Skip to main content
Log in

The arrival of highly pathogenic avian influenza viruses H5N8 in Iran through two windows, 2016

  • original paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The highly pathogenic avian influenza (HPAI) H5N1 virus has received considerable attention during the past 2 decades due to its zoonotic and mutative features. This Virus is of special importance due to to the possibility of causing infection in human populations. According to it’s geographical location, Iran hosts a large number of aquatic migratory birds every year, and since these birds can be considered as the host of the H5 HPAI, the country is significantly at risk of this virus. the In this study, the molecular characteristics of hemagglutinin (HA) and neuraminidase (NA) genes of the H5N8 strain were identified in Malard county of Tehran province and Meighan wetland of Arak city, Markazi province were investigated. Based on the analysis of the amino acid sequence of the HA genes, the cleavage site of the gene includes the PLREKRRKR/GLF polybasic amino acid motif, which is a characteristic of highly pathogenic influenza viruses. The HA gene of two viruses had T156A, S123P, S133A mutations associated with the increased mammalian sialic acid-binding, and the NA gene of two viruses had H253Y mutations associated with the resistance to antiviral drugs. Phylogenetic analysis of the HA genes indicated the classification of these viruses in the 2.3.4.4 b subclade. Although the A/Goose/Iran/180/2016 virus was also an H5N8 2.3.4.4 b virus, its cluster was separated from the A/Chicken/Iran/162/2016 virus. This means that the entry of these viruses in to the country happened through more than one window. Furthermore, it seems that the introduction of these H5N8 HPAI strains in Iran probably occurred through the West Asia–East African flyway by wild migratory aquatic birds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu X, Subbarao K, Cox NJ, Guo Y (1999) Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261(1):15–19

    Article  CAS  PubMed  Google Scholar 

  2. Cattoli G, Fusaro A, Monne I, Capua I (2009) H5N1 virus evolution in Europe—an updated overview. Viruses 1(3):1351–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. WHO, OIE, FAO, (2012) Continuedevolution of highly pathogenic avian influenza A (H5N1): updated nomenclature. Influenza Other Respir Viruses 6:1–5. https://doi.org/10.1111/j.1750-2659.2011.00298.x

    Article  Google Scholar 

  4. Sun H, Pu J, Hu J, Liu L, Xu G, Gao GF et al (2016) Characterization of clade 2.3.4.4 highly pathogenic H5 avian influenza viruses in ducks and chickens. Vet Microbiol 182:116–22

    Article  CAS  PubMed  Google Scholar 

  5. Zhao K, Gu M, Zhong L, Duan Z, Zhang Y, Zhu Y et al (2013) Characterization of three H5N5 and one H5N8 highly pathogenic avian influenza viruses in China. Vet Microbiol 163(3–4):351–357

    Article  CAS  PubMed  Google Scholar 

  6. Li J, Gu M, Liu D, Liu B, Jiang K, Zhong L et al (2016) Phylogenetic and biological characterization of three K1203 (H5N8)-like avian influenza A virus reassortants in China in 2014. Adv Virol 161(2):289–302

    CAS  Google Scholar 

  7. Wu H, Peng X, Xu L, Jin C, Cheng L, Lu X et al (2014) Novel reassortant influenza A (H5N8) viruses in domestic ducks, eastern China. Emerg Infect Dis 20(8):1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee EK, Lee YN, Song BM, Heo GB, Lee HS, Lee YJ. Pathogenesis of multiple subgroups of clade 2.3. 4.4. influenza A (H5N8) virus in mice and ferrets. 대한수의학회 학술대회발표집. 2016:274–5.

  9. Vascellari M, Hablolvarid M, Shoushtari A, Hedayati A (2007) Mortality of wild swans associated with naturally infection with highly pathogenic H5N1 avian influenza virus in Iran. Arch Razi Inst 62(4):207–213

    Google Scholar 

  10. OIE. World Organisation for Animal Health, 2018. OIE situation report for avian influenza. http://www.oie.int/animal-healthin-the-world/update-on-avian-influenza/2018. Accessed 20 April 2022

  11. OIE. World Organisation for Animal Health.Animal disease events. 2020. https://wahis.woah.org/#/events?viewAll=true. Accessed 23 April 2022

  12. Fereidouni SR, Werner O, Starick E, Beer M, Harder TC, Aghakhan M et al (2010) Avian influenza virus monitoring in wintering waterbirds in Iran, 2003–2007. Virol J 7(1):1–14

    Article  CAS  Google Scholar 

  13. Yegani S, Shoushtari A-H, Eshratabadi F, Molouki A (2019) Full sequence analysis of hemagglutinin and neuraminidase genes and proteins of highly pathogenic avian influenza H5N1 virus detected in Iran, 2015. Trop Anim Health Prod 51(3):605–612

    Article  PubMed  Google Scholar 

  14. Kord E, Kaffashi A, Ghadakchi H, Eshratabadi F, Bameri Z, Shoushtari A (2014) Molecular characterization of the surface glycoprotein genes of highly pathogenic H5N1 avian influenza viruses detected in Iran in 2011. Trop Anim Health Prod 46(3):549–554

    Article  PubMed  Google Scholar 

  15. Qi X, Li X, Rider P, Fan W, Gu H, Xu L et al (2009) Molecular characterization of highly pathogenic H5N1 avian influenza A viruses isolated from raccoon dogs in China. PLoS ONE 4(3):e4682

    Article  PubMed  PubMed Central  Google Scholar 

  16. WHO. World Health Organization, 2018. Avian Influenza Weekly Update Number 631 (6 April 2018). Available at http://www.Wpro.who.int/emerging_diseases/AvianInfluenza/en/2018

  17. OIE. World Organisation for Animal Health. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2022. https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access/

  18. Stear MJ (2005) OIE manual of diagnostic tests and vaccines for terrestrial animals (mammals, birds and bees) 5th edn volumes 1 & 2 World Organization for Animal Health 2004. Parasitology 130(6):727

    Article  Google Scholar 

  19. Hoffimann E, Stech J, Guan Y, Webster R, Perez D (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146(2275):89

    Google Scholar 

  20. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74(12):5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Slomka M, Pavlidis T, Banks J, Shell W, McNally A, Essen S et al (2007) Validated H5 Eurasian real-time reverse transcriptase–polymerase chain reaction and its application in H5N1 outbreaks in 2005–2006. Avian Dis 51(s1):373–377

    Article  CAS  PubMed  Google Scholar 

  22. Spackman E, Senne DA, Myers T, Bulaga LL, Garber LP, Perdue ML et al (2002) Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 40(9):3256–3260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Aevermann BD, Anderson TK, Burke DF, Dauphin G, Gu Z et al (2017) Influenza research database: an integrated bioinformatics resource for influenza virus research. Nucleic Acids Res 45(D1):D466–D474

    Article  CAS  PubMed  Google Scholar 

  24. Gupta R, Brunak S (eds.) (2001) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput.

  25. de Graaf M, Fouchier RA (2014) Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J 33(8):823–841

    Article  PubMed  PubMed Central  Google Scholar 

  26. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569

    Article  CAS  PubMed  Google Scholar 

  27. Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2001) X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci 98(20):11181–11186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ohkawara A, Okamatsu M, Ozawa M, Chu DH, Nguyen LT, Hiono T et al (2017) Antigenic diversity of H5 highly pathogenic avian influenza viruses of clade 2.3.4.4 isolated in Asia. Microbiol Immunol 61(5):149–58

    Article  CAS  PubMed  Google Scholar 

  29. Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2002) H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes. Embo J 21(5):865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaverin NV, Rudneva IA, Govorkova EA, Timofeeva TA, Shilov AA, Kochergin-Nikitsky KS et al (2007) Epitope mapping of the hemagglutinin molecule of a highly pathogenic H5N1 influenza virus by using monoclonal antibodies. J Virol 81(23):12911–12917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaverin NV, Rudneva IA, Ilyushina NA, Varich NL, Lipatov AS, Smirnov YA et al (2002) Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol 83(10):2497–2505

    Article  CAS  PubMed  Google Scholar 

  32. Reynolds CR, Islam SA, Sternberg MJ (2018) EzMol: a web server wizard for the rapid visualization and image production of protein and nucleic acid structures. J Mol Biol 430(15):2244–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yen H-L, Hoffmann E, Taylor G, Scholtissek C, Monto AS, Webster RG et al (2006) Importance of neuraminidase active-site residues to the neuraminidase inhibitor resistance of influenza viruses. J Virol 80(17):8787–8795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu X, Zhu X, Dwek RA, Stevens J, Wilson IA (2008) Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J Virol 82(21):10493–10501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Colman PM, Hoyne PA, Lawrence MC (1993) Sequence and structure alignment of paramyxovirus hemagglutinin-neuraminidase with influenza virus neuraminidase. J Virol 67(6):2972–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Colman PM (1994) Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci 3(10):1687–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burmeister W, Ruigrok R, Cusack S (1992) The 2.2 a resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J 11(1):49–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saito T, Taylor G, Laver W, Kawaoka Y, Webster R (1994) Antigenicity of the N8 influenza A virus neuraminidase: existence of an epitope at the subunit interface of the neuraminidase. J Virol 68(3):1790–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wan H, Gao J, Xu K, Chen H, Couzens LK, Rivers KH et al (2013) Molecular basis for broad neuraminidase immunity: conserved epitopes in seasonal and pandemic H1N1 as well as H5N1 influenza viruses. J Virol 87(16):9290–9300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roubidoux EK, McMahon M, Carreño JM, Capuano C, Jiang K, Simon V, et al. Novel epitopes of human monoclonal antibodies targeting the influenza virus N1 neuraminidase. bioRxiv. 2021.

  41. Coker T, Meseko C, Odaibo G, Olaleye D (2014) Circulation of the low pathogenic avian influenza subtype H5N2 virus in ducks at a live bird market in Ibadan. Nigeria Infect Dis Poverty 3(1):1–6

    Google Scholar 

  42. Coyle PV, Al Molawi NH, Kacem MABH, El Kahlout RA, Al Kuwari E, Al Khal A et al (2022) Reporting of RT-PCR cycle threshold (Ct) values during the first wave of COVID-19 in Qatar improved result interpretation in clinical and public health settings. J Med Microbiol 71(5):001499

    Article  CAS  Google Scholar 

  43. Lu Y, Yan J, Feng Y, Xu C, Shi W, Mao H (2008) Rapid detection of H5 avian influenza virus by TaqMan-MGB real-time RT-PCR. Lett Appl Microbiol 46(1):20–25

    CAS  PubMed  Google Scholar 

  44. Yang F, Xu L, Liu F, Yao H, Wu N, Wu H (2020) Development and evaluation of a TaqMan MGB RT-PCR assay for detection of H5 and N8 subtype influenza virus. BMC Infect Dis 20(1):1–7

    Article  CAS  Google Scholar 

  45. Das SR, Hensley SE, David A, Schmidt L, Gibbs JS, Puigbò P et al (2011) Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy. Proc Natl Acad Sci 108(51):E1417–E1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Linster M, van Boheemen S, de Graaf M, Schrauwen EJ, Lexmond P, Mänz B et al (2014) Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 157(2):329–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee C-W, Suarez DL, Tumpey TM, Sung H-W, Kwon Y-K, Lee Y-J et al (2005) Characterization of highly pathogenic H5N1 avian influenza A viruses isolated from South Korea. J Virol 79(6):3692–3702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burke DF, Smith DJ (2014) A recommended numbering scheme for influenza A HA subtypes. PLoS ONE 9(11):e112302

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ibrahim E, Sirawan A, El-Bazzal B, El Hage J, Abi Said M, Zaraket H et al (2016) Complete genome sequence of the first H5N1 avian influenza virus isolated from chickens in Lebanon in 2016. Genome Announc 4(5):e01062-e1116

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gohrbandt S, Veits J, Hundt J, Bogs J, Breithaupt A, Teifke JP et al (2011) Amino acids adjacent to the haemagglutinin cleavage site are relevant for virulence of avian influenza viruses of subtype H5. J Gen Virol 92(1):51–59

    Article  CAS  PubMed  Google Scholar 

  51. Nguyen HT, Nguyen T, Mishin VP, Sleeman K, Balish A, Jones J et al (2013) Antiviral susceptibility of highly pathogenic avian influenza A (H5N1) viruses isolated from poultry, Vietnam, 2009–2011. Emerg Infect Dis 19(12):1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang H, Carney PJ, Mishin VP, Guo Z, Chang JC, Wentworth DE et al (2016) Molecular characterizations of surface proteins hemagglutinin and neuraminidase from recent H5Nx avian influenza viruses. J Virol 90(12):5770–5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takashita E, Ejima M, Ra Itoh, Miura M, Ohnishi A, Nishimura H et al (2014) A community cluster of influenza A (H1N1) pdm09 virus exhibiting cross-resistance to oseltamivir and peramivir in Japan, November to December 2013. Eurosurveillance 19(1):20666

    Article  PubMed  Google Scholar 

  54. Sonnberg S, Webby RJ, Webster RG (2013) Natural history of highly pathogenic avian influenza H5N1. Virus Res 178(1):63–77

    Article  CAS  PubMed  Google Scholar 

  55. Ghafouri SA, Langeroudi AG, Maghsoudloo H, Tehrani F, Khaltabadifarahani R, Abdollahi H et al (2017) Phylogenetic study-based hemagglutinin (HA) gene of highly pathogenic avian influenza virus (H5N1) detected from backyard chickens in Iran, 2015. Virus Genes 53(1):117–120

    Article  CAS  PubMed  Google Scholar 

  56. Smith GJ, Donis RO (2015) Nomenclature updates resulting from the evolution of avian influenza A (H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013–2014. Influenza Other Respir Viruses 9(5):271–6

    Article  PubMed  PubMed Central  Google Scholar 

  57. Song Y, Cui J, Song H, Ye J, Zhao Z, Wu S et al (2015) New reassortant H5N8 highly pathogenic avian influenza virus from waterfowl in Southern China. Front Microbiol 6:1170

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shi W, Gao GF (2021) Emerging H5N8 avian influenza viruses. Science 372(6544):784–786

    Article  CAS  PubMed  Google Scholar 

  59. Usui T, Soda K, Tomioka Y, Ito H, Yabuta T, Takakuwa H et al (2017) Characterization of clade 2.3.4.4 H5N8 highly pathogenic avian influenza viruses from wild birds possessing atypical hemagglutinin polybasic cleavage sites. Virus Genes 53(1):44–51

    Article  CAS  PubMed  Google Scholar 

  60. Wilks S, de Graaf M, Smith DJ, Burke DF (2012) A review of influenza haemagglutinin receptor binding as it relates to pandemic properties. Vaccine 30(29):4369–4376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bogs J, Veits J, Gohrbandt S, Hundt J, Stech O, Breithaupt A et al (2010) Highly pathogenic H5N1 influenza viruses carry virulence determinants beyond the polybasic hemagglutinin cleavage site. PLoS ONE 5(7):e11826

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li K, Guan Y, Wang J, Smith G, Xu K, Duan L et al (2004) Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430(6996):209–213

    Article  CAS  PubMed  Google Scholar 

  63. Matrosovich M, Zhou N, Kawaoka Y, Webster R (1999) The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 73(2):1146–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wilson IA, Skehel JJ, Wiley D (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289(5796):366–373

    Article  CAS  PubMed  Google Scholar 

  65. Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312(5772):404–10

    Article  CAS  PubMed  Google Scholar 

  66. Lin AH, Cannon PM (2002) Use of pseudotyped retroviral vectors to analyze the receptor-binding pocket of hemagglutinin from a pathogenic avian influenza A virus (H7 subtype). Virus Res 83(1–2):43–56

    Article  CAS  PubMed  Google Scholar 

  67. Xu D, Newhouse EI, Amaro RE, Pao HC, Cheng LS, Markwick PR et al (2009) Distinct glycan topology for avian and human sialopentasaccharide receptor analogues upon binding different hemagglutinins: a molecular dynamics perspective. J Mol Biol 387(2):465–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Su Y, Yang H-Y, Zhang B-J, Jia H-L, Tien P (2008) Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells. Adv Virol 153(12):2253–2261

    CAS  Google Scholar 

  69. Hiono T, Ohkawara A, Ogasawara K, Okamatsu M, Tamura T, Chu D-H et al (2015) Genetic and antigenic characterization of H5 and H7 influenza viruses isolated from migratory water birds in Hokkaido, Japan and Mongolia from 2010 to 2014. Virus Genes 51(1):57–68

    Article  CAS  PubMed  Google Scholar 

  70. Kanehira K, Uchida Y, Takemae N, Hikono H, Tsunekuni R, Saito T (2015) Characterization of an H5N8 influenza A virus isolated from chickens during an outbreak of severe avian influenza in Japan in April 2014. Adv Virol 160(7):1629–1643

    CAS  Google Scholar 

  71. Vigerust DJ, Shepherd VL (2007) Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 15(5):211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bao D, Xue R, Zhang M, Lu C, Ma T, Ren C et al (2021) N-linked glycosylation plays an important role in budding of neuraminidase protein and virulence of influenza viruses. J Virol 95(3):e02042-e2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu J, Zhang F, Wang M, Xu C, Song J, Zhou J et al (2010) Characterization of neuraminidases from the highly pathogenic avian H5N1 and 2009 pandemic H1N1 influenza A viruses. PLoS ONE 5(12):e15825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yee KS, Carpenter TE, Cardona CJ (2009) Epidemiology of H5N1 avian influenza. Comp Immunol Microbiol Infect Dis 32(4):325–340

    Article  PubMed  Google Scholar 

  75. Eichelberger MC, Monto AS (2019) Neuraminidase, the forgotten surface antigen, emerges as an influenza vaccine target for broadened protection. J Infect Dis 219(1):75–80

    Article  Google Scholar 

  76. De Jong MD, Thanh TT, Khanh TH, Hien VM, Smith GJ, Chau NV et al (2005) Oseltamivir resistance during treatment of influenza A (H5N1) infection. N Engl J Med 353(25):2667–2672

    Article  PubMed  Google Scholar 

  77. Le QM, Kiso M, Someya K, Sakai YT, Nguyen TH, Nguyen KH et al (2005) Avian flu: isolation of drug-resistant H5N1 virus. Nature 437(7062):1108

    Article  CAS  PubMed  Google Scholar 

  78. Tisoncik-Go J, Cordero KS, Rong L (2013) Analysis of oseltamivir resistance substitutions in influenza virus glycoprotein neuraminidase using a lentivirus-based surrogate assay system. Virol Sinica 28(2):81–91

    Article  CAS  Google Scholar 

  79. Colman PM, Varghese J, Laver W (1983) Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303(5912):41–44

    Article  CAS  PubMed  Google Scholar 

  80. Gubareva LV, Webster RG, Hayden FG (2001) Comparison of the activities of zanamivir, oseltamivir, and RWJ-270201 against clinical isolates of influenza virus and neuraminidase inhibitor-resistant variants. Antimicrob Agents Chemother 45(12):3403–3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B et al (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363(6428):418–423

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MM: Researcher, Wrote the main Manuscript text, prepared figures and Tables. HK: Supervisor. AS: Supervisor, Producer. MHFM: Advisor, Phylogenetic Analyser. GNB: Advisor, Editor. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hadi Keyvanfar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Edited by Zhen Fu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motahhar, M., Keyvanfar, H., Shoushtari, A. et al. The arrival of highly pathogenic avian influenza viruses H5N8 in Iran through two windows, 2016. Virus Genes 58, 527–539 (2022). https://doi.org/10.1007/s11262-022-01930-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-022-01930-8

Keywords

Navigation