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Abstract The goal of this paper is to evaluate and compare
models and methods for learning to recognize basic enti-
ties in images in an unsupervised setting. In other words,
we want to discover the objects present in the images by
analyzing unlabeled data and searching for re-occurring
patterns. We experiment with various baseline methods,
methods based on latent variable models, as well as spectral
clustering methods. The results are presented and compared
both on subsets of Caltech256 and MSRC2, data sets that
are larger and more challenging and that include more ob-
ject classes than what has previously been reported in the lit-
erature. A rigorous framework for evaluating unsupervised
object discovery methods is proposed.
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1 Introduction

Over the last decade, the category-level object recognition
problem has drawn considerable attention within the com-
puter vision research community and as a result, much
progress has been realized. International challenges and
benchmarking data sets such as the yearly Pascal Visual
Object Classes challenge, Caltech101 and later Caltech256
fostered this research by providing annotated data sets for
training and testing. Nevertheless, researchers soon identi-
fied the dependence on the availability of annotated training
data as a serious restriction: the expensive manual annota-
tion process hampers the extension to large numbers of ob-
ject classes (on the order of thousands or even more, taking
into account that humans easily distinguish around 30,000
object categories (Biederman 1987)). More importantly, it
forces methods to extrapolate from a relatively small num-
ber of training examples. Better performance, and especially
better recall, is to be expected if more data were available for
training. In response to this, weakly supervised as well as
fully unsupervised methods have been investigated. In this
paper, we want to experimentally validate the feasibility of
fully unsupervised methods for object recognition, also re-
ferred to as object discovery, where only unlabeled data are
provided.

Unsupervised learning can be formulated as a search for
patterns in the data above and beyond what would be con-
sidered to be pure unstructured noise. Such patterns could
be anything, and need not have a semantic interpretation.
This makes it hard to evaluate unsupervised methods be-
cause multiple solutions (interpretations) can exist and all
be equally valid as far as the data itself is concerned. Here,
we build on the approach proposed in Sivic et al. (2005):
a data set is constructed composed of images from a fixed
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number of predefined categories. The goal is then to sepa-
rate the different categories. This approach provides ground
truth information against which the results obtained by dif-
ferent methods can be evaluated quantitatively.

In contrast to the supervised case, where systematic com-
parison on benchmarking data sets and challenges is stan-
dard practice, to date no in-depth evaluation and compari-
son of different unsupervised methods has been performed.
Instead, each paper reports results on its own data set, gener-
ated ad hoc by throwing together a selection of object cate-
gory images from one of the many annotated data sets avail-
able. Moreover, more often than not, evaluation is limited to
one or two such data sets. This may result in over-optimistic
results due to parameter fine-tuning.

Various evaluation metrics have been proposed, with
classification accuracy probably the most popular one (Sivic
et al. 2005). In this case, each discovered category is linked
(often manually) to a ground truth category. Images are then
assigned to the most probable category and evaluation is per-
formed as for a standard classification problem (with accu-
racy defined as the sum of the diagonal elements of the con-
fusion matrix). However, as the number of object categories
and/or the imbalance in the data set increases, categories can
be merged or split. We argue conditional entropy provides
a more intuitive and scalable measure for a proper evalua-
tion. We also propose a new evaluation scheme for the more
realistic setting with multiple object categories per image,
without imposing pixel-wise classification.

In this paper, a range of different methods are compared,
including baseline methods such as random assignment,
k-means clustering and principal component analysis, and
more advanced methods such as various latent variable mod-
els and spectral clustering schemes. All of these start from
the same underlying image representation: a simple bag-of-
visual-words model that describes the image in terms of a
set of quantized local image patch descriptors. We experi-
ment with several local feature detectors, various vocabu-
lary sizes, as well as different normalization schemes. More
complex image representations that include spatial config-
uration information could yield further improvements, but
fall outside the scope of this paper. Also global image rep-
resentations are not considered, as these would probably be
more sensitive to changing backgrounds, cannot deal with
multiple objects per image, and would make the study too
extensive.

We tried to avoid any kind of manual parameter tuning
or model selection for a specific data set, as this could be
considered a violation of the unsupervised character of our
methods. Instead, we selected reasonable parameters in ad-
vance and held them fixed for all of the experiments. We
report results on more than ten different test sets, each con-
taining 20 or more different object categories, always using
the same parameters.

The only parameter that we assume to be known in ad-
vance is the number of object categories in the data set. Ul-
timately, the machine should be able to decide on this too
without any human intervention, but here we have preferred
to avoid the complex issue of model selection and focus on
comparing the different models given a known number of
classes.

1.1 Related Work

Probably the first work to tackle the problem of unsu-
pervised object category discovery has been Weber et al.
(2000), building on a simplified constellation model-like
scheme.

Especially probabilistic models seem well suited for
tackling the unsupervised object discovery task and have
been studied by several authors. Sivic et al. (2005) have
proposed a method that builds on Probabilistic Latent Se-
mantic Analysis (PLSA), as proposed by Hofmann (1999),
to separate images of four distinct object categories (faces,
airplanes, rear cars, and motorbikes). They later extended
their work, experimenting with both PLSA as well as La-
tent Dirichlet Allocation (LDA) (Blei et al. 2003) and using
multiple image segments as the equivalent of documents, so
as to better localize the objects in the images (Russell et al.
2006). Very similar is the work of Tang and Lewis (2008),
except that they use non-negative matrix factorization (Lee
and Seung 1999). Liu and Chen (2007) extend the PLSA
model with the integration of a temporal model so as to dis-
cover objects in video.

Grauman and Darrell (2006) propose an alternative
method based on spectral clustering. They pay special at-
tention to separate the objects from the background or other
objects present in a single image, and also propose a semi-
supervised extension.

Finally, Kim et al. (2008) build on link analysis tech-
niques developed in the context of graph-mining and typi-
cally used in web search engines.

Recently, unsupervised object discovery methods in-
cluding spatial information (Wang and Grimson 2008;
Todorovic and Ahuja 2006) and hierarchical organization
of categories (Sivic et al. 2008; Bart et al. 2008) have been
proposed as well, but these fall outside the scope of this
paper.

The rest of this paper is organized as follows. First, we
introduce our evaluation metrics, both for the case of a sin-
gle object per image as for the case of multiple objects
per image (Sect. 2). Then we give a concise description of
the image representation we use throughout this paper (see
Sect. 3). Next, in Sect. 4, we give an overview of differ-
ent methods for unsupervised object discovery, starting with
the baseline methods (Sect. 4.1), followed by latent variable
methods (Sect. 4.2) and spectral clustering (Sect. 4.3). In
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Sects. 5 and 6, all these methods are applied both to sub-
sets of Caltech256 and MSRC2 data sets and compared both
quantitatively as well as qualitatively. Section 7 concludes
the paper.

2 Evaluation Metrics

Recent reviews of the literature on measures for clustering
can be found in Meila (2007), Rosenberg and Hirschberg
(2007). Standard measures for scoring clustering quality
against a known standard include purity, defined as the mean
of the maximum class probabilities for the ground truth cate-
gory labels X and obtained cluster labels Y . Given variables
(x, y) sampled from the finite discrete joint space X × Y ,
this is defined as

Purity(X|Y) =
∑

y∈Y

p(y)max
x∈X

p(x|y).

In practice the distribution p(x, y) is unknown so it is es-
timated from the observed frequencies in a test sample, re-
sulting in an empirical purity estimate.

A second measure is the mutual information or entropy
gain

I (X|Y) = H(X) − H(X|Y), (1)

where

H(X|Y) =
∑

y∈Y

p(y)
∑

x∈X

p(x|y) log
1

p(x|y)
. (2)

Likewise, observed frequencies are used instead of proba-
bilities, so one has an empirical entropy gain estimate. Our
experiments have shown that purity and entropy gain are
highly correlated in their ranking of different clusterings Y .

Note we usually estimate these quantities from a test set,
say T , so when we do, we denote them as PurityT (X|Y) and
IT (X|Y).

2.1 Conditional Entropy

The use of entropy gain was originally introduced to allow
the measure to be compared across different domains. In a
single domain, the base entropy H(X) is constant, so one
can also use the conditional entropy, H(X|Y), as a simpler
measure to evaluate different algorithms for generating clus-
ters or components. This has a nice and intuitive interpreta-
tion, as it gives the average amount of uncertainty that re-
mains about X once the value of Y is known. Here we use it
to measure how much uncertainty remains in the true class
given the instances estimated topic or cluster label. Condi-
tional entropy has the following properties:

0 ≤ H(X|Y) with equality iff Y determines X, (3)

H(X|Y) ≤ H(X) with equality

iff Y is independent of X. (4)

Roughly, assuming base 2 logarithms, one can interpret
H(X|Y) as saying that on average there remain about
2H(X|Y) choices for X once Y is known. Thus with 20
classes in ground truth, H(X|Y) = 1 leaves about 2/20
choices and H(X|Y) = 2 leaves about 4/20 choices.

2.2 Using More Clusters

In experiments, one can soon build more clusters or compo-
nents than is known in the ground truth, that is so |X| < |Y |.
How can these subsequently be evaluated against the ground
truth? The problem with the evaluation metrics described so
far is that as |Y | increases, purity and conditional entropy get
better and better. If |Y | were allowed to go arbitrarily large,
purity would go to 1 and conditional entropy would go to 0.
But this is due to over-fitting rather than having a good clus-
tering.

A simple approach is to use an oracle to assign each dis-
covered component to its best known class, and then eval-
uate the resultant assignments as before, using purity, con-
ditional entropy or entropy gain. In practice, the oracle is
created from a data set that we will call the tuning set. Care
must be taken to ensure an unbiased evaluation and there-
fore, the tuning set of the oracle must be separate from the
test set used to estimate the probabilities p(x, y). We use
tuning set T1 for the oracle and test set T2 to estimate prob-
abilities. Probabilities estimated from either set are denoted
p̂T1( ) and p̂T2( ) respectively.

We use a mapping σ : Y → X that represents the assign-
ment of clusters to labels used in the ground truth. Each data
point (x, y) ∈ X × Y is now mapped to a value (x, σ (y)),
a co-domain we denote as X × σ(Y ). Thus any joint distrib-
ution p(x, y) on X×Y infers a joint distribution p(x, x′) on
X × σ(Y ). We then take measures such as purity or entropy
on this inferred distribution w.r.t. the test set. Note that σ( )

could be referred to as a prediction function, and x′ = σ(y)

as the prediction.
Given the tuning set T1, estimate the best mapping, i.e.,

the oracle, by maximizing the purity/entropy as follows:

σpurity = argmaxσ PurityT1(X|σ(Y )), (5)

σentropy = argmaxσ HT1(X|σ(Y )). (6)

Then use the test set T2 to get an unbiased estimate of the
measures:

Purity(X|Y) ≈ PurityT2(X|σpurity(Y )), (7)

H(X|Y) ≈ HT2(X|σentropy(Y )). (8)
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In the case where T1 = T2 and |Y | = |X|, these measures are
equivalent to observed estimates of the previous versions,
and the effect of bias minimal. By keeping the tuning and
test sets different, one can see that as |Y | gets arbitrarily
large, the purity and conditional entropy measures no longer
tend towards their ideal values (one and zero respectively).
This is the effect of using unbiased estimates.

Note, with the above formulation, one can easily do
multiple train-test splits, and even perform N -way cross-
validation to get, arguably, better estimates.

Also, note that for purity, the estimates can be re-phrased
as sample-based sums:

σpurity = argmaxσ

∑

(x,y)∈T1

1x=σ(y), (9)

Purity(X|Y) ≈ 1

|T2|
∑

(x,y)∈T2

1x=σpurity(y). (10)

This form may be more intuitive to some people, but the
formulation as in (5) and (7) brings out the correspondence
with entropy.

2.3 Multi-Class Ground Truth

It is more realistic that each test image contains different
classes of content. For instance, one image of a city scene
might have labels including buildings, cars and trees. The
MSRC2 image set, used in Sect. 6, is such a collection.

Now we could ascribe proportions of each image to the
ground truth. Thus one image of a city scene might have
proportions including 27% buildings, 10% cars, 22% trees
and 41% other (or unknown) class. However, this is not gen-
erally considered a good measure of content, since back-
ground classes like sky or grass often cover larger parts of
the image than the actual foreground objects. Because we
do not know of any established means of assessing propor-
tions in a meaningful manner to classes in an image, we only
consider the existence or non-existence of each class. So the
ground truth for an image is the subset of classes existing in
the image.

In this case the purity measure is clearly useless since it
assumes each image belongs to one class. One can instead
replace purity by accuracy, or go to the more general mea-
sures used in such cases where multiple classes are being
assessed, precision and recall. In our case, precision shall
be taken to mean the proportion of predictions we make that
are accurate, and recall shall be the proportion of true classes
that we predict. In evaluation, we use their harmonic mean
called F1 given by precision∗recall

precision+recall .
For a given image, let S denote the subset of X giving

classes that occur in the image (and thus are positive). Like-
wise, let S′ denote the subset of σ(Y ) giving classes that

have been predicted to occur in the image. Then for one im-
age and a particular prediction function σ( ), the precision is
|S∩S′|
|S′| and the recall is |S∩S′|

|S| . We wish to accumulate those
over the full test set, so quantities we estimate empirically
are instead gathered using a mean. Thus

precisionσ = E(|S ∩ S′|)
E(|S′|) ,

recallσ = E(|S ∩ S′|)
E(|S|) ,

(11)

where E( ) is the expected value function approximated as
ET ( ) by taking the mean of the quantity over a data set T .

Samples now take the form of a subset of classes (de-
noting the true classes for an image) together with either
the best component or the probability scores for the compo-
nents. Thus a sample is (S, y) where S ⊆ X and y ∈ Y , or,
in case of methods outputting a vector of component scores,
(S,q) where S ⊆ X and q ∈ 
Y . The prediction function σ

on Y used previously maps to the space σ(Y ) = X ∪ {void}
which now includes a null class. We need the null class since
some components may not correspond to true classes but
some “other”. Thus each component either maps to a known
class, or it can map to nothing at all. We arbitrarily extend
σ( ) to the score case q ∈ 
Y by defining

σ(q) =
{
x :

∑

y :σ(y)=x

qy > 0.01

}
. (12)

In this case, the predicted classes S′ is given by σ(q).
The F1 score for the prediction function σ( ) estimated

on the data set T is the harmonic mean of precision and
recall given earlier, which simplifies to

F1T
σ (X|Y) = ET (|S ∩ S′|)

ET (|S| + |S′|) . (13)

An unbiased estimate for F1 using the same formulation as
for entropy is then

σF1 = argmaxσ F1T1
σ (X|Y), (14)

F1(X|Y) ≈ F1T2
σF1

(X|Y). (15)

Notice an unbiased estimate for accuracy also follows the
model of purity given earlier:

σaccuracy = argmaxσ

∑

(S,y)∈T1

hamming(S,σ (y))

|X| , (16)

Accuracy(X|Y)

≈ 1

|T2|
∑

(S,y)∈T2

hamming(S,σaccuracy(y))

|X| . (17)

Here, hamming( ) denotes the Hamming distance.
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3 Image Representation

Images are represented using local features. To extract
these we experiment with two scale-invariant feature de-
tectors, Hessian-Laplace and Harris-Laplace (Mikolajczyk
and Schmid 2004), and dense sampling of image patches
using a regular grid over multiple scales. The dense sam-
pling extracts circular patches with diameters of 12, 18, 27,
40, 60 and 90 pixels and centers spaced by respectively 6,
9, 14, 20, 30 and 45 pixels, resulting in about 6000 features
for a 640 × 480 image. The number of features extracted by
Hessian-Laplace or Harris-Laplace varies according to the
image, but is usually much lower.

In each case, the patch content is described using SIFT
(Lowe 2004) and vector-quantized using k-means, resulting
in a fixed-size visual vocabulary. We experimented with vo-
cabularies of 1000, 5000, and 20,000 words (using the Ap-
proximated K-Means algorithm proposed by Philbin et al.
2007 for the largest vocabularies). A single vocabulary is
learned for each feature type, on a subset of the images.
When combining multiple feature types, we still compute
the vocabularies separately and concatenate the resulting
bag-of-visual-words. This brings an automatic balancing be-
tween the different feature types. The SIFT features are not
made rotation invariant because (for upright images) feature
orientation typically yields valuable class information. For
the dense patches, homogeneous patches are identified prior
to the normalization performed by SIFT. To this end, we
test if all elements are below a fixed threshold, which we
set empirically. If so, we set the SIFT vector equal to zero.
If not, we perform the normalization. The effect is that all
homogeneous patches end up in a single visual word. Ad-
ditionally, for the MSRC2 data set, we also experimented
with a color-based descriptor. To this end, a patch is sub-
divided into 2 × 2 sub-patches. Each of these is described
with a color histogram with 32 bins. This results in a 128 di-
mensional feature vector, as was the case for SIFT. Instead
of using a regular discretization in color space, we compute
the bins in a data-driven way, by vector-quantizing the HSV
color space with k-means. This results in more realistic col-
ors for the bin centers and a more uniform distribution over
the bins.

The resulting features are collected to form a bag-of-
words image representation. Spatial information such as the
image positions of features, their scale or the relative posi-
tions of feature pairs, is discarded.

4 Methods for Unsupervised Object Discovery

4.1 Baseline Methods

In order to provide a yardstick for the more specialized tech-
niques, we have tested several baseline methods:

– Random assignment (RAN). Each image is assigned to
a category randomly with uniform probability. Random
assignment provides a sanity check in that other methods
should always perform better.

– k-means on bag of words (BOW). Starting from the bag-
of-words image representation, 20 runs of the k-means
algorithm are performed and the labeling of the run with
the lowest reconstruction error is reported.

– k-means on L1 normalized bow (L1-BOW). As in the pre-
vious method, 20 runs of k-means are performed on a bag-
of-words representation, but in this case the histograms
are normalized by their L1 norm before running k-means.
This gives them the properties of a probability distribu-
tion over visual words and compensates for the variable
number of features found in different images.

– k-means on L2 normalized bow (L2-BOW). As before,
20 runs of k-means are performed on a bag-of-words rep-
resentation, but in this case the histograms are normalized
by their L2 norm before running k-means. This gives all
bag-of-word vectors unit length and compensates for the
variable number of features found in different images.

– k-means on binarized bow (bin-BOW). Again, 20 runs of
k-means are performed on a bag-of-word representation,
but in this case the histograms are binarized before run-
ning k-means. The threshold is set for each dimension
separately as the mean of that feature dimension. Such bi-
narization process is expected to bring additional robust-
ness.

– k-means on tf-idf weighted bow (tfidf-BOW). As above,
20 runs of k-means are performed on a bag-of-words
representation, but the histogram entries are weighted by
the product of term frequency and inverse document fre-
quency, where these are defined as follows. Term fre-
quency is the number of times a given visual word appears
in the image, normalized by the total number of features
in the image. Inverse document frequency is a measure of
the general importance of the visual word and obtained by
dividing the number of all images in the database by the
number of images containing the visual word, and then
taking the logarithm of that quotient.

– k-means on PCA of BOW (PCA). We repeated the exper-
iments above, but now the dimensionality of the (possi-
bly normalized) bag-of-words representation is reduced
to 20 using principal component analysis (PCA), thereby
reducing the influence of noise in the data. Afterwards
20 runs of k-means are performed as above.

We have chosen k-means for the vector quantization
process, as this is the default clustering algorithm to build
visual vocabularies used in the literature. Of course, also
other clustering methods could be used. We experimented
with a Gaussian mixture model, and found this to give com-
parable results in most cases, but also to produce degenerate
solutions from time to time. Due to lack of space, we only
report on the results obtained with k-means.
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4.2 Latent Variable Methods

Good introductions to latent variable models from a num-
ber of different viewpoints can be found in Blei et al.
(2003), Canny (2004), Buntine and Jakulin (2006). Latent
Dirichlet Allocation (Blei et al. 2003) is a Bayesian ver-
sion of the earlier Probabilistic Latent Semantic Analysis
of Hofmann (1999), and (except when the priors are being
optimized as well) both are versions of the general Gamma-
Poisson model of Canny (2004). Non-negative matrix fac-
torization (Lee and Seung 1999) is a simplified minimum
entropy or maximum likelihood version as well. The rela-
tionships among these models are discussed in Buntine and
Jakulin (2006), which characterizes them as methods for dis-
crete independent component analysis. The differences are
largely at the level of optimization algorithms, the use or
lack of priors or weighted likelihoods, and the mathematical
language used (likelihood, entropy, posterior, cost function,
etc.).

We now present the general model. We will use the vo-
cabulary of visual words, bags and images but all of the
models generalize to other kinds of data including notably
text. In statistical terminology a visual word is an observed
variable and an image (instance) is characterized by its set
of observed variables. Image data is supplied in the form
of counts for visual words. Let wj denote the number of
words of type j that appear in the image, and L = ∑

j wj

denote the total number of words in the image. The image
is therefore represented as a bag of (visual) words as a J -
dimensional data vector w, where J is the size of the visual
vocabulary.

For each image there is also a K-dimensional vector l
of latent (hidden or unobserved) topic scores, where K is
the number of different topics in the model. In the litera-
ture, topics are sometimes also called components, factors,
aspects or clusters.

The main parameter matrix of the model is the J × K

topic loading matrix �, with entries θj,k , which give the
propensities of each topic for each visual word. The column
for each topic k is normalized across features,

∑
j θj,k = 1,

so it represents the frequency with which the various
words/features occur in topic k.

When using Bayesian or full probability modeling,
a prior is needed for �. A Dirichlet prior can be used
for each k-th topic of � with J prior parameters γj , so
θ ·,k ∼ DirichletJ (γ ). In practice we use a Jeffreys’ prior,
which corresponds to γj = 0.5. The use of a Dirichlet has
no strong justification other than conjugacy (i.e. analytical
tractability), but the Jeffreys’ prior has some minimax prop-
erties (Clarke and Barron 1994) that make it more robust.

4.2.1 The Conditional Gamma-Poisson Model (NMF)

The general Gamma-Poisson model, introduced in Canny
(2004), is now considered in more detail. We present a vari-

ant of it, which corresponds to a modified form of non-
negative matrix factorization (NMF).

The latent topic scores vector l has entries lk which are
independent and Gamma distributed

lk ∼ Gamma(αk,βk) for k = 1, . . . ,K.

The parameters (αk,βk) can be collected into K-dimension-
al model parameter vectors α and β . The observed data w is
assumed to be Poisson distributed, for each j

wj ∼ Poisson
(
(�l)j

)
.

The full likelihood for each image, i.e. p(w, l | β,α,

�,K,Gamma-Poisson), is composed of two parts. The first
comes from the K independent Gamma distributions for the
lk , and the second from the J independent Poisson distribu-
tions for the wj with parameters

∑
k lkθj,k :

∏

k

β
αk

k l
αk−1
k exp{−βklk}

�(αk)

×
∏

j

(
∑

k lkθj,k)
wj exp{−(

∑
k lkθj,k)}

wj ! . (18)

In practice, when fitting the parameters α in the Gamma-
Poisson or Dirichlet-Multinomial models, it is often the case
that the αk become very small, so for example 90% of the
topic scores lk might turn out to be less than 10−8 once nor-
malized. Rather than maintaining these negligible values, we
can allow the lk to become zero with some finite probability.
Allow the lk to be independently zero with probability ρk

and otherwise gamma distributed with probability 1 − ρk .
The full likelihood is now p(w, l | β,α,ρ,�,K,NMF), and
modifying the above (18), the full likelihood for each image
replaces the term inside

∏
k with:

(1 − ρk)
β

αk

k l
αk−1
k exp{−βklk}

�(αk)
+ ρk1lk=0. (19)

4.2.2 The Dirichlet-Multinomial Model (LDA)

The Dirichlet-multinomial form was introduced as MPCA
(Multinomial PCA) in Buntine (2002), but is also equivalent
to LDA (Blei et al. 2003). In this case the latent variables l
are kept normalized, so denote them differently as m.

m ∼ DirichletK(α),

w ∼ Multinomial(L,�m).

The arguments of the multinomial are the (known) total
word count and the vector of probabilities. The full likeli-
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hood is now p(w,m | L,α,�,K,DM), and the likelihood
for each image is

CL
w1,...,wJ

�

(∑

k

αk

)∏

k

m
αk−1
k

�(αk)

∏

j

(∑

k

mkθj,k

)wj

(20)

where CL
w is L choose w1, . . . ,wJ . The DM model can also

be derived from the above Gamma-Poisson model if α and β

are held constant (Buntine and Jakulin 2006), but in practice
one typically tries to fit α in LDA so the strict equivalence
does not hold.

4.2.3 Algorithm

The algorithm used here is the default high-performance al-
gorithm supplied in the DCA code,1 where:

– The Griffiths-Steyvers algorithm is used for model fitting.
This is a specialized Gibbs sampler that is considerably
more efficient because it only runs on the word-to-topic
assignments (the k for each image), the other unknowns
having been marginalized out.

– Only 300 cycles of Griffiths-Steyvers are used for conver-
gence, with a further 100 cycles of a regular Gibbs sam-
pler being run to record the results (the hidden variables l
or m for each image, and the topic loading matrix �).

– The hyper-parameters of the Dirichlet or Gamma priors
(α and β) are estimated using a bounded gradient-descent
algorithm that wraps around the above.

– Thus, in total only one run of 300+100 cycles is done for
each experiment.

4.3 Spectral Clustering Methods

Spectral clustering denotes a family of techniques that rely
on the eigen-decomposition of a modified similarity ma-
trix to project the data prior to clustering. The variant most
commonly referred to as Spectral Clustering first projects
the data using the eigenvectors of an appropriately defined
Laplacian followed by k-means clustering in the projected
space (Ng et al. 2002). The projection of the data based
on the Laplacian can be viewed as a variant of a well jus-
tified dimensionality-reduction technique called the Lapla-
cian eigenmap (LEM) (Belkin and Niyogi 2003). There
are similar methods based on Kernel PCA (KPCA). In fact
Laplacian eigenmaps and KPCA solve very closely related
learning problems (Bengio et al. 2004). As the two variants
have differing behavior depending on the employed feature
representation (Sect. 5.4), we have included results for both.
The techniques and their relationship are discussed in the
following sections.

1See http://nicta.com.au/people/buntinen.

4.3.1 Kernel PCA Clustering (KPCA)

KPCA performs PCA on data that are projected and centered
in a Hilbert space defined by a kernel function (Schölkopf
et al. 1998). In the case of a linear kernel this is equiva-
lent to PCA, but in the case of a RBF kernel—i.e. one that
can be written in the form k(x, x′) = f (d(x, x′)) where d

is a metric—the projection enhances locality in d and hence
tends to decrease intracluster distances while increasing in-
tercluster ones. The linear case (PCA) is one of our baseline
methods, and in order to extend the technique to the non-
linear case we have experimented with two exponential ker-
nels, the Gaussian kernel, which uses the standard L2 met-
ric,

kGauss(x, x′) = e
− 1

2σ2

∑d
i=1(xi−x′

i )
2

(21)

and the χ2-kernel, which relies on the χ2 distance:

kχ2(x, x′) = e
− 1

2σ2

∑d
i=1

(xi−x′
i
)2

xi+x′
i . (22)

In both cases, the scale parameter σ 2 is set to the mean of
the unscaled exponent. The Gaussian kernel with the stan-
dard L2 metric is commonly used in spectral clustering al-
gorithms (Belkin and Niyogi 2003; Ng et al. 2002), while
the kernel using the χ2 distance has been shown to be par-
ticularly effective for histogram data (Chapelle et al. 1999).

Our algorithm for clustering using kernel PCA is as fol-
lows:

Ki,j = k(x(i), x(j)) (23)

K̃ = K − 1

l
eeT K − 1

l
KeeT + 1

l2
(eT Ke)eeT (24)

(U,�) = eigs(K̃,dim) (25)

X̃ = KU�− 1
2 (26)

C = kmeans(X̃,dim) (27)

where Xi is the ith row of X, e represents a vector of all
ones, U is a matrix whose columns correspond to the dim
largest eigenvectors of K̃ , � is a diagonal matrix whose en-
tries correspond to the dim largest eigenvalues of K̃ , and C

is a vector containing the cluster assignment of each image,
Ci ∈ 1, . . . ,N . Equation (24) is a centering step. It ensures
that the resulting kernel matrix K̃ corresponds to the dot
products of the vectors in a data set that is centered at the ori-
gin of the Hilbert space implicitly defined by k (Schölkopf
et al. 1998).

4.3.2 Normalized Cuts Spectral Clustering (LEM)

Normalized cuts spectral clustering has the same form as
KPCA clustering, but employs an embedding based on a dif-

http://nicta.com.au/people/buntinen
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ferent interpretation of the similarity matrix. Given a sim-
ilarity matrix K , we define the unnormalized Laplacian
L ≡ D − K where D is a diagonal matrix that contains the
row sums of K , and the symmetric normalized Laplacian

L ≡ D− 1
2 LD− 1

2 . As described in Ng et al. (2002), the nor-
malized cuts algorithm consists of the following steps

Ki,j = k(x(i), x(j)) (28)

L = D− 1
2 KD− 1

2 (29)

X = eigs(L,dim) (30)

X̃i = Xi

‖Xi‖ (31)

C = kmeans(X̃,dim). (32)

To see the relationship between this algorithm and the
KPCA algorithm, we consider also the random walks Lapla-
cian Lrw ≡ D−1L. The eigenvectors of L and Lrw are re-
lated in a straightforward way: λ is an eigenvalue of Lrw

with eigenvector u if and only if λ is an eigenvalue of L
with eigenvector w = D

1
2 u (von Luxburg 2007). The Lapla-

cian eigenmap of Lrw is defined as the embedding of the
data that solves

min
α,αT Dα=1

αT Lα = min
α

αT Lα

αT Dα
= max

α

αT Kα

αT Dα
. (33)

If D ≈ dI where d is some scalar, then the eigenvectors
obtained from KPCA using K will be the same as the gen-
eralized eigenvectors of Lrw as well as L. The eigenvectors
differ, however, in the case that D has a non-uniform spec-
trum.

4.3.3 Analysis of Spectral Clustering

A useful interpretation of the Laplacian Eigenmap is that if
the data lie on a submanifold and are uniformly and densely
sampled on it, the matrix employed is a discrete approxima-
tion to the Laplace-Beltrami diffusion operator on the sub-
manifold (Belkin and Niyogi 2003). Performing k-means
clustering in a linear projection of this matrix then approxi-
mates clustering based on distances within the submanifold.

Apart from the number of clusters, the only free para-
meter in these algorithms is the dimensionality dim of the
spectral feature space, i.e. the number of eigenvectors kept
in the dimensionality reduction. A good value for this can
be estimated from the spectrum of the kernel matrix, which
is typically rapidly decreasing. Despite the inverse square
root weighting of the eigenvalues in (26), the overall influ-
ence of non-informative dimensions is still small (propor-
tional to the square root of their eigenvalue) as K itself con-
tains a power +1 weighting of dimensions by eigenvalues.

This makes the KPCA clustering insensitive to overestimat-
ing the dim parameter. In contrast, normalized cuts spectral
clustering is more sensitive to the right choice of dim, as the
eigenvectors are not scaled by the square root of the eigen-
values. If dim is chosen too large, this will include directions
that consist mainly of noise.

For our main experiments we set the number of dimen-
sions equal to the number of clusters. See Sect. 5.4 for a dis-
cussion of the behavior of the spectral clustering algorithms
for varying numbers of dimensions.

5 Experimental Evaluation on Caltech 256

5.1 Data Set

We first evaluate our methods on the Caltech 256 data
set (Griffin et al. 2007) which contains 256 object cate-
gories with over 80 images each, plus one generic cate-
gory for ‘image clutter’. To avoid over-fitting to a particular
data set we select several different subsets of 20 categories
each for testing. First, we have manually selected a sub-
set of 20 categories that we believe could be discriminated
relatively well based on their visual feature distribution.
These are listed in Table 1. In addition to this, 12 subsets
have been selected consisting of object category numbers
1–20,21–40, . . . ,221–240 in the original numbering that
comes with the data set (which is based on an alphabetical
ordering of the object categories). We perform a detailed
evaluation on the ‘selected’ subset, but also report results
on the other test sets to verify whether the conclusions are
sufficiently generic in nature.

5.2 Comparison of the Baseline Methods

We first compare the performance of the baseline methods
described in Sect. 4.1: RAN, BOW, L1-BOW, L2-BOW,
bin-BOW, and tfidf-BOW. We experiment with several im-
age representations, i.e. different feature detectors, as well
as combinations thereof. The results for the selected test set
of Table 1 are summarized in Table 2.

First, note that randomly assigning images to clusters re-
sults in a conditional entropy score of 3.62 for this data set.

Table 1 20 object categories selected manually for easy discrimina-
tion

American flag diamond ring dice

fern fire extinguisher fireworks

French horn ketch 101 killer whale

leopards 101 mandolin motorbikes 101

pci card rotary phone roulette wheel

tombstone Pisa tower zebra

airplanes 101 faces easy 101
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Table 2 Comparison of different baseline methods using different image representations on the Caltech-256 selected test set of Table 1, measured
as conditional entropy (lower is better)

Features Voc. size BOW L1-BOW L2-BOW bin-BOW tfidf-BOW

Harris Laplace 1000 2.86 ± 0.10 2.93 ± 0.11 2.41 ± 0.04 2.52 ± 0.02 2.88 ± 0.08

Hessian Laplace 1000 2.89 ± 0.08 2.69 ± 0.05 2.22 ± 0.04 2.52 ± 0.04 2.68 ± 0.04

HarLap + HesLap 2000 2.96 ± 0.10 2.66 ± 0.05 2.08 ± 0.03 2.43 ± 0.04 2.71 ± 0.15

Dense patches 1000 2.49 ± 0.10 2.13 ± 0.04 1.96 ± 0.04 1.78 ± 0.03 2.34 ± 0.02

HarLap + dense 2000 2.48 ± 0.10 2.25 ± 0.07 1.75 ± 0.03 1.73 ± 0.03 2.66 ± 0.13

HesLap + dense 2000 2.48 ± 0.09 2.13 ± 0.07 1.74 ± 0.04 1.72 ± 0.03 2.59 ± 0.07

HarLap + HesLap + dense 3000 2.52 ± 0.10 2.24 ± 0.07 1.67 ± 0.04 1.77 ± 0.05 2.61 ± 0.13

Hessian Laplace 5000 3.22 ± 0.12 3.09 ± 0.14 2.18 ± 0.07 3.04 ± 0.13 3.22 ± 0.09

Hessian Laplace 20,000 3.36 ± 0.15 3.31 ± 0.09 2.27 ± 0.06 3.39 ± 0.15 3.38 ± 0.17

This value is already lower than log2(20) = 4.32, because
the selected image categories are not equally sized. The best
performing baseline method achieves a conditional entropy
score of 1.67. In other words, by applying it, the remain-
ing uncertainty on the true object category has been reduced
from 23.62 = 12.3 out of 20 for the random assignment down
to 21.67 = 3.2 out of 20 for the best combination.

Second, normalization of the bag-of-words representa-
tion is crucial when using a simple algorithm like k-means
for object discovery. However, which type of normaliza-
tion gives the best results depends on the type of fea-
tures used. When using interest points (Hessian-Laplace
or Harris-Laplace), normalization using L2 norm gives the
best results, followed by a binary bag-of-words. When us-
ing dense sampling, on the other hand, the binarized ver-
sion of the bag-of-words gives best results, followed by L2-
normalization. However, on the other test sets, in most cases
L2 normalization gives best results, also for dense patches.
L1 normalization is in most cases better than no normaliza-
tion, but not as good as L2 or binary. The good performance
of the binary bag-of-words may be somewhat surprising, as
a lot of information is thrown away. Yet, the non-linearity
of the thresholding process reduces the effect of very strong
peaks in the histograms, as is typically found for the bin cor-
responding to homogeneous patches in case of dense sam-
pling.

Third, the results of tf-idf are somewhat disappointing
and below our expectations. It does improve the perfor-
mance for small vocabulary sizes. For combined features or
large vocabularies, on the other hand, it does not seem to
have much influence at all. This form of normalization has
proven useful in text document analysis, but the underlying
reasoning seems not to generalize to the object discovery
setting.

Fourth, dense patches give better results than the interest
point detectors. Hessian-Laplace features seem slightly bet-
ter than Harris-Laplace (at least for this test set). However,

the more feature types are combined, the better the results
get.

Finally, we increased the size of the vocabulary for the
Hessian Laplace features from 1000 to 5000 and 20,000. Al-
though this allows one to capture more fine-grained details,
none of the baseline methods seems to benefit significantly
from the larger vocabularies.

PCA dimensionality reduction We also experimented with
a dimensionality reduction based on Principal Component
Analysis (PCA) prior to the k-means clustering. However,
when combined with dense sampling or with L2 normaliza-
tion (i.e., the methods performing best without PCA), this
did not have any effect. When combined with interest points
and L1 normalization or binary bag-of-words, a minor im-
provement was found, but never more than 0.3 and never
beating the best combination without PCA.

Other test sets The results over all 13 Caltech256 test sets
for a selected set of baseline methods are shown in Fig. 1.
The overall ranking of the methods is relatively stable over
the different test sets. This confirms that our conclusions
drawn for the selected test set are general in nature. In most
cases, the dense patches give better results than the interest
point detectors, but not always. However, in all cases, the
combination of all feature types and L2 normalization gives
the best result.

On two of the test sets (‘selected’ and ‘141–160’) all
scores are systematically lower than on the remaining test
sets. This holds for all methods including random selection.
These are test sets containing one or more object categories
with a significantly larger number of images than the others.
For instance, airplanes and motorbikes have around 800 im-
ages each, while the average number of images is only 116.
With unbalanced data sets, the detected clusters tend to have
more peaked distributions of ground truth labels and as a
result lower conditional entropy scores. It is important for
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Fig. 1 (Color online) Conditional entropies for the different baseline methods on all 13 test sets of Caltech256

Table 3 Results of the latent
variable methods using different
image representations, for the
selected Caltech256 categories
of Table 1, measured in
conditional entropy (lower is
better)

Features Voc. size LDA NMF

Harris Laplace 1000 2.63 ± 0.03 2.56 ±0.03

Hessian Laplace 1000 2.40 ± 0.03 2.37 ±0.05

HarLap + HesLap 2000 2.31 ± 0.05 2.28 ±0.05

Dense patches 1000 2.17 ± 0.05 2.18 ±0.05

HarLap + dense 2000 2.12 ± 0.05 2.14 ±0.03

HesLap + dense 2000 2.06 ± 0.07 2.06 ±0.07

Hessian Laplace 5000 2.15 ± 0.04 2.13 ±0.03

Hessian Laplace 20,000 1.99 ± 0.02 2.00 ± 0.04

unsupervised methods to be able to handle such imbalances
correctly. Therefore, we intentionally did not balance our
test sets. However, for comparison, we also performed some
tests on balanced test sets (using the first 80 images of each
category). This gave roughly the same results and won’t be
reported in detail here. Note that the imbalances also pre-
vent the comparison of absolute entropy scores between the
different test sets (see also Sect. 2.1).

5.3 Comparison of the Latent Variable Models

Next, we evaluate the latent variable methods: Latent Dirich-
let Allocation (LDA) and Non-negative Matrix Factorization
(NMF), described in Sect. 4.2. The main results are sum-
marized in Table 3 and Fig. 3. First, we notice that the re-
sults are not as good as the results reported earlier, with the
lowest conditional entropy being 1.99, which corresponds to
a remaining uncertainty of 21.99 = 4 out of 20 object cate-
gories. This is worse than some of the results obtained with
the much simpler baseline methods. This can be explained
by the fact that the latent variable models are more general,
in that they have been developed especially to deal with the
case of multiple components per image. However, for the
Caltech256 data set, where there is only a single object cate-
gory per image, this higher level of flexibility is not needed.

Hence, clustering-based methods, which exploit this special
characteristic, yield better results.

Second, we observe that the latent variable methods
do not benefit that much from combining different feature
types, in contrast to some of the baseline methods. This
can be explained by the fact that they are essentially based
on probability distributions (Buntine and Jakulin 2006):
when dense data is provided, it dominates the distributions,
so incorporating additional sparse features has little effect.
Maybe a re-weighting of the different bag-of-words before
concatenating them could overcome this problem. For the
same vocabulary size, dense patches still outperform the in-
terest point detectors, and Hessian Laplace again gives better
results than Harris-Laplace (at least for this test set). Larger
vocabularies seem to be especially beneficial in this context.
By increasing the size of the vocabulary, the conditional en-
tropy for Hessian Laplace features can be reduced from 2.4
down to 1.99.

Third, the differences between the two latent variable
models are minimal. NMF slightly outperforms LDA when
interest point detectors are used, while the opposite is true
when using dense sampling—but these differences are in-
significant.

Finally, in contrast to what we observed earlier for the
baseline methods, the latent variable models do seem to ben-
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Table 4 Results of the spectral
clustering based methods using
different image representations,
for the selected Caltech256
categories of Table 1, measured
in conditional entropy (lower is
better)

Features Voc. size L2-KPCA-G L2-KPCA-χ2 L2-LEM-G L2-LEM-χ2

Harris Laplace 1000 2.42 ± 0.02 2.32 ± 0.01 2.57 ± 0.02 2.54 ±0.03

Hessian Laplace 1000 2.23 ± 0.02 2.26 ± 0.02 2.31 ± 0.01 2.25 ±0.01

HarLap + HesLap 2000 2.06 ± 0.02 2.09 ± 0.01 2.21 ± 0.01 2.10 ±0.02

Dense patches 1000 2.00 ± 0.01 1.81 ± 0.02 2.04 ± 0.02 1.83 ±0.02

HarLap + dense 2000 1.79 ± 0.02 1.65 ± 0.01 1.85 ± 0.03 1.65 ±0.05

HesLap + dense 2000 1.77 ± 0.01 1.65 ± 0.02 1.95 ± 0.03 1.62 ±0.02

HarLap + HesLap + dense 3000 1.73 ± 0.01 1.64 ± 0.02 1.86 ± 0.01 1.58 ± 0.02

Hessian Laplace 5000 2.22 ± 0.02 2.20 ± 0.02 2.33 ± 0.00 2.22 ±0.02

Hessian Laplace 20,000 2.28 ± 0.03 2.35 ± 0.04 2.37 ± 0.03 2.29 ±0.02

efit significantly from the use of larger vocabularies. By in-
creasing the size of the vocabulary, the Hessian Laplace fea-
tures outperform the results of the (small vocabulary) dense
features. This can be explained by the fact that larger vocab-
ularies make the bag-of-words descriptions sparser.

5.4 Comparison of Spectral Clustering Based Methods

Next, we evaluate the object discovery methods based
on spectral clustering: Laplacian Eigenmaps (LEM) and
kernel-PCA (KPCA). For the 20 categories of Table 1, the
most important results are summarized in Table 4.

For both methods (LEM and KPCA) we have experi-
mented with two types of kernels (Gaussian and χ2) on top
of both L1 and L2 normalized bag-of-words. The χ2 kernel
gives consistently better or similar results compared to the
Gaussian kernel. Using the χ2 kernel, no significant differ-
ences in performance between the two types of normaliza-
tion (L1 and L2) are found. Using the Gaussian kernel, L2
normalization seems to work slightly better than L1. Due to
the power of the spectral clustering, the choice of the right
normalization scheme seems to be less critical. We only in-
clude the L2 normalization results in the table.

Comparing KPCA and LEM, no significant differences in
performance are found. The overall best result using spectral
clustering is obtained when using a combination of all fea-
ture types, L2 normalization and Laplacian eigenmaps with
a χ2 kernel, giving a conditional entropy score of 1.58. This
corresponds to a remaining uncertainty on the true object
category of 21.58 = 3.0 out of 20, and makes the spectral
clustering methods the best performing scheme on this test
set.

The spectral clustering methods work best when as many
features as possible are combined. Especially including the
dense patches seems to be beneficial. The larger vocabu-
laries, however, do not bring any further improvement, but
rather reduce performance.

Number of dimensions For the spectral clustering meth-
ods, as for principal component analysis, there is a free pa-

Fig. 2 (Color online) Conditional entropy as a function of the di-
mensionality of the reduced space for PCA, LEM, and KPCA, using
Hessian-Laplace (top), dense patches (middle), and all three feature
types combined (bottom)

rameter determining the number of dimensions onto which
to project the original space. So far, we have fixed this para-
meter to the (known) number of object categories in the data
set, i.e. 20. In Fig. 2 we explore the effect of changing this
parameter. Interestingly, for the image representations based



Int J Comput Vis (2010) 88: 284–302 295

Fig. 3 (Color online) Conditional entropies for the best performing combinations on all 13 test sets of Caltech256

on interest points (Hessian Laplace and Harris Laplace), the
performance of the Laplacian Eigenmaps decreases with in-
creasing dimension. In fact, the optimum is even below 20
dimensions. However, when the dense patches are included
in the image representation (by themselves, or in combina-
tion with the interest points), LEM performance keeps im-
proving with more dimensions, though it also gets noisier.
This behavior can be explained by the scaling of the eigen-
vectors (see Sect. 4.3). KPCA and PCA use a different scal-
ing method and are not affected: they saturate nicely for all
(combinations of) feature types (PCA earlier than KPCA).

Other test sets Figure 3 shows the results for the best per-
forming methods on all 13 test sets of Caltech256. Again,
the overall ranking of the methods is found to be relatively
stable over the different data sets. The spectral clustering
methods always give the best results. The latent topic mod-
els cannot compete with the spectral clustering results nor
with the best baseline method (i.e., using all feature types
and L2 normalization). The difference between the two dif-
ferent latent topic models is negligible, and the same holds
for the difference between the two versions of spectral clus-
tering.

However note that even the best models are far from
perfect in these tests, with the lowest conditional entropy
scores typically around 3, reducing the residual label ambi-
guity from around 18 out of 20 for the random assignment
to around 8 out of 20.

5.5 Qualitative Evaluation

Apart from the quantitative analysis given above, it is in-
teresting to visually evaluate the components found by the
different methods. Indeed, even if they do not correspond to
the 20 ground truth object classes, the components may still
capture relevant patterns in the background or focus on com-
mon characteristics shared by multiple object categories.

Figures 4 and 5 illustrate this for latent variable model
NMF and spectral clustering LEM, again using the 20 cate-
gories of Table 1. Each method uses the feature set that gives
the best performance for it in the above experiments, that is
the combination of all three feature types for spectral clus-
tering and the 20,000 words vocabulary based on Hessian
Laplace for the latent variable model. Each figure has the
20 detected components as rows, sorted in increasing order
of their conditional entropy (i.e., the cleanest components
are shown on top). In each row 12 images are shown, ran-
domly sampled from those assigned to the category. Note
that this is in contrast to most of the existing presentations
in the literature where only the top N “most typical” im-
ages are shown. However, we believe that showing random
images gives a more realistic image of the methods capabili-
ties. To the right of each row we give the conditional entropy
of the component and the number of images assigned to it.

A detailed examination of the images gives rise to several
observations:

– The unsupervised methods sometimes discover a finer
granularity of object classes than expected, e.g. splitting
airplanes in the sky from airplanes on the ground.

– Both methods are affected by the unbalanced input data.
For example motorbikes, airplanes and faces have re-
spectively 798, 800 and 453 images. As a result, these
categories have relatively more weight in the clustering.
In practice the clustering almost always splits them into
more than one component, which in turn forces some of
the other less frequent object categories to be merged. The
latent variable methods seem to be more robust in this re-
spect than the spectral clustering.

– The images are more or less equally spread over the
discovered categories, but less so for the latent variable
methods than for the spectral clustering.

– For spectral clustering, the top three components have
a conditional entropy of 0.00, which indicates that for
each of these components, all of the images assigned to
it belong to a single ground truth object category.
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Fig. 4 (Color online) 12 prototypical images for each of the 20 components, as detected with the latent variable method NMF, using the optimal
settings (a 20,000 words vocabulary based on Hessian-Laplace), for the selected test set of Table 1. For each component, we also indicate the
conditional entropy (black) and the number of images assigned to this topic (blue)
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Fig. 5 (Color online) 12 prototypical images for each of the 20 components detected by spectral clustering, using the optimal settings (all feature
types combined, χ2 kernel, L2 normalization), for the selected test set of Table 1. For each component, we also indicate the conditional entropy
(black) and the number of images assigned to this topic (blue)
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– Conditional entropy scores above 2 indicate that there are
still more than 4 choices for the true object category after
being informed about the discovered category (see also
Sect. 2.1). In a sense, we could say that discovered cat-
egories with a conditional entropy above this threshold
are not really matching to any of the ground truth cate-
gories. With this criterion, our methods have only discov-
ered the airplanes, motorbikes, and faces. On top of that,
spectral clustering was able to discover one more class,
being leopards, while NMF discovered the Pisa tower.

– For the latent variable methods, the discovered object cat-
egories sometimes focus on part of the image only. For in-
stance, two different components are used for the Ameri-
can flags, where one focuses on the stripes (and as a result,
also contains images of zebras) while the other focuses on
the stars (including also many dice).

– The image representation is not robust to intensity inver-
sions. As a result the dice with dark spots are in a different
category as the dice with bright spots (for the latent vari-
able method, at least).

– Some of the object categories were not isolated by any
method, including rotary dial telephones, mandolins and
fire extinguishers. Presumably the feature extraction fails
to find a sufficiently large set of distinctive features that
appear consistently on these classes and not on any others.

6 Experimental Evaluation on MSRC2 Data Set

6.1 Data Set

The Caltech 256 data set used so far is limited in that it only
contains a single object category per image and the object
is always centered in the image, often with a homogeneous
background. This simplifies the object discovery task signif-
icantly and makes the experiment somewhat artificial. That

is why we have also included experiments on the MSRC2
data set (Shotton et al. 2006).

This data sets contains 591 images of 23 different ob-
ject categories, some of which are truly objects (e.g., car,
book, cow) while some are more scene types (e.g., grass,
road, sky). All the images have been manually segmented
and often contain multiple object categories simultaneously.

6.2 Quantitative Evaluation

Instead of conditional entropy, we evaluate the performance
of the different methods using the scheme proposed in
Sect. 2.3: based on a tuning set which acts as an oracle,
the discovered components are first assigned to the ground
truth object categories (or none, if such assignment harms
the quality measure). This does not introduce a bias, since
the evaluation is then performed on a held-out test set. All
results are computed using 4-way cross-validation. Here, we
report results using both the F1-measure as well as purity.

The most important results are summarized in Table 5.
Interestingly, on this data set and using the multi-class eval-
uation scheme, the latent variable method outperforms the
clustering-based method. This can be explained by the fact
that the clustering scheme cannot separate the different com-
ponents in the images.

Splitting up the F1-measure in precision and recall shows
a significant difference between the two methods: the spec-
tral clustering method has a relatively high precision (≈70)
but a low recall (≈30), while the latent variable method
has more average precision and recall (≈45 and ≈55 re-
spectively). Indeed, the spectral clustering groups all images
with the same scene type together (e.g. cows on a field with
sky above), and does so relatively accurately, but cannot
generalize the concept to include also the same objects on
a different background or in combination with other objects.
The latent variable model does better in this respect. How-
ever, there is still a lot of room for improvement. Especially

Table 5 Comparison of the different methods based on the MSRC2 data set, measured in F1 score as well as purity (higher is better)

Using 23 components F1-measure Purity

Features Descriptor Voc. size L2-BOW NMF L2-LEM-χ2 L2-BOW NMF L2-LEM-χ2

Dense patches SIFT 1000 0.196 0.239 0.201 0.853 0.869 0.853

Dense patches color 1000 0.170 0.253 0.154 0.853 0.866 0.853

Hessian Laplace color 1000 0.143 0.215 0.151 0.853 0.860 0.853

Hessian Laplace SIFT + color 1000 0.162 0.224 0.149 0.853 0.863 0.853

Using 50 components

Dense patches SIFT 1000 0.193 0.243 0.204 0.853 0.872 0.852

Dense patches color 1000 0.176 0.253 0.176 0.853 0.867 0.853

Hessian Laplace color 1000 0.147 0.201 0.161 0.853 0.860 0.853

Hessian Laplace SIFT + color 1000 0.162 0.225 0.152 0.854 0.864 0.853
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the more complex objects are still problematic. Maybe this
could be overcome by switching to a larger data set, with
more examples of each object category and more variability
in scene composition.

As before, using dense patches seems to give better re-
sults than using interest point detectors. Since color seems
to be important in this data set (e.g., to distinguish between
road, sky, and grass), we have also experimented with a
color-based descriptor (see Sect. 3). The color-based results
are competitive, but not significantly better than the results
based on SIFT. Also the combination of the shape and color
descriptor (where both feature vectors are simply concate-
nated prior to the vector quantization) does not bring any
improvement.

More than 23 components As an additional experiment,
we have also tested the effect of increasing the number of
discovered components from 23 to 50. This gives the meth-
ods more flexibility and allows the discovery of more fine-
grained patterns in the data. Again using an oracle to assign
the components to the ground truth object categories, we ob-
tain the results shown in the lower half of Table 5.

Increasing the number of components does not affect the
purity. Also the F1-measure for the baseline and latent vari-
able methods is mostly unaffected. However, for the spectral
clustering method the F1-measure increases significantly.
This is due to both an increase in precision as well as an
increase in recall.

6.3 Qualitative Evaluation

Apart from a quantitative analysis, it is also interesting to
look at the results from a more qualitative point of view. To
this end, we again show a few random images for each com-
ponent, for the two best performing combinations (dense
patches and SIFT for LEM and Hessian Laplace with a
vocabulary of 20,000 visual words for NMF)—see Figs. 6
and 7. Again, we add the number of images for which this
component got the highest score. However, these numbers
need to be interpreted with care, as now we are working
in a multi-class setting and images are actually assigned to
multiple components. In red, we also indicate the ground
truth object category each component was assigned to by
the oracle.

At first sight, the spectral clustering results look cleaner.
However, as mentioned earlier, this method has actually dis-
covered the different scene types rather than the different
object categories out of which the scenes are composed.

By optimizing the F1-measure, the oracle searches for
a compromise between precision and recall. Thus, compo-
nents are mostly labeled with more frequent categories like
sky or grass rather than airplane or cow.

Note the need for LEM to find a single component assign-
ment per image means it is clustering the images, whereas

NMF tends to have a lot more “void” assignments which
correspond to “other” aspects of the images, a significant
factor by proportion of features.

Finally, the random selection of images for each compo-
nent used for visualization are, unfortunately, not compara-
ble across methods. For LEM, there is only one topic for
each image. For NMF, there are potentially 3–4 topics for
each image, so the chance of selecting a poorer one is much
greater.

7 Conclusion and Future Work

In this work, we evaluated the performance of different un-
supervised methods for object discovery, based on a simple
bag-of-visual-words image representation. Setting up such
an evaluation framework is an important contribution of this
paper.2 In this framework, we developed unbiased evalua-
tion methods for unsupervised learning on images with mul-
tiple ground-truth classes assigned.

In case there is only one object category per image,
clustering-based methods give the best results, significantly
outperforming the latent variable models. Even the baseline
methods using k-means clustering already yield state-of-
the-art results, only outperformed by spectral clustering. To
maximize the performance, it is important to select the right
image representation (interest points, dense patches, or both)
as well as to normalize the bag-of-words histograms cor-
rectly. Moreover, these design choices are different for la-
tent variable models than for the (spectral) clustering based
methods.

In case there are multiple object categories per image,
both the object discovery task as well as an unbiased evalua-
tion protocol become more challenging. The latent variable
methods hold good promise in this setting, as they model
images as mixtures of components, however, so too would
multi-class versions of spectral clustering if they could be
developed. Based on our preliminary experiments, latent
variable methods do indeed outperform the spectral clus-
tering based approaches. Though, none of the investigated
methods really succeeds in separating the different object
categories (although they do discover some structure in the
image data set). This may in part be alleviated by increas-
ing the size of the data set. Nevertheless, our main conclu-
sion is that fully unsupervised methods for object discovery,
under realistic circumstances (i.e. with multiple objects per
image and more than just a couple of object categories) is
still a largely unsolved problem.

Bringing in some weak form of spatial information is
one interesting avenue of future research that might bring

2The image representations, some of the implemented methods, and
the evaluation scripts are available at http://homes.esat.kuleuven.be/
~tuytelaa/unsupervised.html.

http://homes.esat.kuleuven.be/~tuytelaa/unsupervised.html
http://homes.esat.kuleuven.be/~tuytelaa/unsupervised.html
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Fig. 6 (Color online) 12 prototypical images for each of the 20 topics, as detected with the latent variable method NMF, using the optimal settings
(dense patches) for the MSRC2 data set. For each topic, we also indicate the number of images assigned to this topic (blue) as well as the class
label assigned to the topic by the oracle (red)
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Fig. 7 (Color online) 12 prototypical images for each of the 20 topics detected by spectral clustering, using the optimal settings (all feature types
combined, using both sift and color descriptors), for the MSRC2 data set. For each topic, we also indicate the number of images assigned to this
topic (blue) as well as the class label assigned to the topic by the oracle (red)
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us closer to our goal. There are several ways this can be
done: providing approximate image segmentations, provid-
ing seed classes using segmented images (for instance, pair-
ing some image patches), building components or clusters
on segmented images, and so forth.
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