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Abstract
Recently, multiple spillover events between domesticated poultry and wild birds have been reported for several avian viruses. 
This phenomenon highlights the importance of the livestock-wildlife interface in the possible emergence of novel viruses. 
The aim of the current study was to investigate the potential spillover and epidemiological links of infectious bursal disease 
virus (IBDV) between wild birds and domestic poultry. To this end, twenty-eight cloacal swabs were collected from four 
species of free-living Egyptian wild birds (i.e. mallard duck, bean goose, white-fronted goose and black-billed magpie). 
Genetic and phylogenetic analysis of three positive isolates revealed that the IBDV/USC-1/2019 strain clustered with previ-
ously reported very virulent IBDV (vvIBDV) Egyptian isolates. Interestingly, two other wild bird-origin isolates (i.e. IBDV/
USC-2/2019 and IBDV/USC-3/2019) grouped with a vaccine strain that is being used in commercial poultry. In conclusion, 
our results revealed the molecular detection of vaccine and vvIBDV-like strains in Egyptian wild birds and highlighted the 
potential role of wild birds in IBDV epidemiology in disease-endemic regions.
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Introduction

Infectious bursal disease (IBD) is an acute and highly con-
tagious disease of chicks, and the clinical impact of IBD is 
mainly attributed to its severe immunosuppression especially 
in young chickens. The IBDV infection particularly targets 
and annihilates  the precursors of antibody-producing B 
cells within the bursa of Fabricius (BF) [1]. Importantly, the 
damages to the BF are permanent, resulting in vaccination 
failure and expanded defencelessness to other diseases [2].

The IBDV is non-enveloped, icosahedral in shape, and 
carry double-stranded RNA genome within the genus Avi-
birnavirus of family Birnaviridae [3]. The IBDV is com-
posed of segment A (~ 3.17 kb in length) and B (~ 2.8 kb 
in length) [3]. The segment A is comprised of two partially 
overlapping open reading frames (ORFs). The non-structural 
viral protein 5 (VP5) encoded by the first ORF, whereas 
the second ORF encodes a polyprotein. This polyprotein is 
eventually cleaved into two structural proteins known as VP2 
and VP3, and a serine protease called VP4 [4–6]. The VP2 
is the main structural protein and carries all the neutralizing 
epitopes, involved in virulence, cell tropism, and antigenic 
variation [7–9]. The RNA-dependent RNA polymerase 
(VP1) is encoded by Segment B [10], which plays critical 
functions in viral replication [11].

Out of two IBDV serotypes (i.e. I and II), only serotype 
I strains of IBDV are virulent in chickens. These strains are 
grouped into four characteristic pathotypes including clas-
sical, attenuated, antigenic variant, and very virulent strains 
[12–14]. Nearly 60–76% of IBDV isolates across four con-
tinents can be grouped as very virulent based on the global 
molecular epidemiological investigations [15]. Since the first 
report of the very virulent IBDV (vvIBDV) in the USA in 
1957 [12, 16], the disease has been spreading worldwide 
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[15] including Egypt [17–19] and has undergone a complex 
evolution. In Egypt, the vvIBDVs were first reported in 1989 
[19]. To contain the infection, live-attenuated, intermediate 
plus, and classical strain-based vaccines are currently being 
used in the Egyptian poultry industry [20]. Despite mass 
vaccination regimes, Egypt is experiencing repeated IBDV 
outbreaks with high mortality rates since last two decades 
[17–19].

A relatively recent area of research at livestock-species 
interface is the spillover of viruses from the fared poultry 
into wild birds that can risk the wild birds’ welfare. In com-
mercial poultry farms, vaccination may have a significant 
effect on virus evolution [20] and possible spread to wild 
birds in vicinity [21, 22]. Several spillover events of vac-
cine viruses from domestic poultry to wild birds have been 
reported such as Newcastle disease virus and infectious 
bronchitis virus [21, 22]. Owing to high demands for free-
range and backyard poultry production, the direct interac-
tion between wild birds and farmed poultry is increasing 
[23]. Furthermore, massive size of the industrialized poultry 
production may risk the environment contamination with 
infectious materials through activities such as reuse of poul-
try litters [23].

This study was designed to investigate the potential spill-
over of infectious bursal disease virus (IBDV) between wild 
birds and domestic poultry. A total of 28 cloacal swabs were 
collected from Egyptian free-living wild birds during 2019, 
and genetics and transmission risks were assessed for the 
IBDV in Egypt.

Materials and methods

Samples collection, virus isolation, and genetic 
characterization

Twenty-eight cloacal swabs were collected from three Egyp-
tian provinces (Monofiya, Qaulubia and Sharkia) during 
2019, which were considered wild birds-dense and IBDV-
endemic areas in the Nile Delta region (Table 1). The Nile 
Delta of Northern Egypt is a crucial stopover for millions 
of birds migrating between the Palearctic and Afrotropical 
regions annually, and considered one of the most important 
migration routes for wild birds [24, 25].

Capturing and sampling from live wild birds were carried 
out in accordance with all relevant guidelines, regulations 
and animal ethics permits issued by the Faculty of Veteri-
nary Medicine, University of Sadat City, Egypt. The cloacal 
swabs were collected from each bird individually and placed 
in 1.5 ml of phosphate buffer saline (PBS) supplemented 
with 2000 unit/ml Penicillin G, 200 mg/ml Gentamicin, and 
4 mg/ml Amphotericin B. The swab fluids were clarified 
by centrifugation at 1500 rpm for 10 min, and the superna-
tant was used for RNA extraction using TRIzol™ reagent 
as per manufacturer’s instructions. Using RT-PCR assays, 
the extracted RNA were screened for IBDV using a primer 
pair that amplifies a 743 bp region of VP2 gene, the forward 
primer was 5′-GCC CAG AGT CTA CAC CAT-3′ and the 
reverse primer was 5′-CCC GGA TTA TGT CTT TGA-3′ 
[26].

The RT-PCR-positive samples (n = 3) were inoculated on 
the chorioallantonic membrane (CAM) of specific pathogen 
free (SPF) embryonated chicken eggs following the stand-
ard procedures [27]. Five days post-inoculation, all embryos 
died. CAMs were harvested from dead embryos and 

Table 1  Overview of wild bird samples involved in the study, and the prevalence of IBDVs in different species

n means: number

Order Family Genus Species Region/Governorate Sampled (n) Positive (n)

Anseriformes Anatidae Anas A. crecca
(Green- winged teal)

Monofiya, 3 0
Qaulubia 2 0
Sharkia 3 1

A. platyrhynchos
(Mallard)

Monofiya, 2 0
Qaulubia 3 0
Sharkia 2 0

Pelecaniformes Ardeidae Bubulcus B. ibis
(Cattle egret)

Monofiya, 3 1
Qaulubia 2 1
Sharkia 1 0

Galliformes Phasianidae Coturnix C. coturnix
(Common quail)

Monofiya, 2 0
Qaulubia 3 0
Sharkia 2 0
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screened by qRT-PCR for IBDV. The RNA was extracted 
from positive CAMs using TRIzol™ reagent as per manu-
facturer’s instructions (Invitrogen, USA). The extracted 
RNA treated with dimethylsulphoxide (DMSO) for 5 min 
at 98 °C and then snap chilled [27]. The synthesis of cDNA 
from the DMSO-treated RNA was performed using Super-
Script™ IV Reverse Transcriptase (Thermo Scientific, USA) 
as per the manufacturer’s instruction. Polymerase chain reac-
tion (PCR) was carried out using High Fidelity Q5 polymer-
ase (NEB, UK), according to manufacturer’s instructions 
for the amplification of full length VP2 gene using the fol-
lowing primers; IBDVP2F-5′-ATG ACA AAC CTG CAA 
GAT CAA ACC CAA C-3′ and IBDVP2R-5′-TTA TGT 
CTT TGA AGC CAA ATG CTC CTG C-3′. These prim-
ers flank the conserved regions of VP2 ORF among IBDV 
serotype I strains. Briefly, a total of 50 μl reaction mixture 
contain 2 μl of cDNA, 10 μl of 5X Q5 Reaction Buffer, 10 
ul of 5X Q5 High GC Enhancer 2.5 μl primer IBDVP2F, 
2.5 μl primer IBDVP2R, 2 μl dNTPs mix, 0.5 μl of Q5 High-
Fidelity DNA Polymerase and 20.5 μl nuclease free water. 
The PCR cycling protocol was as follows: 98 °C for 3 min 
followed by 40 three-step cycles of 98 °C for 30 s, 68 °C for 
45 s and 72 °C for 2 min; then 72 °C for 10 min. The PCR 
products were analysed on electrophoreses using a 1% aga-
rose gel containing ethidium bromide and were visualized 
under UV illumination. The QIAquick Gel Extraction Kit 
(Qiagen, Germany) was used to purify the PCR products. 
These products were sequenced bi-directionally with both 
sense (IBDVP2F) and antisense (IBDVP2R) primers that 
were used in the PCR amplification. The sequencing was 
performed utilizing BigDye terminator v3.1 cycle sequenc-
ing kit in an ABI 3100 genetic analyser (Applied Biosystems 
Foster City, California, USA).

Sequence analysis, phylogeny, and selective 
pressure analysis

Nucleotide sequences were aligned with ClustalW [28] and 
analysed using the BioEdit 5.0 package [29]. The obtained 
nucleotide sequences were submitted to GenBank and 
are available under the accession numbers; MT304668-
MT304670. Sequence Demarcation Tool (SDT) was used 
to display the nucleotide pairwise identity scores through a 
color-coded matrix [30]. Phylogenetic analyses were carried 
out using general time-reversible (GTR) model [31], which 
was selected using jModelTest [32], and maximum-likeli-
hood trees were constructed using RaxML version 8.2.11 
[33] with 1000 bootstrap replicates.

The VP2 gene-specific estimates of dN/dS were predicted 
using the Synonymous-Non-Synonymous Analysis Program 
(SNAP) [34]. The number of potential synonymous and non-
synonymous changes were counted as well as the number of 
actual synonymous and non-synonymous changes in codon 

between each pair. The dN/dS ratio was calculated by com-
paring the proportion of observed non-synonymous substitu-
tions over the proportion of observed synonymous substitu-
tions. These were then adjusted for multiple hits using the 
Jukes–Cantor correction [34].

Results and discussion

Understanding the epidemiology of vvIBDV is important 
to underpin the viral evolution, virus spread and up-to-date 
field status for effective control strategies. Previous studies 
have reported a widespread usage of live vaccines help in the 
spread of IBDVs with emergence of vaccine escape mutant 
strains [35–38]. Based on serological evidences of IBDV 
serotype I in wild birds, it has been suggested that wild birds 
may be critical player in the epidemiology of IBDV and may 
act as reservoir for the IBDV [39–43].

Usage of live vaccines is blamed to be responsible for 
spillover of viral vaccines from poultry into wild birds [22, 
23] The safety of attenuated IBDV vaccines that are com-
monly used in the Egyptian poultry sectors might be exam-
ined systematically within the commercial avian species but 
not in wild birds that might be susceptible to infection [24]. 
In spite of restricted epidemiological studies for viruses in 
wild birds, spilling over of poultry vaccines has been doc-
umented in wild birds [24]. Despite the direct impacts of 
the attenuated viral vaccines on wild birds, the potential for 
these vaccines to develop significant levels of pathogenic-
ity in wild birds is a major challenge [44]. These findings 
highlight the potential roles of wild birds in the spread of 
IBDV. In the current study, twenty-eight samples were col-
lected from randomly selected wild birds from three Egyp-
tian Governorates These samples were individually screened 
for IBDV by the RT-PCR targeting the VP2 gene. Three 
samples (3 out of 28) were identified positive among the 
tested cloacal samples (Table 1). The sampled wild birds 
were classified into four different families; Anatidae (A. 
crecca species, n = 8 and A. platyrhynchos species, n = 7), 
Ardeidae (B. ibis species, n = 6) and Phasianidae (C. cotur-
nix species, n = 7) based on their taxonomy (Table 1). The 
vvIBDV isolate Egypt-USC-IBD-1-2019 was collected from 
B. ibis species of Qaulubia Governorate while the IBDV 
vaccine-like strains Egypt-USC-IBD-2-2019 and IBDV iso-
late Egypt-USC-IBD-3-2019 were isolated from A. crecca 
species, Sharkia Governorate and B. ibis species, Monofiya 
Governorate, respectively. Identification of these IBDV in 
birds from the Nile Delta of Northern Egypt is of particular 
concern. The Nile Delta is historically a crucial stopover for 
millions of birds. These birds migrate between the Palearc-
tic and Afrotropical regions every year. Therefore, the Nile 
Delta is considered one of the most important migration 
routes for wild birds [24, 25]. Circulation of IBDV in these 
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wild birds could pose a risk of infection to other birds 
migrating through multiple routes.

The phylogenetic analysis based on VP2 sequences 
revealed that IBDV isolate Egypt-USC-IBD-1-2019 clus-
tered with vvIBDV (Fig. 1) whereas two other isolates 
(IBDV isolate Egypt-USC-IBD-2-2019 and IBDV isolate 
Egypt-USC-IBD-3-2019) clustered with cell-culture adapted 
IBDV vaccine strains (Fig. 1). The highly variable domain of 
VP2 protein carries the antigenic region which is account-
able for neutralizing antibody as well as virulence [9]. 
Genetic analysis of the highly variable domain of VP2 may 
help to identify the genetic relationship among IBDV strains 
[9]. Previous studies have demonstrated that there are two 
major and three minor hydrophilic regions within the VP2 
[45]. The major hydrophilic regions are represented by peak 
A (aa 212–224) and B (aa 314–324) while the three minor 
hydrophilic regions ranged from aa 248–252, 279–290 and 
299–305 [45]. Likewise, there is a serine-rich heptapeptide 
326SWSASGS332 sequence close to the second major hydro-
philic region, was found in virulent strains and it might be 
the virulence marker for IBDV [45] which is detected in 
the isolated vvIBDV characterized in this study. Previous 

reports demonstrated the structural conformation of the 
major hydrophilic peaks A and B as critical in determining 
the IBDV antigenicity. Overall, finding revealed high selec-
tion pressures in peak A and B, and highlight key amino 
acids that can play critical roles in preserving the structural 
confirmation of the VP2 protein and decide the magnitude of 
virulence, pathogenicity and characterization of IBV.

Our analysis of VP2 gene sequences indicated that wild 
bird-origin IBDV isolates carried high similarity with 
vvIBDV (Fig. 2a) and vaccine strains (Fig. 2b) previously 
reported from domestic chickens in Egypt [17]. Moreover, 
the presence of IBDV in the cloacal swabs of the wild birds 
suggested that these birds can shed the virus without devel-
oping disease, which may have implications in the IBDV 
epidemiology. These data suggest an epidemiological link 
between domestic chickens and wild birds in the epidemi-
ology of IBDVs. Previous studies have demonstrated the 
serological presence of IBDV in multiple wild bird spe-
cies [39–43]. Since serotype I of IBDV is known to be a 
pathogenic in avian species other than chicken, it become 
clear that IBDV didn’t assume a significant role in the bird’s 
deaths [46]. Our results revealed that such isolates are most 

Fig. 1  Phylogenetic analysis of studied isolates and their clustering 
patterns with representative IBDVs. Full length VP2 gene based phy-
logenetic analysis of three wild-bird origin IBDV isolates with repre-
sentative strains of currently circulating IBDVs in Egypt. One of the 

reported isolates clustered within vvIBDVs with close relationship 
with the previously characterized strains from commercial poultry 
while the other one clustered vaccine strains. The reported isolated 
marked with red colour
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likely spilt over from previous outbreaks in vaccinated poul-
try and are carried by free-living wild birds, which may 
be playing a role in their dissemination. It has been well 
recognized the spillover of wild birds’ viruses to domesti-
cated poultry causing disease and also in the other direction 
(from poultry to wild birds) [21, 22]. Previous studies have 
reported that passaging of NDV vaccine strains in wild bird 
species may provide selective pressures that could lead to 
antigenic variabilities or an increase in virulence [47–49]. 
The VP2 gene-specific estimates of dN/dS were predicted 
using SNAP and the number of potential synonymous and 
non-synonymous changes were counted. The sites under 

positive or negative selection were mapped and outlined in 
Fig. 2c.

Interestingly, the VP2 gene of Egypt-USC-IBD-1-2019 
vvIBDV isolated from wild bird gained specific amino acid 
mutations (P222A, V256I, N279D, L294I, and N299S) 
(Fig. 2d), which are conserved among all Egyptian vvIBDV 
strains. However, a unique amino acid mutation (G254S) 
was observed in the studied isolates (Fig. 2d). These results 
suggested an existing close link between the IBDV epide-
miology in both domesticated chickens and wild birds. The 
IBDV strains characterized from wild birds may be infectious 
and virulent in chickens and warrant future investigations. 

Fig. 2  Pairwise identity, localization of specific mutations in the VP2 
protein of the newly identified vvIBDV strain and IBDVs selective 
pressure. The pairwise identities plot of VP2 gene for a Egypt-USC-
IBD-1-2019 compared to vvIBDVs and b Egypt-USC-IBD-2-2019 
and Egypt-USC-IBD-3-2019 compared to IBDV vaccine-like strains 
aligned by ClustalW and displayed by Sequence Demarcation Tool 

(SDT) software. c Cumulative behaviour of the average synonymous 
and non-synonymous substitutions moving codon by codon across 
VP2 gene. d 3D structure template for IBDV isolate IBDV/USC-
3/2019 showed the localization of specific mutations in the VP2 pro-
tein for IBDV isolate IBDV/USC-1/2019. The 3D was visualized by 
PyMOL software
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Although the number of samples analysed in this study were 
limited, it is plausible that the circulation of IBDVs among 
wild birds is much higher than previously thought. Continu-
ous disease monitoring, surveillance, and subsequent complete 
viral genome characterization is advisable in case of spillover 
from wild birds to commercial poultry and/or reverse spillover 
from commercial poultry to wild birds.

Future investigations are warranted to underpin the pro-
posed virulence markers as guidelines for the cataloguing of 
IBDV strains into diverse pathotypes. Additional animal trials 
of the currently used commercial inactivated IBDV vaccines 
are needed to confirm their effectiveness against field IBDV 
strains without the use of live IBDV vaccines. To further 
understand the transmissibility of the wild bird-origin IBDV 
strains, additional experiments such as assessment of the mini-
mum infectious and lethal doses need to be performed. Thus, 
further research is needed to investigate the pathobiology of 
wild bird-origin IBDVs that might help to explore the patho-
biology and immunosuppressive impacts of IBDV isolates and 
tracking their evolutionary changes to better assess the nature 
of recently circulating strains of IBDV.
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