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Abstract
H11N9 viruses in wild birds might have provided the NA gene of human H7N9 virus in early 2013 in China, which evolved 
with highly pathogenic strains in 2017 and caused severe fatalities. To investigate the prevalence and evolution of the H11N9 
influenza viruses, 16,781 samples were collected and analyzed during 2016–2020. As a result, a novel strain of influenza 
A (H11N9) virus with several characteristics that increase virulence was isolated. This strain had reduced pathogenicity 
in chicken and mice and was able to replicate in mice without prior adaptation. Phylogenetic analyses showed that it was a 
sextuple‐reassortant virus of H11N9, H3N8, H3N6, H7N9, H9N2, and H6N8 viruses present in China, similar to the H11N9 
strains in Japan and Korea during the same period. This was the H11N9 strain isolated from China most recently, which add 
a record to viruses in wild birds. This study identified a new H11N9 reassortant in a wild bird with key mutation contribut-
ing to virulence. Therefore, comprehensive surveillance and enhanced biosecurity precautions are particularly important 
for the prediction and prevention of potential pandemics resulting from reassortant viruses with continuous evolution and 
expanding geographic distributions.
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Introduction

Avian influenza viruses are ribonucleic acid viruses of the 
family Orthomyxoviridae and possess 8 negative-sense RNA 
segments encoding 11 known proteins [1]. Of these, the two 
major surface antigens, hemagglutinin (HA) and neuramini-
dase (NA), form the basis of multiple serologically distinct 
virus subtypes. With 18 hemagglutinin (H1–H18) and 11 

(N1–N11) neuraminidase subtypes, there is considerable 
antigenic differences among influenza viruses [2, 3]. Cur-
rently, 16 HA and 9 NA subtypes combinations exist in har-
mony with wild waterfowl, the major natural reservoir for 
all influenza A viruses, cause no overt disease, and emerge 
to infect domestic poultry and occasionally mammals [2, 4].

Influenza A viruses can be divided into two distinct 
groups of high or low pathogenicity on the basis of their 
pathogenicity in chickens. All highly pathogenic avian 
influenza viruses (HPAIVs) known to date that mutate from 
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Low pathogenic avian influenza viruses (LPAIVs) have been 
restricted to subtypes H5 and H7 [5, 6]. HPAIVs infections 
caused by H5 and H7 subtypes in humans have been placed 
on the top priority list among other zoonotic avian influ-
enza viruses (AIVs) and have raised concerns that a new 
influenza pandemic will occur in the future [7, 8]. H7N9 
infections caused significant negative impacts on public 
health, the economy, and national and even global security 
that had resulted in 1567 human cases with 615 deaths. 
Human H7N9 has almost disappeared in 2018 because the 
effective response including management of LPMs and the 
vaccination strategy [9, 10]. However, H7N9 AIVs isolated 
in 2019 were antigenically distinct from the vaccine strain, 
so that the H7N9 AIV has not been eradicated from poultry 
in China [11].

The NA gene of human influenza A(H7N9) virus might 
have originated from influenza A (H2N9, H4N9, H11N9) 
viruses that circulated in eastern China [12–14]. Most 
H11N9 strains usually were found in wild birds. Some stud-
ies have described that H11N9 isolated in China can rep-
licate in mammalian cells in vitro [15], and even in mice 
in vivo without prior adaption [16, 17]. Although, no H11N9 
virus was isolated from human till now, serologic evidence 
of human past infection with influenza A/H11N9 suggested a 
potent risk of direct transmission of AIV to humans [18–20].

Considering that H11N9 viruses might contributed to 
H7N9 reassortment and have the threat to public health, 
active surveillance on influenza was required urgently. 
Recently, H11N9 viruses were detected in China (Feb 2016) 
[17] and South Korea (2016–2018) [19, 20]. However, the 
prevalence of them afterward in China was unclear. Thus, 
this study focused on the surveillance of H11N9 viruses 
during 2016–2020 to analyze their evolution and epidemic 
risk. As a result, we isolated one strain of the H11N9 influ-
enza virus in Shanghai in November 2016, and analyzed 
the genetic origin of it, indicating that it was a local inter-
subtype reassortant present in China and might be transmit-
ted to Japan and South Korea, which prompted us to conduct 
further influenza surveillance in wild birds in the future.

Methods

Virus isolation and sequence analysis

To respond to the H7N9 outbreak, a total of 16,781 swab 
and fecal samples were collected from waterfowl in natural 
reserves in Shanghai and Jiangxi during 2016–2020. For 
virus isolation, 9 10-day-old specific-pathogen-free (SPF) 
embryonated chicken eggs were inoculated with the sample 
supernatants. Viral RNA was extracted from 200 ml of allan-
toic fluid and subjected to reverse transcriptase polymerase 
chain reaction (RT-PCR). First, reverse transcription was 

performed with the primer Uni12 and GoScript™ Reverse 
Transcriptase System (Promega). This was followed by PCR 
in which the reverse transcription product(s) was amplified 
by the universal primer set MBTuni-12 and -13 to amplify 
the short segments for hemagglutinin (HA), nucleoprotein 
(NP), neuraminidase (NA), matrix (M), and nonstructural 
gene (NS). Segment-specific primers were used to amplify 
the long segments for polymerase basic protein 2 (PB2), 
polymerase basic protein 1 (PB1), and polymerase acidic 
protein (PA) (Table S1) [21, 22]. Full-genome sequences of 
the new isolates were annotated using the Influenza Virus 
Sequence Annotation Tool of the Influenza Virus Data-
base of the National Center for Biotechnology Information 
(NCBI; https:// www. ncbi. nlm. nih. gov/ genom es/ FLU/ annot 
ation), then deposited in GenBank. The sequence feature 
was annotated on Influenza Research Database (IRD;https:// 
www. fludb. org/ brc/ seque nceFe ature Detai lsRep ort. spg? 
decor ator= influ enza& seqFe ature sName sId= 564986.).

For phylogenetic analysis, the sequences of full genomes 
of the top 100 basic local alignment search tool (BLAST) 
hits for the new isolate were downloaded from NCBI https:// 
www. ncbi. nlm. nih. gov/ genom es/ FLU/ Datab ase/ nph- select. 
cgi? go= datab ase) and the EpiFlu database from the Global 
Initiative on Sharing All Influenza Data (GISAID; https:// 
platf orm. epicov. org/ epi3/ cfron tend).

Bayesian maximum clade credibility phylogeny

Multiple sequence alignments were produced using MUS-
CLE in MEGA7. Maximum clade credibility phylogenetic 
trees were generated for the full-genome sequences of the 
top 100 BLAST hits. ModelTest-NG was used to select the 
best-fit model for nucleotide substitutions. We used relaxed 
molecular clock models (uncorrelated exponential clock 
models) to estimate divergence times. Markov chain Monte 
Carlo (MCMC) chains were run for 100–1100 million itera-
tions according to the number of sequences. The best-fit sub-
stitution and tree models are listed in Table S2. TRACER 
1.6 was used to confirm appropriate burn-in and adequate 
effective sample sizes (ESS > 200) for the MCMC analyses 
[23]. All phylogenetic trees, visualized using Figtree, are 
presented in Supplementary Fig. 1.

Pathogenicity in chicken and mice

To determine pathogenicity of the influenza virus in chick-
ens, Intravenous Pathogenicity Index (IVPI) was essentially 
conducted as described in OIE manual [24]. Specific-path-
ogen-free (SPF) white leghorn chickens were purchased 
from Boehringer Ingelheim, Beijing, China and raised until 
they were 6 weeks old. A total of 10 chickens were used for 
one virus isolate. The serum was sampled on 10 days post 

https://www.ncbi.nlm.nih.gov/genomes/FLU/annotation
https://www.ncbi.nlm.nih.gov/genomes/FLU/annotation
https://www.fludb.org/brc/sequenceFeatureDetailsReport.spg?decorator=influenza&seqFeaturesNamesId=564986
https://www.fludb.org/brc/sequenceFeatureDetailsReport.spg?decorator=influenza&seqFeaturesNamesId=564986
https://www.fludb.org/brc/sequenceFeatureDetailsReport.spg?decorator=influenza&seqFeaturesNamesId=564986
https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database
https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database
https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database
https://platform.epicov.org/epi3/cfrontend
https://platform.epicov.org/epi3/cfrontend
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infection and tested for serum conversion by hemagglutina-
tion inhibition (HI) [25].

To determine pathogenicity of the influenza virus in mice, 
groups of 6 6-week-old female SPF BALB/c mice (weigh-
ing ≥ 18 g) (Boehringer Ingelheim, Beijing, China) were 
inoculated intranasally with  103 EID50 of designated virus 
in a volume of 50 µl. The control group was injected with 
an equal volume of phosphate-buffered saline. On 3 days 
post inoculation (dpi), three inoculated mice were sacri-
ficed, and we collected organs including lungs, nasal turbi-
nate, spleen, trachea, brain, and colon for viral titrations by 
Real-Time Polymerase Chain Reaction (qPCR). The results 
were extrapolated from corresponding standard curves and 
expressed as EID50/g equivalents [26]. The remaining three 
mice and control group were monitored daily up to 14 days 
for weight and mortality.

Results

Molecular characterization of the H11N9 isolates

A novel strain of the H11N9 subtype AIV was isolated 
from a spot-billed duck and named A/Anas poecilorhyn-
cha/shanghai/SH2/2016 (SH2; GenBank accession numbers 
MW575006–MW575013). SH2 harbors a single basic resi-
due at the cleavage site and was classified as an LPAI virus 
[27] (Table 1). Six residues in the HA protein (i.e., A138, 
E190, L194, G225, Q226, and G228; H3 numbering) were 
conserved, contributing to the strain’s avian receptor-binding 

characteristics [28]. Multiple virulence-increasing substitu-
tions were present in SH2, including L89V, G309D, T339K, 
R477G, I495V, K627E, and A676T in PB2, all of which 
have been shown to increase virulence and replication in 
mammals [29]. SH2 contained residues R57, I62, S65, and 
V100 in PA, which suppress host-cell protein synthesis dur-
ing infection, attenuating the antiviral response [30]. The 
putative zinc-finger motif CCHH in helix 9 of M1 in SH2 
also plays a critical role in virulence in mice [31]. Remark-
ably, SH2 had S42 and avian-like NS1 C-terminal PDZ 
domain ligand (PL) residues of ESEV in the NS1 protein, 
which appeared to increase virulence in mice [32–35]. Inter-
estingly, two highly conserved NS1 residues in 99% human 
influenza A viruses that enhance virulence in mice, F at 103 
and M at 106, are also present in SH2 [36]. These H11N9 
characteristics appear to have considerable pathogenic 
potential for humans.

Identity analysis

Next, nucleotide sequence similarity was conducted to 
investigate the relationships between SH2 with other influ-
enza A viruses. We found that the HA, NA, NP, and M 
genes of SH2 were most closely related to viruses in Japan 
with 99.50%–99.94% identities, while the other SH2 inner 
genes (PB2, PB1, PA, and NS) were most closely related 
to isolates from Korea and China (Table S3). Phylogenetic 
analysis showed similar results (Fig. 1; Fig. S1): the sur-
face genes HA and NA were clustered together with those 
of the A/duck/Ibaraki/99/2016 H11N9 strain, with 99.50% 

Table 1  Genetic characteristics of the SH2 isolate from wild birds

Gene Sequence variation Sequence feature References

HA PAIASR↓GLF Low pathogenic cleavage sites [27]
HA
(H3 num)

A138, E190, L194, G225, Q226, G228 Conserved characteristics contribute to avian receptor-binding [28]

PB2 K627E, N701D Decreased virulence and replication efficiency PubMed: 21849466;
PubMed: 16140781

PB2 L89V, G309D, T339K, R477G, I495V, 
K627E, A676T

Increased polymerase activity [29]

PB1 Y436H Decreased virulence in mice PubMed: 17553873
PA Q57R, V62I, L65S, A100V Increased production of viral proteins [30]
NP A184K Increased replication and pathogenicity in chickens PubMed: 19475480
M1 N30D, T215A Increased virulence PubMed:19117585
M1 C148, C151, H159, H162 CCHH increased virulence in mice [31]
M2 S50C Modest increasement in virulence in mice PubMed: 19553312
NS1 80–84 delete Attenuated in virus replication in vitro and in vivo (chicken and 

mice)
PubMed: 20854176

NS1 P42S Increased virulence in mice [34]
NS1 N101D Increased virulence in mice PubMed: 10873787
NS1 L103F, I106M Increased virulence [36]
NS1 E227, S228, E229, V230 ESEV increased virulence in mice [35]; [33]
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and 99.7% nucleotide identities, respectively; the inter-
nal genes NP and M were clustered with those of A/duck/
Fukuoka/401202/2016 (H4N6), with identities of 99.94% 
and 99.80%, respectively; and the internal genes PB2 and 
PA were most closely related to the strains isolated in Korea. 
However, the PB1 and NS genes were related to the newly 
isolated viruses from wild waterfowl in China. The spatial 
locations of all virus strains, including those related to the 
SH2 strain, are illustrated in Fig. 1.

Phylogenetic analysis

We then conduct phylogenetic analyses to identify 
genomic sources of the SH2 virus. The results showed that 
all eight genes originated from southern China (Fig. 2; Fig. 
S1-6). The HA and NA genes originated from an A/duck/

Jiangxi/22620/2012 (H11N9)-like gene pool. The PB2 and 
PB1 genes originated from the A/goose/Wuxi/7276/2016 
(H3N8)‐like gene pool, and the PA, NP, M, and NS genes 
originated from A/EN/Sichuan/03404/2015 (H3N6)‐like, 
A/environment/Hunan/SD009/2015 (H7N9)‐like, A/duck/
Wuhan/WHYF05/2014 (H9N2)‐like, and A/wild bird/
Jiangxi/P419/2016 (H6N8)‐like gene pool, respectively. 
Meanwhile, we found that the H11N9 viruses isolated 
during 2016–2017 in Japan and Korea were similar with 
SH2 and shared the same origin. Overall, SH2 is a sex-
tuple‐reassortant virus of H11N9, H3N8, H3N6, H7N9, 
H9N2, and H6N8 viruses in China. This was the most 
recent report of the H11N9 virus in China, indicating that 
it circulated in this country until late 2016, and may have 
been transmitted to Japan and Korea (Fig. 3).

A/duck/Ibaraki/F99/2016 (H11N9)A/duck/Ibaraki/F99/2016 (H11N9)

A/duck/Fukuoka/401202/2016 (H4N6)A/duck/Fukuoka/401202/2016 (H4N6)

A/mallard/Korea/H50-4/2016 (H5N3)A/mallard/Korea/H50-4/2016 (H5N3)

A/wild_bird/Jiangxi/P419/2016 (H6N8)A/wild_bird/Jiangxi/P419/2016 (H6N8)

A/waterfowl/Korea/S017/2016 (H7N7)A/waterfowl/Korea/S017/2016 (H7N7)

A/goose/Wuxi/7276/2016 (H3N8)A/goose/Wuxi/7276/2016 (H3N8)

A/A/Anas poecilorhynchaAnas poecilorhyncha/shanghai/SH2/2016 (H11N9)/shanghai/SH2/2016 (H11N9)

Fig. 1  Location of viruses related to the SH2 (H11N9) virus
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Pathogenicity in chicken and mice

To evaluate the pathogenicity of SH2 H11N9 isolate in 
chicken, 6-week-old SPF chickens were injected intrave-
nously with H11N9 influenza virus and observed for clini-
cal signs over a period of 10 days. All inoculated chickens 
survived without showing any clinical signs, thus the IVPI 
score remained zero for studied H11N9 virus. Infection was 
confirmed by virus isolation on 3 and 10 dpi in lung, oro-
pharyngeal and cloacal swabs. M gene of AIV was posi-
tive in cloacal swabs and undetectable in the lung (Table 2). 
HI antibody titer in inoculated chickens was measured to 
investigate the specific antibody response. The HI antibody 
against SH2 were detected at 10 dpi in two chickens. Sero-
conversion rate was 1/4 and HI titers were  23–24. Conse-
quently, tested H11N9 virus has to be considered as low 
pathogenic.

To measure the pathogenic potential of the H11N9 virus 
in mammal, mice were injected intranasally with H11N9 
influenza virus and recorded for weight change over a period 
of 14 days. In the 6-week-old mice, no death or significant 
weight loss were observed both in the H11N9 and mock 

groups (Fig. 4A). To assess for systemic virus spread, vari-
ous organs were sampled for virus titration at 3 dpi from 
mice with  103 EID50 of virus. The tested avian H11 isolates 
proliferated in mice nasal turbinate without pre-adaptation 
and with virus titer of 1.57 EID50 (Fig. 4B). Systemically, 
virus was detected in the lung, brain, and colon with titers 
ranging from 0.45 to 0.90 EID50. No virus titers were 
detected in the spleen and trachea.

Discussion

The SH2 H11N9 virus isolated in Shanghai in late 2016 
did not have a multiple basic amino acid sequence at the 
HA cleavage site (HACS), and caused no clinical signs in 
chickens with an IVPI of 0.0, justifying classification of the 
isolate tested to be of a low pathogenic phenotype [24]. A 
few chickens infected with SH2 shed virus though cloaca 
and seroconverted with low titer, which suggested the wild 
bird originated H11N9 viruses have not adapted to replicate 
in chicken [37]. After infection of mice with H11N9 virus 
at  103 EID50 dose, the virus was able to replicate in lung 

2.0

1995 2000 2005 2010 2015 2020

GISAID_|_EPI855511_|_A/duck/Tottori/311217/2014_|_H11N9_|_HA

GISAID_|_EPI618656_|_A/mallard/Sweden/101111/2009_|_H11N9_|_HA

GenBank_|_MT406857.1_|_A/Anas_platyrhynchos/Belgium/11026_11/2017_|_H11N9_|_HA

GISAID_|_EPI1551260_|_A/wild_bird/Anhui_Caizi_Lake/L306/2014_|_H11N9_|_HA

GenBank_|_CY184245.1_|_A/mallard/Sweden/101082/2009_|_H11N9_|_HA

GenBank_|_CY184205.1_|_A/mallard/Sweden/101574/2009_|_H11N9_|_HA

GISAID_|_EPI1307086_|_A/common_teal/Netherlands/1/2015_|_H11N1_|_HA

GISAID_|_EPI855798_|_A/duck/Saga/411005/2012_|_H11N2_|_HA

GISAID_|_EPI513829_|_A/mallard/Sweden/79329/2008_|_HA

GISAID_|_EPI540159_|_A/duck/Bangladesh/1595/2010_|_H11N3_|_HA

GISAID_|_EPI618502_|_A/mallard/Sweden/101558/2009_|_HA

GenBank_|_KT777885.1_|_A/red-billed_teal/South_Africa/KZN002/2012_|_H11N2_|_HA

GISAID_|_EPI506484_|_A/duck/Thailand/CU-12326T/2012_|_H11N2_|_HA

GISAID_|_EPI889730_|_A/mallard_duck/Netherlands/36/2008_|_H11N9_|_HA

GenBank_|_CY146740.1_|_A/environment/Hunan/S1798/2012_|_H11N2_|_HA

GenBank_|_CY077576.1_|_A/mallard/New_Zealand/1440-365/2005_|_H11N9_|_HA

GISAID_|_EPI884231_|_A/pintail/Russia_Primorje/222/2015_|_H11N9_|_HA

GISAID_|_EPI1551268_|_A/wild_bird/Anhui_Shengjin_Lake/S119/2014_|_H11N9_|_HA

GISAID_|_EPI659351_|_A/duck/Hunan/04.14_YYGK440-P/2015_|_H11N2_|_HA

GISAID_|_EPI618474_|_A/mallard/Sweden/101011/2009_|_H11N9_|_HA

GISAID_|_EPI469817_|_A/duck/Jiangxi/22537/2012_|_H11N9_|_HA

GISAID_|_EPI618394_|_A/mallard/Sweden/79984/2008_|_H11N9_|_HA

GenBank_|_KF259199.1_|_A/duck/Guizhou/1078/2011_|_H11N9_|_HA

GISAID_|_EPI190372_|_A/mallard/Netherlands/17/2007_|_H11N8_|_HA

GenBank_|_JX566017.1_|_A/mallard/Sweden/99885/2009_|_H11N2_|_HA

GenBank_|_KF183623.1_|_A/mallard/Finland/12703/2010_|_H11N4_|_HA

GISAID_|_EPI1151663_|_A/duck/Hokkaido/W165/2015_|_H11N6_|_HA

GenBank_|_AB569551.1_|_A/duck/Zambia/11/2009_|_H11N9_|_HA

GISAID_|_EPI469818_|_A/duck/Jiangxi/22597/2012_|_H11N9_|_HA

GISAID_|_EPI1120596_|_A/duck/Shimane/01/07_|_H11N9_|_HA

GISAID_|_EPI1508706_|_A/Anser_fabalis/China/664/2014_|_H11N8_|_HA

GISAID_|_EPI889922_|_A/mallard_duck/Netherlands/29/2008_|_H11N9_|_HA

GenBank_|_JX566008.1_|_A/mallard/Sweden/99852/2009_|_H11N2_|_HA

GISAID_|_EPI314708_|_A/mallard/Czech_Republic/15902-18K/2009_|_H11N9_|_HA

GenBank_|_CY184293.1_|_A/mallard/Sweden/100760/2009_|_H11N9_|_HA

GenBank_|_JX566009.1_|_A/mallard/Sweden/99853/2009_|_H11N2_|_HA

GISAID_|_EPI469819_|_A/duck/Jiangxi/22620/2012_|_H11N9_|_HA

GISAID_|_EPI618387_|_A/mallard/Sweden/79983/2008_|_H11N9_|_HA

GISAID_|_EPI1055392_|_A/duck/Wuxi/JYJN203/2014_|_H11N2_|_HA

GenBank_|_AB569535.1_|_A/goose/Zambia/09/2009_|_H11N9_|_HA

GISAID_|_EPI540223_|_A/duck/Bangladesh/1052/2007_|_H11N3_|_HA

GenBank_|_CY146612.1_|_A/duck/Hunan/S1607/2012_|_H11N9_|_HA

GISAID_|_EPI860984_|_A/pochard/Fukui/131817/2013_|_H11N3_|_HA

GenBank_|_AB569559.1_|_A/duck/Zambia/12/2009_|_H11N9_|_HA

GISAID_|_EPI400169_|_A/chicken/Nanjing/908/2009_|_H11N2_|_HA

GenBank_|_KX703019.1_|_A/waterfowl/Korea/S353/2016_|_H11N9_|_HA

GISAID_|_EPI618366_|_A/mallard/Sweden/80079/2008_|_H11N9_|_HA

GISAID_|_EPI867624_|_A/duck/Yamanashi/191106/2016_|_H11N3_|_HA

GenBank_|_KU143293.1_|_A/wild_bird/Wuhan/CDHN173/2015_|_H11N9_|_HA

GenBank_|_CY146636.1_|_A/duck/Hunan/S4013/2011_|_H11N9_|_HA

GenBank_|_CY184229.1_|_A/mallard/Sweden/101435/2009_|_H11N9_|_HA

GISAID_|_EPI513874_|_A/mallard/Sweden/79186/2008_|_HA

GenBank_|_CY184189.1_|_A/mallard/Sweden/102103/2009_|_H11N9_|_HA

GenBank_|_HM179248.1_|_A/mallard/Switzerland/WV1071028/2007_|_H11N9_|_HA

GISAID_|_EPI540199_|_A/duck/Bangladesh/1753/2010_|_H11N3_|_HA

GISAID_|_EPI1139772_|_A/duck/Chiba/25/06_|_H11N3_|_HA

GISAID_|_EPI469816_|_A/duck/Jiangxi/21714/2011_|_H11N9_|_HA

GenBank_|_CY029881.1_|_A/sharp-tailed_sandpiper/Australia/10/2004_|_H11N9_|_HA

GenBank_|_CY184106.1_|_A/mallard/Sweden/2321/2004_|_mixed_|_HA

GISAID_|_EPI855591_|_A/duck/Miyazaki/451101/2012_|_H11N3_|_HA

GISAID_|_EPI1055384_|_A/chicken/Wuxi/JYJN132/2014_|_H11N2_|_HA

GenBank_|_MT407161.1_|_A/bird/Belgium/10697/2016_|_H11N9_|_HA

GISAID_|_EPI618301_|_A/mallard/Sweden/68621/2007_|_H11N9_|_HA

GISAID_|_EPI618294_|_A/mallard/Sweden/68745/2007_|_H11N9_|_HA

GenBank_|_MW575009_|_A/Anas_poecilorhyncha/shanghai/SH2.4/2016_|_H11N9_|_HA

GISAID_|_EPI890613_|_A/mallard_duck/Netherlands/12/2009_|_H11N9_|_HA

GISAID_|_EPI618240_|_A/mallard/Sweden/79390/2008_|_H11N9_|_HA

GenBank_|_DQ327835.1_|_A/sharp-tailed_sandpiper/Australia/6/2004_|_H11N9_|_HA

GISAID_|_EPI1105845_|_A/duck/Ibaraki/F99/2016_|_H11N9_|_HA

GISAID_|_EPI867616_|_A/duck/Yamanashi/191110/2016_|_H11N3_|_HA

GenBank_|_CY146684.1_|_A/duck/Hunan/S4137/2011_|_H11N9_|_HA

GISAID_|_EPI618287_|_A/mallard/Sweden/69639/2007_|_H11N9_|_HA

GISAID_|_EPI618438_|_A/mallard/Sweden/101163/2009_|_H11N9_|_HA

GISAID_|_EPI618357_|_A/mallard/Sweden/80253/2008_|_H11N9_|_HA

GISAID_|_EPI866778_|_A/duck/Niigata/151015/2016_|_H11N9_|_HA

GISAID_|_EPI891107_|_A/mallard_duck/Netherlands/26/2011_|_H11N9_|_HA

GISAID_|_EPI867600_|_A/duck/Yamanashi/191113/2016_|_H11N3_|_HA

GenBank_|_KJ525975.1_|_A/duck/Thailand/CU-12943C/2013_|_H11N9_|_HA

GISAID_|_EPI618256_|_A/mallard/Sweden/79416/2008_|_H11N9_|_HA

GenBank_|_CY184213.1_|_A/mallard/Sweden/101589/2009_|_H11N9_|_HA

GenBank_|_CY146724.1_|_A/duck/Hunan/S4474/2011_|_H11N9_|_HA

GenBank_|_KP767544.1_|_A/duck/Jiangsu/J1435/2014_|_H11N2_|_HA

GISAID_|_EPI618232_|_A/mallard/Sweden/79256/2008_|_H11N9_|_HA

GISAID_|_EPI540167_|_A/duck/Bangladesh/1578/2009_|_H11N3_|_HA

GenBank_|_GQ184329.1_|_A/Baikal_teal/Hongze/14/2005_|_H11N9_|_HA

GISAID_|_EPI855631_|_A/duck/Yamaguchi/350112/2013_|_H11N9_|_HA

GenBank_|_MW132964.1_|_A/Mallard/Ukraine/AN-30-15-02/2011_|_H11N2_|_HA

GISAID_|_EPI618270_|_A/mallard/Sweden/79330/2008_|_H11N9_|_HA

GISAID_|_EPI866794_|_A/duck/Niigata/151019/2016_|_H11N9_|_HA

GISAID_|_EPI335363_|_A/avian/Moscow/3641/2008_|_H11N9_|_HA

GISAID_|_EPI1774432_|_A/Anas_platyrhynchos/Belgium/2322/2015_|_H11N7_|_HA

GISAID_|_EPI618529_|_A/mallard/Sweden/50980/2006_|_H11N9_|_HA

GISAID_|_EPI618319_|_A/mallard/Sweden/100878/2009_|_H11N9_|_HA

GenBank_|_MF575034.1_|_A/black-headed_gull/Netherlands/21/2014_|_H11N1_|_HA

GISAID_|_EPI889360_|_A/mallard_duck/Netherlands/29/2009_|_H11N9_|_HA

GISAID_|_EPI867632_|_A/duck/Yamanashi/191111/2016_|_H11N3_|_HA

GISAID_|_EPI618373_|_A/mallard/Sweden/80011/2008_|_H11N9_|_HA

GenBank_|_CY184221.1_|_A/mallard/Sweden/101490/2009_|_H11N9_|_HA

GISAID_|_EPI469820_|_A/common_teal/Hong_Kong/MPL1075/2011_|_H11N9_|_HA

GISAID_|_EPI618380_|_A/mallard/Sweden/79436/2008_|_H11N9_|_HA

GISAID_|_EPI469830_|_A/wild_waterfowl/Hong_Kong/MPL1060/2011_|_H11N9_|_HA

GISAID_|_EPI1151734_|_A/duck/Hokkaido/WZ1/2014_|_H11N2_|_HA

GISAID_|_EPI1774352_|_A/Anas_platyrhynchos/Belgium/11089/2016_|_H11N2_|_HA

GISAID_|_EPI855639_|_A/duck/Miyazaki/451115/2012_|_H11N3_|_HA

GenBank_|_JX566035.1_|_A/mallard/Sweden/100104/2009_|_H11N1_|_HA

GISAID_|_EPI1139739_|_A/duck/Chiba/21/06_|_H11N9_|_HA

GenBank_|_JX565993.1_|_A/mallard/Sweden/99820/2009_|_H11N2_|_HA

GenBank_|_CY184269.1_|_A/mallard/Sweden/100832/2009_|_H11N9_|_HA

GenBank_|_KR864829.1_|_A/duck/Zhejiang/71750/2013_|_H11N9_|_HA

GISAID_|_EPI618280_|_A/mallard/Sweden/69912/2007_|_H11N9_|_HA

GISAID_|_EPI1774312_|_A/Anas_platyrhynchos/Belgium/11025_44/2017_|_H11N1_|_HA

GISAID_|_EPI1765858_|_A/common_teal/Shanghai/PD112452/2016_|_H11_|_HA

GISAID_|_EPI618262_|_A/mallard/Sweden/79123/2008_|_H11N9_|_HA

GenBank_|_GQ184327.1_|_A/spotbill_duck/Xuyi/6/2005_|_H11N2_|_HA

GenBank_|_JX566047.1_|_A/mallard/Sweden/100635/2009_|_H11N9_|_HA

GenBank_|_AB769955.1_|_A/duck/Hokkaido/157/2012_|_H11N3_|_HA

GenBank_|_JX566025.1_|_A/mallard/Sweden/99939/2009_|_H11N2_|_HA

GISAID_|_EPI540215_|_A/duck/Bangladesh/1051/2007_|_H11N3_|_HA

GenBank_|_AB298283.1_|_A/duck/Hokkaido/W245/2004_|_H11N9_|_HA

GenBank_|_CY184301.1_|_A/mallard/Sweden/100791/2009_|_H11N9_|_HA

GenBank_|_MN049553.1_|_A/Eurasian_coot/Shanghai/PD112440/2016_|_H11N9_|_HA

GISAID_|_EPI867608_|_A/duck/Yamanashi/191112/2016_|_H11N3_|_HA

GISAID_|_EPI867592_|_A/duck/Yamanashi/191109/2016_|_H11N3_|_HA

GISAID_|_EPI618527_|_A/mallard/Sweden/101754/2009_|_HA

GISAID_|_EPI889432_|_A/mallard_duck/Netherlands/23/2012_|_H11N9_|_HA

GISAID_|_EPI540207_|_A/environment/Bangladesh/1002/2010_|_H11N3_|_HA

GISAID_|_EPI618273_|_A/mallard/Sweden/75334/2008_|_H11N9_|_HA
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GISAID_|_EPI618476_|_A/mallard/Sweden/101011/2009_|_H11N9_|_NA

GenBank_|_KC609799.1_|_A/wild_duck/Korea/SH19-27/2010_|_H7N9_|_NA

GISAID_|_EPI1790915_|_A/mallard/South_Korea/N07-0616/2007_|_H11N9_|_NA

GISAID_|_EPI884233_|_A/pintail/Russia_Primorje/222/2015_|_H11N9_|_NA

GenBank_|_CY122190.1_|_A/mallard/Sweden/72/2005_|_H2N9_|_NA

GISAID_|_EPI372473_|_A/teal/Ukraine/12177-NAMRU3/2005_|_H7N9_|_NA

GenBank_|_KY635541.1_|_A/duck/Bangladesh/26992/2015_|_H7N9_|_NA

GISAID_|_EPI1139746_|_A/duck/Chiba/16/06_|_H11N9_|_NA

GISAID_|_EPI1537004_|_A/mallard/Netherlands/32/2014_||_NA

GenBank_|_CY060192.1_|_A/common_teal/Netherlands/9/2000_|_H11N9_|_NA

GenBank_|_AB593465.1_|_A/duck/Vietnam/G30/2008_|_H11N9_|_NA

GISAID_|_EPI182380_|_A/Baikal_Teal/Hongze/14/2005_|_H11N9_|_NA

GISAID_|_EPI1230041_|_A/Turkey/Netherlands/12004763-001-004/2012_|_H10N9_|_NA

GenBank_|_KF006416.1_|_A/chicken/Jiangsu/RD5/2013_|_H10N9_|_NA

GenBank_|_KF259695.1_|_A/duck/Guizhou/1078/2011_|_H11N9_|_NA

GenBank_|_KX703021.1_|_A/waterfowl/Korea/S353/2016_|_H11N9_|_NA

GenBank_|_AB516421.1_|_A/northern_pintail/Aomori/1192/2008_|_H5N9_|_NA

GISAID_|_EPI181665_|_A/duck/Chiba/11/2006_|_H11N9_|_NA

GISAID_|_EPI470323_|_A/wild_waterfowl/Hong_Kong/MPC729/2006_|_H11N9_|_NA

GenBank_|_MW575011_|_A/Anas_poecilorhyncha/shanghai/SH2.6/2016_|_H11N9_|_NA

GISAID_|_EPI683024_|_A/wild_bird/Wuhan/CDHN173/2015_|_H11N9_|_NA

GISAID_|_EPI470315_|_A/duck/Jiangxi/22597/2012_|_H11N9_|_NA

GISAID_|_EPI873326_|_A/duck/Ibaraki/99/2016_|_H11N9_|_NA

GISAID_|_EPI372409_|_A/shoveler/Egypt/00215-NAMRU3/2007_|_H7N9_|_NA

GenBank_|_MT407163.1_|_A/bird/Belgium/10697/2016_|_H11N9_|_NA

GenBank_|_CY184017.1_|_A/mallard/Sweden/418/2002_|_H11N9_|_NA

GISAID_|_EPI618533_|_A/mallard/Sweden/50980/2006_|_H11N9_|_NA

GenBank_|_KX297785.1_|_A/environment/Korea/W410/2011_|_H7N9_|_NA

GISAID_|_EPI236188_|_A/mallard/Sweden/49/2002_|_H5N9_|_NA

GenBank_|_MT406955.1_|_A/Anas_platyrhynchos/Belgium/195_7/2018_|_H11N9_|_NA

GISAID_|_EPI855510_|_A/duck/Tottori/311217/2014_|_H11N9_|_NA

GISAID_|_EPI1513745_|_A/wild_bird_feces/Korea/H2262/2015_|_H5N9_|_NA

GISAID_|_EPI1551262_|_A/wild_bird/Anhui_Caizi_Lake/L306/2014_|_H11N9_|_NA

GISAID_|_EPI377880_|_A/mallard/Sweden/60/2005_||_NA

GenBank_|_KF259718.1_|_A/duck/Yunnan/1282/2007_|_H11N9_|_NA

GenBank_|_CY146582.1_|_A/duck/Hunan/S11547/2012_|_H4N9_|_NA

GISAID_|_EPI131887_|_A/sharp-tailed_sandpiper/Australia/10/2004_|_H11N9_|_NA

GenBank_|_KF259688.1_|_A/duck/Jiangxi/3096/2009_|_H7N9_|_NA

GISAID_|_EPI225719_|_A/shorebird/Korea/S8/2006_|_H11N9_|_NA

GISAID_|_EPI617133_|_A/mallard/Sweden/1621/2002_|_H7N9_|_NA

GenBank_|_KF259712.1_|_A/duck/Guangdong/4323/2007_|_H11N9_|_NA

GISAID_|_EPI69239_|_A/sharp-tailed_sandpiper/Australia/6/2004_|_H11N9_|_NA

GISAID_|_EPI1139885_|_A/duck/Shimane/14/06_|_H11N9_|_NA

GISAID_|_EPI1551254_|_A/mallard/Sanjiang/148/2006_|_H11N9_|_NA

GenBank_|_HQ143721.1_|_A/mallard/Korea/LBM616/2007_|_H11N9_|_NA

GISAID_|_EPI965439_|_A/duck/Bangladesh/24697/2015_|_H15N9_|_NA

GISAID_|_EPI316754_|_A/mallard/Czech_Republic/13438-29K/2010_|_H11N9_|_NA

GISAID_|_EPI1120595_|_A/duck/Shimane/01/07_|_H11N9_|_NA

GISAID_|_EPI1151743_|_A/duck/Hokkaido/WZ16/2008_|_H10N9_|_NA

GISAID_|_EPI1120603_|_A/duck/Shimane/21/06_|_H11N9_|_NA

GenBank_|_KC881292.1_|_A/environment/Jiangxi/26/2009_|_H11N9_|_NA

GenBank_|_AB593473.1_|_A/duck/Vietnam/G32/2008_|_H11N9_|_NA

GenBank_|_CY122222.1_|_A/mallard/Sweden/103/2005_|_H2N9_|_NA

GISAID_|_EPI1226317_|_A/duck/Bangladesh/8987/2010_|_H10N9_|_NA
GISAID_|_EPI272800_|_A/mallard/PT/26153/2007_|_H11N9_|_NA

GenBank_|_MT773562.1_|_A/avian/Moscow/3641/2008_|_H11N9_|_NA

GenBank_|_KF259704.1_|_A/common_teal/Hong_Kong/MPL1075/2011_|_H11N9_|_NA

GISAID_|_EPI470316_|_A/duck/Jiangxi/22620/2012_|_H11N9_|_NA

GenBank_|_KF259707.1_|_A/northern_shoveler/Hong_Kong/MPE2531/2008_|_H10N9_|_NA

GenBank_|_KX978903.1_|_A/mallard_duck/Netherlands/36/2008_|_H11N9_|_NA
GenBank_|_KX978971.1_|_A/mallard_duck/Netherlands/29/2008_|_H11N9_|_NA

GISAID_|_EPI3243_|_A/duck/Hokkaido/W245/2004_|_H11N9_|_NA

GISAID_|_EPI513569_|_A/mallard/Sweden/80348/2008_||_NA

GenBank_|_CY146734.1_|_A/environment/Hunan/S11511/2012_|_H4N9_|_NA

GISAID_|_EPI3119_|_A/duck/Siberia/700/1996_|_H11N9_|_NA

GISAID_|_EPI181662_|_A/duck/Tsukuba/164/2005_|_H11N9_|_NA

GenBank_|_KX977840.1_|_A/mallard_duck/Netherlands/29/2009_|_H11N9_|_NA

GenBank_|_CY183777.1_|_A/mallard/Sweden/52837/2006_|_H10N9_|_NA

GenBank_|_CY146614.1_|_A/duck/Hunan/S1607/2012_|_H11N9_|_NA

GISAID_|_EPI181664_|_A/duck/Chiba/7/2006_|_H11N9_|_NA

GISAID_|_EPI1139829_|_A/duck/Tsukuba/218/06_|_H11N9_|_NA

GenBank_|_MT406859.1_|_A/Anas_platyrhynchos/Belgium/11026_11/2017_|_H11N9_|_NA

GenBank_|_CY060296.1_|_A/mallard/Sweden/48/2002_|_H11N9_|_NA

GISAID_|_EPI1151698_|_A/duck/Hokkaido/W242/2006_|_H11N9_|_NA

GISAID_|_EPI1551270_|_A/wild_bird/Anhui_Shengjin_Lake/S119/2014_|_H11N9_|_NA

GISAID_|_EPI251787_|_A/mallard/Sweden/65/2002_|_H10N9_|_NA

GISAID_|_EPI618457_|_A/mallard/Sweden/101082/2009_|_H11N9_|_NA

GISAID_|_EPI1230150_|_A/Chicken/Netherlands/12002495-006-010/2012_|_H10N9_|_NA

GenBank_|_HM136576.1_|_A/mallard/Sweden/36/2003_|_H11N9_|_NA

GISAID_|_EPI513479_|_A/mallard/Sweden/101294/2009_|_H4N9_|_NA

GenBank_|_KF259728.1_|_A/northern_shoveler/Hong_Kong/MPL133/2010_|_H2N9_|_NA

GISAID_|_EPI618489_|_A/mallard/Sweden/101589/2009_|_H11N9_|_NA

GISAID_|_EPI1151685_|_A/duck/Hokkaido/W215/2006_|_H4N9_|_NA

GISAID_|_EPI88987_|_A/Duck/Nanchang/4-184/2000_|_H2N9_|_NA

GISAID_|_EPI181661_|_A/duck/Tsukuba/441/2005_|_H11N9_|_NA

GISAID_|_EPI284343_|_A/Anas_crecca/Spain/1460/2008_|_H7N9_|_NA

GISAID_|_EPI181663_|_A/duck/Tsukuba/239/2005_|_H11N9_|_NA

GenBank_|_KX978900.1_|_A/mallard_duck/Netherlands/12/2009_|_H11N9_|_NA

GISAID_|_EPI470325_|_A/northern_pintail/Hong_Kong/MPC2085/2007_|_H11N9_|_NA

GISAID_|_EPI1230118_|_A/Chicken/Netherlands/16007311-037-041/2016_|_H7N9_|_NA

GISAID_|_EPI540422_|_A/environment/Bangladesh/917/2012_|_H7N9_|_NA

GISAID_|_EPI470314_|_A/duck/Jiangxi/22537/2012_|_H11N9_|_NA

GenBank_|_CY146638.1_|_A/duck/Hunan/S4013/2011_|_H11N9_|_NA

GenBank_|_KX014888.1_|_A/duck/France/150236/2015_|_H5N9_|_NA

GenBank_|_JX679164.1_|_A/wild_duck/Korea/SH20-27/2008_|_H7N9_|_NA

GISAID_|_EPI88970_|_A/Duck/Nanchang/2-0486/2000_|_H2N9_|_NA

GenBank_|_KR864831.1_|_A/duck/Zhejiang/71750/2013_|_H11N9_|_NA

GISAID_|_EPI1139737_|_A/duck/Chiba/21/06_|_H11N9_|_NA

GISAID_|_EPI889337_|_A/mallard_duck/Netherlands/23/2012_|_H11N9_|_NA

GISAID_|_EPI866801_|_A/duck/Niigata/151014/2016_|_H11N9_|_NA

GenBank_|_AB274305.1_|_A/pintail/Shimane/324/98_|_H1N9_|_NA

GISAID_|_EPI1139779_|_A/duck/Shimane/15/06_|_H4N9_|_NA

GISAID_|_EPI1014155_|_A/black-headed_gull/Netherlands/40/2009_|_H11N9_|_NA

GISAID_|_EPI463366_|_A/mallard/Sweden/100635/2009_|_H11N9_|_NA

GISAID_|_EPI618658_|_A/mallard/Sweden/101111/2009_|_H11N9_|_NA

GenBank_|_KX121190.1_|_A/bean_goose/Hubei/SZY200/2016_|_H11N9_|_NA

GISAID_|_EPI173714_|_A/duck/Mongolia/119/2008_|_H7N9_|_NA

GISAID_|_EPI866793_|_A/duck/Niigata/151019/2016_|_H11N9_|_NA

GenBank_|_MF146170.1_|_A/common_teal/Netherlands/7/2005_|_H11N9_|_NA

B (NA)

posterior posterior
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Fig. 2  Genesis analysis of HA and NA genes. The phylogenetic trees 
were conducted using gene sequences of top blast hits for SH2 in the 
NCBI and GISAID. SH1 is marked in red, and other related viruses 

in China, Japan, Korea and Mongolia are marked in green, yellow, 
purple and blue correspondingly. All the trees were built by BEAST 
(v 1.8.4) and displayed using FigTree (v 1.4.2)
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without prior adaptation, though the replication of the virus 
was limited. And virus was also detected in other organs 
including nasal turbinate, brain, and colon. This was the first 
detection of H11N9 virus in nervous and digestive system of 

mice [16, 17, 20, 38]. After infection, no mice showed overt 
clinical signs; the inoculated mice showed slight weight loss 
at 4 and 10 days after infection before they started to regain 
weight.
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Fig. 3  Hypothetical reassortment pathways for the genesis of SH2 
virus. Virus particles are represented by colored ovals containing hor-
izontal bars that represent the eight genome segments (top to bottom: 
PB2, PB1, PA, HA, NP, NA, M, and NS). Segments in descendant 
viruses (down) are the same color as those in their ancestor viruses 

(top) to illustrate reassortments. The source viruses for reassortment 
are adjacent to arrow tails and arrowheads point to the reassortants. 
The timeline on the left indicates dates of virus emergence. The top 
axis indicates the country of virus isolation

Table 2  Analyses of virulence 
of H11N9 strain and antibody 
response in chickens

a, b, c Number shows percentage of viral positivity rate in oropharyngeal swab, cloacal swab, and lung tissue 
samples respectively and number in parenthesis represents number of samples in which virus was detected/
number of samples examined
d Number shows percentage of seroconversion rate and number in parenthesis represents number of chick-
ens in which antibody was detected/number of chickens examined

dpi Infectivity of SH2 to chickens IVPI Serological conversion

Oropharynx 
(%)a

Cloaca (%)b Lung (%)c Conversion (%)d HI titer range

3 0 12.5 (1/8) 0
10 0 25 (2/8) 0 0 25 (2/8) 1:8–1:16
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In addition, full-genome sequenced progeny viruses from 
duck-derived SH2 H11N9 isolate included a series of known 
pathogenicity markers that play a role in determining high 
pathogenicity (Table 1). The substitution L89V in PB2, 
carried by the SH2 strain, is located in the region involved 
in interactions with PB1 (residues 51–259) and the region 
binding to the heat shock protein 90 (HSP90) (residues 
1–515) [39]. G309D, T339K, R477G, and I495V are also 
located in the HSP90-binding region. These substitutions 
increase polymerase activity by enhancing the interaction 
of polymerase subunits or between polymerase and host fac-
tors to increase virulence in mammals [29, 40]. Addition-
ally, most avian viruses, including SH2, have the PA protein 
residues R57, I62, and S65, which are located in a flexible 
loop (51–74) and play a major role in turning off host pro-
tein synthesis [30]. Surprisingly, the cleavage and polyade-
nylation specificity factor (CPSF30) binding site in the SH2 
NS1 protein contains residues F103 and M106, which are 
common in human isolates, that stabilize CPSF30 binding 
and inhibit the production of beta interferon (IFN-β) mRNA 
[36]. Despite the lower significance of H11N9 LPAIVs for 
public health, antibody against influenza A/H11N9 has been 
reported in waterfowl hunters [18]. Significantly, H11N9 
may donate NA gene to generate H7N9 virus, which mutated 
to be high pathogenic [14]. Thus, some reassortmentH11N9 
viruses distributed in wild birds may possess new character-
istics that have, having implications for public health, and 
requiring more extensive surveillance of avian reservoirs.

Furthermore, we analyzed the origin of the SH2 H11N9 
virus. The HA and NA genes originated from A/duck/
Jiangxi/22620/2012 (H11N9). Though A/wild bird/Anhui 

Shengjin Lake/S119/2014 (H11N9), A/wild bird/Anhui 
Caizi Lake/L306/2014 (H11N9), and A/waterfowl/Korea/
S353/2016 [19] had similar genes, their phylogenetic rela-
tionships did not clearly indicate whether SH2 had obtained 
genes from them (Fig. 2; Fig. S1D; Fig. S1F). Apart from 
the NS gene, the other seven genes were similar to those 
of viruses in Japan and Korea in 2016. We assumed that 
viruses isolated in China in 2012–2015 had been transmitted 
to Japan and Korea by wild birds, and circulated locally in 
China at the same time. The H11N9 viruses in China, Japan, 
and Korea in 2016 may have been generated from independ-
ent reassortment events involving different NS genes. Rigor-
ous wildlife disease surveillance was required to track the 
evolution of avian influenza virus, thus helping to reduce 
outbreak risk.

Conclusions

In summary, we isolated a novel H11N9 strain in late 2016 
that possesses new characteristics of increasing virulence. 
Although our phylogenetic analysis was based on strains 
with limited genetic diversity, SH2 is most likely a reassor-
tant virus that originated from domestic birds in China. So, 
continued influenza surveillance in wild birds is extremely 
essential to prevent a potent pandemic caused by virus 
reassortment.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11262- 023- 02009-8.
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