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Abstract
The helicase eIF4A is part of the cellular eIF4F translation initiation complex. The main functions of eIF4A are to remove 
secondary complex structures within the 5′-untranslated region and to displace proteins attached to mRNA. As intracel-
lular parasites, viruses regulate the processes involved in protein synthesis, and different mechanisms related to controlling 
translation factors, such as eIF4A, have been found. The inhibitors of this factor are currently known; these substances could 
be used in the near future as part of antiviral pharmacological therapies in instances of replication cycles in which eIF4A is 
required. In this review, the particularities of how some viruses make use of this initiation factor to synthesize their proteins 
are discussed.
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Introduction

Viruses require viral proteins to form new particles. This 
process depends on the cellular translational machinery; 
therefore, viruses have developed mechanisms that favor the 
synthesis of their proteins over cellular protein synthesis [1, 
2]. Different studies have suggested the possible roles of 
translation initiation factors during viral infections, and the 
eIF4F complex is one of the most widely studied translation 
initiation factors and is commonly used by certain viruses 
[3–5].

Consistent with the above statement, the eIF4A protein, 
which is part of the eIF4F complex, can be regulated dur-
ing viral infection [6], but the way in which this regulation 

is accomplished tends to be different in each case, which 
means that viruses can either use it or not use it at all, or 
they may alternate between requiring and not requiring the 
protein.

The eIF4A factor and its role in translation 
initiation

The synthesis of proteins or translation is divided into three 
phases—initiation, elongation, and termination—and the 
objective is to translate the information contained in the 
mRNA [7, 8]. According to the form of initiation, the trans-
lation has been classified as cap-dependent or cap-independ-
ent [7].

The cellular mRNAs are characterized by having a struc-
ture at the 5′ end, called cap. At the 3′ end, they contain a 
polyadenylated tract (poly A) bound to the poly(A)-binding 
protein (PABP) [7, 9, 10]. In the cap-dependent mechanism, 
the mRNA is recruited to a protein complex called eIF4F, 
which is composed of three proteins: eIF4E, a cap-binding 
protein; eIF4A, which is a helicase; and eIF4G, which in 
turn joins eIF4E and eIF4A and other initiation factors like 
eIF3 [11–13]. Another complex that participates in the ini-
tiation phase is called 43S, formed by the small 40S ribo-
somal subunit, the eIF3 factor, and the ternary complex 
formed in turn by eIF2, GTP, and tRNA-methionine-initiator 
(Met-tRNAi). The eIF4F complex recruits the 43S complex 

Edited by Joachim Jakob Bugert.

 * Hilda Montero 
 hmontero@uv.mx

 Gustavo Pérez-Gil 
 gustavo_000@hotmail.com

 Clara L. Sampieri 
 csampieri@uv.mx

1 Instituto de Salud Pública, Universidad Veracruzana, 
Av. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, 
91190 Xalapa, Veracruz, Mexico

2 Centro de Ciencias Biomédicas, Universidad Veracruzana, 
Av. Luis Castelazo Ayala s/n., Col. Industrial Ánimas, 
91190 Xalapa, Veracruz, Mexico

http://crossmark.crossref.org/dialog/?doi=10.1007/s11262-019-01641-7&domain=pdf


268 Virus Genes (2019) 55:267–273

1 3

through the interaction of eIF3 [12, 14]. The 40S ribosomal 
subunit carries the eIF2-GTP-Met-tRNAi complex to the 
start codon AUG, where the 40S and 60S ribosomal subunits 
bind, giving rise to the full 80S ribosome. The eIF2 protein 
is released together with GDP and the elongation step is 
started (Fig. 1) [11, 12, 15, 16].

The eIF4A factor is a DEAD-box helicase, which is 
composed of two recA-like domains and a flexible central 
hinge region [17–19]. This factor is part of the eIF4F com-
plex, which is also composed of eIF4G and eIF4E [12, 13, 
20]. This complex has been described as a key element in 
the cap-dependent translation initiation process, which is a 
highly regulated step [12]. One of the functions of eIF4F is 
to recruit mRNA for translation; however, eukaryotic mRNA 
presents secondary structures in the 5′-untranslated region 
(5′-UTR) that can make translation difficult due to their abil-
ity to prevent the assembly of the 40S ribosomal subunit, 
and they complicate scanning near the start codon [21]. The 
role of eIF4A helicase activity is to unwind 5′ UTR struc-
tures [22].

A number of studies suggest that eIF4A by itself has 
weak helicase activity. Such activity is stimulated when 
eIF4B or eIF4H initiation factors are present. In addition, 

eIF4A removes adhered proteins and heterogeneous ribo-
nucleoprotein molecules from the cellular nucleus that 
commonly coat mRNA [21, 23, 24].

Until recently, eIF4A was considered to solely could 
remove structures within mRNA during protein biosyn-
thesis, but recently, specific research has found that eIF4A 
can be of higher importance and that it can even function 
as a regulator at different levels [25, 26]. One of the events 
in which eIF4A participates is in the assembly of stress 
granules (SGs). These granules are cytoplasmic aggregates 
in which cellular translation is arrested under stress condi-
tions (reviewed in [27]). Initially, SGs were suggested to 
be assembled as a response to the phosphorylation of the 
translation factor eIF2 [28]. However, more recent studies 
have shown that SGs are also formed as a consequence 
of eIF4A inactivation [26]. After the discovery that the 
drug Pateamine A, which favors the binding of eIF4A to 
mRNA in such a way that functionality is inhibited [29] 
and that SGs are formed as a result [26], it was proposed 
that eIF4A is important for protein synthesis control, and 
consequently, for regulation of gene expression at the 
translational level. Recently, different research teams have 
used this initiation factor as therapeutic target in cancer or 

Fig. 1  Initiation of translation. 1 The eIF4F complex—which con-
tains eIF4E, eIF4A, and eIF4G—2 recruits mRNA through the inter-
action of eIF4G with the poly(A)-binding protein (PABP), while 
eIF4E binds to the mRNA 5′ cap. 3 The 43S complex, which contains 

the small 40S ribosomal subunit, 4 binds eIF4G through eIF3 to carry 
out the scanning of the mRNA to the start codon, 5 and the full 80S 
ribosome is subsequently formed. Then the GDP-eIF2 complex is 
released and gives rise to the elongation phase
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during viral infections and have obtained promising and 
interesting results [30, 31].

In the mechanism known as cap-independent, the pres-
ence of a structure known as internal ribosome entry site 
(IRES) within the 5′-UTR is important for the translation 
of mRNA. This mechanism was initially described as a trait 
of the picornavirus family; however, it is now known that 
IRESs are not found exclusively in viral mRNAs [32, 33]. 
It has been observed that, in this initiation form, an mRNA 
with IRES can become translated without requiring any 
canonical initiation factor—as happens in the cricket paraly-
sis virus (family: Dicistroviridae, genus: Cripavirus) [34]—
but may have to be translated with one or more canonical 
factors such as eIF4A or by using cellular proteins, known 
as IRES trans-acting factors (ITAFs) [35–37], which have 
already been described for some viral IRESs [38].

Viral translational mechanisms that benefit 
from eIF4A

Some viruses employ translational mechanisms for their 
mRNAs that are similar to those used by cellular mRNAs. 
For this reason, these viruses draw on mechanisms that 
ensure or stabilize the formation of eIF4F. One example 
is cytomegalovirus, which codes for a protein known as 
pUL69 whose target is eIF4A (Fig. 2a). It has been dem-
onstrated in vitro that pUL69-eIF4A binding ensures that 
eIF4E remains recruited within eIF4F, and thus, eIF4E is 
prevented from being sequestered by the regulating protein 
4EBP [39]. In addition, to ensure the formation of eIF4F, 
cytomegalovirus stimulates the synthesis of all components 
of this complex [40].

The influenza virus, known for having mRNAs with char-
acteristics similar to cellular mRNAs, uses eIF4A to syn-
thesize its proteins. In experimental models, both in vitro 
and in vivo, there has been evidence of the virus needing, 
in addition to eIF4A, eIF4G but not eIF4E (Fig. 2b) [41].

The principal function of eIF4A is to remove complex 
secondary structures in mRNA regardless of the way that 

Fig. 2  Translational mechanisms of viral mRNAs that require eIF4A. 
a Cytomegalovirus protein pUL69 (CMV) ensures the recruitment 
of eIF4A into the eIF4F complex, making it more stable. b Influenza 
virus (IFV) employs a mechanism for the translation of its mRNAs 

that depends on eIF4A activity and the presence of eIF4G but not on 
the presence of eIF4E. c IRES in mRNAs of encephalomyocarditis 
virus (EMCV), Kaposi’s sarcoma-associated herpesvirus (KSHV), 
and calicivirus (CV) are all dependent on eIF4A
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ribosomal units are recruited. This function of the helicase 
is crucial not only during cap-dependent translation as part 
of the eIF4F complex but also during the cap-independent 
translation of some viral mRNAs via IRES. Consistently, 
the encephalomyocarditis virus IRES has been found to use 
an initiation mechanism that depends on this structure in 
which conformational changes are required in the down-
stream region of the initial codon while being mediated by 
eIF4A (Fig. 2c) [42].

Evidence of the participation of eIF4A in the translation 
of other viral IRES mRNAs has established that, in some 
occasions, an association between eIF4A and other factors 
of the eIF4F complex is necessary, such as in the IRES of 
Kaposi’s sarcoma-associated herpesvirus [43] and calici-
virus mRNAs (Fig. 2c) [44]. Although the importance of 
eIF4A binding to other translation factors is not fully under-
stood, it is clear that such interactions increase translation 
efficiency [43, 44].

eIF4A may not be required during protein 
synthesis by some viruses

Each virus has evolved differently. As previously mentioned, 
some viruses employ the classic cap-dependent transla-
tional mechanism in which one or more canonical factors 
are manipulated. There is a case of viral mRNAs, namely, 
those of hantavirus, in which translation takes place via a 
cap-dependent mechanism, but the function of eIF4A is sub-
stituted by a viral protein named N [45]. What makes this 
protein even more interesting is the fact that it also plays 
the roles of eIF4G and eIF4E. The advantage of the N func-
tion is not only the substitution of the eIF4F function; it is 
also able to differentiate between a viral and cellular mRNA, 
favoring viral mRNA, and consequently, the formation of 
new viral particles (Fig. 3a) [45]. This case shows the great 
diversity and multiple functions of viral proteins.

The Cotesia plutellae bracovirus (CpBV), a DNA virus 
(family: Polydnaviridae, genus: Bracovirus), inhibits cellu-
lar mRNA translation in infected cells through viral pro-
teins that target eIF4A. It has been found that a viral protein 
termed CpBV15β is synthesized during the late phase of 
infection. This protein has a region homologous to that of 

Fig. 3  The eIF4A factor may not be necessary in some viral transla-
tion mechanisms. a Hantavirus codes for the N protein, which substi-
tutes the function of the eIF4F complex. b Protein CpBV15β of Cote-
sia plutellae bracovirus (CpBV) has the task of sequestering eIF4A 

and thus inhibiting the formation of eIF4F. c Protease 3C, coded by 
the foot and mouth disease virus (FMDV), cuts eIF4A and eIF4G, 
which increases viral protein synthesis
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eIF4G. CpBV15β has the characteristic of binding to eIF4A 
and sequestering it, thus avoiding the formation of eIF4F 
(Fig. 3b) [46]. In this late phase of infection, the mRNAs 
that can be translated contain secondary structures in their 
5′ UTR that would only be present in viral mRNAs, resulting 
in their selection over cellular mRNAs [47].

Cellular initiation factors, such as eIF4G and PABP, have 
been reported as targets for coded proteases by some viruses 
[48–51]. There is evidence that eIF4A is a target for these 
viral proteases, such is the case of protease 3C, coded by 
foot and mouth disease virus. This protease also cuts eIF4G, 
making it capable of generating a synergic effect due the 
cuts of both factors, which results in a decrease of cellular 
protein synthesis via a cap-dependent mechanism, whereas 
viral protein synthesis takes place via a cap-independent 
mechanism (Fig. 3c) [52].

Research addressing the role of the trans-dominant eIF4A 
mutant and that of hippuristanol, a specific eIF4A inhibitor 
that prevents eIF4A from binding to mRNA, has confirmed 
that mRNAs with IRES in some viruses are resistant to these 
conditions, which suggests the independence of eIF4A from 
these translation processes. Such is the case for hepatitis 
C virus, classic swine fever virus [53], porcine teschovirus 
type 1 [54], and cricket paralysis viruses [55].

Viruses that modulate their requirement 
of eIF4A according to the context in which 
they are found

There are interesting examples of the versatility of viral 
mRNA concerning its translation requirements. Messenger 
RNA can alternate among different translational mecha-
nisms depending on its current context. Sindbis virus is one 
of these examples; in infected cells and in cells transfected 
with replicons of the virus, viral protein synthesis is inde-
pendent of eIF4A. However, when genomic and subgenomic 
mRNAs were transfected to cells via a vector, their expres-
sion was completely dependent on eIF4A. The presence of 
any viral protein that could be supplanting eIF4A function 
during infection has been experimentally discarded [56]; the 
results of this study suggest that Sindbis virus mRNAs are 
capable of adapting to different conditions depending on the 
availability of translation initiation factors.

The genomic mRNA of human immunodeficiency virus 
type 1 (HIV) has two AUG start codons that allow the syn-
thesis of two isoforms of the Gag protein: codon 1 generates 
the p55 isoform, and it is translated via a cap-dependent 
mechanism that uses eIF4A and can switch to the cap-inde-
pendent mechanism when an IRES structure is present in 
the 5′ UTR and Codon 2, which generates the p40 isoform, 
is only translated via cap-independent mechanism through 
an IRES found in the Gag’s ORF [57, 58]. This alternating 

behavior between cap-dependent and cap-independent trans-
lations of codon 1 suggests that some viral mRNAs have to 
be translated according to intracellular conditions and the 
availability of initiation factors in order to secure viral pro-
tein synthesis.

The eIF4A inhibitors

There are some compounds that have the characteristic of 
inhibiting eIF4A: silvestrol [59], hippuristanol [60], eli-
sabatin and allolaurintenol [61], rocaglamide [62], and 
pateamine A and some of its derivatives [30]. These com-
pounds are emerging as a new antiviral therapeutic strat-
egy whose mechanism of action is the inhibition of eIF4A. 
Consistent with this, silvestrol has shown antiviral activity 
in vitro against RNA viruses: Ebola virus, hepatitis E, coro-
navirus, rhinovirus, and poliovirus [59, 63–65]. Hippurist-
anol has been tested in preclinical studies for possible use in 
patients with HTLV-1 [31]. Therefore, the use of compounds 
that inhibit the activity of eIF4A holds great interest in virol-
ogy as antiviral agents.

Conclusions

Despite the important role of eIF4A in intracellular events, 
available information on how this protein participates dur-
ing viral infection is scarce. The eIF4A protein participates 
in cap-dependent translation as part of the eIF4F complex; 
paradoxically, it also participates in cap-independent transla-
tion via IRES during some viral infections [66]. The fact that 
eIF4A participates in the replicative cycles of some viruses 
makes it useful for controlling infections. To date, there 
are compounds known to have a specific effect on eIF4A. 
Experimental use of these compounds has shown interest-
ing results in animal study models [31]. Related preclinical 
studies serve as a foundation for the use of hippuristanol 
as a therapeutic treatment that could be used against some 
viral infections in which eIF4A is of high importance to 
viral replication.
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