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Abstract
Plant virus-based nanoparticles (PVNs) are self-assembled capsid proteins of plant viruses, and can be virus-like nanopar-
ticles (VLPs) or virus nanoparticles (VNPs). Plant viruses showing helical capsid symmetry are used as a versatile platform 
for the presentation of multiple copies of well-arrayed immunogenic antigens of various disease pathogens. Helical PVNs are 
non-infectious, biocompatible, and naturally immunogenic, and thus, they are suitable antigen carriers for vaccine produc-
tion and can trigger humoral and/or cellular immune responses. Furthermore, recombinant PVNs as vaccines and adjuvants 
can be expressed in prokaryotic and eukaryotic systems, and plant expression systems can be used to produce cost-effective 
antigenic peptides on the surfaces of recombinant helical PVNs. This review discusses various recombinant helical PVNs 
based on different plant viral capsid shells that have been developed as prophylactic and/or therapeutic vaccines against 
bacterial, viral, and protozoal diseases, and cancer.
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Introduction

Edward Jenner was the first to develop a vaccine against 
smallpox in 1796, and subsequently, inactivated and attenu-
ated pathogens were used as vaccines. However, due to the 
difficulties associated with the propagation of pathogens 
in vitro and the reversion to virulence, subunit vaccines and 
conjugate vaccines were developed to provide alternative, 
safer approaches to inactivated and attenuated vaccination 
[1]. Recombinant DNA technology has been harnessed to 
develop subunit vaccines against pathogens using various 
expression systems, such as, Escherichia coli, yeast, mam-
malian, and insect cell lines. However, the increased need for 

cheaper vaccines remains a challenge in developing coun-
tries because of economic and logistical problems [2].

To overcome these constraints, plants can be used as low-
cost biofactories to produce vaccines at commercial scales. 
Several plant species, such as, tobacco, spinach, lettuce, and 
tomato, have been used to produce vaccines, and the anti-
genic proteins and peptides derived from plant biomasses 
or purified fractions have been used as vaccines to elicit 
protective immunity against animal pathogens [3]. Most 
animal pathogens enter the body through mucosal tissues 
or infect directly at mucosal sites. The oral administrations 
of plant-based mucosal vaccines can induce humoral and 
cell-mediated immune responses, and this form of deliv-
ery to mucosal surfaces also makes immunization safe and 
eliminates needle-associated risks [4]. Since these recom-
binant subunit vaccines contain only immunogenic epitopes 
of pathogens, their immunogenic properties are substan-
tially less than those of whole pathogens, and thus, adju-
vant co-administration is needed to induce higher immune 
responses [5]. However, an alternative strategy to increase 
the immune response is to arrange multiple copies of immu-
nogenic epitopes in a well-ordered and defined manner on 
a nanoscaffold.

Self-assembling coat proteins from viruses form the pro-
tein nanostructures of the parent virus, can be free of genetic 
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material, and are referred to as virus-like particles (VLPs). 
These protein nanostructures or nanoscaffolds mimic 
viruses, but are non-infectious and lack replication poten-
tial [6]. Accordingly, they can be used as carriers of anti-
genic epitopes to elicit effective immune responses. VLPs 
with replication potential in plants are virus nanoparticles 
(VNPs). These VNPs and VLPs known as plant virus-based 
nanoparticles (PVNs) can be made from isometric or helical 
viruses, and can be genetically engineered with antigenic 
epitopes from pathogens to form recombinant isometric or 
helical PVNs (rPVNs) for the safe and effective elicitation 
of immune responses [5, 7–9]. In this review, we discuss 
reports on recombinant helical PVNs used as vaccines 
against various pathogens and in cancer immunotherapy.

Helical plant viruses

Viruses are submicroscopic, non-cellular, obligate intracel-
lular parasites, which cannot grow or reproduce by them-
selves, and require host cell machinery to replicate. They 
consist of a protein coat (capsid), which encloses genetic 
material (DNA or RNA). Viruses are host-specific and are 
categorized based on the host organisms as bacteriophages, 
cyanophages, phytophages, or zoophages. Phytophages are 
plant viruses, which cause diseases in plants with a range of 
symptoms, particularly, leaf yellowing, and growth distor-
tions [10]. They are classified by their nucleotide sequence, 
genome expression strategy, mode of transmission, and par-
ticle structure. Viruses are also classified by capsid design 
as icosahedral and helical. Icosahedral-shaped viruses are 
roughly spherical shaped, while helical viruses are filamen-
tous. Moreover, depending on the presence or absence of 
a lipid bilayer around the capsid, viruses are classified as 
enveloped or non-enveloped. Non-enveloped helical plant 
viral capsids are more flexible and stable in terms of express-
ing foreign genes, which makes them an ideal platform for 
epitope presentation system [11] (Fig. 1).

Genetic engineering of helical plant virus‑based 
nanoparticles (PVNs)

Helical PVNs are rod shaped and their N- or C-terminal coat 
proteins (CPs) are exposed on their surfaces. Furthermore, 
CPs have been fused with antigenic epitopes of disease path-
ogens by genetic engineering to elicit immunogenic activity. 
In addition, genetic modifications of surface amino acids of 
PVN CPs to lysine or cysteine allow bioconjugation with 
antigenic peptide or protein entities [12]. In particular, heli-
cal plant viruses, such as, bamboo mosaic virus (BaMV), 
cardamom mosaic virus (CdMV), johnsongrass mosaic virus 
(JGMV), papaya mosaic virus (PapMV), papaya ringspot 
virus (PRSV), plum pox potyvirus (PPV), potato virus X 
(PVX), potato virus Y (PVY), tobacco etch virus (TEV), 

tobacco mosaic virus (TMV), and zucchini yellow mosaic 
virus (ZYMV) have been genetically engineered to display 
immunogenic epitopes on their surfaces to provide effec-
tive vaccination against several disease pathogens and for 
immunotherapy (Table 1).

Bamboo mosaic virus (BaMV)

Bamboo mosaic virus (BaMV) is a flexuous, rod-shaped, 
non-enveloped virus of width 15 nm and of clear modal 
length 490 nm, and contains a positive-sense single-stranded 
RNA (ssRNA). It is a member of the Potexvirus genus and 
infects both mono- and dicotyledonous plants [13, 14].

Many helical plant viruses, such as TMV and PVX, are 
used as versatile vectors for the production of vaccines by 
expressing antigenic and immunogenic epitopes in plants. 

Fig. 1  Self-assembly of helical virus-based nanoparticles from 
recombinant coat proteins containing immunogenic epitopes: a sche-
matic diagram of the helical plant viral genome, b plant virus-based 
expression vector containing an immunogenic epitope as a fusion pro-
tein, c recombinant coat protein containing an immunogenic epitope, 
and d recombinant helical plant virus-based nanoparticles displaying 
immunogenic epitopes
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However, helical BaMV is a less-explored viral vaccine 
delivery system that can carry larger transgene loads and 
generate better immunity against various diseases in target 
animals with fewer adverse effects. Foot-and-mouth disease 
(FMD) is caused by foot-and-mouth disease virus (FMDV), 
which has seven major serotypes (O, A, C, SAT-1, SAT-2, 
SAT-3, and Asia-1), and infects cloven-hoofed animals, such 
as pigs, sheep and cattle, causing serious damage in the live-
stock industry [15]. Yang et al. [16] generated a recombinant 

BaMV-based vector (pBVP1) for the production of chimeric 
BaMV virus in plants as a vaccine against FMDV. pBVP1 
was constructed by inserting a DNA sequence encoding 37 
amino acid residues  (T128–N164) of the VP1 CP of FMDV 
(O/Taiwan/97) by replacing the DNA sequence encoding 
BaMV CP. When transfected into Chenopodium quinoa, 
pBVP1 generated chimeric BVP1 virions expressing anti-
genic epitope(s) of the capsid protein VP1 of FMDV in its 
coat protein. Immunization of swine with BVP1 virions as 

Table 1  List of recombinant helical plant virus-based nanoparticles (rPVNs) functionalized with immunogenic peptides display for vaccination

Recombinant helical PVNs Vaccination Immunogenic epitope display References

1. Bamboo mosaic virus (BaMV) Foot-and-mouth disease virus VP1 capsid protein  (T128-N164) [16]
2. Cardamom mosaic virus (CdMV) Human immunodeficiency virus Envelope glycoprotein gp41 [21]

Leptospira interrogans Membrane protein LipL32 [22]
3. Johnsongrass mosaic virus (JGMV) Plasmodium falciparum Merozoite surface antigen (MSA2) [27]

Schistosoma japonicum Sj26-glutathione S-transferase [28]
Japanese encephalitis Peptide  A373–399 of Envelope (E) protein [30]
Contraception YLP12 testes-specific peptide & ZP3 peptide [33]

Decapeptide of LHRH [34, 35]
4. Papaya mosaic virus (PapMV) Hepatitis C virus E2 glycoprotein [38]

Influenza virus Extracellular domain of M2e epitope [39]
M1 matrix protein [40]
Nucleocapsid  (NP147–155) [43]

5. Papaya ringspot virus (PRSV) Canine parvovirus VP2 capsid peptide [50]
Dengue virus Domain III of DENV2E protein [52]

6. Plum pox potyvirus (PPV) Canine parvovirus VP2 capsid protein [55, 56]
7. Potato virus X (PVX) Human immunodeficiency virus Glycoprotein 41 (ELDKWA peptide) [62]
8. Potato virus Y (PVY) Hepatitis B virus preS1 epitope [67]
9. Tobacco etch virus (TEV) Porcine reproductive and respira-

tory syndrome virus (PRRSV)
Minor and major envelope proteins [71]

10. Tobacco mosaic virus (TMV) Human immunodeficiency virus HIV-1 Tat protein [77]
Envelope protein gp120 [78]

Influenza virus Hemagglutinin (HA) glycoprotein [78]
Canine oral papilloma virus L2 protein  (L261–71) [79]
Murine hepatitis virus S2 glycoprotein [89]

5B19 epitope of spike (S) glycoprotein [90]
Rabies virus G5-24 peptide of virus glycoprotein [90]

Peptide 31D of nucleocapsid protein [90]
Poliovirus Peptide from VP1 capsid protein [92]
Foot-and-mouth disease virus F11 & F14 peptides fromVP1 capsid protein [93, 94]
Francisella tularensis OmpA-like protein (OmpA) [95]

Chaperone protein DnaK [95]
Lipoprotein Tul4 [95]

Pseudomonas aeruginosa OM protein F (9–14 mer peptide) [97]
Plasmodium falciparum B-cell epitope from CSP [98]
Plasmodium yoelii Merozoite surface protein 4/5 [99]
Cancer 8-aa mouse tumor T-cell epitope [101]

Tn (GalNAc-α-O-Ser/Thr) antigen [102]
14- or 36-aa HER2/neu epitope [103]

Contraception ZP3 glycoprotein of zona pellucida [104]
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VLPs resulted in the production of anti-FMDV neutralizing 
antibodies. Thus, chimeric BVP1 virions expressing a par-
tial sequence of VP1 protected target animals by generating 
humoral and cell-mediated immune responses, and conferred 
full protection against FMDV.

Cardamom mosaic virus (CdMV)

The filamentous plant viruses of the family Potyviridae, 
which include genus Potyvirus, Rymovirus, Tritimovirus, 
Bymovirus, Maclurovirus, Ipomovirus, and Brambyvirus, 
constitute almost a quarter of the known plant viruses [17]. 
Among these, Potyviruses are flexuous, rod-shaped particles, 
700–900 nm long and 11–15 nm wide with a single copy 
of a positive-sense polyadenylated ssRNA of about 10 kb. 
A mature potyvirus particle contains approximately 2000 
copies of a single type of CP in the range of 28–40 kDa. 
Chimeric potyvirus-like particles (PVLPs) can be made by 
fusing foregin sequences to the N- and/or C-terminal regions 
of the CP, which are surface-exposed and immunodominant 
and are not required for the self-assembly of PVLPs [18].

Cardamom mosaic virus (CdMV) is a member of the 
genus Macluravirus of Potyviridae and the causative agent 
of cardamom mosaic disease infecting small cardamom 
(Elettaria cardamomum Maton) with mosaic, katte or marble 
disease [19, 20]. Virions are filamentous, usually flexuous of 
700–720 nm, and transmitted by aphids in a non-persistent 
manner, and not transmitted by mechanical inoculation and 
seed. The CP of CdMV was used as a carrier molecule for 
presenting HIV-1 antigens. The envelope glycoprotein gp41 
of HIV plays an important role in viral entry into the host 
cells. The Kennedy peptide, contains three epitopes (aa 
735–752), is located in the cytoplasmic tail of gp41. The 
epitopes, 2F5, which is at the end of the heptad repeat 2 
region of gp41, and 4E10 at the C-terminus of the 2F5 bind-
ing region, neutralize the virus by interfering with its fusion 
with the target cell membrane. The N- and C-termini of the 
CdMV-CP were engineered with the Kennedy peptide (E1) 
and the 2F5 (ELDKWA) and 4E10 epitopes of gp41 of HIV. 
These chimeric proteins had the ability to react with sera 
from HIV-infected persons and to induce cytokines in their 
PBMCs [21]. Similarly, molecular modeling and in-silico 
analyses showed that surface-associated epitopes, LipL32 of 
Leptospira interrogans, can be displayed on the N-terminus 
of CdMV-CP for the development of Leptospirosis vaccine. 
Antibody developed against these LIPL32 epitopic regions 
could also be used for the detection of Leptospirosis [22].

Johnsongrass mosaic virus (JGMV)

Johnsongrass mosaic virus (JGMV) is a plant pathogenic 
virus of the family potyviridae, which was first reported 
in Sorghum halepense (Johnsongrass) and Zea mays from 

Australia [23]. It was transmitted by aphids, mechanical 
inoculation and not transmitted by contact between plants 
and seeds. JGMV-infected plants, mostly show systemic 
mosaics, mottles, ringspots, or necrosis. It is usually a 
flexuous filamentous virion with a clear modal length of 
773–778 nm, with the CP gene coding for a protein of 303 
amino acids with a molecular weight of 34 kDa [24].

Vaccines for human parasitic diseases

RTS,S/AS01 (Mosquirix) is the first VLP-based vaccine 
generated against malarial parasitic disease using the cir-
cumsporozoite protein (CSP) from the malaria parasite 
[25, 26]. Similar approach can be used to develop malaria 
vaccine using E71 octapeptide (SNTFINNA), which is an 
epitope from MSA2 derived from one of the two invari-
able domains of merozoite surface antigen (MSA2) of the 
malarial parasite Plasmodium falciparum. Fusion of E71 to 
the CP at the N-terminal region produced fusion E71-CP, 
which assembled to form chimeric PVLPs of JGMV when 
expressed in E. coli and baculovirus-insect cell. When 
administered to mice as a diphtheria toxoid conjugate in the 
presence of an adjuvant, it elicited a good anti-MSA2 anti-
body response and substantial protection to mice challenged 
with a lethal inoculum of rodent malarial species, Plasmo-
dium chabaudi [18, 27]. Similarly, expression of a construct 
containing residues 37–248 of MSA2 also yielded MSA2-
CP for the assembly of chimeric PVLPs. Another impor-
tant parasitic disease is caused by Schistosoma japonicum, 
which is the human blood fluke parasite causing oriental 
schistosomiasis in a wide range of hosts, including carni-
vores, rodents, insectivores, and humans. Sj26-glutathione 
S-transferase of 26 kDa antigen from S. japonicum is the 
molecular target for antischistosomal therapy. Fusion of Sj26 
antigen to the N-terminal of JGMV CP produced fusion CP, 
which assembled to form PVLPs of JGMV in E. coli [18, 
28]. Administration of Sj26-PVLPs to mice without adjuvant 
elicited antibody responses comparable to monomeric Sj26 
administered with Freund’s complete adjuvant [29].

Vaccines for Japanese encephalitis

Japanese encephalitis virus (JEV) is a mosquito-borne fla-
vivirus responsible for the acute encephalitis in human. 
It is affecting a vast geographic area that includes India, 
China, Japan, and almost all of Southeast Asian countries 
and resulting in 10,000 mortality every year. The survivors 
of this disease suffer from a long-lasting serious neurologi-
cal and psychiatric sequelae [30]. Protection against JEV is 
antibody-dependent, and neutralizing antibodies alone can 
impart protection. The envelope (E) protein of JEV con-
tains virus-neutralizing epitopes. Four peptides  (A373–399, 
 B386–399,  C151–163, and  D303–400) from JEV E protein were 
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fused to JGMV-CP and expressed in E. coli bacterial sys-
tem. JGMV-VLPs containing peptide A, a 27-amino acid 
peptide containing amino acids from 373 to 399 of JEV 
E protein, induced virus-neutralizing antibodies without 
the use of an adjuvant. Mice immunized with these VLPs 
showed significant protection against a lethal JEV chal-
lenge [30].

Vaccines for contraception

A method of safe and effective contraception/castration 
by immunological interference is more effective than con-
ventional methods. This can be achieved by conjugating 
an appropriate antigen to a carrier molecule to make the 
immune system to raise neutralizing antibodies. The prime 
candidates for immunoneutralization include reproductive 
hormones, gametes and/or their associated components. One 
of the important sites for immunological intervention is to 
inhibit the production of gametes (sperm and egg), func-
tions of gametes, or their outcome. One of the important 
sites for immunological intervention is to block fertilization 
potential of spermatozoa.  YLP12, a 12-mer (YLPVGGLR-
RIGG) testes-specific peptide, which is expressed in the 
acrosomal region of spermatozoa and has a role in human 
sperm-zona pellucida (ZP) interaction, can be an important 
antigenic candidate for immunoneutralization. ZP3 (QAQI-
HGPR) peptide of ZP glycoprotein of oocytes can also be a 
potential antigenic candidate for developing contraceptive 
vaccine [31, 32]. Immunization of mice with genetically 
engineered JGMV-VLPs encompassing gamete epitopes of 
zona (ZP3), spermatozoa-specific (YLP12) and YLP12-ZP3 
peptide without any adjuvant generated specific antibodies 
and significantly curtailed fertility [33]. Similarly, pituitary 
gonadotrophin secretion, which is stimulated by luteinizing 
hormone releasing hormone (LHRH) from hypothalamus, 
controls reproduction in mammals. Selective neutralization 
of LHRH by a specific antibody would be a potential alter-
native to surgical castration. Active immunization of mice 
with a decapeptide (QHWSYGLRPG) of LHRH, at the N- or 
at both N- and C-terminal regions of CP yielding LHRH-
PVLPs, was immunocastrated [18, 34, 35].

Papaya mosaic virus (PapMV)

Papaya mosaic virus (PapMV) is a member of the genus 
Potexvirus in the family Alphaflexiviridae. It is a flexible 
rod-shaped (500 nm long, 14 nm diameter) virus with a 
neutrally charged particle composed of 1400 subunits of 
CP assembled around a positive stranded ssRNA of 6656 
nucleotides. The CP of PapMV is composed of 215 amino 
acids and has a molecular mass of 23 kDa [36, 37].

Vaccines for viral diseases

Hepatitis C virus (HCV)

PapMV nanoparticles provide an efficient vaccine plat-
form, in which the peptide antigen is fused to the C-ter-
minus of PapMV CP. This results in viral particles that 
present surface-exposed epitopes that trigger humoral or 
cytotoxic immune responses. Hepatitis C virus (HCV) is 
a bloodborne virus and causes chronic and acute hepatitis 
infection worldwide, and approximately 700,000 people 
die each year because of hepatitis C-related liver diseases 
(http://www.who.int/media centr e/facts heets /fs164 /en/). 
Leclerc and coworkers first reported that the critical effect 
of multimerization of plant virus-based vaccine platforms 
is immunogenicity. They engineered PapMV CP as car-
rier protein with a C-terminal fused HCV E2 glycoprotein 
epitope to self-assemble into multimeric form (PapMVCP-
E2) VLPs as immunogenic targets. When C3H/HeJ mice 
were injected twice with the multimeric form of VLP vac-
cine it triggered a long-lasting humoral response against 
both the CP and the fused HCV E2 epitope with a balanced 
Th1/Th2 response with a prevalence of immunoglobulins 
(Igs) IgG1, IgG2a, and IgG2b antibodies, and the less pro-
nounced production of IgG3 anti-epitope antibodies. Nota-
bly, the immunogenic properties of  PapMVCP27–215-E2, 
which is unable to self-assemble, are lost in its monomeric 
form [38].

Influenza virus

Influenza is caused by a virus that attacks the upper res-
piratory tract and lungs. It is a seasonal epidemic and glob-
ally causes between 250,000 and 500,000 deaths annually 
(http://www.who.int/media centr e/facts heets /2003/fs211 
/en/). PapMV CP carrying the universal extracellular 
domain of matrix 2 (M2e) influenza epitope (PapMV-CP-
M2e) was developed as a universal influenza A vaccine. 
PapMV-CP-M2e triggered protective humoral response 
against a lethal influenza infection in mice. Furthermore, 
PapMV-CP VLPs were also found to act as an adjuvant 
that increased the immunogenicity of chimeric viral par-
ticles (CVPs) [39]. PapMV VLPs have also been an attrac-
tive platform for triggering cellular responses for cancer 
immunotherapy and vaccine development. Leclerc et al. 
[40] established that PapMV-CP-based VLPs can induce 
major histocompatibility complex (MHC) class I cross-
presentation of HLA-A*0201 epitopes from melanoma 
antigen gp100 and from influenza virus M1 matrix pro-
tein. Although the C-terminus of the PapMV CP is located 
on the surfaces of VLPs, which is used for the fusion of 

http://www.who.int/mediacentre/factsheets/fs164/en/
http://www.who.int/mediacentre/factsheets/2003/fs211/en/
http://www.who.int/mediacentre/factsheets/2003/fs211/en/
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antigenic epitopes, there is a possibility that these anti-
genic fusion proteins interfere with the self-assembly of 
viral particles. A model antigen, influenza HA11 peptide, 
was used to test eight different sites of fusion located at 
the C-terminus of PapMV CP and self-assembling abili-
ties of these constructs to form nanoparticles. Only three 
sites were found to produce stable self-assembled VLPs, 
that is, the C-terminus and positions directly after amino 
acids 187, and 12 (near N-terminus) [41]. It was also 
reported that residue F13 of PapMV CP is critical for the 
self-assembling of subunits to form nanoparticles [42]. In 
a proof-of-concept demonstration, Leclerc and coworkers 
inserted the influenza nucleocapsid  (NP147–155) epitope (a 
9-mer H-2Kd epitope flanked by five native residues of 
NP) just before F13 in the N-terminus of PapMV CP. This 
insertion did not interfere the self-assembly of nanoparti-
cles and triggers a cytotoxic-T-lymphocyte (CTL) response 
in Balb/C mice [43].

Vaccines for bacterial diseases

New adjuvants and immunomodulators that activate cell-
mediated immune responses are of considerable medical 
importance as treatments for many life-threatening infec-
tious diseases. PapMV VLPs containing ssRNA non-spe-
cifically triggered strong innate immune stimulation in the 
lungs of a mouse model by recruiting neutrophils, mono-
cytes/macrophages, and lymphocytes, and conferred protec-
tion against a lethal challenge with Streptococcus pneumo-
niae [44]. Thus, PapMV nanoparticles can non-specifically 
induce innate immunity in lungs during viral pandemics or 
biological warfare. Similarly, self-assembled PapMV CPs 
containing non-coding ssRNA constitute a novel type of 
TLR7 agonist with strong immunostimulatory properties. 
Furthermore, pretreatment with PapMV improved effec-
tor and memory  CD8+ T-cell responses induced by bone 
marrow-derived dendritic cell (BMDC) vaccination and 
increased protection against the foodborne pathogen Lis-
teria monocytogenes challenge. Thus, it seems a PapMV 
platform could be used to develop T-cell vaccines for infec-
tious diseases [45].

Vaccines for cancer

Cancer is a global epidemic causing a large group of dis-
eases in any part of the body. It is the cause of 13% of deaths 
worldwide [46]. PapMV has a tremendous potential as a 
vaccine platform to activate antitumor immune responses 
in an interferon (IFN)-α-dependent manner. When PapMV 
was injected subcutaneously into implanted poorly immu-
nogenic B16-OVA melanoma cells in a murine model, 
tumor progression was significantly retarded due to the 

downregulation of Ki67, an activation/proliferation marker 
in B16 cells. In addition, tumor immunogenicity was 
enhanced by the up-regulation of the surface expression of 
IFN-α-mediated major histocompatibility complex (MHC)-
I. Thus, it appears that PapMV has an intrinsic ability to 
trigger the antitumor T-cell immune system, which can be 
harnessed for cancer immunotherapy [47].

Papaya ringspot virus (PRSV)

Papaya ringspot virus (PRSV) is a non-enveloped, flexuous, 
rod-shaped particle measuring 760–800 nm in length and 
12 nm in diameter in the genus Potexvirus, family Alphaf-
lexiviridae. It is transmitted in a non-persistent manner by 
aphids [48]. PRSV infection is responsible for significant 
losses in papaya by causing mottling and distortion of 
leaves and ringspots on fruit. Guerrero-Rodriguez et al. [49] 
expressed PRSV VLPs in E. coli and chemically coupled 
them to green fluorescent protein (GFP) to evaluate their 
potential use as antigen carriers. Although bioconjugate 
instability was observed, PRSV VLPs enhanced immune 
response against the antigen GFP in BALB/c mice by sig-
nificantly increasing anti-GFP IgG response, particularly, 
IgG1 class response. Similarly, PRSV-CP was analyzed for 
the presentation of 15 amino acid (aa) antigenic VP2 pep-
tide epitope of animal virus, canine parvovirus (CPV) in E. 
coli. Recombinant PRSV-CPs containing CPV epitope at 
the C-terminus and at both N- and C-termini elicited higher 
specific antisera in immunized mice [50]. Dengue fever 
is the most important mosquito-transmitted viral disease 
worldwide. It is transmitted to humans by infected Aedes 
mosquitoes, and there is no commercially available vaccine 
to prevent dengue fever in humans [51]. Here, PRSV was 
employed for the transient expression of domain III of the 
DENV 2 E protein (D2EDIII), a promising subunit vaccine 
candidate against dengue fever, in Cucurbita pepo (zucchini) 
plants as a fused protein with PRSV P1 protein. Thus, PRSV 
could be used as a stable vector for the expression of heter-
ologous proteins in zucchini plants [52].

Plum pox potyvirus (PPV)

Plum pox potyvirus (PPV), also known as sharka, belongs 
to the Potyvirus genus in the Potyviridae family of plant 
viruses, and affects stone fruit worldwide. It is commonly 
spread by aphids feeding on infected plants and then 
transferring PPV to uninfected plants [53]. The potyvirus 
genome consists of a ssRNA of ~ 10 kb with a viral protein 
genome-linked (VPg) at its 5′ end and a poly(A) tail at its 
3′ end encapsidated by a single type of capsid protein (CP) 
subunit [54]. The N-terminal part of PPV CP was chosen 
as a site for the expression of foreign antigenic peptides, 
because it is exposed on the virion surface and is highly 
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immunogenic. Canine parvovirus (CPV) is a highly conta-
gious viral disease affecting dividing cells in a dog’s body 
specifically in the intestinal tract. It also attacks white 
blood cells (WBCs) and damages heart muscle causing 
cardiac problems. Different forms of the antigenic peptide 
(single and tandem repetition) of VP2 capsid protein of 
CPV were cloned into PPV-NATM1uI vector. These PPV-
CPV and PPV-2CPV chimeric virus particles (CVPs) were 
found to be immunogenic and to induce high levels of anti-
bodies that neutralized CPV in mice and rabbits [55, 56].

Potato virus X (PVX)

Potato virus X (PVX) is the type species of Potexvirus 
genus and infects many members of the family Solan-
aceae. PVX is a flexuous rod (13 nm diameter, 515 nm 
long), monopartite, positive-sense, ssRNA plant virus, 
comprised of 1270 identical coat protein (25 kDa) subu-
nits [57]. The crystal structure of PVX is unknown, but its 
architecture is predictable, because all Potexviruses share 
a common architecture with slightly less than nine protein 
subunits per helical turn [58]. High-resolution fiber dif-
fraction studies of PVX have revealed helical symmetry 
with 8.9 protein subunits per turn and a helical pitch of 
34.5 Å [59, 60]. Plant virus-based vectors can be exploited 
to produce genetically modified PVX for expressing a for-
eign protein fused to its CP, which self-assembles into 
CVPs. Green fluorescent protein (GFP) was fused to the 
surface-exposed N-termini of PVX CP, but because the 
sizes of GFP and PVX CP are similar, this fusion pre-
vented virion formation due to steric effects. However, the 
assembly of PVX.GFP-CP virions was facilitated by the 
presence of free CP in addition to fusion protein subunits. 
Using a strategy based on FMDV 2A catalytic peptide, 
free and fusion proteins of PVX CP were generated by 
fusing the 2A sequence (16-amino acids) between the GFP 
gene and the N-terminus of the CP gene. This approach 
also allowed the expression of longer peptides or whole 
proteins [61].

Human immunodeficiency virus (HIV) is a bloodborne 
virus causing acquired immune deficiency syndrome (AIDS) 
by attacking the immune system. HIV-1 is the most com-
mon type and is found worldwide. Currently, no vaccine is 
available to prevent or treat HIV infection. Using genetic 
engineering, a highly conserved linear ELDKWA hexapep-
tide neutralizing epitope from glycoprotein 41 (gp41) of the 
ectodomain of HIV-1 was highly expressed as a N-terminal 
fusion protein with PVX CP. Mice immunized with the 
resulting PVX-derived CVPs produced high levels of HIV-
1-specific immunoglobulin G (IgG) and IgA antibodies, 
demonstrating these CVPs offer the possibility of an effec-
tive vaccine against HIV [62].

Potato virus Y (PVY)

Potato virus Y (PVY) also belongs to the genus Potyvirus, 
and it is one of the most important helical plant viruses 
affecting potato production. Virions are flexuous filaments 
with 680–900 nm long and 11–13 nm wide. It contains sin-
gle, linear positive sense ssRNA, about 9.7 kb in size. Each 
single coat protein contains 267 aa with 30–47 kDa in size. 
The viruses are transmitted by aphids in a non-persistent 
manner and some isolates are inefficiently transmitted by 
aphids and some are seed transmitted [63].

Vaccines for viral diseases

Hepatitis B virus (HBV)

Hepatitis B virus (HBV) infection affects nearly 300 million 
people worldwide, causing hepatitis B and risking persistent 
chronic carriers to develop hepatocellular carcinoma. The 
HBV envelope contains three surface glycoproteins, namely, 
the large (L), middle (M), and small (S) proteins, which is 
encoded by a single open reading frame that is divided into 
the preS1, preS2, and S regions [64–66]. preS1 (aa 20–41) 
was chosen as a model epitope to access the immunologi-
cal properties to elicit virus-neutralizing and protective 
antibodies. The PVY-CP with an N-terminal insertion of 
preS1 retains the ability to form filamentous particles in E. 
coli. Mice that are immunized with these chimeric PVY-CP-
preS1derived VLPs exhibited a strong anti-preS1 immune 
response, even in the absence of adjuvants [67].

Vaccine for neurodegenerative disease

Alzheimer disease (AD) is a chronic neurodegenerative dis-
ease, which causes dementia due to the cerebral deposition 
of amyloid beta (Aβ)-peptide in the brain to form structures 
called ‘plaques’ and ‘tangles.’ This leads to the loss of con-
nection between nerve cells, and eventually to the death of 
nerve cells and loss of brain tissue [68]. To circumvent this 
problem, active vaccination with amyloid β (Aβ) protein or 
passive immunization with anti-Aβ antibodies can be benefi-
cial. However, long-standing presence of anti-Aβ antibodies 
or antibodies to immunogens homologous to the Aβ protein 
may produce protective effects. The amino acid sequence 
of the potato virus Y (PVY) nuclear inclusion b protein is 
highly homologous to the immunogenic N-terminal region 
of Aβ. PVY develop antibodies (anti-PVY antibodies) 
that can bind to Aβ within the  Phe4–Ser8 and  His13–Leu17 
regions in both neuritic plaques and neurofibrillary tangles. 
Immune responses confirmed that exposure to PVY induced 
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antibodies that could influence the normal physiological pro-
cessing of the protein and the development or progression 
of AD [69].

Tobacco etch virus (TEV)

Tobacco etch virus (TEV) is also a member of the genus 
Potyvirus. TEV infects tomatoes and peppers along with 
other plants in the Solanaceae family. The infected plant 
leaves show mottling, crinkling, distortion and downward 
curling, and plants infected at an early stage have shortened 
internodes and are severely stunted. The green peach aphid 
(Myzus persicae) and several other aphid species transmit 
the virus. The virus is also transmitted mechanically and 
by grafting, but not by seeds [63]. Porcine reproductive 
and respiratory syndrome virus (PRRSV) causes porcine 
reproductive and respiratory syndrome (PRRS), also named 
blue ear disease, is a widespread disease affecting domes-
tic pigs. The symptoms include reproductive failure, pneu-
monia, and increased susceptibility to secondary bacterial 
infections. PRRS has been most economically significant 
swine diseases worldwide for over two decades [70]. PRRSV 
structural proteins include minor envelope proteins (GP2a, 
GP3, GP4, E, and ORF5a), major envelope proteins (GP5 
and M), and the nucleocapsid protein (N). Self-assembled 
his-tagged TEV-CP-VLPs were evaluated for its adjuvant 
property. Up on subcutaneous immunization of mice with 
these TEV-CP-VLPs along with PRRSV antigenic chimeric 
protein  (PRRSVchim), which comprises PRRSV GP3 and 
GP4 epitopes, GP5 and M ectodomains and thioredoxin 
as fusion partner, elicited broader IgG2-specific antibody 
response against  PRRSVchim, when compared to the potent 
IgG1 response induced by  PRRSVchim alone [71].

Tobacco mosaic virus (TMV)

Tobacco mosaic virus (TMV) is a rod-shaped virus with 
helical symmetry that infects tobacco and Solanaceae fam-
ily members. TMV is the type member of the genus Toba-
movirus in the family Virgaviridae. It consists of a capsid 
containing 2130 identical coat protein subunits of 17.5 kDa 
each (159 amino acids) arranged as a right-handed helical 
rod (300 × 18 nm in size) with 16.3 subunits per turn around 
(+)ssRNA that forms a hollow protein tube with a central 
cavity of diameter 4 nm. The internal and external surfaces 
of its capsid protein consist of repeated patterns of charged 
amino acids, such as glutamate, aspartate, arginine, and 
lysine [72] (Fig. 2). TMV can undergo thermal transition 
to form RNA-free densely packed spherical nanoparticles 
(SNPs) of size 152 ± 58 nm [73, 74].

Vaccines for viral diseases

Human immunodeficiency virus (HIV)

TMV is an excellent immunogen and its antigenic prop-
erties have been extensively studied for several decades. 
Viral epitopes are categorized as cryptotopes, neotopes, 
metatopes, and neutralizing epitopes. Cryptotopes are hid-
den epitopes located deep inside the assembled virus par-
ticle and become accessible to antibodies after dissocia-
tion. Neotopes are specific to the quaternary structure of 
a virus particle and arise through conformational changes 
in monomers or through the juxtaposition of the amino 
acid residues from neighboring subunits. Metatopes are 
present in both polymerized and dissociated viral proteins, 
and neutralizing epitopes are recognized by antibodies and 
neutralize viral infectivity [75, 76]. HIV-1 Tat protein is 
considered as an important viral component of potential 
HIV vaccines. TMV-based transient expression system 
was used to produce edible HIV-1 Tat protein in spinach 
leaves, and feeding mice with Tat-producing leaves primed 
them for Tat antibody production and subsequent immu-
nization resulted in significantly higher anti-Tat antibody 
levels compared to control mice [77]. TMV vector was 
also used to construct TMV particles with antigen present-
ing surfaces possessing three different epitopes, that is, 
two epitopes from the influenza virus hemagglutinin (HA) 
and one epitope from HIV-1 envelope protein gp120, in 
tobacco plants. Each of these TMV particles reacted with 
each anti-peptide antiserum [78].

Fig. 2  A PyMol image of tobacco mosaic virus (TMV) showing 
highlighted exterior amino acids, that is, [Tyr139 (yellow) other 
tyrosine residues (red)], and glutamic and aspartic acid residues 
(blue) used for genetic modification and the bioconjugation of immu-
nogenic peptides/proteins. Reproduced with permission from [74]
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Papillomaviruses

VLPs of plant viruses present antigenic epitopes to the 
immune system in highly ordered, repetitive, and quasic-
rystalline arrays that enhance immunogenic responses in the 
host system than free protein antigens. The only hurdle asso-
ciated with the use of TMV as a vaccine scaffold is the lim-
ited number of amino acids that can be fused to its CP. Engi-
neered rTMV with reactive lysine at its externally located 
N-terminus (GKGAG) facilitated biotinylation of the cap-
sid for the conjugation of streptavidin fusion to either green 
fluorescent protein (GFP) or to the N-terminal fragment 
(61–71 amino acid) of canine oral papilloma virus L2 pro-
tein (COPV  L261–71) (COPV causes warts in dogs) [79]. L2 
is a papillomavirus minor capsid protein and a poor immu-
nogen that requires potent adjuvants for antibody induction. 
However, unlike L1 (papillomavirus major capsid protein), 
L2 is a promising vaccine candidate as it induces antibod-
ies that can cross-neutralize different papillomavirus species 
[79], and epitopes derived from the N-terminal proximal 
region of L2 can exhibit immunogenicity and cross-neutral-
izing immune responses. A peptide epitope in the region of 
94–122 from the overlapping amino acid sequences of cot-
tontail rabbit papillomavirus (CRPV) and rabbit oral papillo-
mavirus (ROPV) was also tested for its effectiveness against 
these distantly related cutaneous and mucosal tissue-tropic 
papillomaviruses [80]. Recombinant TMV (rTMV) PVNs 
containing the 94–122 amino acid sequence in L2 were 
found to provide full protection against homologous papil-
lomavirus infections and cross-protective immunity against 
distant papillomaviruses [81], and this was the first report 
of L2 peptide-based vaccination-induced cross-neutralizing 
immunity between two distinct papillomavirus types in an 
animal challenge model. Similarly, the TMV vector system 
has been used to produce vaccines against human papilloma-
virus 16 (HPV16) [82], and other diseases, such as HPV-8 
[83], hepatitis C virus (HCV) [84], dengue virus [85], and 
lymphoma [86, 87].

Murine hepatitis virus (MHV) and rabies virus (RV)

Murine hepatitis virus (MHV) causes a variety of acute and 
chronic diseases in its natural hosts. In mice, MHV strain 
JHM usually induces fatal demyelinating encephalomy-
elitis and chronic demyelination diseases. MHV contains 
three structural proteins, and of these, spike glycoprotein 
(S protein) is a critical determinant of viral pathogenic-
ity, and also contains major immunodominant neutrali-
zation domains [88]. TMV hybrids were constructed by 
inserting peptides 5B19  (L900LGCIGSTCA 909) or 5B19L 
 (P899LLGCIGSTCAEDGN913) containing 5B19 epitope 
from MHV strain JHM S2 glycoprotein between amino 
acid residues Ser-154 and Gly-155 of TMV CP to result in 

TMV-5B19 and TMV-5B19L, respectively. Mice immunized 
with hybrid viruses subcutaneously or intranasally survived 
challenge with a lethal dose (10 × LD50) of MHV strain 
JHM [89]. Bendahmane et al. [90] successfully developed 
TMV chimeras containing immunogenic epitopes 5B19 
from MHV S-glycoprotein and G5-24 from rabies virus 
(RV) glycoprotein, and also demonstrated epitope charge 
and isoelectric point (pI) of the epitope displayed on the 
surface of TMV impacted its host interactions. The pI of 
CP fusion protein influenced the interaction between TMV 
and the host, and TMV CP tolerated only negatively charged 
peptides. Furthermore, CVPs comprised TMV CP fusion 
protein with isoelectric point of the peptide (pI):charge value 
closer to that of wild-type TMV CP caused infections in 
tobacco plants and protoplasts without causing cell death.

Poliovirus and feline parvovirus

Poliomyelitis is caused by poliovirus and is a highly infec-
tious viral disease that paralyzes young children. The dis-
ease remains incurable but can be effectively prevented by 
immunization (http://www.who.int/topic s/polio myeli tis/en/). 
A TMV-derived VLP-immunogenic epitope-based vaccine 
was first reported by Haynes et al. [91], who developed 
genetically engineered TMV VLPs expressed in E. coli that 
displayed VP1 peptide of poliovirus 3 (TMVCP-polio 3). 
Feline parvovirus causes fatal diseases, such as feline infec-
tious enteritis and feline panleukopenia in cats, especially 
kittens, but immunogenic epitope sequences fused to recom-
binant plant viral structural proteins can be used as vaccines 
against these diseases. Genetically engineered antigenic 
fusion proteins were produced in tobacco using tobamovi-
rus vectors containing feline parvovirus epitopes fused to the 
N-terminus of TMV CP, and these fusion proteins were used 
as vaccine antigens to induce protective immune responses 
against parvovirus. This methodology provides a safe, inex-
pensive means of producing vaccines against pathogens [92].

Foot‑and‑mouth disease virus (FMDV)

Foot-and-mouth disease (FMD) is caused by foot-and-mouth 
disease virus (FMDV), a prototypical member of the genus 
Aphthovirus of the family Picornaviridae. FMDV primarily 
affects cloven-hooved animals, such as cattle, pigs, sheep, 
and goats. Immunogenic dominant epitopes of FMDV sero-
type O, namely F11  (P142–A152) and F14  (R200–L213) con-
taining 11 and 14 peptides, respectively, from FMDV struc-
tural protein VP1 were fused to TMV CP between amino 
acids S154 and G155 to produce the recombinant viruses 
TMVF11 and TMVF14. Systemic infection of tobacco with 
these viruses produced TMV CP with FMDV epitopes, 
which exhibited protective immunity in guinea pigs [93]. 
The limited capacity of typical TMV-based vector was 

http://www.who.int/topics/poliomyelitis/en/
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overcome by developing a new improved TMV-based vector 
by deleting six C-terminal amino acid residues from the CP 
subunit that expressed peptide F11 of VP1 in tobacco. This 
new vector exhibited similar protective activities against 
FMDV in guinea pigs and swine. In addition, the capacity 
of foreign peptide was improved by expressing peptide F25 
containing two fused epitopes (F14 and F11) of FMDV VP1, 
which was not possible using the original vector in tobacco. 
Thus, the new TMV-based vector can express longer foreign 
peptides for a range of vaccines [94].

Vaccines for bacterial diseases

TMV can also serve as a suitable platform for the delivery 
of bacterial antigens. In a proof-of-concept study undertaken 
to show TMV can serve as a platform to deliver multiple 
protective antigens of Francisella tularensis (the causative 
agent of fatal human disease, tularemia). Banik et al. [95] 
conjugated three different antigenic epitopes, that is, OmpA-
like protein (OmpA), chaperone protein DnaK, and lipopro-
tein Tul4 to TMV to produce a TMV-conjugate vaccine with 
multiple F. tularensis antigens. This vaccine was later found 
to induce strong humoral immune response and to protect 
mice against respiratory challenges with high doses of F. 
tularensis. Pseudomonas aeruginosa is an environmental 
bacterium, which causes mild disease in immune-compe-
tent individuals, but in immunocompromised individuals, 
it becomes opportunistic and may be life-threatening. In 
particular, in cystic fibrosis patients, P. aeruginosa colo-
nizes airways and causes morbidity and mortality. The outer 
membrane (OM) protein F (porin) of P. aeruginosa has been 
shown to have vaccine efficacy in animal models of chronic 
pulmonary infections, burn injury, and systemic infection 
[96]. Furthermore, chimeric TMV containing a 9–14 mer 
peptide (TDAYNQKLSERRAN) of OM protein F of P. aer-
uginosa between amino acids Ser154 and Gly155 of TMV 
CP (TMV-9-14), successfully immunized a mouse model 
of chronic pulmonary infection against P. aeruginosa chal-
lenge [97].

Vaccines for protozoan diseases

Malaria is a life-threatening disease caused by protozoan 
parasites belonging to Plasmodium species, which are trans-
mitted by infected female Anopheles mosquitoes. Currently, 
there are no licensed vaccines against malaria. However, a 
malaria vaccine known as RTS, S/AS01 against P. falci-
parum has been subjected to clinical trials in several Afri-
can countries. In an attempt to develop a malaria vaccine 
using chimeric plant virus VLPs as immunogenic carriers, 
the TMV CP surface was engineered to present a selected 

malarial B cell epitope (12 amino acids) from Plasmodium 
circumsporozoite protein (CSP) by inserting it into the sur-
face loop region or fusing it to the C-terminus of TMV CP 
using the ‘leaky stop’ signal derived from the replicase pro-
tein reading frame. It was found that wild-type TMV CP and 
fusion protein co-assembled into VLPs at the predicted ratio 
of approximately 20:1, indicating recombinant TMV can be 
used for the scalable and cost-effective production of easily 
stored and administered subunit vaccines [98]. Immunogenic 
P. yoelii merozoite surface protein 4/5 (PyMSP4/5) was 
expressed in tobacco leaves using a deconstructed TMV-
based magnICON® expression system. Oral administra-
tion of PyMSP4/5 leaves with a mucosal adjuvant-induced 
PyMSP4/5-specific antibodies in naive mice and in DNA 
vaccine primed mice [99].

Cancer vaccine and immunotherapy

Due to the non-infectious nature of plant viruses in humans, 
TMV has been used to develop several types of vaccines 
to induce humoral and cell-mediated immunity in animals 
against various pathologies [12]. TMV particles interact 
specifically with lymphocytes and dendritic cells (DCs), 
which then become activated and express high levels of 
CD86, and this leads to superior CTL induction and tumor 
protection in vitro. McCormick et al. [100] first described 
the functional cellular response induced by TMV plant 
virus vaccines. Notably, TMV-peptide vaccines induced 
cell-mediated immune responses with less than 1 µg of 
peptide. To determine whether TMV-based multipeptide 
vaccines are capable of immune activation and protecting 
from tumor challenge in vivo, TMV capsid with two MHC/
Kb restricted T-cell epitopes derived from chicken ovalbu-
min (Ova) peptide (SIINFEKL), as a foreign antigen, and 
murine melanoma-associated peptide, p15e (KSPWFTTL), 
as a self-antigen target, were evaluated in both the EG.7-Ova 
and B16 melanoma models employing Kb C57BL/6 mice. 
Both T-cell epitope peptide antigens bound directly to MHC 
class I and stimulated the T-cell receptor (TCR)-mediated 
activation of  CD8+ T-cells. Furthermore, the introduction of 
a surface reactive lysine at the N-terminus of TMV CP and 
the chemical conjugation of immunogenic epitopes to TMV 
using a reducible bond linker were found to stimulate IFN-
γ-producing T-cells after vaccination. Later, McCormick 
and coworkers tested TMV-fused melanoma peptide CTL 
epitopes as self-antigen-derived epitopes, and subsequently 
suggested that co-delivery of an immune-stimulatory peptide 
or co-delivery of a second peptide antigen was necessary to 
improve immune activation to the level necessary to protect 
mice from tumor challenge [12, 101]. Carbohydrate-based 
anticancer vaccines can also contribute to the induction of 
effective immune response during cancer immunotherapy. 
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Generally, high levels of weakly immunogenic tumor-asso-
ciated carbohydrate antigens (TACAs) are expressed on can-
cer cell surfaces. Yin et al. [102] found that the chemical 
conjugation of monomeric Tn (GalNAc-α-O-Ser/Thr) anti-
gen to tyrosine 139 of TMV capsid elicited strong immune 
responses by inducing high titers of IgG antibodies. TMV is 
an excellent vaccine epitope scaffold because of the immu-
nogenicity of its viral particles, stability, and high accumu-
lation rates.

Trastuzumab is a drug currently used for cancer therapy. It 
is a recombinant humanized monoclonal antibody that binds 
to the extracellular domain of human epidermal growth fac-
tor receptor-2 (HER2/neu) and inhibits HER2 signaling in 
tumors [46, 68]. rTMV PVNs displaying 36-amino acid 
HER2/neu peptide, that binds to trastuzumab (trastuzumab-
binding peptide (TBP)), fused with the CP sequence were 
expressed in tobacco leaves by the Agrobacterium-mediated 
co-delivery of binary vectors encoding TMV RNA and TMV 
CP-TBP (TBP was inserted in C-terminal of CP). In addi-
tion, fusion of amino acid substituted TBP (sTBP), which 
binds trastuzumab, via a flexible peptide linker to TMV CP 
improved the manufacturability of rTMV [103].

Vaccine for contraception

TMV can also be used as an antigen carrier and deliv-
ery vehicle for administration via parenteral and mucosal 
routes. Vaccination for birth control has many advantages 
over tedious family planning procedures. The potential tar-
get for immunocontraception is the ZP3 glycoprotein of the 
zona pellucida. Fitchen et al. [104] showed that modified 
TMV VLPs expressing a hybrid coat protein containing a 
13 amino acid sequence of the murine zona pellucida ZP3 
epitope on its surface (a model contraceptive vaccine), 
elicited an autoantibody response that recognized zona 

pellucida in mouse ovaries when parenterally administered 
to C57BL/6J and BALB/CBY mice (Fig. 3).

Zucchini yellow mosaic virus (ZYMV)

Zucchini yellow mosaic virus (ZYMV) is also a member 
of genus Potyvirus, family Potyviridae. ZYMV is a heli-
cal, flexuous filament of about 750 nm long and 11 nm 
wide, containing a single messenger-polarity RNA mole-
cule of about 10 kb, encapsidated by ~ 2000 subunits of CP 
[105–107]. Arazi and coworkers [107] have demonstrated 
that chimeric ZYMV-CP replacing the surface-exposed 
N-terminal domain (NT) with a foreign peptide still restored 
the capability of the virus to spread systemically. They also 
used attenuated engineered ZYMV potyvirus (AG) as a non-
pathogenic viral vector for the stable expression of heterolo-
gous proteins, such as human interferon-alpha 2 (hIFN-α2) 
in cucurbits and squash [108].

Conclusions and future perspectives

Recombinant helical plant virus-based nanoparticle (rPVN) 
technology offers considerable advantages in the field of 
vaccinology, as many existing pathogens are difficult to 
culture in vitro. Here, we reviewed how genetic engineer-
ing can be used to utilize the helical capsid shells of various 
plant viruses to develop epitope presentation systems for 
vaccines. This approach also increases the immunogenicities 
of poorly immunogenic antigens due to the intrinsic abili-
ties of PVNs to induce humoral and/or cellular immunity. 
Chimeric PVNs functionalized with immunogenic surface 
antigens produced in prokaryotic and eukaryotic expression 
systems have shown effective and safe immune responses in 
initial clinical trials. Nevertheless, the in vivo toxicities and 

Fig. 3  a TEM image of purified recombinant TMV particles, and b recombinant TMV PVNs displaying the zona pellucida ZP3 epitope on their 
surface. Reproduced with permission from [6]
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stabilities of these chimeric PVNs have yet to be evaluated. 
The successful display of multivalent arrays of immunogenic 
antigens on PVNs means different immunogenic epitopes 
from various pathogens can be combined and displayed on 
a single presentation system to achieve effective long-last-
ing immunity against different pathogens. Recombivax and 
Engerix-B are now available as VLP vaccines for hepatitis 
B, and a recombinant plant-derived malaria transmission 
blocking VLP vaccine has successfully completed a phase 
I clinical trial. Investigations are required to determine the 
size limitations, stabilities, and immunogenicities of differ-
ent antigens at different positions on N- or C-terminals of 
coat proteins to optimize their presentations on the surfaces 
of helical PVNs.
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