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Abstract
Highly pathogenic (HP) avian influenza A H7N9 virus has emerged in China since 2016. In recent years, it has been most 
prevalent in northern China. However, several strains of HP H7N9 reappeared in southwestern China (Yunnan Province) 
in 2021. As a result, we are wondering if these viruses have re-emerged in situ or been reintroduced. Here, we present phy-
logenetic evidence that the HP H7N9 viruses isolated in Yunnan emigrated from northern to southwestern China in 2020. 
The northern subregion of China has become a novel epicenter in HP H7N9 dissemination. Meanwhile, a cleavage motif 
re-emerged due to the T341I mutation, implying a parallel evolution. This cross-region transmission, which originated in 
non-adjacent provinces and traveled a great geographic distance in an unknown way, indicates that HP H7N9 dissemina-
tion did not halt in 2020, even under the shadow of the COVID-19 pandemic. Additional surveillance studies in poultry are 
required to determine the HP H7N9 virus's geographic distribution and spread.
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Introduction

Avian influenza viruses (AIVs) are negative-sense and sin-
gle-stranded RNA viruses commonly found worldwide in 
their natural reservoir hosts (wild waterfowls or domestic 
birds). AIVs can occasionally spread from birds to mammals 
(like humans), leading to zoonoses and sometimes major 
outbreaks and/or severe diseases. The novel H7N9 AIV sub-
type, which first emerged in 2013, is convincing evidence 
that zoonotic AIVs triggered public concern about the poten-
tial for AIV transmission in humans. In the middle of 2016, 
the first detection of a highly pathogenic avian influenza 

(HPAI) H7N9 variant that possessed the insertion of four 
amino acids at the cleavage site of the HA protein from 
its low pathogenic counterpart was in the South of China 
(Guangdong) [1]. It then spread rapidly westward to adjacent 
provinces (Guangxi and Hunan), southwestern China (Yun-
nan) [2, 3], and northern China (Shaanxi) in 2017 [4]. Since 
the retail poultry market closed once the H7N9 outbreak in 
certain regions, it may have resulted in market shifts caused 
by retailers selling live poultry in other regions or neighbor-
ing provinces and spreading the virus [5]. Meanwhile, we 
recently reported that the HP H7N9 virus has a significant 
spatiotemporal association [6], mainly circulating in North 
China since 2017. However, recent studies reported that HP 
H7N9 AIVs had been detected in Anhui [7] and southern 
(Yunnan and Guangdong) China [8] between 2017 and 2019, 
indicating that HP H7N9 AIVs are not limited to the North 
of China. The HP variants spread quickly among the poultry 
farms from the southern to the North of China, resulting in 
100% lethality to the poultry and about 50% mortality in 
infected humans [9, 10].

To reduce the hazards of H7N9, a national vaccination 
strategy using the H5/H7 (Re-1) bivalent inactivated vaccine 
was initiated in China in September 2017. Poultry vaccina-
tion successfully eliminated human infection with the H7N9 

Edited by Joachim J. Bugert.

 *	 Xiufan Liu 
	 xfliu@yzu.edu.cn

1	 Animal Infectious Disease Laboratory, College of Veterinary 
Medicine, Yangzhou University, Yangzhou, China

2	 Jiangsu Co‑Innovation Center for Prevention and Control 
of Important Animal Infectious Diseases and Zoonosis, 
Yangzhou University, Yangzhou, China

3	 Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 
Yangzhou, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11262-023-01974-4&domain=pdf


480	 Virus Genes (2023) 59:479–483

1 3

virus and significantly decreased poultry's H7N9 virus isola-
tion rate [11, 12]. Although vaccination minimized human 
and poultry infections [13], the H7N9 increased virulence 
and expanded the host range to ducks [14], accelerated the 
evolution rate [8, 15], and increased the genetic and anti-
genic diversity [15]. Meanwhile, the HP H7N9 virus was 
endemic, with high levels of local transmission following 
a northward unidirectional geographic expansion in 2017 
[6]. Recently, Chen et al. identified several strains of novel 
HP H7N9 viruses in Yunnan at the start of 2021, which 
may have been immune-evading strains resulting from H7N9 
Re-3 and rLN79 vaccination [16]. Therefore, we performed 
additional analysis of these viruses using the phylogenetic 
tree to determine whether these HP viruses were re-emergent 
in situ or were reintroduced.

Methods

We first collected the H7N9 sequences and metadata from 
the GISAID EpiFlu public database. The HP H7N9 viruses 
isolated since 2017 and the H7N9 Re-2 vaccine strain (A/
chicken/Guangxi/SD098/2017) were selected to formulate 
the dataset. The signal of the heterochronous sampling date 
was estimated for Bayes molecular clock correction by Tree-
time (v0.8.5) [17]. Then, time-scaled tree constructions were 
executed using the Markov chain Monte Carlo (MCMC) 
framework applied in Bayesian Evolutionary Analysis 
Sampling Trees (BEAST, v1.10.4). General time-reversible 
(GTR) substitution model with four gamma categories, strict 
molecular clock, and different tree priors (Skygrid coales-
cent model was chosen for HA) were selected in BEAUti 
(v1.10.4). After 200 million generations running and sam-
pled every 20,000 steps, Tracer (v1.7.1) inspected the con-
vergence. Following the burn-in of the first 10% of trees, 
TreeAnnotator (v1.10.4) analyzed the maximum clade cred-
ibility (MCC) tree with median node heights. MCC tree with 
a rectangular layout was used for visualization using ggtree 
[18, 19]. A light red background was used to highlight HP 
H7N9 viruses isolated in the Southwest of China in 2021. 
The non-synonymous substitutions (amino acid mutation) 
along the tree were analyzed by Treesub (https://​github.​com/​
tamuri/​trees​ub).

To analyze the geographic dissemination and spreading 
routes, China was divided into four geographical subregions: 
South (Jiangsu, Shanghai, Anhui, Hubei, Hunan, Zhejiang, 
Fujian, Taiwan, Jiangxi, Guangdong, Guangxi, Hongkong, 
Macau, and Hainan), North (Heilongjiang, Jilin, Liaoning, 
Inner Mongolia, Beijing, Tianjin, Hebei, Shanxi, Shaanxi, 
Henan, and Shandong), Northwest (Gansu, Qinghai, 
Ningxia, Xinjiang), and Southwest (Chongqing, Sichuan, 
Guizhou, Yunnan, Tibet). Then, discrete phylogeographic 
analysis was conducted as in our previous description to 

depict the migration routes of H7N9 [20]. Briefly, we used 
a Bayesian stochastic search variable selection procedure 
(BSSVS) to estimate the transitions between these subre-
gions [21]. A full Markov jump and reward history was 
recorded separately from the BSSVS run in order to track the 
expected number of transitions (jumps) and waiting times in 
given subregions (rewards) using a continuous-time Markov 
chain (CTMC) model [22]. In addition, we used the Python 
script (https://​github.​com/​Admir​alenO​la/​Globa​lL4sc​ripts) 
conducted by Brynildsrud et al. [23] to analyze the direction 
of migration over time between subregions to investigate 
the migration history of HP H7N9. Significant migration 
routes were determined based on the established criteria, 
which were Bayes factor (BF) ≥ 3 and posterior probability 
(PP) > 0.5.

Results and discussion

The heatmap of Markov jumps indicates the frequency 
of transitions between subregions using a discrete trait 
phylogenetic model. The transition value of HP H7N9 is 
high from Southern to Northern, whereas the HP H7N9 in 
the North also is the source to Northwest, Southern, and 
Southwest (Fig. 1A). The Markov reward bar chart shows 
the proportion of time the virus spends in each subregion. 
The Northern has a high reward value, indicating that HP 
H7N9 has been present in this area for some time (Fig. 1B). 
The result of the HA MCC tree indicated that the sporadic 
cases of HP H7N9 in poultry had been generally reported 
in northern China since 2018 (Fig. 1C), which was consist-
ent with the previous findings [6, 24]. The HP H7N9 has 
rarely been detected in southern and southwestern China 
since its fifth epidemic wave (vaccination started at the end 
of wave 5). We found that the HP H7N9 viruses isolated in 
Yunnan Province (Southwest) shared an ancestor node with 
the viruses circulating in northern China (Shanxi and Hebei 
Province) with a high posterior (0.9991). The median time 
of most recent common ancestor (tMRCA) of these seven 
viruses was on October 1, 2020 (2020.7674, 95% HPD: 
2020.4984–2020.9654, posterior = 1). The remaining seven 
segments' MCC tree showed a similar phylogenetic topol-
ogy with HA about these strains (Figs. S1–S7). As a result, 
phylogenetic evidence reveals that the HP H7N9 viruses 
obtained in southwestern China may have originated from 
northern China around October 2020 (Period 9). After this 
single dissemination from the North to the Southwest, the 
HP H7N9 virus in Yunnan experienced local transmission 
and sporadic detections under independent molecular evolu-
tion and adaptation.

These reintroduced viruses shared three amino acid sub-
stitutions (Q71R, Q231K, and T341I, H7 full-length num-
bering) on the HA tree. Notably, the novel Q231K mutation, 
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which is part of the 220 loop of the receptor-binding site 
(RBS) of HA, possibly affects the tissue tropism and/or viral 
virulence since the 231K (222 in H3 numbering) mutation 
in H5N1 may allow efficient infection of cells in the central 

nervous system and result in enhanced pathogenicity in 
mice model [25]. Meanwhile, the G151R may involve anti-
genic drift/escape mutation [26]. Additionally, the T341I 
mutation resulted in a new mutation at the HA cleavage 
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Fig. 1   Time-resolved maximum clade credibility (MCC) tree of HA 
genes and subregion jumps and rewards since 2018. A Markov jumps' 
heatmap indicates the frequency of transitions between subregions 
using a discrete trait phylogenetic model. The transition value of HP 
H7N9 is high from Southern to Northern, whereas the HP H7N9 
in the North also is the source to Northwest, Southern, and South-
west. B The Markov reward bar chart shows the proportion of time 

the virus spends in each subregion. The Northern has a high reward 
value, indicating that HP H7N9 has been present in this area for some 
time. C The MCC tree of HP H7N9 HA genes has been collected 
since 2018. Viruses isolated in the Southwest are highlighted with a 
light red background and purple triangle tip points. They cluster with 
the viruses isolated in the Northern, indicating that viruses in the 
Southwest originated from the North around October 2020
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site, changing the cleavage motif from PKRKRTAR↓G to 
PKRKRIAR↓G. Since 2018, the former motif pattern has 
become overwhelming in H7N9 (Fig. 1). PKRKRIAR↓G 
was first reported as the seventh novel cleavage motif and 
defined as V7 [27]. However, this novel motif was indepen-
dently evolved rather than inherited from the circulating HP 
H7N9 virus in northern China, suggesting the site of 341 
may be under a parallel evolution.

The HP H7N9 emerged in southern China (Guangdong) 
during epidemic wave 4. It was subsequently rapidly spread 
throughout northern China from its original place during 
wave 5 (BF = 6.07 and PP = 0.73), most likely via live poul-
try trafficking [28], and then seldom detected in the South. 
During the periods (same as waves, https://​www.​fao.​org/​
ag/​again​fo/​progr​ammes/​en/​empres/​H7N9/​situa​tion_​update.​
html) 6 to 9, it was mainly maintained as a local transmission 
within northern China. Meanwhile, H7N9 was also dissemi-
nated from the North to Northwest subregions of China with 
a high PP (0.60) and vice versa (0.72). Notably, the migra-
tion route from the North to the Southwest has a BF = 3.54 
and a PP = 0.61, implying that the HP H7N9 viruses isolated 
in Yunnan in 2021 emigrated from northern China in an 
unknown way. The HP H7N9 in Southwest China was first 
introduced from adjacent Southern in Period 5 [3]. Nonethe-
less, the virus has been reintroduced in Period 9 from North-
ern (Fig. 2A). The HP H7N9 viruses have had an elevated 
level of intra-subregion transmission in the Northern since 
2017 and in the Southwest since 2020 (Fig. 2B). In sum-
mary, despite the reintroduction of H7N9 into Southwest 
China, it is still endemic and spreading within the northern 
subregion of China. The northern subregion has become 
a novel epicenter of HP H7N9 dissemination. Its spatial 

distribution must be closely monitored for timely and effec-
tive prevention and control response.

Computational analyses of pathogen genomes are increas-
ingly used to unravel epidemics' transmission dynamics and 
dispersal history [29]. Previous research indicates that the 
spread of H5N1, H5N6, and H7N9 viruses among domestic 
chickens is geographically continuous at a national level and 
is most likely related to the intensity of China's live poul-
try trade [28]. Unlike the H5N1 virus, wild bird migration 
has not been associated with the spatial spread of H7N9 
[28], and HP H7N9 rarely causes infections in wild birds 
[30]. Additionally, unlike the early waves of H7N9, which 
emerged and spread from live bird markets (LBM), the HP 
H7N9 has been mostly isolated from poultry farms in recent 
years [6–8, 16]. Therefore, the transportation of live poul-
try, poultry products, or even other occasional factors may 
contribute to the cross-subregional spread of the HP H7N9 
virus. There is currently no evidence to prove whether it 
is direct or indirect of HP H7N9 spreading from northern 
China to southwestern China, given the inherent sample 
bias. Despite the lockdowns and movement control measures 
taken under the shadow of COVID-19 in China, the cross-
subregional dissemination of HP H7N9 was not yet halted 
during 2020. Further surveillance studies in poultry and wild 
birds are required to monitor the geographical distribution 
and expansion of the HP H7N9 virus.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11262-​023-​01974-4.
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