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Abstract
In all organs, control of blood flow is important but might be particularly critical for testicular functions. This is because 
of the very low oxygen concentration and high metabolic rate of the seminiferous tubules, the physiological temperature of 
the testis, and its location outside the abdominal cavity. Many factors affect the characteristics of TBF in farm and compan‑
ion animals, such as environment (thermal and seasonal effects) and physiological (species, breeds, age, body weight, and 
sexual maturity). Thermal environment stress has detrimental effects on spermatogenesis and consequently has more seri‑
ous impacts on both human and animal fertility. Numerous studies have been performed to assess TBF in different animal 
species including bulls, rams, bucks, alpacas, stallions, and dogs with varied results. Hence, assessment of TBF by Doppler 
ultrasonography is of great importance to estimate the effect of high environment temperature on testicular functions. Also, 
differences observed in the TBF may result from different technical aspects such as the identification of the segment of the 
testicular artery to be examined. In the current review, we focused on the imperative roles of TBF in various animal species. 
Besides, we discussed in detail various factors that could affect TBF. These factors can significantly modify the TBF and 
thus should be considered when establishing reference values in farm animals for better clinical diagnosis. The information 
provided in this review is valuable for researchers and veterinarians to help them a better understanding of testicular hemo‑
dynamics for the proper evaluation of breeding soundness examination in males.

Keywords Color Doppler ultrasonography · Farm and companion animals · Spermatogenesis · Testicular blood flow · 
Thermal stress

Importance of blood flow to the testis

In the practice of animal reproduction, especially rumi‑
nants, a limited number of males with peak reproductive 
efficiency are selected to impregnate many females in the 

same breeding system (Barth and Waldner 2002; Camela 
et al. 2019). Therefore, a proper assessment of the repro‑
ductive efficiency of the male is very important. There 
are different methods to evaluate the breeding potential 
of male farm and companion animals. A comprehensive 
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breeding soundness evaluation (BSE) of a male has an 
established list of procedures for each species. The evalu‑
ation of semen quality is the most important step in the 
routine examination of breeding soundness (Ax et  al. 
2000). The soundness of the male reproductive system can 
be determined by various methods, including ultrasound 
examinations of the reproductive tract, especially the testis 
(Ortiz‑Rodriguez et al. 2017). Rarely, endocrine evalua‑
tion of circulating hormones such as follicle‑stimulating 
hormone (FSH), luteinizing hormone (LH), testosterone, 
and estradiol may help determine the breeding capacity 
of some animal species, such as stallions (Douglas and 
Umphenour 1992).

Testicular blood flow (TBF) is the key pathway for the 
transport of nutrients, oxygen, regulatory hormones, and 
other secretory products to and from the testicular tissues. 
In addition to its imperative roles in the transport of oxy‑
gen and nutrient supply, blood flow also plays pivotal roles 
in testicular thermoregulation (Junior et al. 2018). Blood 
flow is defined as the total amount of blood that moves 
past a certain point. When blood flows through a vessel, 
it is affected by two factors (pressure and resistance) and 
expressed as flow = pressure/resistance (Pinggera et al. 
2008). The testicular artery is the target of TBF assess‑
ment because the testis receives its blood supply exclu‑
sively through this vessel. Because of its coiled appear‑
ance, the testicular artery is unusually long (up to 220 cm 
in bulls, 145 to 215 cm in buffalo, 180–225 cm and up to 
400 cm in rams, and 137–170 cm in equine) (Harrison 
1949; Setchell et al. 1966; Elayat et al. 2014; Khalil 2014).

Testicular blood flow is distinguished by a high vascular 
resistance; at the convoluted portion of the testicular artery 
(supratesticular artery; STA) compared with other parts 
of this vessel, which results in a lowering of the intrates‑
ticular capillary pressure as compared with other organs 
(Sweeney et al. 1991; Bergh and Damber 1993; Trautwein 
et al. 2019). This low‑pressure results in an environment of 
low oxygen tension inside the seminiferous tubules (Ortiz‑
Rodriguez et al. 2017).

Spermatogenesis is adapted to a semihypoxic environ‑
ment, which provides sperm cells with the advantage of 
avoiding damage caused by oxygen‑free radicals (Max 
1992; Setchell et al. 1994; Aitken 1999). Although low 
oxygen tension is very beneficial to spermatogenesis 
(Bergh and Damber 1993), the testis is very liable to suffer 
from ischemic damage when blood perfusion is decreased 
due to vascular restriction (Kay et al. 1992). Therefore, 
the early identification of changes in the TBF is required 
for a correct diagnosis of various testicular disorders and 
prompt implementation of appropriate treatment (Ortega‑
Ferrusola et al. 2014). The experimental restriction of 
TBF leads to reduction in the testicular size and great 
impairment in spermatogenesis in bulls (Kay et al. 1992). 

In rams, various degrees of testicular ischemia induced 
focal morphological changes in the testes (Markey et al. 
1995). Pathological disorders affecting the testis's vascula‑
ture, such as varicocele or spermatic cord torsion, greatly 
reduced TBF and compromised testicular function in 
stallions (Pozor 2007). Importantly, a mild decrease in 
TBF has detrimental effects on early‑stage spermatogen‑
esis (Nolte et al. 1995; Bergh et al. 2001). In rats (Hsu 
et al. 1994), experimental varicocele induced significant 
reductions in TBF and defective adenine nucleotide con‑
centrations, and energy charge as the result of inadequate 
nutrient supply from the blood circulation. These findings 
could result in defective energy metabolism at the mito‑
chondrial level (due to decreased synthesis of adenosine 
5'‑triphosphate; ATP), damage and ischemia of testicular 
tissues, and in turn impairment of spermatogenesis.

Anatomical consideration of the testicular 
artery

The testicular artery is derived from the aorta. It runs along 
the inguinal canal and forms numerous irregular loops 
termed the funicular part of the testicular artery or suprates‑
ticular artery (STA), which form a cone‑like structure. Here 
the great coiling of the vessels disperses the heat, result‑
ing in a reduction in the working temperature of the testis 
(Kastelic et al. 1997). The degree of testicular artery coil‑
ing varies by animal species. Bulls (up to 130 loops), rams 
(80 loops), and bucks (50 loops) all have a lot of coiling in 
their testicular artery. In other animal species such as stal‑
lions, camels, and dogs, the coiling is comparatively smaller 
(less than 25 loops), whereas humans have no coiling in 
the testicular artery (Harrison and Weiner 1949; Setchell 
1978; Gouletsou 2017). Variations among animal species 
in the degree of convolutions of the testicular artery might 
be attributed to the differences in abdominal–testicular tem‑
perature gradients (Harrison and Weiner 1949).

In ruminants, the testicular artery branches into a testicular 
and epididymal branch after leaving the pampiniform plexus 
(Kastelic et al. 1997; Gouletsou 2017). The testicular branch 
runs along the posterior margin of the testis and is named the 
marginal portion; the marginal testicular artery (MTA). The 
MTA is very long concerning the position and the size of the 
testis in ruminants. So, it has a degree of tortuosity, especially 
in rams and bucks compared to the bulls. At the ventral pole 
of the testis (on the level of the junction between the proximal 
and distal parts of the epididymal border of the testis), it forms 
a sigmoid curve and then soon branches into lateral and medial 
testicular arteries (Elayat et al. 2014). The lateral and medial 
testicular arteries wheel the tail, then split into 7–9 smaller 
branches that travel to both surfaces of the testis in a dorsolat‑
eral and dorsomedial direction. The “tunica arteriosa testis” 
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is formed by these branches running in a wavy pattern and 
adhering closely to one another. The parenchymal branches 
are 20 delicate, slender vessels that emerge from the tunica 
arteriosa testis and run the length of the testicular surface. 
Then, they run through the testicular parenchyma in a radiat‑
ing fashion toward the mediastinum testis as centripetal paren‑
chymal branches (Elayat et al. 2014). At the mediastinum, they 
overturn themselves and return in an opposite direction and 
parallel to the centripetal branches as centrifugal parenchymal 
branches, finally joining the mediastinum to the subcapsular 
space (Polguj et al. 2015; Gouletsou 2017).

There are some morphological variations between rumi‑
nants' testicular arteries and those of other animal species. 
The testicular artery in stallions, for example, travels in 
a wavy pattern along the epididymal edge (known as the 
marginal portion of the testicular artery), along the caudal 
testicular pole, and along the free edge of the testis as one to 
three branches (Collin 1973; Pozor 2007). The MTA encir‑
cles the testicular circumference completely along both 
borders (Elayat et al. 2014). On the ventral aspect of the 
testis, small arterial branches run on the lateral and medial 
testicular surfaces toward the epididymal edge, until they 
penetrate the tunica albuginea toward the testicular paren‑
chyma as centripetal arteries (Jantosovicová and Jantoso‑
vic 1983). In dogs, the convoluted part (named the STA) of 
the testicular artery is cranial to the testis, while the MTA 
runs in a straight plane to the caudal pole of the testis, and 
gives off many branches on either side, from which termi‑
nal vessels pass into the testicular parenchyma and directed 
towards the center of the testis (Harrison and Weiner 1949). 
The proximal portion of the STA (cranial segment of the 
STA) is loosely convoluted, while the distal portion (loop‑
ing segment of the STA) is of high convolutions as the 
artery approached the cranial pole of the testis (Harrison 
and Weiner 1949).

TBF evaluation methods

Vascular patterns are investigated using various methods 
such as arteriography and microarteriography after the injec‑
tion of radiopaque media into the testicular artery, with sub‑
sequent observation of the relation between the testicular 
veins and the artery in histological transverse sections (Bar‑
clay 1947; Jantosovicová and Jantosovic 1983). Although 
these methods were used a long time ago, they are still 
very useful modalities for the evaluation of the vasculature 
of various organs and often provide good anatomical fea‑
tures of the organ’s blood supply (branches and other parts) 
(Khadamy et al. 2018). These methods were not designed 
to provide velocimetric measures of blood flow. Whereas 
arteriography and microarteriography provide only anatomi‑
cal details of various blood vessels, laser Doppler flowmetry 

can be used to measure microvascular TBF in various animal 
species (Widmark et al. 1986; Gonzalvo et al. 1993).

Advances in Doppler applications have enabled research‑
ers and veterinarians to properly assess the structural and 
functional aspects of the testis (Ortiz‑Rodriguez et al. 2017; 
Fávaro et al. 2020; El‑Sherbiny et al. 2022a). Doppler ultra‑
sonography depends on the phenomena of the Doppler 
effect, which was first described in 1842 by Christian Johann 
Doppler. It is a natural phenomenon characterized by appar‑
ent changes in the frequency of the sound wave when the 
source of the sound wave moves toward or away from the 
receptor. Differences between the generated and received 
frequencies are referred to as the “Doppler shift,” which 
is proportional to the velocity of the movement. Likewise, 
in ultrasound waves, the difference between the frequency 
of the received and transmitted echoes by the transducer 
is known as Doppler frequency (Zagzebski 2005; Herzog 
and Bollwein 2007). The frequency differences occur via 
the movement of blood cells and allow for the detection 
and measurement of blood flow (Ginther 2007; Viana et al. 
2013).

There is no difference between the transmitted and 
received frequencies when the receiver target (in this case, 
red blood cells) is stationary or traveling parallel to the wave 
source (transducer), and the colorful Doppler signals are not 
observed. The returned frequency is greater than the trans‑
mitted frequency while blood flow is traveling toward the 
transducer, resulting in a positive Doppler effect. A negative 
Doppler signal is generated when the returning frequency is 
lower than the transmitted frequency, or when the red blood 
cells move away from the transducer (Zagzebski 2005). The 
greatest frequency shift occurs when the transmitted ultra‑
sound beam is parallel to the blood flow. However, to enable 
the detection of the blood vessel, there must be a small angle 
of insonation (≤ 60◦) between the direction of the ultrasound 
waves and the direction of blood flow (Pozor and McDonnell 
2004; Junior et al. 2020; Samir et al. 2021).

There are color Doppler and spectral Doppler modalities 
or displays. Color Doppler includes directional Doppler and 
power Doppler, while spectral Doppler includes continuous‑
wave (CW) Doppler and pulse‑wave (PW) Doppler. Color 
and power Doppler serve a different purpose than using 
CW or PW Doppler, for example, visualization of vessels 
vs measuring blood flow velocities. The spectral Doppler 
modes (PWD, CWD) examine the velocity and direction 
of blood through a selected small zone, called sample vol‑
ume, whose velocities are of interest to be examined. Con‑
sequently, the examination of this sample volume allows 
the quantitative analysis of the blood flow characteristics (if 
compared with color Doppler) in a specific area of the artery 
(Boon 2011a, b).

The theory of pulsed‑wave Doppler imaging is similar to 
that of B‑mode imaging, in which sound is emitted in short 
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bursts and received by the same crystal during the time 
interval between pulses (only one crystal is used for trans‑
mitting and receiving sound). The echoes returning from 
a vessel would arrive after a certain period if the sample 
volume in the vessel is set at a specific depth. This time 
interval (known as range gating) corresponds to the ves‑
sel's depth and enables blood flow in a particular vessel to 
be determined. The exact position of a flow pattern can be 
calculated in this manner. The pulse repetition frequency 
must be twice the maximum frequency of the returned ech‑
oes to accurately calculate blood‑flow velocity (known as 
the Nyquist limit). When the Nyquist limit is surpassed, an 
anomaly called aliasing occurs, making correct flow veloc‑
ity analysis impossible. This can happen if the pulse rep‑
etition frequency is too low, if there is high‑velocity flow, 
such as in aortic or pulmonic stenosis, or if the sampling 
depth is too great. In these situations, it would be appropri‑
ate to switch to continuous‑wave Doppler ultrasound (Boon 
2011a, b).

Continuous‑wave Doppler, on the other hand, sends 
and receives sound in real‑time. The transducer is made 
up of two crystals, one that transmits sound and the other 
that absorbs it. Sound waves are therefore received con‑
tinuously, and so continuous‑wave Doppler (CW Dop‑
pler) can measure very high velocities but is unable to 
discriminate the depth of the signal. Every moving target 
in the path of the sound beam will cause a signal and will 
be measured. Using pulsed‑wave Doppler, the origin of 
the measured velocities must be determined (spectral or 
color‑coded). Animals with heart failure associated with 
elevated flow rates, such as aortic or pulmonic stenosis, 
ventricular septal abnormalities, or mitral and tricuspid 
insufficiency, use CW Doppler to measure flow velocities 
(Boon 2011a, b).

The Doppler shift in the spectral flow Doppler appears as 
a chart representing the speed by time (Viana et al. 2013). 
However, to distinguish between an artery and a vein in this 
mode, the blood flow within an artery will typically have a 
spectral graph of waveforms that correspond to the arterial 
pulsation of the cardiac cycle (systole and diastole). In the 
veins, the flow of blood will not have a pulsed waveform; 
almost constant (Herzog and Bollwein 2007).

It is important to point out that measuring accurate 
velocities is angle‑dependent and requires a straight ves‑
sel, but calculating Doppler indices, especially resistive 
index (RI) is not angle‑dependent and does not require a 
straight fragment of the vessel. However, in some tissues 
of the genital system, such as the ovarian structures (folli‑
cles and corpus luteum) and intratesticular parenchyma, the 
evaluation of blood perfusion may be particularly difficult 
because of the tortuous orientations and small diameters of 
the arterioles and venules detectable by ultrasound. In these 
cases, color Doppler is used, and the cross‑section images 

of the central area or of the areas with the greatest Doppler 
signal are recorded and later measured using image analy‑
sis software to estimate the percentage of color Doppler 
signals (Pugliesi et al. 2014, 2019; Bollwein et al. 2016; 
Samir and Kandiel 2019; Samir et al. 2019; Hedia and 
El‑Belely. 2021). Therefore, the application of color flow 
Doppler provides an overview of the blood flow but gives 
no detailed information regarding the blood flow velocity 
parameters of the studied tissue (Viana et al. 2013; Pugliesi 
et al. 2014, 2019; El‑Sherbiny et al. 2022b). Indeed, the 
STA has similar limitations, due to the tortuosity and the 
inability to clearly define the angle of insonation. Thereby, 
depending on Doppler indices (resistive index: RI and pul‑
satility index: PI) is recommended for a valid assessment 
of TBF (Ginther and Utt 2004).

Spectral Doppler parameters for TBF 
assessment

Spectral Doppler ultrasonography is very important because 
it translates a detailed analysis of blood flow waveforms and 
consequently determines blood flow velocity (peak systolic 
velocity [PSV], end‑diastolic velocity [EDV], mean veloc‑
ity [MV], time average maximum velocity [TAMAX], total 
arterial blood flow [TABF], and total arterial blood flow 
rate [TABFR]) and Doppler indices (RI and pulsatility index 
[PI]) in a particular vessel (Viana et al. 2013). Blood flow 
in the testicular vessel could be evaluated using the Dop‑
pler indices (RI and PI). The resistance of vascular perfu‑
sion caused by the microvascular bed distal to the measure‑
ment site is referred to as RI, whereas the pulsatility of the 
waveform is referred to as PI. Increased RI and PI values 
stipulate decreased distal tissue perfusion. Doppler indices 
are computed from the values for PSV, EDV, and TAMAX 
(Ginther and Utt 2004) using these formulas: RI = [(PSV‑
EDV) ÷ PSV]; PI = [(PSV EDV) ÷ TAMAX]. Doppler indices 
are very useful especially when estimating the Doppler angle 
is difficult (e.g. tortuous vessels). Therefore, these indices 
are not angle‑dependent and are considered good indicators 
of the downstream flow condition (Blanco et al. 2008; Serin 
et al. 2010). The blood flow of tissue downstream is nega‑
tively associated with RI and PI values in equine (Ginther 
and Utt 2004). Considering the nonchange in the diameter 
of the examined vessel, as the values of RI and PI decrease, 
blood flow resistance reduces, and blood perfusion to the 
organ improves (Dickey 1997; Bollwein et al. 2016). In 
general, blood flow pulsatility is higher in larger vessels as 
compared with smaller vessels (Hassan et al. 2022). In small 
vessels, Doppler indices are mainly used to determine blood 
flow semiquantitatively, because it is often nearly impossible 
to accurately measure the diameter of small vessels (Blanco 
et al. 2008).
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Factors influencing characterizations of TBF 
in various animal species

To reach a proper diagnosis and maximize the benefits of 
color Doppler imaging of TBF, it is better to fully under‑
stand all factors that might affect testicular blood perfu‑
sion in domestic animals (Fig. 1). Many factors affect the 
characteristics of TBF in farm and companion animals, 
such as the thermal factor in dogs (Henning et al. 2014) 
and bulls (Junior et al. 2020), nutritional, anatomical, and 
genetic (species and breeds) factors in dogs (Souza et al. 
2014) and bulls (Junior et al. 2018), and seasonal fac‑
tors in rams (Ntemka et al. 2018; Hedia et al. 2019) and 
bucks (Strina et al. 2016; Samir et al. 2018). Likewise, 
differences in TBF could be observed based on the size 
or body weight of the animal as well as pubertal differ‑
ences in dogs (Souza et al. 2014; de Souza et al. 2015a) 
and rams (Camela et al. 2017, 2019). Other factors can 
influence TBF, including the age effect in stallions (Pozor 
and McDonnell 2004) and rams (Ntemka et al. 2018), 
and sexual activity, ambient temperature, and pathologi‑
cal conditions in stallions (Pozor and McDonnell 2004; 
Ortiz‑Rodriguez et al. 2017).

In this regard. It would be important to highlight the dif‑
ference between factors that affects blood flow to the testis 
and those that affect the measurements of the total blood 
flow by ultrasonographic techniques. For more instances, 
differences in the results of testicular hemodynamics within 
the same breed or even within individuals may result from 
different segments of the testicular artery to be examined and 
the technique of evaluation in stallions (Pozor and McDon‑
nell 2004) dogs (Gumbsch et al. 2002; Carrillo et al. 2012; 
de Souza et al. 2014; Trautwein et al. 2019), rams (Hedia 
et al. 2020a), and bucks (Samir et al. 2020a). The latter could 

not be necessarily implicated in a real modification of the 
blood flow to the testis, but it should be addressed for cor‑
rect diagnosis.

Collectively, these factors can significantly modify the 
TBF and thus should be considered when setting up refer‑
ence measures in various animal species such as stallions 
(Ortega‑Ferrusola et al. 2014) for better clinical diagnosis.

Appended, we highlighted the most important factors that 
could affect TBF in domestic animals. Roughly, four main 
factors could induce alterations in testicular hemodynamics 
in various animal species (Fig. 1 and Table 1).

Environment factors

Thermoregulation of the testis

In most mammals, suspending the testes inside the scrotum 
and outside the body is to adjust the intratesticular tempera‑
ture to be slightly lower than the core body temperature. 
Also, there is a complicated thermoregulatory system in 
the testis involving vascular and non‑vascular components. 
The vascular components are the pampiniform plexus which 
performs countercurrent heat exchange for the warm blood 
entering the testis and cool blood draining from the testis 
(Setchell 2006; Hansen 2009), and peripheral vasodilation. 
Before entry to the testis, the testicular artery is more tortu‑
ous to maintain a testicular temperature of approximately 
4–6 °C below body temperature, given the mechanism of 
countercurrent heat exchange (Waites 1970). The great 
extension of the testicular artery in contact with the pam‑
piniform venous plexus favors heat exchange from arterial 
blood to venous blood and aids in proper thermoregulation 
of the testis (Brito et al. 2004). In addition, the testicular 
artery forms an extensive network of superficial vessels, 

Fig. 1  An illustrated diagram 
of different factors that could 
influence the testicular blood 
flow assessment in domestic 
animals in light of previous 
bibliographies
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which contribute to the mechanism of temperature regula‑
tion and dissipation of heat (Morrell 2020).

The non‑vascular components of thermoregulation 
include physiological responses such as sweating, changes 
in the location of the testis relative to the abdomen, and 
other behavioral approaches such as seeking shade (Riz‑
zoto and Kastelic 2020). The degree of testicular cooling 
is further controlled by two muscles: the tunica dartos, just 
beneath the skin of the scrotum, which regulates the scrotal 
surface area, and the cremaster muscle that controls the 
position of the scrotum relative to the body (Hansen 2009). 
Contraction of the cremaster muscle brings the testes closer 
to the abdomen in cold conditions while its relaxation of 
these permits the testes to hang away from the body in 
warm conditions (Morrell 2020). Furthermore, the skin of 
the scrotum is thin, devoid of subcutaneous fat, and has 
more dense sweat glands than the skin on other parts of the 
body contributing to heat transfer by allowing heat dissipa‑
tion through sweating (Blazquez et al. 1988). The testes 
can thermoregulate against exposure to cold temperatures 
by contracting and pulling up against the body. The scro‑
tum limits the dissipation of heat by increasing the skin 
rugosity to decrease the surface area exposure (Mariotti 
et al. 2011).

Impact of increased temperature on testicular function

The testicular temperature should be maintained at around 
32 °C for normal spermatogenesis. Increased environment 
temperatures (with or without high humidity) could inter‑
fere with the thermoregulatory mechanism of the testes, 
disrupt the evaporative heat loss from the scrotal surface, 
and result in increases in the intratesticular temperature 
(Morrell 2020). Testes functions operate in a microen‑
vironment close to hypoxia (Bergh et al. 2001; Barros 
Adwell et al. 2018). An increment in testicular heat causes 
increased testicular metabolism and oxygen requirements, 
resulting in hypoxia and the formation of reactive oxygen 
species, which have a significant impact on sperm produc‑
tion (Setchell 1978, 1998; Kastelic et al. 2017). Decreased 
sperm quality is primarily attributed to the effect of 
hypoxia and not directly to hyperthermia (Paul et al. 2009; 
Hamilton et al. 2016).

Exposing the testes to thermal stress via an insuffi‑
cient thermoregulatory system induces a negative impact 
on spermatogenesis (due to its deleterious effects on all 
major cells within the testis), resulting in lower sperm 
quality and quantity characteristics (Setchell 1998; Paul 
et al. 2008; Hansen 2009; Hedia et al. 2020a; Shahat 
et  al. 2020); this has more drastic consequences for 
human and animal reproduction and population. In deed, 
influences of increased testicular temperature depend 
on the extent and duration of testicular heating. Mild 

increases in testicular temperature may cause only a 
temporary reduction in sperm quality, and prolonged 
and/or substantial heating are likely to cause infertility. 
Furthermore, a severe thermal insult may cause perma‑
nent cessation of spermatogenesis (Rizzoto and Kastelic 
2020).

The inability of the animal to adapt (through different 
physiological and behavioral mechanisms and trials) to the 
increased environment temperature results in heat stress. 
When assessing the impact of heat stress, the temperature 
humidity index (THI) should be addressed, together with 
the effect of season, even in temperate climates (Llamas‑
Luceño et  al. 2020). The effects of THI on the semen 
characteristics of bulls were found to be breed‑dependent 
(Gloria et al. 2021). For instance, significant reductions in 
the semen volume, sperm concentration, total sperm in the 
ejaculate, total sperm motility, sperm membrane integrity, 
and sperm normal morphology by an increasing THI were 
found in the Belgian Blue bulls, but not in Brown Swiss 
bulls (Gloria et al. 2021). These variations could be attribut‑
able to differences in anatomy, endocrinology, or resilience 
of this breed after a period of high‑temperature exposure. 
Therefore, special husbandry strategies including ventila‑
tion, shading, antioxidants supplementation, or the timing 
of semen collection (Morrell 2020; Shahat et al. 2020) 
should be considered to alleviate the negative impact of heat 
stress, especially in some breeds of beef bulls such as Bel‑
gian Blue bulls. Also, breeds should be selected according 
to climatic conditions and the rearing purpose of livestock 
(Morrell 2020).

Regardless of the etiology, increased scrotal/testicular 
temperature could not initially deteriorate sperm morphol‑
ogy (for a period known as an epididymal transit time), 
while its negative impacts are noticed later (Kastelic and 
Rizzoto 2021). However, high percentages of epididymal 
sperm abnormalities were found when collected soon after 
scrotal thermal exposure (Kastelic et al. 1996). Another 
study (Vogler et al. 1991) found alterations in the epididy‑
mal sperm quality only following cryopreservation. Older 
bulls showed high sensitivity to THI at spermatogenesis 
compared with semen collection, exhibiting more than 
three times higher negative effects on cryopreserved 
sperm quality (Llamas‑Luceño et al. 2020). In general, 
sperm parameters usually return to pre‑treatment standards 
within approximately six to eight weeks after the ther‑
mal stress exposure (Llamas‑Luceño et al. 2020; Kastelic 
and Rizzoto 2021). However, a prolonged and/or severe 
increase in testicular temperature will increase the inter‑
val for the return of sperm quality (Kastelic and Rizzoto 
2021). Therefore, using colour Doppler ultrasonography 
to measure testicular hemodynamics is critical for estimat‑
ing the impact of high ambient temperature on testicular 
functions.
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Thermal factors or increasing environment temperature 
on TBF

Regardless of the method of assessment, this chapter is illus‑
trating the effect of the thermal factor or increasing envi‑
ronment temperature on TBF in various animal species. 
Numerous studies on domestic animals (bulls, rams, bucks, 
and dogs) have evaluated the changes in TBF in response 
to changes in testicular or ambient temperature. In Angus 
bulls, significant increases in TBF were found in response 
to increases in ambient temperature (from 5 °C to 35 °C, 
increases were observed in blood flow [2.45 versus 4.23 mL/
min/100 g testis] as well as increases in testicular tempera‑
ture [31.8 °C versus 34.9 °C]; Barros Adwell et al. 2018). 
By directly applying heat to the testis in rams, the testicular 
temperature increased to 36 °C and blood flow (outside the 
scrotum) increased by up to 26% (Mieusset et al. 1992). In 
addition, in anesthetized bulls (Rizzoto et al. 2020), warming 
the testes from 34 °C to 40 °C led to notable increases in the 
TBF (13.2 ± 2.7 versus 17.7 ± 3.2 mL/ min/100 g of testis), 
oxygen extraction (31.2% ± 5.0% versus 47.3% ± 3.1%), and 
oxygen consumption (0.35 ± 0.04 versus 0.64 ± 0.06 mL/ 
min/100 g of testis).

The response of TBF to thermal factors also depends on 
the extent of the increases in testicular temperature relative 
to the body temperature. For example, in bucks, changes 
in the TBF between seasons were coincidental with the 
variations in ambient temperature (Samir et  al. 2018). 
Decreases in TBF were reported during the summer season 
(mean maximum temperature 29.43 ± 1.45 °C) compared 
with those found in the winter season (mean maximum 
temperature 10.38 ± 1.02 °C) (Samir et al. 2018). These 
results disagreed with the findings of previous studies. The 
reason for this discrepancy might be whether the testicu‑
lar temperature surpassed the body temperature or not. As 
previously proposed (Setchell 1978), blood flow in sheep 
testis is increased when the testicular temperature is higher 
than the body temperature, but there is no increase in TBF 
when the temperature increases up to the body tempera‑
ture. Therefore, the seasonal coincidental variations in 
TBF found in bucks might be a component of the offset‑
ting mechanism of goat testes for the control of testicular 
blood flow as a way to overcome the variations in ambient 
temperature to maintain normal testicular function (Samir 
et al. 2018).

The effect of thermal factors on testicular hemodynam‑
ics may depend on the species. One study in dogs found no 
changes in the TBF when the average temperature of the 
scrotal surface increased (> 3 °C) (Henning et al. 2014). 
Also, after the artificial cooling of dog testicles, marked 
reductions in scrotal blood flow was observed without any 
effect on the blood flow to the testis (Glode et al. 1984). 
The effect of a thermal factor on the testis might not be 

limited to the TBF. For example, Waites et  al. (1973) 
reported that when the scrotum of mice was immersed 
in water at a temperature ranging from 28 °C to 45 °C 
for 20 min, increases were observed in the blood flow 
within the scrotum and in the brains of anesthetized mice. 
These findings demonstrate the species' effect on TBF in 
response to increased testicular temperature.

Nevertheless, breed type might also influence TBF 
in animals in response to thermal factors. For example, 
increased scrotal temperature did not induce changes 
in TBF in rams selected for skin wrinkling, but it did 
increases the TBF in rams that were not selected for 
skin wrinkling (Fowler and Setchell 1971). Furthermore, 
exposing bulls to high ambient temperatures resulted in a 
substantial effect on spermatogenesis in Bos taurus bulls, 
whereas Bos indicus bulls were less severely affected 
(Johnston et al. 1963; Skinner and Louw 1966).

It is worth mentioning that the differences between 
the continental or British breed (B. taurus) bulls and the 
Indian or Zebu breed (B. indicus) bulls for either sus‑
ceptibility or adaptability to the deleterious effects of 
increased testicular temperature (due to warm environ‑
ments) on sperm quality may be attributable to various 
morphological and anatomical differences in the testicu‑
lar artery (Nichi et al. 2006). The wall of the testicu‑
lar artery of B. indicus bulls is thinner, and there is a 
shorter distance between the arterial and venous blood 
in the testicular vascular cone (Brito et al. 2004). Fur‑
thermore, bulls in this breed have more functional sweat 
glands with a larger perimeter (Carvalho et al. 1995) in 
the scrotal skin, a larger pendulous scrotum (Brito et al. 
2004; Siqueira et al. 2012), and a higher length of the 
testicular artery compared with other breeds (Brito et al. 
2003, 2004). These morphological changes may contrib‑
ute, in part, to the greater resistance of B. indicus bulls 
to high environmental temperatures by conferring better 
TBF and facilitating heat exchange between the testicular 
artery and veins (Kastelic et al. 1997).

Recently, experimental warming of the testes (to 
40 °C) in both B. taurus and B. indicus bulls resulted in 
an extreme increase in TBF to provide enough oxygen in 
a way to meet the increased metabolic demands of the 
testes and avoid hypoxia (Rizzoto et al. 2020). Exposing 
the testes to the scrotal insulation for up to 120 h resulted 
in alterations in testicular temperature, the velocity of 
the TBF, and seminal quality in bulls (Barca Junior et al. 
2020). Therefore, in‑depth analyses should also be directed 
to the nature of the thermal stress to which animals are 
exposed and consideration given as to whether the thermal 
factor is restricted to the testes (i.e., local effect by warm‑
ing the testis or insulation) or is a general effect result‑
ing from exposing the animal to the high environment or 
experimental temperature (El‑Sherbiny et al. 2022c).
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Effect of season and climatic changes on TBF

Several studies highlighted the impact of climatic changes 
on semen quality and the fertilizing capacity of males in 
various domestic animals (Pérez and Mateos 1996; Boyd 
et al. 2006; Samir et al. 2018; Hedia et al. 2019) with contra‑
dictory findings, perhaps because the effect of the season can 
vary greatly among climatic zones (Llamas‑Luceño et al. 
2020) and geographic location (Pérez and Mateos 1996). 
On the opposite, little attention has been paid to the effect of 
seasonality on TBF. In stallions, increases in TBF have been 
reported in spring months as compared to winter months 
(Boyd et al. 2006; Pozor 2007). Increased TBF during the 
breeding seasons of stallions was coincident with increases 
in sperm production (Boyd et al. 2006).

In fat‑tailed rams (Hedia et al. 2019), RI values of the 
supratesticular artery were lowest during the breeding sea‑
son (from September to March) and increased significantly 
in April (up to 50%) reaching the highest value during June. 
Concomitantly, testosterone, estradiol, and semen param‑
eters were positively affected during the breeding season. 
In addition, high negative correlations were found between 
values of RI and PI and sperm concentration and progres‑
sive motility (Hedia et al. 2019). Recently, RI values of 
TBF showed high negative correlations with the curvilinear 
velocity and linearity (both slow and rapid defaults) of sper‑
matozoa as assessed by computer‑assisted sperm analysis 
(CASA) during the breeding season of Polish Heath rams 
(Kozłowska et al. 2022). Also, the advanced features of 
higher sperm abnormalities (Grade 4 of the motile sperm 
organelle morphology examination; MSOME as detected 
by CASA) were positively correlated with RI and PI values 
before the breeding season (0.61, 0.52, respectively), and 
after the breeding season (0.60, 0.46, respectively). Concur‑
rently, high‑quality semen was derived during the breeding 
season, whereas high sperm abnormalities (related to sperm 
cells' DNA vacuolization and fragmentation) were notice‑
able before the breeding season. However, an old study on 
rams showed a nonsignificant effect of season on testicular 
hemodynamics (Noordhuizen‑Stassen et al. 1985).

In a 12‑month study in Sarda bucks (breed with seasonal 
variations of gonad activity under natural daylight condi‑
tions), Strina et al. (2016) showed a typical seasonal change 
in testicular volumes and testosterone levels with a maxi‑
mum testicular volume in September and peak testosterone 
levels in December. Concomitantly, TBF follows the sea‑
sonal changes in the testicular parenchyma depending on 
the functional activity of the testis, and the lowest RI values 
were observed in September. Likewise, in nonseasonal breed 
bucks such as Shiba bucks, distinct seasonal fluctuations 
in TBF were noted, especially for Doppler indices (Samir 
et al. 2018). The greatest increases in the values of the RI 
and PI of the testicular artery were found in the summer 

(June to August). Similarly, the PI and RI values in autumn 
(September to November) were less than those recorded in 
spring (March to May), whereas the lowest values for these 
indices were reported in winter (December to February) 
(Samir et al. 2018). However, in dogs, characterization of 
the normal blood flow of the testicular arteries (PSV, EDV, 
RI, and PI) over a long duration showed no statistically sig‑
nificant differences (Carrillo et al. 2012). TBF variations 
between seasons are most often attributed to differences in 
the testicular endocrine and spermatogenic functions (Joffre 
and Joffre 1973) and may be the cause of seasonal changes 
in testicular function (Boyd et al. 2006; Pozor 2007). There‑
fore, some treatments such as pentoxifylline treatment in 
stallions (Pozor et al. 2011), FSH administrations in bucks 
(Samir et al. 2023), and curcumin supplementations in rams 
(El‑Sherbiny et al. 2022d), should be addressed because they 
modulate TBF and improve the fertilizing capacity of males 
during the non‑breeding seasons.

Seasonal breeders such as cats (Alexandre‑Pires et al. 
2012) deer (Wagener et al. 2010; de Souza Cunha et al. 
2019), and hamsters (Mayerhofer et al. 1989) showed varia‑
tions in testicular mass and TBF throughout the year. Also, 
they exhibited seasonal activity of angiogenesis and varia‑
tions in the histomorphology and the cellular composition 
of the testis (Pyter et al. 2005). Angiogenesis defines as 
the development of new blood vessels from differentiated 
endothelial cells (Alessi et al. 2004). Angiogenesis may 
be found inside the testicular tissues during the process of 
spermatogenesis and spermiogenesis (Lecouter and Ferrara 
2002). Changes in the angiogenesis process play a crucial 
role in the vascular growth and regression of the testes dur‑
ing the breeding and nonbreeding seasons. Testicular angio‑
genesis is known to increase during testicular recrudescence 
in seasonal breeders such as the hamster (Mayerhofer et al. 
1989) or to decrease in response to feeding restrictions in 
rabbits (Carvalho et al. 2009). In the hamster, there are sea‑
sonal variations in the permeability of the testicular micro‑
vasculature concurrent with the gonadal activity (testis mass 
and sperm production) (Mayerhofer et al. 1989). In male 
cats, testicular vascularisation appears to be predominantly 
increased in three photoperiod windows of time (November/
December, March/April, and June/July) (Alexandre‑Pires 
et al. 2012). These seasonal alterations might be attributable 
to the circadian oscillators to the timing of light exposure 
and could influence their reproductive performance (Alex‑
andre‑Pires et al. 2012).

Sexually mature Roe deer bucks (Capreolus capreolus) 
showed a complete arrest in spermatogenesis in the winter 
months, being started later in the spring and reaching the 
highest peak during the breeding season (May to September) 
(Blottner et al. 2006; Wagener et al. 2010). In addition, it 
showed prominent reductions in testicular size and decreased 
function in the post‑rutting period (Elmi et al. 2020). Such 
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patterns in the seasonal testicular cycle could be valuable 
and give potentially information that could be important to 
other species and further studies may be required.

In seasonal breeders such as Roe deer, there is a seasonal 
expression pattern of vascular endothelial growth factor 
(VEGF), being the highest level at the peak of spermato‑
genesis during the pre‑rutting season and reaching the lowest 
level at the end of the rutting season (Wagener et al. 2010). 
The vascular endothelial growth factor is an important 
proangiogenic factor responsible for vascular dilatation and 
increases vascular permeability (Dvorak et al. 1999; Conway 
et al. 2001). VEGF and its receptors are expressed in all tes‑
ticular cells, both germline and interstitial components (Liu 
and Yang 2004), and play a pivotal role in male germ cell 
differentiation, proliferation, and migration (Sargent et al. 
2016). It has a great role in regulating germ cell survival in 
the bovine testis during the spermatogenesis cycle (Caires 
et al. 2009). These findings may suggest the potential roles 
of VEGF in the regulation of spermatogenesis but may not 
be participated predominantly in the microvasculature of 
the testis. Other growth factors are also incorporated into 
the seasonal variability of testicular angiogenesis such as 
transforming growth factors, fibroblast‑like growth factors, 
and insulin‑like growth factors (Wagener et al. 2003, 2005).

In addition to its potential roles in the regulation of germ 
cell differentiation and migration, and blood vessel develop‑
ment, VEGF plays an important role in the integrity of the 
blood‑testis barrier (BTB) (Reddy et al. 2012). The BTB 
is one of the tightest blood‑tissue barriers in the mamma‑
lian body. It divides the seminiferous epithelium into basal 
and adluminal compartments. Thus, the BTB regulates the 
entry of nutritional and vital substances (e.g. sugars, amino 
acids, hormones, electrolytes) and harmful toxicants (e.g., 
environmental toxicants, drugs, chemicals) into the apical 
compartment of the seminiferous tubules (Cheng and Mruk 
2012). This role creates a special microenvironment for the 
seminiferous tubule (being not penetrated by blood vessels, 
lymph vessels, or nerves) for normal postmeiotic germ cell 
development (i.e., spermiogenesis and spermiation) occur‑
rence. Therefore, the BTB is considered an immunological 
barrier that is necessary for the differentiation of spermato‑
gonia during spermatogenesis.

Because TBF has an important role in the regulation of 
testicular temperature, exposing the testis to thermal fac‑
tors could deteriorate the cellular components of the testis 
including Sertoli cells which may affect the permeability 
of the BTB and impair its pivotal roles in the spermato‑
genesis process. Exposing the testis to hypoxia significantly 
suppressed the proliferation of Sertoli cells, induced cel‑
lular apoptosis, and could damage the integrity of BTB and 
spermatogenesis of the testis (Hao et al. 2013). In total, the 
deterioration of BTB could generate anti‑sperm antibodies 
which bind to sperm parts and reduce the fertilizing capacity 

of sperm. Other causes such as testicular trauma, Cadmium 
toxins, and chemotherapeutic drugs using nanotechnology 
for cancer therapies could negatively affect the integrity 
of the BTB and impair spermatogenesis (Cheng and Mruk 
2012).

Genetic factors

Species effect

There are species differences in the characterization of 
TBF in farm and companion animals (Supplement Tables 1 
& 2). Previous literature showed that waveforms of the 
blood flow within the testicular artery (either at the level 
of STA or at the MTA) of humans (Middleton et al. 1989), 
canines (Günzel‑Apel et al. 2001; Gumbsch et al. 2002), 
feline (de Brito et al. 2015), caprine (Samir et al. 2015), 
ovine (Camela et al. 2019; Fadl et al. 2022), and cattle 
(Claus et al. 2019; Rodrigues et al. 2020) testes appear to 
have a monophasic, nonresistive character. Blood flow to 
the testes in stallions, on the other hand, is often charac‑
terized by resistive‑biphasic waveforms at the extent of 
the spermatic cord (Bollwein et al. 2008) and nonresis‑
tive, monophasic frequencies from the MTA (Pozor and 
McDonnell 2004). The horizontal pattern of the longi‑
tudinal direction of the testes, its proximity to the body 
wall, and the proportionally short spermatic cord with the 
convoluted artery account for the resistive appearance of 
waveforms at the twisted part of the testicular artery in stal‑
lions (Pozor and McDonnell 2004). Interestingly, one study 
in dogs (Carrillo et al. 2012) revealed the appearance of 
a biphasic high‑resistance blood flow within the proximal 
segment of the STA, similar to that observed in the STA of 
stallions (Pozor and McDonnell 2004).

Effect of breeds

Within each species, the effect of breed on TBF has received 
little attention. Little studies have been performed on bulls 
and dogs to illustrate the effect of breeds on testicular hemo‑
dynamics. Junior et al. (2018) evaluated the TBF parameters 
(MV, RI, and PI) of 334 bulls of five different breeds (Nel‑
lore, Aberdeen Angus, Hereford, Braford, and Brangus) and 
showed differences among the evaluated breeds in the MV 
and RI of the bulls’ STA. Brangus bulls showed signifi‑
cantly higher values of TAMAX (16.3 ± 1.0 cm/s) as com‑
pared with the Nelore bulls (8.8 ± 0.4 cm/s). The researchers 
also observed higher RI values in Hereford (0.44 ± 0.01) 
compared with Brangus (0.36 ± 0.02) animals, whereas the 
PI values did not differ among breeds. In addition, there 
was no significant change in the PI or RI values of Nelore 
bulls compared with bulls of other B. taurus breeds (Angus, 
Bradford, Brangus, and Hereford) (Junior et al. 2018). A 
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recent study showed significantly greater values of PI and 
RI of the testicular arteries in bulls of the Nelore breed as 
compared with Caracu bulls (Rodrigues et al. 2020). These 
results could be attributed to variations in the shape and 
size of the testis between the breeds, which could result in 
variations in testicular hemodynamics. The negative corre‑
lations between PI and RI values and testicular length and 
scrotal circumference observed in jackasses (Gacem et al. 
2020) and bulls (Rodrigues et al. 2020) could support this 
hypothesis.

Differences in the Doppler velocimetry parameters of 
TBF have been found between dogs of different breeds 
and sizes (small dogs such as French Bulldogs and large 
dogs such as Labrador, Rottweiler, and German Shepherd) 
(Souza et al. 2014); namely, higher velocities (especially 
the EDV) of blood flow were recorded in the spermatic 
cord in large dogs, but the Doppler velocity values were 
higher at the MTA in small breed dogs. Doppler examina‑
tion of the intratesticular blood vessels showed nonsig‑
nificant differences in the velocity parameters among the 
studied breeds.

Physiological and other factors

Effect of puberty or age on TBF

There is a lack of studies scrutinizing the effect of age on 
TBF in domestic animals. Most studies revealed increases in 
TBF with age. PSV and EDV values of the blood flow within 
the testicular artery were significantly lower in prepubertal 
dogs as compared with postpubertal dogs (de Souza et al. 
2015a). Age had no significant effect on TBF in stallions, 
however, decreased values of EDV and increased values for 
RI were reported in old stallions than in the middle‑aged 
stallions in the STA region (Pozor and McDonnell 2004). 
Also, several reports on humans (Middleton et al. 1989; Oyen 
2002) reported lower RI values in postpubertal ages (0.6) 
than in those of prepubertal ages (0.87). Decreased RI val‑
ues at sexual maturity in rams (El‑Sherbiny et al. 2022e) are 
associated with vasodilation and increased blood flow to the 
testis. In the latter, increased TBF with age may be attributed 
to the physiologic hypovascularization of the testes (Saun‑
ders et al. 1998; Dudea et al. 2010). In contrast, there were 
no major variations in the values of TBF Doppler indices 
between young and adult bulls (Gloria et al. 2018) or between 
pre‑and postpubertal mature rams (Elbaz et al. 2019).

Recently, Hedia and El‑Shalofy (2022) reported lower 
values of RI and PI of the examined STA in the mature 
(0.32 ± 0.04 and 0.36 ± 0.03, respectively; 2.5 years) and 
aged rams (0.51 ± 0.03 and 0.77 ± 0.06, respectively; 
7.5 years) compared to the young ones (0.62 ± 0.03 and 
0.98 ± 0.07, respectively; age 1 year).

Effect of testicular size, and the bodyweight on TBF

Only a few studies have evaluated the effect of the testicular 
volume and body weight of animals on TBF. It was hypoth‑
esized that having a greater testes volume is linked to having 
a lower RI value and in turn higher TBF (Paltiel et al. 1994). 
In addition, greater blood perfusion (lower Doppler indices 
values) was recorded in heavy horses as compared with min‑
iature horses (Ortega‑Ferrusola et al. 2014). Therefore, it is 
of interest for the technician to consider various parameters 
that could affect testicular hemodynamics and to identify the 
number of measurements needed to attain better measure‑
ment accuracy (Pozor and McDonnell 2004).

Effect of sexual activity on TBF

To obtain a proper assessment of TBF in domestic ani‑
mals, the sexual activity of the male is a very important 
factor that should be addressed. In stallions, the research‑
ers reported the positive effect of increased sexual activity 
on the improvement of TBF (higher velocities and lower 
RI of the testicular artery) (Ortega‑Ferrusola et al. 2014). 
Increased blood perfusion to the testis after sexual activity 
or ejaculation may be due to the increase in the demand for 
more sperm production by the testicular tissues, the stallions' 
constant exposure to mares, as well as changes in the social 
climate (Ortega‑Ferrusola et al. 2014). Ortega‑Ferrusola 
et al. (2014) evaluated the effects of 12 months of frequent 
semen collection on TBF. However, this study did not have 
a control group, which makes this observation questionable. 
For that reason, researchers have recommended a sexual 
rest (no ejaculation) before the examination of blood flow 
to the prostate and the testis with power or pulsed Doppler 
ultrasonography, because Doppler parameters could be influ‑
enced by ejaculation (Alonge et al. 2018a, b). Ejaculation is 
an important factor that could affect testicular hemodynam‑
ics because it could induce increases in body temperature 
and peripheral vasoconstriction. However, previous litera‑
ture in rams (Gouletsou et al. 2003; Ahmadi et al. 2012) 
found no significant effect of ejaculation on testicular echo‑
texture, and further investigation on its effect on testicular 
hemodynamics is needed.

Effect of testicular laterality

Most studies on bucks (Samir et al. 2015, 2018, 2020a, 
b; Mandour et al. 2020) and stallions (Pozor and McDon‑
nell 2004) have revealed lack of significant differences 
between the right and left testes in terms of pulsed‑wave 
Doppler indices. Similar results were obtained in Dorper 
rams (Camela et al. 2017) and Barki Egyptian rams (Elbaz 
et al. 2019). In Awassi rams, however, RI, and PI, were a bit 
increased (P ˂ 0.05) in the right testicular artery as compared 
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with the left one (Hedia et al. 2020b). These differences 
might be related to the asymmetry in the volume or the ori‑
entation between the right and left testes. The evaluation of 
testicular size in dogs of various breeds and weights revealed 
that the left testis is substantially larger than the right (Souza 
et al. 2014), whereas the Doppler velocity parameters and 
indices did not differ between the sides (Souza et al. 2014; 
de Souza et al. 2015a).

Diseases and reproductive disorders

Various diseases, especially fever, may induce altera‑
tions in testicular hemodynamics owing to increased 
body temperature. Decreases in testicular microcircula‑
tion, testicular damage, and increased ROS activity were 
reported in systemic arterial hypertensive rats (Colli et al. 
2019). Color Doppler ultrasonography has been used to 
diagnose different testicular affections in animals spe‑
cies, such as testicular torsion and varicocele in stallions 
(Pozor and McDonnell 2004; Pozor 2007) and testicular 
tumors in dogs (Bigliardi et al. 2019). Dogs and stallions 
are commonly susceptible to testicular torsion due to 
the anatomical characters of the spermatic cord and the 
testicular orientation (Edwards 2008; Samir et al. 2021; 
Raisi and Davoodi 2022). Dilation of the spermatic cord 
vessels, alterations in TBF and echogenicity of testicular 
parenchyma, and colic symptoms are observed in cases 
of testicular torsions based on the severity of the torsion 
(Samper et al. 2007; Raisi and Davoodi 2022). Other than 
this, color Doppler imaging has been used over the past 
20 years in numerous studies to characterize TBF and to 
assess its relationship to the testicular function and semen 
quality in various animal species such as bulls (Glo‑
ria et al. 2018; Junior et al. 2018), stallions (Pozor and 
McDonnell 2004; Pozor 2007; Pozor et al. 2014; Ortega‑
Ferrusola et al. 2014; Ortiz‑Rodriguez et al. 2017), rams 
(Batissaco et al. 2013; Camela et al. 2017, 2019; Ntemka 
et al. 2018; Hedia et al. 2019, 2020a), bucks (Samir et al. 
2015, 2018, 2020a, b; Strina et al. 2016; Mandour et al. 
2020), and dogs (Gumbsch et al. 2002; Zelli et al. 2013; de 
Souza et al. 2014, 2015a, b; England et al. 2017; Bigliardi 
et al. 2019; Lemos et al. 2020).

Indeed, evaluation of the semen quality and its fertiliz‑
ing capacity are the golden standard for assessing testicular 
functions in farm and companion animals and very crucial 
to proving animal fertility. However, the evaluation of TBF 
sheds light on the reproductive potentials of males and is 
considered a good, rapid, and non‑invasive tool for diag‑
nosis and monitoring many infertility problems. Hence, 
Doppler ultrasonography does not represent a front‑line 
diagnostic tool for specific reproductive disorders‑rather it 
provides indirect clues by detecting alterations in testicular 

hemodynamics, with extra evidence for some conditions 
provided by other important methods of assessment such as 
semen quality (Samir et al. 2021).

Technical factors affecting ultrasonographic 
Doppler estimation of TBF

Effect of the section of the artery evaluated

Because characterizations of TBF are significantly affected 
by the section of the vessel examined by color Doppler 
ultrasonography, one of the most important issues to 
address is the identification of the segment of the testicular 
artery to be examined (Fig. 2). In bulls, the PSV, EDV, and 
RI values of the STA were significantly higher than those 
in the MTA and were higher in the MTA as compared with 
those in the intratesticular branches (Gloria et al. 2018). 
Similarly, in Shiba bucks (Samir et al. 2020a, b) and don‑
keys (Gacem et al. 2020), Doppler indices (RI, PI) were 
significantly higher in the STA compared with those in the 
MTA. In stallions, mean RI values in the MTA were just 
marginally lower than in the convoluted part (Pozor and 
McDonnell 2004).

Even within the same individual, blood flow velocities 
(PSV and EDV) measured at the STA were variable because 
of the convoluted course of the vessel at this section (Glo‑
ria et al. 2018). Therefore, researchers have preferred using 
Doppler indices of TBF because they are highly repeatable 
within the same individual and between the examinations 
because they are not angle‑dependent. In llamas, assess‑
ment of TBF within the STA was more useful for deter‑
mining the infertile males, because PSV and EDV of the 
STA differed between infertile and fertile males (Kutzler 
et al. 2011). Doppler ultrasonography cannot assess fertil‑
ity, but it assesses TBF. However, altered TBF affects tes‑
ticular functions, thus the fertility status is also negatively 
affected. However, MTA is a preferred section for examining 
the TBF than those at the STA by many authors, due to the 
best accessibility and a straight course of this part of the ves‑
sel, thus facilitating the detection and obtaining reproducible 
Doppler measures of TBF as reported in dogs (Günzel‑Apel 
et al. 2001). Intratesticular arteries could be seen as colour 
pixels of various sizes in any ultrasonographic examination; 
however, they made pulsed‑wave Doppler measurement 
difficult (Günzel‑Apel et al. 2001), and the power Doppler 
technique may be helpful for proper assessment. The newer 
ultrasound machines with a high‑frequency transducer (for 
example 10 MHz) allow for obtaining these parameters from 
intratesticular arteries in bulls (Gloria et al. 2018), dogs 
(Gloria et al. 2020), and rams (Hedia and El‑Belely 2021).

In addition, the characterization of the normal testicular 
hemodynamics showed changes in the course of the testicu‑
lar artery. For example, in Beagle dogs, a flow pattern of a 
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highly resistive vessel was observed at the proximal portion of 
the STA, whereas in the looping portion of the STA, MTA, and 
intratesticular vessels, the flow experienced a reduced resist‑
ance pattern (Carrillo et al. 2012; Trautwein et al. 2019). In 
more descriptive studies in dogs (Carrillo et al. 2012; de Souza 
et al. 2015a, b; Trautwein et al. 2019), significant differences 
were recorded in Doppler parameters of blood flow (PSV, 
EDV, RI, and PI values) measured in five regions along the 
testicular artery (STA [proximal, medial, and distal regions], 
MTA, and intratesticular branches). The RI, PI, and PSV 
values decreased gradually along the course of the testicular 
artery. The highest values were noted in the cranial segment 
of the STA, which decreased gradually in the other sections, 
whereas the lowest values were measured within the intrates‑
ticular arteries (This information can be seen in Fig. 2).

The fact that the testicular artery arises exclusively from 
the aorta, a vessel with high resistance to blood flow, may 
explain increased velocities at the STA relative to other 
segments near the entry of the testis and the intratesticu‑
lar branches (Trautwein et al. 2019). The prolongation and 
tortuosity of the artery results in a decrease in its resistivity 
and the thickness of the vascular endothelium is reduced as 
it approaches the testis. As the vessel course enters the testis, 
the RI and PI values decrease. These differences may be 
due to differences in the morphological and hemodynamic 
characteristics of the testicular artery during its course in the 
spermatic cord and the testicles. Previous studies reported 
decreases in the thickness of the artery wall and the vessel 
lumen as it enters the testis (de Souza et al. 2014; Souza 
et al. 2014). Similarly, a recent study in Assaf rams (Has‑
san et al. 2022) reported morphological and hemodynamic 
changes in different regions of the STA. The study showed 
higher PSV, RI, and PI in the proximal region of the STA, 
followed by middle and distal ones. Also, significant pro‑
gressive increases in the TABF and TABFR were found 
along the testicular cord until entering the testis. Another 
aspect that would support this reduction in blood flow veloc‑
ity as the vessel reaches the testis is the increased vascular 
dichotomization that occurs when the artery branches as it 
enters the testicular parenchyma, dissipating blood velocity 
and favoring gas exchange with the tissue (Trautwein et al. 
2019).

The testis receives its blood supply mainly from the tes‑
ticular artery which has a coiled appearance before entering 
the testis (at the pampiniform plexus, PFP). TBF at this por‑
tion is low (evidenced by lowered RI and PI values compared 
to other segments) as reported in various animals species 
such as jackass (Gacem et al. 2020), dogs (Trautwein et al. 
2019), and rams (Hassan et al. 2022). Reducing the amount 
of blood that enters the testis is very crucial to reduce the 
testicular temperature by about 4–5 C below the body tem‑
perature (Lloyd‑Jones et al. 2015). Also, it reduces the tissue 
oxygen pressure (hence, the testis operates its function in a 

microenvironment close to hypoxia that could be helpful to 
protect sperm DNA from the damage caused by free oxygen 
radicals) which facilitates a steady and consistent blood flow 
for proper functioning (Gacem et al. 2020). Since the blood 
flow velocity measures differed between the measured sec‑
tions/segments along the spermatic cord in dogs, it is critical 
to correctly classify the measured area, as even a few cra‑
nial centimeters can have a positive impact on the measured 
blood flow velocity (Trautwein et al. 2019).

Collectively, to prevent any incorrect measurements or 
misdiagnoses, the operator must be conscious of the region 
being tested (Trautwein et al. 2019; Gacem et al. 2020) 
and obtain good references for testicular hemodynamics 
for better detection and monitoring of reproductive system 
dysfunction.

Effect of the psychological status of the patient on TBF

Defining the Doppler angle from the testicular arteries is 
difficult because of their tortuous anatomy (especially at 
the STA). Therefore, performing the pulsed‑wave Dop‑
pler examination in a closed, calm room with temperature 
control is recommended in order to reduce animal motion 
and breathiness (Pozor 2007). Additionally, assessing the 
animals prior to feeding and exercising can help to prevent 
unnecessary visceral movement (Araujo and Ginther 2009).

Some animals (such as dogs) may experience tremors 
and fear, which can interfere with the examination. Doppler 
ultrasonography can be facilitated using blankets to leave 
only the scrotum on display and having the assistant caress 
and talk to the dogs during the assessment can provide com‑
fort and animal welfare (Trautwein et al. 2019). Tachycar‑
dia can occur in stressed and/or anxious animals, which can 
affect the morphology of the Doppler waveform (Araujo 
and Ginther 2009; Trautwein et al. 2019). In some cases, 
sedation of nervous animals is important; it does not affect 
the blood flow of the genital organs and facilitates scanning 
(Araujo and Ginther 2009). However, some animals such as 
stallions may be able to stand quietly for enough time when 
simultaneously fed with a little grain or hay (Pozor 2007).

Doppler setting and procedures

Because of the tortuous appearance of the testicular artery, 
Doppler examination is considered to be time‑consuming 
and requires the patience and technical skills of the operator 
as well as the cooperation of the animal. Therefore, sev‑
eral points listed below are practical recommendations that 
should be implemented before and during the spectral Dop‑
pler examination of testicular arteries in domestic animals.

Type of transducer (linear or convex) A linear transducer 
with a broad range of frequencies (between 5–7.5 MHz) is 
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most useful for evaluating scrotal contents, including the 
vasculature (such as STA) at the inguinal area between the 
hind limbs. Other convex transducers can be used; however, 
manipulation is more difficult in the tight, inguinal area (e.g., 
in the stallion) (Ginther and Utt 2004; Pozor and McDon‑
nell 2004; Pozor 2007). A micro convex transducer could 
provide a wider variety of angles of the ultrasound beam, 
which helps in obtaining optimal insonation for spectral 
analysis. Furthermore, for the evaluation of TBF inside the 
MTA and arteries in the testicular parenchyma, a transducer 
with greater frequencies (7.5–17 MHz) may be preferable. 
Low blood flow could be evaluated more frequently with 
Power Doppler, particularly in vessels within the testicular 
parenchyma (Ginther and Utt 2004).

Adjusting the angle of the Doppler (better insonation) The 
best insonation for spectral Doppler ultrasonography is when 
the direction of the blood flow is parallel to the ultrasound 
beam. However, since this is rarely possible, an "angle cor‑
rection" may need to be used to obtain accurate velocimetric 
measures of TBF (Ginther 2007; Pozor 2007). To improve 
the spectral analysis of the blood flow, the operator should 
manipulate the position of the probe and use the angle correc‑
tion mode to improve insonation. Usually, a Doppler angle of 
30° to 60° is required (Pozor and McDonnell 2004; Ginther 

2007; Pozor 2007) to produce an accurate spectrum of TBF. 
Alternatively, with newer machines, an ultrasound beam 
angle can be modified to become parallel to the blood flow 
direction. Doppler indices such as RI are not angle‑dependent 
and can be taken without worrying about the insonation. The 
sample gate size (about 1–2 mm in small ruminants and dogs 
and 2–4 mm in large domestic animals) is centered on the 
portion of the artery that will be analysed and spans the entire 
vessel's width (Ortega‑Ferrusola et al. 2014).

Fixed Doppler settings For research purposes, Doppler 
velocimetric measurements should be obtained by the same 
operator and using the same settings of the ultrasonographic 
equipment to avoid interobserver and interdevice variations 
(Ginther 2007). In addition, to avoid any possible changes 
caused by the subject’s circadian cycle, it should be performed 
at the same time of day (Zaidi et al. 1995; Pozor 2007).

Evaluator experience Obtaining good images of color 
pulsed‑wave Doppler also depends on the experience and 
patience of the technician with a good ultrasound device. 
Moreover, measuring blood flow velocity requires some 
anatomical knowledge and vessel orientation. Evaluat‑
ing the blood flow along the entire section of the testicular 
artery requires adequate time (Trautwein et al. 2019; Samir 

Fig. 2  Variable characteristics features of testicular blood flow in dif‑
ferent portions of the testicular arteries in bucks. Notice: when the 
examined segment is approaching the testis, the waveforms of blood 
flow are less resistive (A: the initial segment of the supratesticu‑

lar artery (STA), B: the middle segment of the STA, C & D: lower 
segments of the STA, E: marginal testicular artery, F: intratesticular 
artery)
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et al. 2021). The longest time may be required to examine 
the intratesticular sections with an average measurement 
time requirement of 15–20 min. However, it is questionable 
whether obtaining all Doppler parameters from each portion 
of the testicular artery is necessary or not to get an accurate 
diagnosis of TBF in various animal species. The MTA is sug‑
gested earlier by more than one author as the best segment 
to assess TBF correctly (Ginther and Utt 2004; Gloria et al. 
2018; Samir et al. 2021). Importantly, the identification of 
MTA and intratesticular artery in cats are difficult, perhaps 
due to the small testicular volume (Brito et al. 2015, 2018).

Conclusion and challenges

TBF plays an important role in animal reproduction, and its 
assessment is considered a consistent part of health manage‑
ment in males. Color Doppler ultrasonography is proven to 
be a safe and non‑invasive aid for the assessment of TBF. 
Estimating the blood flow at the MTA section using the 
color‑pulsed Doppler ultrasonography is the best approach, 
at this moment, to assess testicular hemodynamics in vari‑
ous farm and domestic animals under clinical circumstances. 
On the contrary, many factors could influence testicular 
hemodynamics such as environment (thermal and seasonal 
effects) and physiological (species, breeds, age, size, body 
weight, and sexual maturity) factors. Effects of breed or spe‑
cies on TBF could be related to the variations in the shape, 
size, orientation, and other anatomical characteristics of the 
testes, scrotum, and vasculatures. Also, differences observed 
in the testicular hemodynamics within the same breed or 
even within individuals may result from some technical 
aspects (segments of the evaluated vessel and technique). 
These factors can significantly modify the TBF and thus 
should be considered when establishing reference values in 
domestic animals for better clinical diagnosis and to ensure 
correct assessments. Further studies within each species that 
include a large number of animals should be conducted to 
investigate the many scientific issues concerning the validity 
of this technique in animal reproduction practice.
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