
m

∑

j=1

(fj − gj )
2,

fj = c
1/3
j aj , j = 1, . . . ,m,

gj = d1/3bj , j = 1, . . . ,m,

e = d8/3,

li ≤ vi ≤ ui, i = 1,2,3.

(20)

As outlined in our general recipe for constructing convex re-
laxations (Sect. 5), we have reduced the non-convexity in the
above optimization problem to a set of equality constraints.
The quadratic inequality constraint is convex and is known
as a rotated cone (Boyd and Vandenberghe 2004). Given
bounds on vi , it is easy to calculate bounds on aj , bj , cj , d ,
by solving eight linear programs in three variables. Given
these bounds, we can construct convex and concave en-
velopes of the non-linear functions e, fj , gj and use them to
construct the following convex program that underestimates

the minimum of the problem (20):

min
v1,v2,v3

r

subject to r · e ≥
m

∑

j=1

(fj − gj )
2,

conv
(

c
1/3
j aj

) ≤ fj ≤ conc
(

c
1/3
j aj

)

,

j = 1, . . . ,m,

conv
(

d1/3bj

) ≤ gj ≤ conc
(

d1/3bj

)

,

j = 1, . . . ,m,

e ≤ conc(d8/3),

li ≤ vi ≤ ui, i = 1,2,3.

(21)

Notice that the convex envelope of d8/3 is not needed. Since
(21) is a minimization problem, e always takes its maximum
possible value and does not require a lower bound.

Following Appendix A, our convex relaxation in (21)
consists of a linear objective subject to linear and SOCP con-
straints, which can be efficiently minimized (Sturm 1999).
A branch and bound algorithm can now be used to obtain an
estimate of {v1, v2, v3}, which globally minimizes the mod-
ulus constraints. Thereafter, the plane at infinity in the pro-
jective frame can be recovered as π∞ = H�

qav, which com-
pletes the projective to affine upgrade.

7 Globally Optimal Metric Upgrade

7.1 Traditional Solution

Recall that when the camera intrinsic parameters are held
constant, the DIAC satisfies the infinite homography rela-
tions ω∗ = Hi∞ω∗Hi�∞ , i = 1, . . . ,m, where equality holds
up to a scale factor. The standard technique for estimating
the DIAC is to first normalize the infinite homography ma-
trix by dividing it by the cube-root of its determinant:

Ĥ= H
3
√
H

. (22)

Since this normalization “equates” the scale on the two sides
of the infinite homography relation, estimating the DIAC
can now be posed as a least squares problem:

min
ω∗

m
∑

i=1

‖ω∗ − Ĥi∞ω∗Ĥi�∞ ‖ (23)

which is typically solved linearly by ignoring the positive
semidefiniteness requirement on the DIAC. For the cases
where the linear solution does not yield a positive semi-
definite DIAC, the closest positive semidefinite matrix is



Int J Comput Vis (2010) 90: 236–254 243

estimated as a post-processing step by dropping the nega-
tive eigenvalues. It is well-documented that this may lead
to a spurious calibration in practice (Hartley and Zisserman
2004).

7.2 Problem Formulation

For the optimal solution to the infinite homography relation,
we note that both ω∗ and Hi∞ are homogeneous entities, so
our cost function must correctly account for the scale fac-
tor before it can be used to search for the optimal DIAC.
Moreover, the optimization algorithm itself must take into
account the positive semidefiniteness of the DIAC.

A necessary condition for the matrix ω∗ to be interpreted
as ω∗ = KK� is that ω∗

33 = 1. Thus, we fix the scale in the in-
finite homography relation by demanding that both the ma-
trices on the left and the right hand side of the relation have
their (3,3) entry equal to 1. To this end, we introduce addi-
tional variables λi and pose the minimization problem:

min
ω∗,λi

∑

i

∥

∥

∥ω∗ − λiH
i∞ω∗Hi�∞

∥

∥

∥

2

F

subject to ω∗
33 = 1,

λihi�
3 ω∗hi

3 = 1,

ω∗ � 0,

ω∗ ∈ D.

(24)

Here, hi
3 denotes the third row of the 3 × 3 infinite homog-

raphy Hi∞ and D is some initial convex region whose choice
is elucidated later in this section. For the present, it suffices
to understand that the individual entries of ω∗ lie within the
convex region D.

7.3 Convex Relaxation

We begin by introducing a new set of variables νi = λiω
∗.

Here each matrix νi is a symmetric 3 × 3 matrix with en-
tries νijk = λiω

∗
jk . Also let us assume that the domain D is

given in the form of bounds [ljk, ujk] on the five unknown
symmetric entries ω∗

jk of ω∗. Then (24) can be re-written as

min
ω∗,νi ,λi

∑

i

∥

∥

∥ω∗ − Hi∞νiH
i�∞

∥

∥

∥

2

F

subject to νijk = λiω
∗
jk,

ω∗
33 = 1,

λihi�
3 ω∗hi

3 = 1,

ω∗ � 0,

ljk ≤ ω∗
jk ≤ ujk.

(25)

The non-convexity in the above optimization problem has
been reduced to the bilinear equality constraints νijk =
λiω

∗
jk and λihi�

3 ω∗hi
3 = 1.

Given bounds on the entries of ω∗, a relaxation of (25)
is obtained by replacing the constraint λihi�

3 ω∗hi
3 = 1 by a

pair of linear inequalities of the form Li ≤ λi ≤ Ui , where
Li and Ui are computed by simply inverting the bounds
on hi�

3 ω∗hi
3. Thus, the lower bound Li can be computed

as the reciprocal of the result of the maximization prob-
lem:

max
ω∗ hi�

3 ω∗hi
3

subject to ω∗
33 = 1,

ω∗ � 0,

ljk ≤ ω∗
jk ≤ ujk.

(26)

This is a semi-definite program (SDP) in 9 variables and can
be solved very efficiently using interior point methods (Boyd
and Vandenberghe 2004). The upper bound Ui can be com-
puted similarly by computing the reciprocal of the mini-
mizer of the above. The relaxed optimization problem can
now be stated as:

min
ω∗,νi ,λi

∑

i

∥

∥

∥ω∗ − Hi∞νiH
i�∞

∥

∥

∥

2

F

subject to νijk = λiω
∗
jk,

ω∗
33 = 1,

ω∗ � 0,

ljk ≤ ω∗
jk ≤ ujk,

Li ≤ λi ≤ Ui.

(27)

In effect, the above ensures that the introduction of
an additional view does not translate into an increase in
the dimensionality of our search space. Instead, the cost
is limited to solving a small SDP to compute bounds
on λi , while the branching variables remain the five un-
knowns of ω∗. Thus, the search space for the branch
and bound algorithm can be restricted to a small, fixed
number of dimensions, independent of the number of
views.

Appendix A.2 discusses the synthesis of convex relax-
ations of bilinear equalities, which allows us to replace each
bilinear equality by a set of linear inequalities. Using them,
a convex relaxation of the above optimization problem can
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be stated as

min
ω∗,νi ,λi

∑

i

∥

∥

∥ω∗ − Hi∞νiH
i�∞

∥

∥

∥

2

F

subject to νijk ≤ Uiω
∗
jk + ljkλi − Uiljk,

νijk ≤ Liω
∗
jk + ujkλi − Liujk,

νijk ≥ Liω
∗
jk + ljkλi − Liljk,

νijk ≥ Uiω
∗
jk + ujkλi − Uiujk,

ω∗
33 = 1,

ω∗ � 0,

ljk ≤ ω∗
jk ≤ ujk,

Li ≤ λi ≤ Ui.

(28)

The objective function of the above optimization problem is
convex quadratic. The constraint set includes linear inequal-
ities and a positive semi-definiteness constraint. Such prob-
lems can be efficiently solved to their global optimum using
interior point methods and a number of software packages
exist for doing so. We use SeDuMi in our implementation
(Sturm 1999).

The user of the algorithm specifies valid ranges for the
entries of the calibration matrix K. From this input, we de-
rive intervals [ljk, ujk] for the entries ω∗

jk of the matrix ω∗
using the rules of interval arithmetic (Moore 1966), which
specifies the initial convex region D in (24).

7.3.1 A Note on Normalization

The careful reader would have observed that we do not fol-
low the standard prescription of normalizing the infinite ho-
mography by the cube root of its determinant, as discussed
in Sect. 7.1, to resolve the scale factors in the infinite ho-
mography relations ω∗ = λiHi∞ω∗Hi�∞ , i = 1, . . . ,m.

Since the equation we are trying to satisfy with the opti-
mal estimate of ω∗ is algebraic, there are a number of ways
in which the scale ambiguity can be resolved. The method
based on normalizing the determinant is just one of them.
Note that the DIAC is not an arbitrary 3 × 3 symmetric pos-
itive definite matrix, it has a particular geometric and numer-
ical interpretation, which requires that ω∗

33 = 1. Our choice
of the objective function reflects this. Even in the traditional
approach, while normalizing the determinant technically re-
solves the scale ambiguity of the infinite homography rela-
tion, a further normalization would be needed before the in-
trinsic calibration matrix K can be estimated from the DIAC.

Since we explicitly optimize over the λi variables also,
our approach subsumes the standard one which just corre-
sponds to a priori setting λi = det(Hi∞)−2/3 in the objec-
tive function of (24) and performing the minimization only

with respect to ω∗. In general, the solution returned by our
method that optimizes over both ω∗ and the λi ’s, will corre-
spond to a minimum which is lower than the one that corre-
sponds to the standard normalization. In other words, our
approach is more consonant with the aim of global opti-
mization because we estimate all the scale factors, while the
traditional approach chooses them. Note that if the choices
of λi corresponding to the traditional normalization fortu-
itously happen to be the optimal ones, our algorithm will
find them.

Thus, our method, at the expense of some computational
effort, poses the optimization problem in terms of an inter-
pretable quantity and finds estimates which are at least as
good as, or better than, those obtained by using the standard
normalization.

8 Experiments

In this section, we will describe the experimental evaluation
of our algorithms using synthetic and real data.

To evaluate the output of our algorithm the following
metrics are defined:


p =
√

√

√

√

3
∑

i=1

(

pi/p
0
i − 1

)2
, (29)


f =
∣

∣

∣

∣

∣

f1

f 0
1

− 1

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

f2

f 0
2

− 1

∣

∣

∣

∣

∣

, (30)


uv = |u − u0| + |v − v0|, (31)


s = |s − s0|. (32)

Here, pi are estimated coordinates of the plane at infinity,
f1, f2 represents the two focal lengths, (u, v) stands for the
principal point and s for the skew. p0

i , f
0
1 , f 0

2 , u0, v0 and s0

are the corresponding ground truth quantities.
In the first experiment, we simulated a scene where 100

3D points are randomly generated in a cube with sides of
length 20, centered at the origin and a varying number of
cameras are randomly placed at a nominal distance of 40
units. Zero mean, Gaussian noise of varying standard devi-
ation is added to the image coordinates. A projective trans-
formation is applied to the scene with a known, randomly
generated plane at infinity and the ground truth intrinsic cal-
ibration matrix is identity. All the statistics reported in this
section are acquired over 50 trials.

Table 1 reports, for various number of cameras and noise
levels, the errors in the estimates of various camera parame-
ters and the number of iterations needed for the algorithm
to converge. The termination criterion measures the gap, ε,
between the lowest lower bound and the current best objec-
tive function value. The column π∞(1) in Table 1 reports the
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Table 1 Error in camera calibration parameters for random synthetic
data. The errors in the intrinsic parameters are reported relative to
ground truth for the indicated quantities. Mean and standard deviations

are reported for the number of iterations. All quantities reported are
averaged over 50 trials. σ stands for percentage noise in image coordi-
nates and m stands for number of views

σ m Error Iterations

(%) 
p 
f 
uv 
s π∞(1) π∞(2) ω∗

0 5 3.65e–5 3.28e–5 3.01e–5 2.89e–5 31.1 ± 16.2 11.02 ± 7.96 32.1 ± 11.6

10 2.51e–6 2.14e–6 2.03e–6 2.00e–6 18.7 ± 11.8 4.19 ± 2.26 40.9 ± 12.5

20 1.28e–6 1.51e–6 1.33e–6 1.73e–6 21.4 ± 12.5 1.62 ± 0.81 31.8 ± 10.4

40 9.08e–7 8.24e–7 7.99e–7 7.58e–7 23.8 ± 10.8 1.14 ± 0.45 27.5 ± 14.3

0.1 5 4.76e–4 4.59e–4 4.22e–4 4.05e–4 27.3 ± 15.1 9.93 ± 6.41 36.3 ± 12.1

10 3.44e–4 3.07e–4 2.73e–4 2.91e–4 17.2 ± 9.0 3.49 ± 2.33 44.2 ± 15.7

20 2.75e–4 2.92e–4 2.56e–4 2.31e–4 16.1 ± 8.7 2.35 ± 1.94 33.0 ± 12.3

40 2.55e–4 2.41e–4 2.06e–4 1.85e–4 23.2 ± 11.6 7.95 ± 5.79 30.1 ± 10.6

0.2 5 1.19e–3 1.14e–3 9.92e–4 8.73e–4 41.0 ± 24.5 12.46 ± 8.39 38.4 ± 13.7

10 7.65e–4 7.13e–4 7.01e–4 6.85e–4 24.7 ± 14.9 4.45 ± 2.56 47.9 ± 16.9

20 6.03e–4 6.80e–4 5.12e–4 5.79e–4 19.5 ± 14.4 6.99 ± 5.41 34.5 ± 12.8

40 5.59e–4 6.05e–4 4.29e–4 5.10e–4 33.2 ± 18.3 10.60 ± 6.47 31.6 ± 12.1

0.5 5 3.29e–3 3.22e–3 3.02e–3 2.63e–3 63.2 ± 26.7 11.58 ± 8.18 42.7 ± 18.5

10 1.66e–3 2.19e–3 1.99e–3 2.11e–3 29.8 ± 12.7 6.23 ± 4.75 51.1 ± 17.2

20 1.41e–3 1.84e–3 1.43e–3 1.55e–3 22.3 ± 11.9 8.23 ± 5.35 38.2 ± 12.9

40 1.25e–3 1.50e–3 1.18e–3 9.06e–4 46.6 ± 19.0 20.60 ± 7.23 32.4 ± 13.4

1.0 5 4.68e–3 4.04e–3 3.77e–3 3.36e–3 74.1 ± 28.1 9.86 ± 8.42 45.5 ± 17.2

10 3.15e–3 2.88e–3 2.52e–3 2.15e–3 36.4 ± 14.2 9.23 ± 7.17 56.8 ± 20.6

20 2.86e–3 2.45e–3 2.02e–3 1.74e–3 31.0 ± 12.8 15.75 ± 7.30 40.9 ± 14.0

40 2.79e–3 2.21e–3 1.76e–3 1.30e–3 56.4 ± 19.8 23.56 ± 8.34 38.9 ± 14.3

number of branch and bound iterations using the algorithm
described in 6.4. However, an additional optimization is pos-
sible: we can refine the value of the feasible point f (q∗) us-
ing a gradient descent method within the rectangle that con-
tains it. This does not compromise optimality, but allows the
value of the current best estimate to be lower than the value
corresponding to the minimum of the lower bounding func-
tion. The number of iterations with this refinement is tabu-
lated under π∞(2). The error metrics reported are computed
using the refined algorithm, however, since both algorithms
are run with the same very stringent tolerance (ε = 1e–7),
the solutions obtained are comparable. The number of itera-
tions for the DIAC estimation (with no refinement) are tabu-
lated under ω∗. The metric upgrade step was performed with
ε = 1e–5. The termination criterion measures the gap, ε, be-
tween the lowest lower bound and the current best objective
function value.

Figure 3 plots the errors graphically. The accuracy of the
algorithm is evident from the very low error rates obtained
for reasonable noise levels. It is interesting that the algo-
rithm performs quite well even for noise as high as 1%. In
general, the accuracy improves as expected when more cam-
eras are used.

To demonstrate scalable runtime behavior, Fig. 4 plots
the runtime for the affine and metric upgrade stages for the
random data experiment with 0.1% noise, for varying num-
bers of cameras. These experiments were conducted on a
Pentium IV, 1 GHz computer with 1 GB of RAM. Note that
the graceful variation in the runtime behavior is a direct out-
come of our bounds propagation schemes, without which
the branch and bound algorithms would display exponential
characteristics. Our code is un-optimized MATLAB with an
off-the-shelf SDP solver (Sturm 1999), so the actual mag-
nitude of these timings should be understood only as rough
qualitative indicators.1

While the metrics in Table 1 are intuitive for evaluat-
ing the intrinsic parameters, it is not readily evident how

p should be interpreted. Towards that end, we perform a
set of experiments, inspired by (Pollefeys and Gool 1999),
where three mutually orthogonal 5×5 grids are observed by
varying numbers of randomly placed cameras. Noise rang-
ing from 0.1 to 1% is added to the image coordinates. The
quality of the affine upgrade is indirectly inferred from the

1Prototype code available at http://vision.ucsd.edu/stratum.

http://vision.ucsd.edu/stratum
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Fig. 3 Error in camera calibration parameters for random synthetic data. The errors in the graphs are plotted relative to ground truth for the
indicated quantities. All quantities reported are averaged over a 50 trials

Fig. 4 Runtime behavior of the branch and bound algorithms for the affine and metric upgrade steps. All timings reported are averaged over 50
trials
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Table 2 Error in affine and
metric properties for three
synthetically generated,
mutually orthogonal planar
grids. The table reports mean
angular deviations from
parallelism and orthogonality,
measured in degrees. All
quantities reported are averaged
over 50 trials

Noise Views Affine Metric

(%) (Parallel) (Parallel) (Perpendicular)

5 2.40e–6 2.46e–6 3.07e–6

0 10 7.90e–7 8.12e–7 1.12e–6

20 5.22e–7 5.50e–7 8.70e–7

40 3.67e–7 3.88e–7 6.23e–7

5 0.40 0.40 0.34

0.1 10 0.27 0.27 0.23

20 0.19 0.19 0.15

40 0.13 0.13 0.10

5 0.79 0.80 0.63

0.2 10 0.54 0.54 0.44

20 0.36 0.36 0.25

40 0.25 0.25 0.19

5 1.95 1.96 1.88

0.5 10 1.31 1.31 1.02

20 0.89 0.89 0.79

40 0.64 0.64 0.57

5 4.05 4.07 3.97

1.0 10 2.63 2.63 2.30

20 1.83 1.83 1.52

40 1.27 1.27 1.09

Fig. 5 Errors in affine and metric properties for three synthetically
generated, mutually orthogonal planar grids. The graphs plot (a) angu-
lar deviation from parallelism after the affine upgrade and (b) angular

deviation from orthogonality after the metric upgrade, both measured
in degrees. All quantities reported are averaged over 50 trials

deviation from parallelism in the reconstructed grid lines,
while the quality of the metric upgrade is inferred from the
deviation from orthogonality. Table 2 reports the results of
this experiment and Fig. 5 shows the results graphically.

Again, we observe that the algorithm achieves very good
accuracy for reasonable noise and performs quite well even

for 1% noise. With just 5 cameras, it is quite likely for
the configuration to be ill-conditioned or degenerate, which
causes the algorithm to break down in some cases.

We also use this experimental setup to compare against
traditional local optimization approaches. In the first set of
experiments, for a fixed number of views (m = 20) and vary-
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Fig. 6 Comparison of the accuracy of the plane at infinity estimated
by the globally optimal method (black dotted curve) and a Leven-
berg-Marquardt routine with 50 random initializations (red curve). The
accuracy of the affine upgrade is deduced from the extent to which par-
allelism is preserved in the reconstruction

ing noise levels, we minimize the modulus constraints in
(13) using a Levenberg-Marquardt scheme with 50 random
initializations. It can be seen from Fig. 6 that the globally
optimal solution of Sect. 6 yields more accurate solutions.

Finally, once the plane at infinity has been estimated,
the globally optimal metric upgrade of Sect. 7 is compared
against the traditional linear approach. The drawbacks of
the traditional linear approach discussed previously, namely,
overlooking the positive semidefiniteness requirement of the
DIAC and choosing a suboptimal scale factor, are illustrated
by these experiments.

For a fixed number of views (m = 5), the deviation from
orthogonality observed in the globally optimal metric recon-
struction is compared to the deviation obtained from the lin-
ear method, across varying noise levels (Fig. 7). Two sets of
metric reconstructions are performed for the linear method.
For the first set, the metric upgrade is performed starting
with the affine reconstruction obtained using the plane at in-
finity estimated by a local optimization method (Levenberg-
Marquardt with 50 random initializations). For the second
set, the affine upgrade is computed using the optimal method
in Sect. 6, while the metric upgrade is linear. For any cases
where the estimated DIAC is not positive semidefinite, the
calibration matrix must be extracted after a further approxi-
mation to project on the closest point on the cone of positive
semidefinite matrices. Clearly, the globally optimal DIAC
estimation outperforms the linear method across all noise
levels, which shows the importance of estimating the cor-
rect normalization factors λi introduced in Sect. 7.2.

An important consideration for noisy situations is the
sensitivity of the chirality bounds to outliers. Similar to
(Nistér 2004), for noisy images expected in a real world sce-
nario, chirality bounds are computed using only the camera
centers. The reason is that usually there are far more points

Fig. 7 Comparison of the globally optimal metric upgrade algorithm
with a traditional linear method for estimating the DIAC. The accuracy
of the reconstruction is deduced by the extent to which orthogonality
is preserved in the metric reconstruction. The solid red curve plots the
deviation from orthogonality when a local optimization method is used
for estimating the plane at infinity and a linear method is used for es-
timating the DIAC. The dotted black curve uses a linear method for
DIAC estimation, but the optimal plane at infinity is used for affine
upgrade. The dashed blue curve uses optimal algorithms for both the
affine and metric upgrade steps. The reported quantities are averages
of 50 trials

than cameras and the camera centers are likely to be esti-
mated more robustly than 3D points.

To demonstrate performance on real data, we consider
images of marker targets on two orthogonal walls (Fig. 8(a)).
Using image correspondences from detected corners, we
perform a projective reconstruction using the projective fac-
torization algorithm (Sturm and Triggs 1996) followed by
bundle adjustment. The normalization procedure and exact
implementation follows the description in (Hartley and Zis-
serman 2004).

Bounds on the plane at infinity are computed using chi-
rality, c.f. (8). Focal lengths are assumed to lie in the interval
[500,1500], principal point within [250,450] × [185,385]
(image size is 697×573) and skew [−0.1,0.1]. The plane at
infinity and DIAC are estimated using our algorithm. While
ground truth measurements for the scene are not available,
we can indirectly infer some observable properties.

The coplanarity of the individual targets is indicated by
the ratio of the first eigenvalue of the covariance matrix of
their points to the sum of eigenvalues. This ratio is measured
to be 3.1×10−6, 4.1×10−5, 6.2×10−5 and 4.1×10−4 for
the four polygonal targets. The angle between the normals to
the planes represented by two targets on the adjacent walls
is 88.1◦ in our metric reconstruction (Fig. 8(b)). The same
angle is measured as 89.8◦ in a reconstruction using (Polle-
feys et al. 2002). The precise ground truth angle between the
targets is unknown.

To demonstrate the performance of the algorithm on an-
other real dataset, we consider a corridor sequence, which
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Fig. 8 In the reconstruction,
targets on the same plane are
represented by lines of the same
color. The second view of the
obtained 3D reconstruction
shows that the angle between
targets on adjacent walls is
recovered as nearly 90 degrees

Fig. 9 Performance on the
corridor sequence, with a nearly
straight line camera motion. The
camera trajectories obtained in
metric reconstructions using
various algorithms are plotted
here. (a) “Ground truth” from
bundle adjustment. (b) Output
of the optimal stratified
algorithm of this paper.
(c) Output of linear algorithm
for estimating the dual quadric

consists of 11 images acquired under a nearly straight line
motion (Hartley and Zisserman 2004). Starting from a pro-
jective reconstruction, chirality bounds on the plane at infin-
ity are computed using the camera centers and a few stably
tracked points. The camera trajectory in the metric recon-
struction using the stratified algorithm of this paper is shown
in Fig. 9(b). The metric reconstruction using a locally op-
timal linear algorithm for directly estimating the absolute
quadric (Pollefeys et al. 2002) is shown in Fig. 9(c). Al-
though the camera motion in this sequence is close to a the-
oretically critical configuration, the global methods of this
paper perform well, but the estimate from the linear method

is also quite reasonable. In particular, it can be seen that the
output of the optimal stratified algorithm is quite close to the
“ground truth” obtained by full bundle adjustment.

All the results that we have reported are for the raw out-
put of our algorithm. In practice, a few iterations of bun-
dle adjustment following our algorithms might be used to
achieve a slightly better estimate.

9 Conclusions and Further Discussions

In this paper, we have presented globally optimal solutions
to the affine and metric stages of stratified autocalibration.
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Although our cost function is algebraic, this is the first work
that provides optimality guarantees for scalable stratified au-
tocalibration.

For the success of a branch and bound scheme, it is of
utmost importance that the convex relaxations be as tight as
possible. The second order cone programming based con-
vex relaxation that we develop for solving the affine upgrade
step and the semidefinite programming based convex relax-
ation for the metric upgrade step satisfy this requirement,
while also being very fast to compute in practice.

Sometimes, a consideration of practicality of the convex
relaxation influences the choice of the algebraic form of an
objective function. Indeed, the most straightforward way to
minimize the modulus constraints would be to use the sim-
pler formulation of (12) and construct a multi-level relax-
ation for the quartic polynomials by successively using the
bilinear relaxation of Sect. A.2. However, in our experience,
such multistep relaxations are very loose in practice, so the
branch and bound algorithm will not converge in a reason-
able amount of time. Thus, the least squares version of the
modulus constraints we globally minimize corresponds to
the reformulated version of (13).

A crucial aspect of designing a global optimization al-
gorithm based on branch and bound is the choice of initial
region, which must be principled and guaranteed to contain
the optimal solution. Arbitrarily choosing a very large ini-
tial region will lead to impractically long convergence times
for the branch and bound, while too restrictive a choice
might not contain the globally optimum point. Our affine
upgrade step addresses this issue by incorporating chiral-
ity constraints within the convex relaxation for the modu-
lus constraints. In practice, this limits the location of the
plane at infinity to a small region of the search space. For
the metric upgrade step, the entries of the DIAC that we
wish to estimate are related to more tangible entities cor-
responding to the internal parameters of the camera. So,
a user can easily specify reasonable bounds on the focal
length, pixel skew and principal point, which are propa-
gated to initial bounds on the DIAC using interval arith-
metic.

Several important extensions to the methods introduced
in this paper can be envisaged. For instance, an L1-norm
formulation will allow us to use an LP solver for the affine
upgrade, making it possible to solve larger problems faster.
To the best of our knowledge, it remains an open question
whether methods similar to those proposed in this paper can
be used for obtaining optimal solutions to the direct auto-
calibration problem. A global optimization approach for es-
timating the absolute dual quadric is discussed in (Chan-
draker et al. 2007a), however, it employs LMI relaxations
and is not guaranteed to return a certificate of optimal-
ity.

Finally, we reiterate that pragmatic application of domain
knowledge is important for successfully employing an opti-
mization paradigm to globally optimize a computer vision
problem. Indeed, it is the careful consideration of multi-
view geometry for choosing the initial region, constructing
convex relaxations and restricting the dimensionality of the
search space within a branch and bound framework that al-
lows the globally optimal algorithms presented in this pa-
per to be practical. We are hopeful that, in the near future,
methods not unlike ours will be used to exploit underlying
convexities to successfully optimize challenging problems
in other areas of computer vision, besides multiview geom-
etry.
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Appendix A: Convex and Concave Relaxations

In this appendix, we briefly describe the convex and concave
relaxations of the intermediate non-linear terms that were
relaxed as part of the various convex relaxations in the main
text. In each instance, the variables x and y take values in
the intervals [xl, xu] and [yl, yu], respectively.

A.1 Functions of the Form f (x) = x8/3

The function x8/3 is convex, and thus the line joining
(xl, x

8/3
l ) and (xu, x

8/3
u ) is a tight concave over-estimator,

thus the relaxation is given by

z ≤ x
8/3
l + x − xl

xu − xl

(x
8/3
u − x

8/3
l ). (A.1)

A.2 Bilinear Functions f (x, y) = xy

We begin by considering convex and concave relaxations
of the bilinear function f (x) = xy. It can be shown (Al-
Khayyal and Falk 1983) that the tightest convex lower bound
for f (x, y) is given by the function

z = max{xly + ylx − xlyl, xuy + yux − xuyu}. (A.2)

Similarly, the tightest concave upper bounding function is
given by

z = min(xuy + ylx − xuyl, xly + yux − xlyu). (A.3)
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Fig. 10 (a) Construction of the convex relaxation for the bilinear func-
tion f (x, y) = xy. The function is drawn in the blue shade, while the
convex envelope is the point wise maximum of the two gray shaded
planes. (b) Construction of the concave relaxation for the bilinear func-

tion f (x, y) = xy. The function is drawn in the blue shade, while the
concave envelope is the point wise minimum of the two gray shaded
planes. A different view of the bilinear function is shown to better il-
lustrate the relaxation

Thus, the convex relaxation of the equality constraint z = xy

over the domain [xl, yl] × [yl, yu] is given by

z ≥ xly + ylx − xlyl,

z ≥ xuy + yux − xuyu,

z ≤ xuy + ylx − xuyl,

z ≤ xly + yux − xlyu.

(A.4)

These relaxations are graphically illustrated in Fig. 10.

A.3 Functions of the Form f (x, y) = x1/3y

We now consider the construction of the convex relaxation
for a bivariate function f (x, y) = x1/3y. As illustrated in
Fig. 11, this is a non-convex function whose convex relax-
ation is not straightforward.

Case I: [xl > 0 or xu < 0]

Suppose xl > 0, then f (x, y) is concave in x and convex in
y. It can be shown (Tawarmalani and Sahinidis 2002) that
the convex envelope for f (x, y) is given by

min z

subject to z ≥ (1 − λ)f (xl, ya) + λf (xu, yb),

x = xl + (xu − xl)λ,

y = (1 − λ)ya + λyb,

0 ≤ λ ≤ 1,

yl ≤ ya, yb ≤ yu.

(A.5)

Fig. 11 The non-convex function f (x, y) = x1/3y

Noting that f (x, y) = x1/3y, substituting yp = (1 − λ)ya

and simplifying results in the following convex relaxation:

z ≥ x
1/3
l yp + x

1/3
u (y − yp),

(1 − λ)yl ≤ yp ≤ (1 − λ)yu,

λyl ≤ y − yp ≤ λyu,

λ = x − xl

xu − xl

.

(A.6)
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Fig. 12 Construction of the
concave overestimator for x1/3,
illustrated with the solid, black
curve. (a) The concave
overestimator when −xl/8 < xu

is given by the minimum of the
dashed red and blue lines.
(b) The concave overestimator
when −xl/8 ≥ xu is given by
the dashed blue line

A concave relaxation for x1/3y can be constructed
by considering the negative of the convex envelope of
x1/3(−y). This leads to

z ≤ (x
1/3
u − x

1/3
l )y′

p + x
1/3
u y,

λyu ≥ y + y′
p ≥ λyl,

(1 − λ)yu ≥ −y′
p ≥ (1 − λ)yl,

λ = x − xl

xu − xl

.

(A.7)

For the case when xu < 0, we observe that a convex relax-
ation for x1/3y is given by the negative of the concave re-
laxation of t1/3y, where t = −x. Appropriate manipulation
of (A.6) gives us the convex and concave envelopes for this
case too.

Case II: [xl ≤ 0 ≤ xu]

The function x1/3 is convex for x < 0 and concave for x > 0.
The derivation in (A.6) depends critically on the convexity
of x1/3 over its domain, and thus, cannot be used for the case
when xl ≤ 0 ≤ xu. So instead of a one step relaxation, we
will consider the two equality constraints t = x1/3, z = ty

and relax each of them individually. Once we have the relax-
ation for t = x1/3, we can then apply the bilinear relaxation
to z = ty.

To construct a concave overestimator for x1/3, we notice
that when −xl/8 < xu, a line which upper bounds the curve
x1/3 is the tangent at (xu, x

1/3
u ), given by

t = 1

3
x

−2/3
u x + 2

3
x

1/3
u . (A.8)

While this line is a concave overestimator suitable for
branch and bound in principle, we can make it a tighter re-
laxation. Notice that x1/3 is concave in the region (xl,0)

and the line in (A.8) passes through (0, 2
3x

2/3
u ) which lies

above the curve. Thus, the line segment joining (xl, x
1/3
l )

and (0, 2
3x

2/3
u ), given by

t =
(

x
−2/3
l − 2

3
x−1
l x

1/3
u

)

x + 2

3
x

1/3
u (A.9)

is a tighter overestimator when x ∈ (xl,0). Thus, the over-
estimator for t = x1/3 is given by the minimum of two lines
(A.8) and (A.9).

Further, when −xl/8 ≥ xu, the straight line passing
through (xl, x

1/3
l ) and (xu, x

1/3
u ), given by

t = (x
1/3
u − x

1/3
l )x + (xux

1/3
l − xlx

1/3
u )

xu − xl

, (A.10)

always lies above the curve x1/3, which gives the strongest
possible concave overestimator. Thus, the unified concave
overestimator for x1/3 is given by

t ≤

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min

{(

x
−2/3
l − 2

3
x−1
l x

1/3
u

)

x + 2

3
x

1/3
u ,

x + 2xu

3x
2/3
u

}

,

−xl/8 < xu,

(x
1/3
u − x

1/3
l )x + (xux

1/3
l − xlx

1/3
u )

xu − xl
,

−xl/8 ≥ xu

(A.11)

The construction of the concave overestimator for x1/3 is
graphically illustrated in Fig. 12.

By similar arguments, we can derive the convex underes-
timator for x1/3 when xl ≤ 0 ≤ xu as

t ≥

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max

{(

x
−2/3
u − 2

3
x−1
u x

1/3
l

)

x + 2

3
x

1/3
l ,

x + 2xl

3(−xl)
2/3

}

,

− xu/8 > xl,

(x
1/3
u − x

1/3
l )x + (xux

1/3
l − xlx

1/3
u )

xu − xl
,

− xu/8 ≤ xl.

(A.12)

The construction of the convex underestimator for x1/3 is
graphically illustrated in Fig. 13.
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Fig. 13 Construction of the
convex underestimator for x1/3,
illustrated with the solid, black
curve. (a) The convex
underestimator when
−xu/8 > xl is given by the
maximum of the dashed red and
blue lines. (b) The convex
underestimator when
−xu/8 ≤ xl is given by the
dashed blue line

A.4 Convergence Proofs

To be usable in a branch and bound algorithm, the convex re-
laxations must satisfy the technical conditions (L1) and (L2)
described in Sect. 4. Condition (L1) is evidently true by con-
struction. That the Cauchy continuity condition (L2) holds
for various bilinear relaxations follows from (McCormick
1976; Al-Khayyal and Falk 1983; Horst and Tuy 2006). We
refer the reader to (Tawarmalani and Sahinidis 2001, 2002)
to prove the same for Case I in Sect. A.3. Below, we pro-
vide a brief proof of the Cauchy continuity condition (L2)
for Case II in Sect. A.3.

First, we must prove that as the interval within which x

lies becomes smaller, the concave overestimator given by
(A.11) becomes tighter. Let us consider the line given by
(A.9). The condition (L2) is satisfied when the RHS in (A.9)
decreases with an increase in xl or a decrease in xu, that is,
when dt

dxl
< 0 and dt

dxu
> 0. Now,

dt

dxl

= 2

3

x

x2
l

(x
1/3
u − x

1/3
l ) (A.13)

which is negative when x ∈ [xl,0), which is the region
where (A.9) is active. Further,

dt

dxu

= 2

9
x

−2/3
u

(

1 − x

xu

)

(A.14)

which is non-negative when x lies in the interval [xl, xu].
Next, we notice that the part of the overestimator given

by (A.8) is independent of the value of xl , since it is active
in the region [0, xu]. In that interval,

dt

dxu

= 2

9
x

−1/3
u (A.15)

which is positive since xu > 0.
When −xl/8 ≥ xu, the overestimator given by the line

(A.10) must also satisfy the same conditions. Indeed,

dt

dxl

= 1

(xu − xl)
·
[

1

3
x

−2/3
l (xu − xl) −

(

x
1/3
u − x

1/3
l

)

]

= 1

3(xu − xl)
·
[

(

xu

xl

)2/3

+
(

xu

xl

)1/3

− 2

]

= 1

3(xu − xl)
·
[

(

xu

xl

)1/3

− 1

]

·
[

(

xu

xl

)1/3

+ 2

]

,

where we have used the identity that for any numbers a and
b, a3 − b3 = (a − b)(a2 + ab + b2). Since xu − xl > 0, it
follows that the above expression is negative when

−2 <

(

xu

xl

)1/3

< 1 (A.16)

or equivalently, when −8 < xu

xl
< 1, which is identically

true since the interval under consideration satisfies −xl/8 ≥
xu, xl < 0 and xu > 0.

Finally, it can be shown by similar derivations, or de-
duced by the symmetry of (A.10), that dt

dxu
> 0 when

−xl/8 ≥ xu.
By similar arguments as above, it can be shown that the

convex underestimator of x1/3 given by (A.12) becomes
tighter as the size of the interval decreases. This concludes
the proof of the Cauchy continuity condition (L2) for Case
II in Sect. A.3.
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