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Abstract
Polyomaviruses are widely distributed viruses of birds that may induce developmental deformities and internal organ dis-
orders primarily in nestlings. In this study, polyomavirus sequence was detected in kidney and liver samples of a common 
kestrel (Falco tinnunculus) that succumbed at a rescue station in Hungary. The amplified 5025 nucleotide (nt) long genome 
contained the early (large and small T antigen, LTA and STA) and late (viral proteins, VP1, VP2, VP3) open reading frames 
(ORFs) typical for polyomaviruses. One of the additional putative ORFs (named VP4) showed identical localization with the 
VP4 and ORF-X of gammapolyomaviruses, but putative splicing sites could not be found in its sequence. Interestingly, the 
predicted 123 amino acid (aa) long protein sequence showed the highest similarity with human papillomavirus E4 early pro-
teins in respect of the aa distribution and motif arrangement implying similar functions. The LTA of the kestrel polyomavirus 
shared <59.2% nt and aa pairwise identity with the LTA sequence of other polyomaviruses and formed a separated branch 
in the phylogenetic tree among gammapolyomaviruses. Accordingly, the kestrel polyomavirus may be the first member of a 
novel species within the Gammapolyomavirus genus, tentatively named Gammapolyomavirus faltin.
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Polyomaviruses are widely distributed viruses described in 
vertebrates (mammals, birds, fish) and in arachnids (scorpi-
ons) (Calvignac-Spencer et al. 2016; Ehlers et al. 2019; Fehér 
et al. 2022; Kaszab et al. 2021a; Moens et al. 2017; Schmidlin 
et al. 2021). The Gammapolyomavirus genus of Polyomaviri-
dae family includes avian polyomaviruses that may cause fatal 
illnesses in healthy, primarily young birds (Johne and Müller 
2007; Moens et al. 2017) (https://​ictv.​global/). Via its tropism 
to endothelial cells, goose hemorrhagic polyomavirus (GHPV) 
induces hemorrhagic diseases in goslings. Budgerigar fledgling 
disease virus (BFDV) infection leads to characteristic feather 
and beak malformations, and, together with GHPV, finch pol-
yomavirus (FPyV), and canary polyomavirus (CaPyV) cause 
inflammation, swelling, and hemorrhage of the internal organs 
and skin. Polyomavirus infected birds show poor body condi-
tions, and suffer from diarrhea and neurological signs (Bernáth 
and Szalai 1970; Bernier et al. 1981; Bozeman et al. 1981; 
Johne and Müller 1998, 2007; Phalen et al. 1997).

Polyomaviruses are small, non-enveloped viruses with an 
icosahedral capsid that encloses a circular dsDNA genome 
of 3.9–7.4 kbp in size (Moens et al. 2017). The polyomaviral 
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early genes encode the large and small tumor antigens (LTA 
and STA) that are expressed before the onset of the viral DNA 
replication. The LTA and STA regulate the replication of the 
viral DNA and protein expression (Johne and Müller 2007; 
Kaszab et al. 2021b; Moens et al. 2017). The capsid forming 
viral proteins (VP1, VP2, and VP3) are encoded by late genes 
(Johne et al. 2007; Kaszab et al. 2021a, b; Moens et al. 2017). 
In addition to the essential genes, the polyomaviral genomes 
contain open reading frames (ORFs) whose existence vary 
among the viruses, such as the X or VP4 proteins of avian 
polyomaviruses. These ORFs are located in the same genomic 
regions, but the expressed proteins are not functionally homo-
logues with each other (Johne et al. 2000, 2007; Johne and 
Müller 2001, 2007; Kaszab et al. 2021a; Moens et al. 2017).

In this study kidney, liver, and spleen specimens of 18 
succumbed wild birds were collected in 2020 at the rescue 
station of Zoo and Botanical Garden, Budapest, Hungary. 
The birds were kept individually separated until their death. 
Experiments with or sampling from live animals were not 
performed. All methods were carried out in accordance 
with relevant guidelines and regulations. Ethical review and 
approval was not required for the study in accordance with 
the local legislation and institutional requirements. Sample 
lysis, nucleic acid extraction, and polyomavirus VP1 specific 
broad-spectrum nested PCR was carried out as described 
elsewhere (Fehér et al. 2022; Johne et al. 2005).

A highly divergent polyomavirus was identified from 
kidney and liver specimens of a common kestrel (Falco 
tinnunculus) that was transported to a rescue station with 
wing injury. Unfortunately, gross pathological data were 
not available for the succumbed bird. The complete genome 
of the kestrel polyomavirus (kesPyV) was amplified from 
the liver sample with back-to-back PCR primers designed 
based on the sequence of the diagnostic amplicons. The 
PCR mixture of 25 μL contained 1× Phusion Green Buffer, 
0.3U Phusion DNA Polymerase (Thermo Fisher Scientific, 
Waltham, MA, USA), 200 μM dNTP mix, 200 nM of each 
primer (F1 primer: 5’-TTG​TCA​CCG​ACC​AAC​AAA​GCC-
3’; R1 primer 5’-ATC​CCA​CAA​TAT​CAC​ATG​CTG​ACA​
C-3’) and 1 μL of the purified nucleic acid. The cycling 
protocol consisted of the steps: denaturation at 98°C for 
30 s; 40 amplification cycles of 98°C for 10 s, 60°C for 
30 s and 72°C for 3 min; a final extension step at 72°C 
for 5 min. The ~5000 bp amplicon was subjected to next-
generation sequencing. DNA library was prepared with Illu-
mina Nextera XT DNA Library Preparation Kit and Nextera 
XT Index Kit (Illumina, San Diego, CA, USA) as previ-
ously described, and was loaded onto iSeq100 sequencer 
flow cell and sequenced on an Illumina iSeq100 sequencer 
(Illumina, San Diego, CA, USA) (Olasz et al. 2019). The 
sequence reads were de novo assembled using the Genious 
Prime software v2022.2.2. The sequences were edited with 
the AliView software and were aligned with the MUSCLE 

algorithm implemented in the Geneious Prime software 
(Larsson 2014). MEGA X was used for determination of 
pairwise identity values (Kumar et al. 2018).

Altogether, 379,783 sequence reads assembled into the 
kesPyV genome de novo with a mean sequencing depth of 
7,294x (75–9,890). The less represented priming sites were 
combined and covered by the sequence obtained by direct 
sequencing of the diagnostic PCR amplicon. The genome 
length of the novel kesPyV (GenBank acc. no. OQ540584) 
was 5025 nucleotide (nt) and contained the essential poly-
omaviral ORFs (LTA, STA, VP1, VP2 and VP3) as pre-
dicted with the ORF Finder tool (https://​www.​ncbi.​nlm.​nih.​
gov/​orffi​nder/) (Fig. 1, Table 1) (Calvignac-Spencer et al. 
2016; Ehlers and Moens 2014; Ehlers et al. 2019; Johne and 
Müller 2007; Kaszab et al. 2021a, b; Moens et al. 2017).

The deduced protein sequence of the VP3 started in-frame 
of the VP2 with the motif MALVPY that corresponded to the 
motif MALXXΦ (Φ= W, F, Y) determined for polyomavi-
ruses (Ehlers and Moens 2014; Fehér et al. 2022). The LTA 
protein may be generated with alternative splicing and the aa 
sequence contained polyomaviral LTA-specific motifs, such 
as a conserved region motif FSELL (modified L to F), the 
hexapeptide HPDKGG between the second and third α-helix 
of the putative J domain, the pRB1-binding motif LYCSE, as 
well as the ATPase motifs GPVNTGKT and GSVPVNLE. 
Similarly to the LTA of other gammapolyomaviruses, the 
kesPyV LTA sequence contained a motif (CEDCKSQLD-
NATLRERKRKWMGGHIDDH; CX2CX19HX3H) resem-
bling the zinc finger motif of mammalian polyomaviruses 
(CX2CX7HX3H, CX2CX7HX2H), but differing in length and 
aa composition from the mammalian variants (Ehlers and 
Moens 2014; Fehér et al. 2022). In contrast to mammalian 
polyomaviruses, the LTA of gammapolyomaviruses and 
kesPyV had a low rate of positively charged residues in the 
conserved nuclear localization signal.

The LTA, STA, VP1, VP2 and VP3 of the kesPyV rep-
resented up to 54.7–65.2% nt and 45.2–67.5% aa pairwise 
identities with the homologous sequences of the cormorant 
polyomavirus (CoPyV), BFDV, GHPV, and Adélie penguin 
polyomavirus. The LTA of the kesPyV, used for determina-
tion of relations among PyVs, shared 59.2% nt and 57.3% aa 
pairwise identity with its closest relative, the LTA of CoPyV 
(Fehér et al. 2022). These values are below the 15% cut-off 
value set for species demarcation within the Polyomaviridae 
family (Calvignac-Spencer et al. 2016). Maximum likeli-
hood phylogenetic analysis was performed with the PhyML 
software (LG+G+I model, aLRT SH-like branch support) 
using representative sequences of the polyomavirus species 
(Guindon et al. 2010). The kesPyV clustered with gam-
mapolyomaviruses, but formed a well-separated branch in 
the phylogenetic tree (Fig. 1). The data confirmed that the 
kesPyV belongs to a novel species of the Gammapolyoma-
virus genus, tentatively named Gammapolyomavirus faltin.

https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/orffinder/
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Besides the essential genes, additional ORFs with either 
forward or reverse orientation were also identified in the kes-
PyV genome (Fig. 1, Table 1). Three of these were >303 nt 
in length potentially encoding proteins of >100 aa. Although 
the BLAST search did not reveal matches with any Gen-
Bank records, one of these had very characteristic Leu- and 
Pro-rich regions. The 372 nt long ORF located upstream 
of the VP2 at the coding region of the ORF-X and VP4 of 
other avian polyomaviruses. In contrast to the gammapoly-
omaviral ORF-X and VP4, this ORF was not interrupted 
with intron(s) according to the splicing site prediction tools 
Alternative Splice Site Predictor and the NetGene2 Server 
(Brunak et al. 1991; Wang and Marín 2006). In respect of 
some aa motifs, the deduced 123 aa long protein resembled 
the agnoprotein 2a and 2b of BFDV (hereinafter referred to 

Fig. 1   (a) Genomic organiza-
tion of the kestrel polyomavirus 
(kesPyV) characterized in this 
study. Grey arrows represent 
predicted non-essential poly-
omaviral open reading frames 
(ORFs). (b) Phylogenetic tree 
of large T antigen aa sequences 
retrieved from the kesPyV 
genome and from the GenBank. 
The maximum likelihood tree 
was generated with the PhyML 
software, LG+G+I model, and 
aLRT SH-like branch support. 
Branch supports <80 were 
hidden. The root for the tree 
was set for the sequence of 
the Japaneese eel endothelial 
cells-infecting virus. kesPyV is 
labelled with green circle

Table 1   Characteristics of the predicted open reading frames (ORFs) 
identified in the kestrel polyomavirus genome. Nucleotide 1 of the 
genome is positioned as the first nucleotide upstream of the ORFs 
encoding the large and small tumor antigens (LTA and STA)

Location
nt

ORF length

nt aa

LTA 5025–4728, 4553–2959 1893 630
STA 5025–4555 471 156
VP1 1731–2798 1068 355
VP2 890–1837 948 315
VP3 1214–1837 624 207
VP4 260–631 372 123
ORF 2969–2616 354 117
ORF 3260–3790 531 176
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as VP4-2a and VP4-2b). Moreover, this ORF shared greater 
similarity with the E4 gene of human papillomaviruses 
(HPVs, Papillomaviridae family). Therefore, this particular 
ORF of the kesPyV has been named VP4 (Fig. 1, Table 1). 
The overall arrangement and structure of the kesPyV VP4 
aa modules represented the closest relationship to the E4 
protein of HPV16 and HPV18 (Fig. 2 and Online Resource). 
The kesPyV VP4 shared <25% aa pairwise identity with the 
BFDV VP4-2a and VP4-2b (GenBank acc. no. KT203765), 
and ≤30% aa pairwise identity with E4 of HPV16 and 
HPV18 (GenBank acc. no. LC718898 and ON322746).

Multiple species of BFDV VP4 are produced by splicing 
of late RNAs. The VP4 (VP4-1a, 176 aa) and VP4Δ (VP4-
1b, 112 aa) are produced from the same ORF and these pro-
teins have role in virus replication and release of progeny 
viruses. Both proteins induce apoptosis of the infected cells 
and may inhibit IFN-β expression (Johne et al. 2000, 2007; 
Johne and Müller 2007; Ma et al. 2019). The BFDV VP4-
1a interacts with the viral DNA and the major viral pro-
teins, and has a scaffolding function incorporating into the 
viral particles (Johne and Müller 2001; Johne et al. 2007). 
The BFDV VP4-2a (109 aa) and VP4-2b (79 aa) originate 
from a distinct ORF of BFDV, but no detailed information 
is available about their properties and function (Luo et al. 
1995). Likewise, variable papillomaviral E4 forms have 
been described that are generated by RNA splicing and 
post-translationally by proteases (Doorbar 2013). Although 
low probability of splicing was predicted in the kesPyV 
VP4, numerous protease cleavage sites (details not shown) 
were identified implying that more than one protein species 
are produced by post-translational ways.

The main features of the translated full length pro-
teins were estimated by using sequence-based in silico 
approaches. The protein features were calculated using 
tools available at the Expasy web server (e.g. polarity by 
the ProtScale module) (Gasteiger et al. 2005). The functional 
sites were predicted by the ELM resource (Eukaryotic Linear 
Motif resource for Functional Sites in Proteins) using default 
parameters (Kumar et al. 2022). The kesPyV VP4 showed a 
characteristic distribution of polar and apolar residues. The 
N-terminal region (aa 1-35) was found to be highly polar 
and rich in Arg, Asp, Glu and Ser residues, followed by 
a region with a Leu-rich motif (50LLLYLL55). The down-
stream region (aa64-113) contains multiple Pro with basic 
residues in its central part (aa79-95) (Fig. 2a). Prediction of 
the secondary structural arrangement by GOR4 web server 
revealed that the main part of the protein is not folded into 
locally structured elements (Combet et al. 2000). The central 
region and the C-terminus is ordered and is folded into short 
β-strands, while a short region with the Leu-rich motif has 
an α-helical structure (Fig. 2a). In agreement with the low 
overall propensity for structurally ordered elements, the dis-
order prediction (long disorder, IUPred3 web server) implied 

that the protein is mainly disordered, and the region with the 
lowest disorder propensity is in the proximity of the Leu-rich 
motif (Erdős et al. 2021). Due to the presence of multiple 
Pro residues, the C-terminal region was not predicted to 
be globular (Fig. 2a). We attempted to estimate the three-
dimensional structure as well. A template search, performed 
by using the SWISS-MODEL automated protein structure 
homology modeling web server, showed a maximum of 30% 
sequence identity with the potential templates at only a low 
sequence coverage (0.33%), therefore, it was not possible to 
model the tertiary structure of the protein reliably (Water-
house et al. 2018).

The N-terminal region of the full-length papillomaviral 
E4 contains an α-helix with LLXLL Leu cluster. This motif 
and the upstream residues are thought to be responsible for 
cytokeratin association that is facilitated by phosphoryla-
tion of Ser/Thr sites embedded in the central region of the 
protein rich in Pro and basic residues (Arg, Lys) (Fig. 2 and 
Online Resource) (Doorbar 2013). Variable kinases, including 
mitogen-activated protein kinases (MAPK) and cyclin-depend-
ent kinases (CDK), regulate E4 transformation and cellular 
destruction through these sites. Interaction with the cellular 
keratin network enhances papillomavirus escape from the cells 
(Doorbar 2013). Both the LLXLL cluster within a probable 
α-helix (aa50-55), as well as the Pro and Arg rich region with 
Ser/Thr residues (aa64-95) and kinase docking motifs can be 
recognized in the kesPyV VP4 (Fig. 2 and Online Resource).

The C-terminal beta-aggregation motif is responsible for 
large-scale self-multimerization after cleavage of the N-termi-
nal keratin-binding motif of the papillomaviral E4. A region 
characterized by negatively charged aa (Asp, Glu), Pro and Thr 
is positioned between this beta-aggregation motif and the above 
mentioned Pro- and Arg-rich region of the E4 (Fig. 2) (Doorbar 
2013). As for HPVs, high probability for amyloid formation has 
been calculated for the aa98-103 region of the kesPyV VP4 by 
the AGGRESCAN and the AMYPred-FRL online tools imply-
ing aggregation-prone nature of the C-terminus of the Pro-rich 
module (Charoenkwan et al. 2022; Conchillo-Solé et al. 2007). 
Likewise, predisposition for aggregation was detected in the 
Leu-rich region of the HPV E4, kesPyV VP4 and BFDV VP4-
2a but with lower probability scores than that of calculated for 
C-termini. As compared to the papillomavirus E4, the potential 
multimerization site and the Pro- and Arg-rich central region is 
linked with a shorter stretch in the kesPyV VP4. The C-terminal 
region of the kesPyV VP4 (aa104-123) encompasses negatively 
charged aa, Pro, Thr and Arg residues downstream of the beta-
aggregation motif, while the N-terminal region is densely inter-
spersed with negatively and positively charged, as well as Ser 
residues (Fig. 2). A similar N-terminal and C-terminal region 
is missing from the papillomaviral E4.

Production of the papillomaviral E4 is associated with 
viral amplification thus this molecule could be a biomarker 
to follow progression of the infection (Griffin et al. 2015). 
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HPV E4 accumulation has been observed at the start of 
excessive viral genome replication at S/G2 cell cycle tran-
sition; the post-translationally modified E4 species can 
support CDK sequestration, which events lead to G2 cycle 
arrest (Doorbar 2013). Although the importance of the exist-
ing CDK binding sites is unknown, kesPyV VP4 may have 
E4-like cell cycle modification properties.

In addition to the VP4, a putative non-essential ORF 
were identified in the kesPyV genome in forward direction. 
The ORF (nt 3260-3790) corresponded in location to ORFs 
encoding >100 aa long proteins in the genome of the GHPV, 
CaPyV, CoPyV, Hungarian finch polyomavirus and corvus 
polyomavirus. As these ORFs located in the coding region 
of the LTA, the sequence of the kesPyV shared unsurpris-
ingly higher pairwise aa identity (65.1%) with the references 

than unknown ORFs in other genomic regions. The ORF nt 
2969-2616 showed reverse orientation and overlapped the 
3’ LTA and 3’ VP1 of the kesPyV genome. ORFs poten-
tially encoding proteins ≥80 aa were identified in the same 
genomic region of the GHPV, CaPyV and FPyV genomes, 
with pairwise aa identities ≤39.7%. A comprehensive study 
would help clarify what type of RNAs are edited from the 
pre-mRNAs of the avian polyomaviruses, but the lack of 
routine culturing protocols reduces the chance to carry out 
such investigations.

Some recent viruses have been described with genomic 
properties of both papillomaviruses and polyomaviruses. A 
large part of the ~7.3 kb long bandicoot papillomatosis carcino-
matosis virus type 1 and type 2 (BPCV1 and BPCV2) genome 
has been shown close relationship with the papillomaviral 

Fig. 2   (a) Sequence and predicted structural characteristics of the 
kestrel polyomavirus (kesPyV) viral protein 4 (VP4). The predicted 
secondary structural arrangement is indicated below the sequence 
(“e”: strand, “h”: helix, “-“: coil). The propensities of secondary 
structural elements (predicted by GOR4) and disordered regions (pre-
dicted by IUpred3), as well as calculated polarity values (predicted 
by Expasy and ProtScale) are plotted in the graph. The polar, basic, 
Leu- and Pro-rich regions are indicated in the upper part of the figure. 

(b) Linear sequence motifs and modular motif organization within the 
kesPyV VP4, the E4 proteins of human papillomavirus (HPV) 16 and 
HPV18, as well as the budgerigar fledgling disease virus VP4-2a pro-
teins. Eukaryotic linear motifs were selected based on the ELM data-
base (see Online Resource). Regions predicted to be prone to aggre-
gation and identified with the highest Aggrescan scores are labelled 
with arrows. Comparison with HPVs based on the study of Doorbar 
(2013)
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capsid protein encoding L1 and L2 late ORFs. The smaller 
parts (~2300 nt) of the BPCV genomes have been found to 
contain ORFs in an opposite orientation in the complementary 
DNA strand that encode putative early proteins resembling of 
the polyomaviral LTA and STA (Bennett et al. 2008; Wool-
ford et al. 2007). These ‘hybrid’ viruses may have emerged 
by recombination or may be descendants of common ’papo-
vavirus’ ancestors (Bennett et al. 2008; Woolford et al. 2007). 
Although there are no unambiguous traces of similar events, 
and recombination could not be detected among kesPyV and 
HPV sequences (data not shown), the results presented here 
draw attention to presumably homologous functions of kesPyV 
VP4 and HPV E4. The predicted similarities of the proteins 
promote characterization of the viruses and aid the design of 
experiments needed to reveal virus-host interactions.

Compared to mammalian polyomaviruses, avian pol-
yomaviruses have broader host-spectrum and occur in 
farmed, pet, and wild birds that favours viral spread via 
animal transport and migration (Circella et al. 2017; Johne 
and Müller 1998; Wang et al. 2022). To avoid economic 
losses and threats of avian species conservation more 
attention should be paid to understanding of avian poly-
omaviruses to set up an effective protection against them.
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