Analysis of codon usage in Newcastle disease virus

Meng Wang · Yong-sheng Liu · Jian-hua Zhou · Hao-tai Chen · Li-na Ma · Yao-zhong Ding · Wen-qian Liu · Yuan-xing Gu · Jie Zhang

Received: 12 October 2010/Accepted: 9 January 2011/Published online: 20 January 2011 © Springer Science+Business Media, LLC 2011

Abstract In this study, the relative synonymous codon usage (RSCU) values, effective number of codon (ENC) values, nucleotide contents, and dinucleotide were used to investigate codon usage pattern of each protein-coding gene and genome among 31 Newcastle disease virus (NDV) isolates. The result shows that the overall extent of codon usage bias in NDV is low (mean ENC = 56.15 >40). The good correlation between the $(C + G)_{12}$ % and $(G + C)_3$ % suggests that the mutational pressure, rather than natural selection, is the main factor that determines the codon usage bias and base component in NDV. It is observed that synonymous codon usage pattern in NDV genes is gene function and geography specific, but not host specific. By contrasting synonymous codon usage patterns of different NDV isolates, we suggest that more than one genotype of NDV circulates in waterfowl in USA; and gene length has no significant effect on the variations of synonymous codon usage in these virus genes. CpG under-represented is a characteristic for NDV to fit in its host. These results not only provide an insight into the variation of codon usage pattern among the genomes of NDV, but also may help in understanding the processes governing the evolution of NDV.

Meng Wang, Yong-sheng Liu contributed equally to this work.

Electronic supplementary material The online version of this article (doi:10.1007/s11262-011-0574-z) contains supplementary material, which is available to authorized users.

M. Wang \cdot Y. Liu \cdot J. Zhou \cdot H. Chen \cdot L. Ma \cdot Y. Ding \cdot W. Liu \cdot Y. Gu \cdot J. Zhang (\boxtimes)

Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China e-mail: scarlettezhang@yahoo.com.cn

Introduction

When molecular sequence data started to be accumulated nearly 20 years ago, it was noted that synonymous codons were not used equally in different genomes, even in different genes of the same genome [1-3]. As an important evolutionary phenomenon, it is well known that synonymous codon usage bias exists in a wide range of biological systems from prokaryotes to eukaryotes [4, 5]. Codon usage analysis has been applied to prokaryote and eukaryote, such as Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Caenorhabditis elegans, and human beings [6–9]. These observed patterns in synonymous codon usage varied among genes within a genome, and among genomes. The codon usage is attributable to the equilibrium between natural selection and mutation pressure [10, 11]. Recent studies of viral codon usage have shown that mutation bias may be a more important factor than natural selection in determining codon usage bias of some viruses, such as Picornaviridae, Pestivirus, plant viruses, and vertebrate DNA viruses [10, 12-14]. Meanwhile, lots of evidences prove that codons using abundant tRNA are selectively favored, especially in highly expressed genes [14, 15]. Recently, it was also suggested that codon usage was related to gene function and used to estimate the extent of bias toward codons that were known to be preferred in highly expressed genes [16, 17]. Analytical method of codon usage including the codon adaptation index (CAI), the G + C content at different position, the relative synonymous codon usage (RSCU) and the effective number of codon (ENC) can reveal much about the molecular evolution or individual genes of the viruses [18–20]. Such information may also help to understand the regulation of viral gene expression.

Newcastle disease virus (NDV), known as avian paramyxovirus-1 (APMV-1), is classified into Avulavirus genus of the Paramyxoviridae family. This family also includes important viruses such as Mumps virus, human parainfluenza virus, Sendai virus, Simian virus 5, and recently emerged Nipah virus and Hendra virus [21]. NDV has a broad host range and is known to infect over 200 bird species [22]. The viral genome, which is an enveloped, non-segmented, negative-stranded RNA virus consisting of approximately 13 kb coding region and 2 kb non-coding region, encodes six major structural proteins: nucleocapsid (NP), phosphoprotein (P), large protein (L), envelope matrix protein (M), hemagglutinin-neuraminidase (HN), fusion (F) proteins, and also a seventh protein (V) that is produced by a frame shift within the *P* coding region. They are arranged in the order 3'-NP-P-M-F-HN-L-5' [23-25].

The codon usage pattern about the *NH* gene of 13 NDV strains at 1949–1989 revealed that the sequence variability appeared to reflect some accumulation of mutations over time [26]. In this study, it was the first report that codon usage indexes, including ENC, RSCU, the preferred codon and dinucleotide were applied to recently isolated NDVs, to obtain more clues to the features of genetic evolution of NDV.

Materials and methods

Sequence data

The information of 31 NDV genomes, including the serial number (SN), length value, the isolated area, the host and GenBank accession numbers of these strains was listed in the Table 1. In addition, to compare the codon usage patterns among different viruses, two influenza A virus H5N2 genomes and eight Duck hepatitis virus (DHV) genomes were taken into account (Table 2). All of the sequences were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/Genbank/) and randomly selected for considering the representative of geographic origins.

Composition analysis of coding region of 31 NDV strains

In order to better understand the synonymous codon usage variation among different NDV isolates, The G + C content at the first and second codon positions $[(C + G)_{12}\%]$ and that at the synonymous third position $[(C + G)_3\%]$ were calculated by the EMBOSS CUSP program, respectively

[27, 28]. The values of the G + C content at different positions were used to compare with the values of the other compositional content.

The actual and predicted values of the effective number of codon (ENC)

The ENC is used to measure the degree of departure from the equal use of synonymous codons of coding regions of NDV. The values of the ENC range from 20 to 61. The larger the extent of codon preference in a gene, the smaller the ENC value is. In an extremely biased gene where only one codon is used for each amino acid, this value would be 20; if all codons are used equally, it would be 61; and if the value of the ENC is greater than 40, the codon usage bias was regarded as a low bias [20]. The values of ENC were obtained by EMBOSS CHIPS program [29].

Genes, whose codon choice is constrained only by a mutation bias, will lie on or just below the curve of the predicted values. The predicted values of ENC were calculated as

$$ENC = 2 + s + \frac{29}{s^2 + (1 - s^2)}$$

where s represents the given $(G + C)_3\%$ value [30].

The calculation of the relative synonymous codon usage (RSCU)

To investigate the pattern of relative synonymous codon usage (RSCU) without the influence of amino acid composition among all samples, the RSCU values of codons in each ORF of NDV, H5N2 and DHV were calculated according to the formula of previous reports [31, 32].

$$\text{RSCU} = \frac{g_{ij}}{\sum_{j}^{n_i} g_{ij}} n_i$$

where g_{ij} is the observed number of the *i*th codon for *j*th amino acid which has n_i type of synonymous codons. The codon with RSCU value more than 1.0 has positive codon usage bias, while the value <1.0 has relative negative codon usage bias. When RSCU value is equal to 1.0, it means that this codon is chosen equally and randomly [33, 34].

Relative dinucleotide abundance in NDV

Because dinucleotide biases could affect codon bias, the relative abundance of dinucleotides in the coding regions of NDV genomes was assessed using the method described by Karlin and Burge [10, 35]. A comparison of actual and expected dinucleotide frequencies of the 16 dinucleotides in coding region of the 31 NDV genomes was also

Table 1 NDV genomes used in this study

S no.	Strain	Length ^a	Isolation	Host	Accession no.
1	Chicken/China/Guangxi9/2003	13746	China	chicken	DQ485230
2	Chicken/China/Guangxi11/2003	13746	China	Chicken	DQ485231
3	zhJ-3/97	13746	China	Chicken	FJ766529
4	XD/Shandong/08	13746	China	Chicken	GQ994433
5	QH4	13881	China	chicken	HM125898
6	QG/Hebei/07	13746	China	Chicken	QG994434
7	JS/07/03/Pi	13746	China	pigeon	FJ766531
8	P4	13746	China	pigeon	HM063425
9	ZJ1	13746	China	Waterfowl	AF431744
10	WDK/JX/7793/2004	13746	China	Waterfowl	FJ751919
11	JSD0812	13746	China	Waterfowl	GQ849007
12	W4	13746	China	Waterfowl	HM063423
13	R8	13881	China	Waterfowl	HM063424
14	ND/05/028	13746	China	unclear	GQ338311
15	Cockatoo/Indonesia/14698/90	13746	Indonesia	parrot	AY562985
16	Chicken/N.Ireland/Ulster/67	13881	Ireland	chicken	AY562991
17	NDV-4/chicken/Namakkal/Tamil Nadu/India	13746	India	chicken	HM357251
18	2K3/Chennai/Tamil Nadu	13746	India	pigeon	FJ986192
19	Dove/Italy/2736/00	13764	Italy	pigeon	GQ429293
20	BHG/Sweden/94	13788	Sweden	Waterfowl	GQ918280
21	LaSota	13764	Netherlands	Chicken	AF077761
22	NDV/Chicken/Egypt/1/2005	13746	Egypt	chicken	FJ919313
23	rAnhinga	13746	USA	Chicken	EF065682
24	Mallard/US(MN)/MN00-39/2000	13881	USA	Waterfowl	GQ288392
25	Northern pintail/US(OH)/87-486/1987	13881	USA	Waterfowl	GQ288378
26	Cormorant/US(WI)/18719-03(USGS)/2003	13746	USA	Waterfowl	GQ288385
27	Cormorant/US(NV)/19529-04(USGS)/2005	13746	USA	Waterfowl	GQ288386
28	Cormorant/US(MN)/92-40140/1992	13746	USA	Waterfowl	GQ288387
29	Mallard/US(MN)/00-376/1999	13881	USA	Waterfowl	GQ288389
30	Mottled duck/US(TX)/01-130/2001	13881	USA	Waterfowl	GQ288391
31	Mixed species/U.S./Largo/71	13746	USA	mixed	AY562990

^a The length values were excluding non-coding sequence, and the units was bp

undertaken. The odds ratio $\rho_{xy} = f_{xy}/f_y f_x$, where f_x denotes the frequency of the nucleotide *X*, f_y denotes the frequency of the nucleotide *Y*, $f_y f_x$ the expected frequency of the dinucleotide *XY* and f_{xy} the frequency of the dinucleotide *XY*, etc., for each dinucleotide it was calculated. As a conservative criterion, for $\rho_{xy} > 1.23$ (or <0.78), the *XY* pair is considered to be of over-represented (or underrepresented) relative abundance compared with a random association of mononucleotides [10].

Statistical analysis

Principal component analysis (PCA) was carried out to analyze the major trend in codon usage pattern in different gene groups and different genomes excluding non-coding regions of NDV. It is a statistical method that performs linear mapping to extract optimal features from an input distribution in the mean squared error sense and can be used by self-organizing neural networks to form unsupervised neural preprocessing modules for classification problems [7]. In order to minimize the effect of amino acid composition on codon usage, each ORF is represented as a 59-dimensional vector. Each dimension corresponds to the RSCU value of one sense codon excluding Met, Trp, and the three stop codons.

Linear regression analysis was used to investigate the correlation between codon usage bias and gene length. Correlation analysis is used to identify the relationship between codon usage bias and synonymous codon usage

Virus Genes (2011) 42:245-253

Table 2 H5N2 and DHV genes used in this study							
Virus	Strain	Description	Accession no.				
H5N2	A/mallard/Sweden/	HA	CY076929				
	74/2003(H5N2)	NA	Cy076531				
		M1	CY076930				
		142	CN07(020				

	74/2003(H5N2)	NA	Cy076531
		M1	CY076930
		M2	CY076930
		NP	CY076932
		PA	CY076934
		PB1	CY076936
		PB2	CY076935
		NS1	CY076933
		NS2	CY076933
H5N2	A/American black	HA	CY079452
	duck/lllinois/	NA	CY079454
	08032088 (H3N2)	M1	CY079453
		M2	CY079453
		NP	CY079455
		PA	CY079457
		PB1	CY079459
		PB2	CY079458
		NS1	CY079456
		NS2	CY079456
DHV	DRL-62	Serotype 1	DQ219396
DHV	AP-04114	Serotype new	DQ812093
DHV	04G	Serotype new	EF067923
DHV	C-GY	Serotype new	EU352805
DHV	C-YCW	Serotype new	GU066824
DHV	C-YCZ	Serotype new	GU066824
DHV	C-LGJ	Serotype 1	GU066819
DHV	1v	Serotype new	GU250782

pattern. This analysis is implemented based on the Pearson's rank correlation analysis.

All statistical analyses were carried out using the statistical analysis software SPSS Version 17.0.

Results

The characteristics of synonymous codon usage in NDV

As shown in Table 3, the codons ending with U are favored (7 out of 18) and the global codon usage pattern is very similar among all NDV coding regions. The values of ENC among these NDVs are also very similar, and vary from 54.66 to 57.04 with a mean value of 56.15 and S.D. of 0.433 (Table 4), suggesting that the extent of codon preference in NDV genomes is less biased (mean ENC >40) and keeps at a stable level.

AA^{a}	Codon	RSCU ^b
Phe	UUU	0.906
	UUC	1.095
Leu	UUA	1.062
	UUG	0.818
	CUU	1.02
	CUC	1.106
	CUA	0.948
	CUG	1.046
Val	GUU	0.485
	GUC	1.132
	GUA	1.054
	GUG	1.107
Ser	UCU	1.42
	UCC	0.859
	UCA	1.334
	UCG	0.404
	AGU	0.893
	AGC	1.09
Pro	CCU	1.05
110		0.786
		1 249
	CCG	0.608
The		1.221
Ihr	ACC	1.221
	ACC	1.005
	ACA	1.447
CI	ACG	0.327
Gly	GGU	0.836
	GGC	0.759
	GGA	1.122
~.	GGG	1.284
Gln	САА	1.013
	CAG	0.987
His	CAU	1.212
	CAC	0.788
Asn	AAU	1.181
	AAC	0.819
Lys	AAA	0.892
	AAG	1.108
Asp	GAU	1.061
	GAC	0.939
Glu	GAA	0.877
	GAG	1.123
Arg	AGA	1.834
	AGG	1.802
	CGU	0.523
	CGC	0.48
	CGA	0.604
	CGG	0.756
Cys	UGU	1.075
	UGC	0.925

 Table 3 continued

AA ^a	Codon	RSCU ^b
Tyr	UAU	1.075
	UAC	0.925
Ala	GCU	0.932
	GCC	0.863
	GCA	1.721
	GCG	0.484
Ile	AUU	0.918
	AUC	1.143
	AUA	0.939

The preferentially used codons for each amino acid are described in bold

^a AA is the abbreviation of amino acid

^b RSCU value is the fraction of the relative synonymous codon usage

Compositional properties of coding region of all NDV genomes

Both (C + G)% and $(C + G)_3\%$ have a highly significant correlation with each of A%, U%, C%, G%, A₃%, C₃%, G₃%, and U₃%, respectively, indicating that (C + G)% and $(C + G)_3\%$ may reflect some important characteristics of codon usage pattern of NDV (Table 5). Firstly, $(C + G)_{12}\%$ was compared with $(C + G)_3\%$, a highly significant correlation was observed (Pearson r = 0.845, P < 0.01). Secondly, the $(C + G)_{12}\%$ and $(C + G)_3\%$ were used to compared with the Axis1b (calculated by PCA) which was the largest trends in codon usage among these genomes. The Axis1b is significantly correlated with the $(C + G)_{12}\%$ (Pearson r = 0.518, P < 0.01) and $(C + G)_3\%$ (Pearson r = 0.675, P < 0.01). Finally, the ENC-plot [ENC plotted

Table 4 Identified ENC and composition in the coding region of 31 NDV genomes

S. no.	A%	G%	U%	C%	$A_3\%$	$G_3\%$	$U_3\%$	$C_3\%$	C + G%	$(C + G)_{12}\%$	$(C+G)_3\%$	ENC
1	29.42	22.70	24.00	23.89	27.63	20.32	26.61	25.44	47.94	49.03	45.76	56.00
2	29.44	22.63	23.99	23.93	27.72	20.19	26.43	25.66	48.04	49.14	45.85	55.60
3	29.22	22.70	24.47	23.26	27.44	20.17	27.28	25.11	47.6	48.76	45.28	55.89
4	29.24	22.80	24.40	23.55	27.39	20.28	27.36	24.97	47.95	49.30	45.25	56.38
5	28.53	23.56	24.10	23.80	26.25	21.73	26.30	25.72	49.19	50.06	47.45	56.76
6	29.39	22.59	24.03	23.98	27.66	20.14	26.67	25.54	47.94	49.07	45.68	56.48
7	29.50	22.57	24.31	23.62	27.88	20.02	26.91	25.19	47.42	48.53	45.21	56.50
8	29.37	22.70	24.41	23.53	27.69	20.22	27.08	25.01	47.57	48.75	45.22	56.40
9	29.43	22.65	23.90	24.02	27.57	20.23	26.65	25.54	47.98	49.08	45.78	56.82
10	29.19	22.81	24.57	23.43	27.68	20.26	27.11	24.94	47.65	48.87	45.21	55.63
11	29.47	22.67	23.75	24.11	27.80	20.12	26.40	25.68	48.19	49.39	45.80	55.71
12	29.46	22.66	24.29	23.58	27.48	20.48	26.87	25.16	47.61	48.60	45.64	56.74
13	28.65	23.47	24.00	23.88	26.71	21.20	26.04	26.04	49.06	49.97	47.24	56.92
14	29.41	22.66	24.37	23.57	27.67	20.40	27.13	24.8	47.42	48.53	45.20	56.26
15	29.36	22.56	24.29	23.29	27.89	19.88	26.78	25.45	47.61	48.75	45.33	56.36
16	28.51	23.43	24.21	23.86	26.32	21.37	26.56	25.76	48.79	49.63	47.12	56.26
17	29.09	22.90	24.56	23.46	27.00	20.55	27.54	24.92	44.65	44.24	45.47	57.04
18	28.86	23.30	24.41	23.43	26.82	21.24	27.34	24.59	48.03	49.13	45.83	54.66
19	29.58	22.51	24.51	23.41	28.14	19.84	27.35	24.67	47.36	48.79	44.51	55.88
20	29.11	22.99	24.59	23.31	27.36	20.59	27.34	24.71	48.19	49.64	45.29	55.81
21	29.18	22.81	24.69	23.32	27.44	20.28	27.49	24.80	47.75	49.09	45.07	56.70
22	29.16	22.84	24.52	23.49	27.26	20.39	27.17	25.18	47.9	49.07	45.57	56.28
23	29.63	22.33	24.28	23.76	28.57	19.15	27.42	24.86	47.37	49.05	44.02	55.96
24	28.77	23.16	24.51	23.56	26.84	20.69	27.56	24.92	44.92	44.58	45.60	56.45
25	28.89	23.13	24.46	23.51	26.75	20.86	27.37	25.02	48.41	49.68	45.88	55.70
26	29.79	22.11	24.58	23.51	28.65	18.99	27.76	24.60	47.09	48.84	43.59	55.96
27	29.88	22.10	24.58	23.51	28.59	19.10	27.59	24.72	46.43	47.74	43.82	56.09
28	29.66	22.31	24.34	23.68	28.42	19.31	27.33	24.94	47.41	48.99	44.25	55.88
29	28.82	23.13	24.57	23.49	26.92	20.73	27.54	24.82	48.2	49.53	45.54	54.66
30	28.94	23.17	24.56	23.43	27.15	20.63	27.93	24.30	48.34	50.05	44.93	56.12
31	29.23	22.81	24.44	23.56	27.56	20.42	26.91	25.10	47.75	48.86	45.53	56.80

		A%	G%	U%	C%	A ₃ %	$G_3\%$	U ₃ %	C ₃ %
(C + G)%	r	-0.722**	0.718**	-0.711**	0.574**	-0.613**	0.615**	-0.457**	0.426*
	р	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	0.01	< 0.05
$(C + G)_3\%$	r	-0.622**	0.643**	-0.806**	0.713**	-0.656**	0.647**	-0.652**	0.698**
	р	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Table 5 Correlation analysis between the (C + G)%, $(C + G)_3$ % and A%, G%, U%, C%, A₃%, G₃%, U₃%, C₃% in the coding region of 31 NDV genomes

***P* < 0.01, * 0.01 < *P* < 0.05

against $(G + C)_3\%$] was used as a part of general strategy to investigate patterns of synonymous codon usage and all of the spots lie below the expected curve (Fig. 1). These imply that the codon bias can be explained mainly by an uneven base composition, in other words, by mutation pressure rather than natural selection.

Effect of other potential factors on codon usage

From PCA of each gene groups of all NDV, we could detect one major trend in the first axis (Axis1a) accounting for 20.59% of the total variation, and another major trend in the second axis (Axis2a) for 15.94% of the total variation. A plot of the Axis1a and the Axis2a of all gene groups in NDV was shown in Fig. 2. Obviously, those genes encoding the same protein tend to come together. Moreover, gene group L has a tendency to converge tightly. Gene group P is far from the other gene groups, and gene group M was also divided from the other gene groups. These findings imply that different protein-coding genes may have different codon usage patterns. So, gene function

Fig. 1 Graphs showing the relationship between the effective number of codons (ENC) and the GC content of the third codon position (GC3). The curve indicates the expected codon usage if GC compositional constraints alone account for codon usage bias

Fig. 2 A plot of the values of the Axis1a (20.59%) and the Axis2a (15.94%) of each ORF in principle component analysis. Those genes encoding the same protein were the same shapes

is probably another factor accounting for codon usage variation among these virus genes.

From PCA of coding region of different NDV strains, one major trend in the first axis (Axis1b) which can account for 22.96% of the total variation, and another major trend in the second axis (Axis2b) for 13.46% of the total variation was detected. A plot of the Axis1b and the Axis2b of 31 NDV samples was shown in Supplementary Fig. 1. Although this graph is a little complex, it is a sharp geographical demarcation to some extent: all the strains isolated from China tend to cluster together (except strains XD/Shandong/08), and the strains isolated from USA gather at two different places (Supplementary Fig. 1). These may indicate that geographic is another factor on codon usage bias. There is no clear division based on species of the host.

Furthermore, we also performed a linear regression analysis on ENC value and gene length of each NDV samples. However, there was no significant correlation between codon usage and gene length in these virus genes (Pearson P > 0.05). Qualitative evaluation of codon usage bias in gene groups of NDV

There was a seemingly random variation in RSCU between amino acids and gene groups. There were several synonymous codons with strong discrepancy for codon usage in each gene group. In details, as for gene group NP, AGA for Arg, AUC for Ile, CUC for Leu, AGC for Ser was chosen preferentially; in gene group P, CCC for Ala, CAC for Asp, UGU for Cys, UUU for Phe, UAU for Trp was chosen preferentially; in gene group M, AGG for Arg, AAU for ASN, AAG for Lys, ACC for Thr was chosen preferentially; in gene group HN, GGG for Gly, UUA for Leu, ACA for Thr was chosen preferentially; in gene group F, only UCA for Ser was chosen preferentially; and in gene group L, only CCA for Pro was chosen preferentially (Fig. 3). The codon usage pattern among NDV, H5N2, and DHV

There were considerable differences for codon usage patterns among NDV,influenza A virus H5N2 and DHV. In details, the values of RSCU in some NDV codon such as GGG for Gly, GAG for Glu, AUC and AUU for Ile, GUA and GUC for Val were clearly different from that of the other viruses (Fig. 4).

The relationship between dinucleotide biases and codon usage in NDV

The frequencies of occurrence for dinucleotides were not randomly distributed and no dinucleotide was present at the expected frequencies. Only the frequency of CpG was significantly low at all codon positions for coding region of 31 NDV genomes (mean $\rho_{CG} = 0.561$, SD of 0.018,

Fig. 3 Comparison the codon preferences among different ORFs of NDV

Fig. 4 Compare the codon usage pattern among NDV, H5N2, and DHV

 Table 6
 Relative abundance of the 16 dinucleotides in coding region of 31 NDV

Dinucleotides	Range ^a	Mean \pm SD ^b
АА	0.879-0.934	0.903 ± 0.009
AG	1.111-1.187	1.15 ± 0.013
AT	1.046-1.086	1.065 ± 0.011
AC	0.887-0.936	0.91 ± 0.008
GA	1.081-1.125	1.097 ± 0.007
GG	1.026-1.105	1.094 ± 0.014
GT	0.825-0.898	0.851 ± 0.015
GC	0.936-0.99	0.957 ± 0.009
CA	1.187-1.263	1.225 ± 0.015
CG	0.506-0.596	0.561 ± 0.018
СТ	1.092-1.167	1.13 ± 0.016
CC	0.986-1.069	1.022 ± 0.014
ТА	0.781-0.841	0.805 ± 0.011
TG	1.141-1.197	1.175 ± 0.013
TT	0.886-0.977	0.933 ± 0.017
TC	1.113–1.165	1.137 ± 0.014

 $^a\,$ The range of coding region of 31 NDV's relative dinucleotide ratios $^b\,$ Mean values of coding region of 31 NDV's relative dinucleotide ratios \pm SD

 $\rho_{CG} < 0.78$) (Table 6). In addition, the RSCU values of the eight codons containing CpG (CCG, GCG, UCG, ACG, CGC, CGG, CGU, and CGA) were analyzed, to reveal the possible effects of CpG under-represented on codon usage bias. All of these eight codons were not preferential codons and suppressed markedly (Table 3).

Discussion

The synonymous codon usage bias in coding regions of NDV are low (mean ENC = 56.15, higher than 40) in the study. This is in agreement with previous reports about some other RNA viruses, such as BVDV, H5N1 influenza virus and SARS-covs with mean values of 51.43, 50.91, and 48.99, respectively [20, 36]. A low codon usage bias is advantageous to replicate efficiently in vertebrate host cells, with potentially distinct codon preferences.

A general mutational pressure, which affects the whole genome, would certainly account for the majority of the codon usage variation. In this study, the general association between codon usage bias and base composition suggests that mutational pressure, rather than natural selection, is mainly supported by the highly significant correlation between $(C + G)_{12}\%$ and $(G + C)_{3}\%$ (r = 0.845, P < 0.01), since the effects are present at all codon positions [12, 13].

It is now accepted that higher codon usage bias is advantageous to improve the level of gene expression [30, 37, 38]. Recent study had also demonstrated that

Table 7 ENC values of each gene group of NDV

			-			
	NP	Р	F	М	HN	L
Mean value of ENC	54.87	58.90	57.21	52.91	57.36	55.66
SD	1.29	1.99	1.69	2.57	1.32	0.39

SD standard deviation

protein M of NDV was necessary and sufficient for viruslike particles budding and releasing in vitro [39–41], and the high expression of protein M primarily prolonged their survival and consequently enhanced virus replication [42]. Therefore, the codon usage bias of gene group M is higher than other gene groups in NDV. This is an important mechanism for survival and replication of NDV (Fig. 2; Table 7). A highly significant difference of codon usage pattern between gene group P and other gene groups of NDV also reveals the effect of gene function. Because the gene P is unique in that transcriptional editing of its mRNA results in two nonstructural proteins, V and a potential W, among the six genes encoded in the genome [43-45]. Base on gene function, only HN and F coded the two surface glycoproteins in all gene groups of NDV [46]. From protein function, there is a physical association between virusspecific HN and F proteins (HN-F) at the cell surface [47, 48], and both HN and F proteins are important factors accounting for cell fusion in virus infection [49–51]. All above reveal some association between gene group HN and F.

Due to geographic factors, the strains isolated from China tended to cluster together except strain XD/Shandong/08. However, further study revealed that strain XD/ Shandong/08 was generated by a recombination event in the genes F, L, and non-coding region between the genes HN and L [52]. Gene recombination event is therefore another factor accounting for codon usage variation among these virus genes. Interestingly, the seven strains isolated from waterfowl in USA gathered at two distinct places; these findings reconfirm that more than one genotype of NDV circulated in waterfowl in USA [53]. It was reported that synonymous codon usage pattern in the genes of severe acute respiratory syndrome Coronavirus was virus specific and phylogenetically conserved, but it was not host specific [20]. But other reports showed that the analysis of codon usage patterns allowed identification of host origin and evolutionary trends in influenza viruses [54]. In this study, No correlation was observed between the codon usage bias and the host. Comparing with other avian viruses (H5N2 and DHV), no remarkable similarity was found in codon usage pattern of NDV. It is likely that the virus has its own characteristic of codon usage patterns.

Our study first revealed that CpG and the eight CpGcontaining codons were notably deficient in coding region of NDV genome. The probably explanation for the CpG deficiency is immunologic escape. A high CpG content may be detrimental to small DNA (or RNA) viruses, as unmethylated CpGs are recognized by the host's innate immune system (Toll-like receptor 9) as a pathogen signature [55]. The CpG deficiency is a characteristic for NDV to fit in its host.

In short, our analysis revealed that codon usage bias in NDV was low and mutational pressure was the main factor that affects codon usage variation in NDV. Other factors, such as base composition, gene function, geography, dinucleotide, and even gene recombination also significantly influence codon usage bias. No correlation has been found between codon usage and viral host. However, due to a lack of sequence data and detailed information about these isolations, a more comprehensive analysis is needed to reveal more information about other responsible factors within NDV.

Acknowledgements This work was supported in parts by grants from National Science & Technology Key Project (2009ZX08007-006B) and International Science & Technology Cooperation Program of China (No. 2010DFA32640) and Science and Technology Key Project of Gansu Province (No. 0801NKDA034). This study was also supported by National Natural Science foundation of China (No. 30700597 and No. 31072143).

References

- R. Grantham, C. Gautier, M. Gouy, R. Mercier, A. Pave, Nucl. Acids Res. 8, 49–62 (1980)
- 2. L. Duret, Curr. Opin. Genet. Dev. 12, 640-649 (2002)
- F. Supek, K. Vlahovicek, BMC Bioinform. 6, 182 (2005). doi: 10.1186/1471-2105-6-182
- 4. M. Archetti, J. Mol. Evol. 59, 258–266 (2004)
- 5. X. Liu, C. Wu, A.Y. Chen, Arch. Virol. 155, 685-693 (2010)
- 6. M. Bulmer, J. Theor. Biol. 133, 67-71 (1988)
- S. Kanaya, M. Kinouchi, T. Abe, Y. Yamada, T. Nishi, H. Mori, T. Ikemura, Gene 27, 89–99 (2001)
- 8. S. Karlin, J. Mrázek, J. Mol. Biol. 262, 459-472 (1996)
- P.M. Sharp, E. Cowe, D.G. Higgins, D.C. Shield, K.H. Wolfe, F. Wright, Nucl. Acids Res. 16, 8207–8211 (1988)
- L.A. Shackelton, C.R. Parrish, E.C. Holmes, J. Mol. Evol. 62, 551–563 (2006)
- 11. P.M. Sharp, M. Stenico, J.F. Peden, A.T. Lloyd, Biochem. Soc. Trans. 21, 835–841 (1993)
- J. Zhong, Y. Li, S. Zhao, S. Liu, Z. Zhang, Virus Genes. 35, 767–776 (2007)
- 13. P. Tao et al., Virus Genes. 38, 104-112 (2009)
- 14. M. Fu, Arch. Virol. 155, 391–396 (2010)
- 15. E.N. Moriyama, J.R. Powell, J. Mol. Evol. 45, 514-523 (1997)
- W. Gu, T. Zhou, J. Ma, X. Sun, Z. Lu, Biosystems 73, 89–97 (2004)
- 17. R.J. Epstein, K. Lin, T.W. Tan, Gene 245, 291-298 (2000)
- A. Carbone, A. Zinovyev, F. Kepes, Bioinformatics 19, 2005–2015 (2003)

- 19. G.M. Jenkins, E.C. Holmes, Virus Res. 92, 1-7 (2003)
- W. Gu, T. Zhou, J. Ma, X. Sun, Z.H. Lu, Virus Res. 101, 155–161 (2004)
- P.V. Ravindra, A.K. Tiwari, B. Sharma, R.S. Chauhan, Indian J. Med. Res. 130, 507–513 (2009)
- P.J. Miller, L.M. Kim, H.S. Ip, C.L. Afonso, Virology **391**, 64–72 (2009)
- 23. O. de Leeuw, B. Peeters, J. Gen. Virol. 80(Pt 1), 131-136 (1999)
- 24. E.W. Aldous, D.J. Alexander, Avian. Pathol. 30, 117-128 (2001)
- 25. T.G. Morrison, Biochim. Biophys. Acta 1614, 73-84 (2003)
- T. Sakaguchi, T. Toyoda, B. Gotoh, N.M. Inocencio, K. KUma, T. Miyata, Y. Nagai, Virology 169, 260–272 (1989)
- 27. J.A. Novembre, Mol. Biol. Evol. 19, 1390–1394 (2002)
- 28. J.M. Comeron, M. Aguade, J. Mol. Evol. 47, 268-274 (1998)
- H. Lu, W.M. Zhao, Y. Zheng, H. Wang, M. Qi, X.P. Yu, Acta Biochim. Biophys. Sin. (Shanghai) 37, 1–10 (2005)
- 30. F. Wright, Gene 87, 23-29 (1990)
- 31. P.M. Sharp, W.H. Li, Nucl. Acids Res. 14, 7737-7749 (1986)
- J.H. Zhou, J. Zhang, H.T. Chen, L.N. Ma, Y.S. Liu, Vet. Res. Commun. 34, 393–404 (2010)
- 33. P.M. Sharp, W.H. Li, Nucl. Acids Res. 15, 1281–1295 (1987)
- 34. S.K. Gupta, T.G. Ghosh, Gene 273, 63-70 (2001)
- 35. S.A. Haider, B.W. Calnek, Avian Dis. 23, 715-729 (1979)
- M. Wang, J. Zhang, J.H. Zhou, H.T. Chen, L.N. Ma, Y.Z. Ding, Y.S. Liu, Arch. Virol. **156**, 153–160 (2010). doi: 10.1007/s00705-010-0848-00
- 37. S. Karlin, J. Mrazek, J. Bacteriol. 182, 5238-5250 (2000)
- A. Fuglsang, Biochem. Biophys. Res.Commun. 317, 957–964 (2004)
- B.S. Seal, D.J. King, H.S. Sellers, Dev. Comp. Immunol. 24, 257–268 (2000)
- 40. T. Takimoto, A. Portner, Virus Res. 106, 133-145 (2004)
- H.D. Pantua, L.W. McGinnes, M.E. Peeples, T.G. Morrison, J. Virol. 80, 11062–11073 (2006)
- L. Wang, X. Suo, F.Y. Chen, S.J. Zheng, Acta Virol. 53, 105–110 (2009)
- J.W. Liang, F.L. Tian, Z.R. Lan, B. Huang, W.Z. Zhuang, Vet. Microbiol. 144, 257–263 (2010)
- M. Steward, A.C. Samson, W. Errington, P.T. Emmerson, Arch. Virol. 140, 1321–1328 (1995)
- N. Wakamatsu, D.J. King, B.S. Seal, S.K. Samal, C.C. Brown, Virology 353, 333–343 (2006)
- 46. J. Stone-Hulslander, T.G. Morrison, J. Virol. 71, 6287–6295 (1997)
- R. Deng, Z.Y. Wang, P.J. Mahon, M. Marinello, A. Mirza, R.M. Iorio, Virology 253, 43–54 (1999)
- 48. Q. Yao, X. Hu, R.W. Compans, J. Virol. 71, 650-656 (1997)
- C.M. Horvath, R.G. Paterson, M.A. Shaughnessy, R. Wood, R.A. Lamb, J. Virol. 66, 4564–4569 (1992)
- 50. E. Malvoisin, T.F. Wild, J. Gen. Virol. 74(Pt 11), 2365–2372 (1993)
- T. Takimoto, G.L. Taylor, H.C. Connaris, S.J. Crennell, A. Portner, J. Virol. 76, 13028–13033 (2002)
- R. Zhang, X. Wang, J. Su, J. Zhao, G. Zhang, Virus Res. 151, 45–53 (2010)
- N. Jindal, Y. Chander, A.K. Chockalingam, M.D. Abin, P.T. Reding, S.M. Goyal, Virol. J. 6, 191 (2009). doi:10.1186/1743-422X-6-191
- E.H. Wong, D.K. Smith, R. Rabadan, M. Peiris, L.L. Poon, BMC Evol. Biol. 10, 253 (2010)
- 55. A.M. Krieg, Scand. J. Infect. Dis. 35, 653-659 (2003)