Skip to main content

Advertisement

Log in

Gall midge pollination and ant-mediated fruit dispersal of Pinellia tripartita (Araceae)

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The family Araceae consists of approximately 3,600 species that are characterized by cross-pollination using colorful pseudanthium and/or odor emission and endozoochory using glossy fruits. In contrast, a small deciduous aroid Pinellia tripartita possesses pale-green inflorescence without distinct smell and inconspicuous whitish-green fruits, suggesting that this species has a specialized reproductive system. However, no study has examined its reproductive biology in the field. To identify effective pollinators, we collected floral visitors from the introduced and five natural populations in the central and western Japan. We evaluated the selfing ability based on bagging experiments and the P/O ratio. Since myrmecochory was reported in some aroids with whitish fruits, we examined the ant-mediated removal of diaspores of P. tripartita, and two common herbs at the study site, Viola mandshurica (a myrmecochorious herb), and Oxalis dillenii. In all populations, gall midges were the dominant floral visitor, and pollen adhered to them. The fruit set rate significantly decreased in bagged inflorescences. The P/O ratio was intermediate between selfing and outcrossing plants. Ant-mediated diaspore removal was more frequent in P. tripartita than in the other two herbs. The decreased fruit set rate in bagging experiments and the intermediate P/O ratio suggested that P. tripartita conducts both cross- and self-pollination. Based on the floral visitor assemblage and ant-mediated fruit removal, P. tripartita appeared to employ tiny insects (gall midges and ants) for pollination and seed dispersal. Considering the similarity of reproductive traits, this tiny insects-mediated reproductive system may be common in the genus Pinellia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The detailed information about study sites is provided in Table S1.

Code availability

No applicable.

References

  • Armbruster WS, Baldwin BG (1998) Switch from specialized to generalized pollination. Nature 394:632

    Article  CAS  Google Scholar 

  • Bogner J, Boyce P (1989) A remarkable new Biarum (Araceae) from Turkey. Willdenowia 18:409–417

    Google Scholar 

  • Bond WJ, Slingsby P (1983) Seed dispersal by ants in shrublands of the Cape Province and its evolutionary implications. S Afr J Sci 79:231–233

    Google Scholar 

  • Boyce P (1988) Pinellia Tripartita. Kew Mag 5:18–21

    Google Scholar 

  • Bröderbauer D, Diaz A, Weber A (2012) Reconstructing the origin and elaboration of insect-trapping inflorescences in the Araceae. Am J Bot 99:1666–1679

    Article  Google Scholar 

  • Cabrera LI, Salazar GA, Chase MW, Mayo SJ, Bogner J, Dávila P (2008) Phylogenetic relationships of aroids and duckweeds (Araceae) inferred from coding and noncoding plastid DNA. Am J Bot 95:1153–1165

    Article  CAS  Google Scholar 

  • Chartier M, Gibernau M, Renner SS (2013) The evolution of pollinator-plant interaction types in the Araceae. Evolution 68:1533–1543

    Article  Google Scholar 

  • Chouteau M, Barabé D, Gibernau M (2006a) Pollen-ovule ratios in some Neotropical Araceae and their putative significance. Plant Syst Evol 257:147–157

    Article  Google Scholar 

  • Chouteau M, Barabé D, Gibernau M (2006b) A comparative study of inflorescence characters and pollen-ovule ratios among the genera Philodendron and Anthurium (Araceae). Int J Plant Sci 167:817–829

    Article  Google Scholar 

  • Chouteau M, Gibernau M, Barabé D (2008) Relationships between floral characters, pollination mechanisms, life forms, and habitats in Araceae. Bot J Linn Soc 156:29–42

    Article  Google Scholar 

  • Croat TB (1980) Flowering behavior of the neotropical genus Anthurium (Araceae). Am J Bot 67:888–904

    Article  Google Scholar 

  • Croat TB, Ortiz OO (2020) Distribution of Araceae and the diversity of life forms. Acta Soc Bot Pol 89:8939

    Article  Google Scholar 

  • Cruden RW (1977) Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:32–46

    Article  Google Scholar 

  • Díaz-Jiménez P, Hentrich H, Aguilar-Rodríguez PA, Krömer T, Chartier M, MacSwiney MCG, Gibernau M (2019) A review on the pollination of aroids with bisexual flowers. Ann Missouri Bot Gard 104:83–104

    Article  Google Scholar 

  • Dinno A (2017) dunn.test: Dunn's test of multiple comparisons using rank sums. R package version 1.3.5. Website https://cran.r-project.org/web/packages/dunn.test/index.html

  • Eriksson O, Bremer B (1992) Pollination systems, dispersal modes, life forms, and diversification rates in angiosperm families. Evolution 46:258–266

    Article  Google Scholar 

  • Etl F, Francke W, Schönenberger J, Dötterl S (2022) Chemical attraction of gall midge pollinators (Cecidomyiidae: Cecidomyiinae) to Anthurium acutangulum (Araceae). J Chem Ecol 48:263–269

    Article  CAS  Google Scholar 

  • Feil JP (1992) Reproductive ecology of dioecious Siparuna (Monimiaceae) in Ecuador—a case of gall midge pollination. Bot J Linn Soc 110:171–203

    Article  Google Scholar 

  • Gardner EM, Gagné RJ, Kendra PE, Montgomery WS, Raguso RA, McNeil TT, Zerega NC (2018) A flower in fruit’s clothing: pollination of Jackfruit (Artocarpus heterophyllus, Moraceae) by a new species of gall midge, Clinodiplosis ultracrepidata sp. nov. (Diptera: Cecidomyiidae). Int J Plant Sci 179:350–367

    Article  Google Scholar 

  • Gibernau M (2003) Pollinators and visitors of aroid inflorescences. Aroideana 26:73–91

    Google Scholar 

  • Gibernau M (2011) Pollinators and visitors of aroid inflorescences: an addendum. Aroideana 34:70–83

    Google Scholar 

  • Gibernau M (2016) Pollinators and visitors of aroid inflorescences III—phylogenetic & chemical insights. Aroideana 39:4–22

    Google Scholar 

  • Gibernau M, Macquart D, Przetak G (2004) Pollination in the genus Arum—a review. Aroideana 27:148–166

    Google Scholar 

  • Gómez C, Espadaler X (1998) Seed dispersal curve of a Mediterranean myrmecochore: Influence of ant size and the distance to nests. Ecol Res 13:347–354

    Article  Google Scholar 

  • Gómez C, Espadaler X (2013) An update of the world survey of myrmecochorious dispersal distances. Ecography 36:1193–1201

    Article  Google Scholar 

  • Handel SN, Beattie AJ (1990) Seed dispersal by ants. Sci Am 263:76–83

    Article  Google Scholar 

  • Henriquez CL, Arias T, Pires JC, Croat TB, Schaal BA (2014) Phylogenomics of the plant family Araceae. Mol Phylogenet Evol 75:91–102

    Article  Google Scholar 

  • Hentrich H, Kaiser R, Gottsberger G (2010) Floral biology and reproductive isolation by floral scent in three sympatric aroid species in French Guiana. Plant Biol 12:587–596

    CAS  Google Scholar 

  • Higuchi M, Okada M (1996) Studies on cultivation of Pinellia ternata Breit. (Part 2) On the mode of Pollination. Nat Medic 50:170–175

    Google Scholar 

  • Hiratsuka A (1999) Why does a perennial herb Chloranthus serratus produce cleistogamous flowers? In: Ohara M (ed) Natural history of flowers. Hokkaido University Press, Sapporo, Hokkaido, pp 171–183

    Google Scholar 

  • Hoe YC, Gibernau M, Wong SY (2018) Diversity of pollination ecology in the Schismatoglottis calyptrata complex clade (Araceae). Plant Biol 20:563–578

    Article  CAS  Google Scholar 

  • Hubbard HG (1895) Insect fertilization of an aroid plant. Insect Life 7:340–345

    Google Scholar 

  • Japanese Ant Database Group (2008) Japanese Ant Image Database 2008. Website http://ant.miyakyo-u.ac.jp/J/index.html.

  • Johnson SD (2010) The pollination niche and its role in the diversification and maintenance of the southern African flora. Phil Trans R Soc B 365:499–516

    Article  Google Scholar 

  • Kite GC, Hetterscheid WLA, Lewis MJ, Boyce PC, Ollerton J, Cocklin E, Diaz A, Simmonds MSJ (1998) Inflorescence odours and pollinators of Arum and Amorphophallus (Araceae). In: Owens SJ, Rudall PJ (eds) Reproductive Biology. Royal Botanic Gardens Kew, London, pp 295–315

    Google Scholar 

  • Kobayashi T, Kitamura S, Murata J (2017) Differentiation of fruiting phenology and seed dispersal of Arisaema (Araceae) in Japan: the effect of fruiting season on the rates of fruit removal by avian frugivores. J Jpn Bot 92:199–213

    Google Scholar 

  • Lack AJ, Diaz A (1991) The pollination of Arum maculatum L.—a historical review and new observations. Watsonia 18:333–342

    Google Scholar 

  • Larson BMH, Kevan PG, lnouye DW, (2001) Flies and flowers: taxonomic diversity of anthophiles and pollinators. Can Entomol 133:439–465

    Article  Google Scholar 

  • Lengyel S, Gove AD, Latimer AM, Majer JD, Dunn RR (2010) Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: a global survey. Perspect Plant Ecol Evol Syst 12:43–55

    Article  Google Scholar 

  • Li H, Bogner J (2010) Pinellia Ternote. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China 29. Science Press Beijing and Missouri Botanical Garden Press, St. Louis, pp 39–43

    Google Scholar 

  • Li S, Zhang Y, Liu J (2020) Seed ejection mechanism in an Oxalis species. Sci Rep 10:8855

    Article  CAS  Google Scholar 

  • Linhart Y (2015) Plant pollination and dispersal. In: Monson RK (ed) Ecology and the environment. Springer-Verlag, New York, pp 89–115

    Google Scholar 

  • Luo YB, Li ZY (1999) Pollination ecology of Chloranthus serratus (Thunb.) Roem. et Schult. and Ch. fortunei (A. Gray) Solms-Laub. (Chloranthaceae). Ann Bot 83:489–499

    Article  Google Scholar 

  • Luo SX, Zhang LJ, Yuan S, Ma ZH, Zhang DX, Renner SS (2018) The largest early-diverging angiosperm family is mostly pollinated by ovipositing insects and so are most surviving lineages of early angiosperms. Proc Royal Soc B. https://doi.org/10.1098/rspb.2017.2365

    Article  Google Scholar 

  • Madison M (1979) Protection of developing seeds in neotropical Araceae. Aroideana 2:52–61

    Google Scholar 

  • Mark S, Olesen JM (1996) Importance of elaiosome size to removal of ant-dispersed seeds. Oecologia 107:95–101

    Article  Google Scholar 

  • Marshall T, Davis M, McCaskill A, Corotto F (2014) Spadix function in Pinellia pedatisecta (Araceae). Aroideana 37:89–94

    Google Scholar 

  • Mayo SJ, Bogner J, Boyce PC (1997) The genera of Araceae. Royal Botanic Gardens, Kew, London.

  • Méndez M (2001) Sexual mass allocation in species with inflorescences as pollination units: a comparison between Arum italicum and Arisaema (Araceae). Am J Bot 88:1781–1785

    Article  Google Scholar 

  • Murata J (2016) Pinellia Ten. In: Iwatsuki K, Boufford DE, Ohba H (eds) Flora of Japan, vol IVb. Kodansha, Tokyo, pp 10–11

    Google Scholar 

  • Nakanishi H (1988) Myrmecochores in warm-temperate zone of Japan. Jpn J Ecol 38:169–176

    Google Scholar 

  • Nemoto S, Suetsugu K, Horie M, Kurosawa T (2018) A new record of Sciaphila nana Blume (Triuridaceae) from Fukushima Prefecture, Japan, and a report of its flower-visiting insect. J Phytogeogr Taxon 66:71–73

    Google Scholar 

  • Ness JH, Bronstein JL, Andersen AN, Holland JN (2004) Ant body size predicts dispersal distance of ant-adapted seeds: implications of small-ant invasions. Ecology 85:1244–1250

    Article  Google Scholar 

  • Ohkawara K, Higashi S (1994) Relative importance of ballistic and ant dispersal in two diplochorous Viola species (Violaceae). Oecologia 100:135–140

    Article  Google Scholar 

  • Ohnishi YK, Katayama N, Suzuki N (2013) Differential dispersal of Chamaesyce maculata seeds by two ant species in Japan. Plant Ecol 214:907–915

    Article  Google Scholar 

  • Pizo MA, Oliveira PS (1998) Interaction between ants and seeds of a nonmyrmecochorous neotropical tree, Cabralea canjerana (Meliaceae), in the Atlantic forest of southeast Brazil. Am J Bot 85:669–674

    Article  CAS  Google Scholar 

  • Punekar SA, Kumaran KPN (2010) Pollen morphology and pollination ecology of Amorphophallus species from North Western Ghats and Konkan region of India. Flora 205:326–336

    Article  Google Scholar 

  • R Development Core Team (2020) R; a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Retana J, Picó FX, Rodrigo A (2004) Dual role of harvesting ants as seed predators and dispersers of a non-myrmechorous Mediterranean perennial herb. Oikos 105:377–385

    Article  Google Scholar 

  • Sakai S, Kato M, Nagamasu H (2000) Artocarpus (Moraceae)-gall midge pollination mutualism mediated by male-flower parasitic fungus. Am J Bot 87:440–445

    Article  CAS  Google Scholar 

  • Schenk JJ (2013) Evolution of limited seed dispersal ability on gypsum islands. Am J Bot 100:1811–1822

    Article  Google Scholar 

  • Schmucker T (1925) Beiträge zur Biologie und Physiologie von Arum maculatum. Flora 118(119):460–475

    Google Scholar 

  • Schwerdtfeger M, Gerlach G, Kaiser R (2002) Anthecology in the neotropical genus Anthurium (Araceae): a preliminary report. Selbyana 23:258–267

    Google Scholar 

  • Scopece G, Cozzolino S, Johnson SD, Schiestl FP (2010) Pollination efficiency and the evolution of specialized deceptive pollination systems. Am Nat 175:98–105

    Article  Google Scholar 

  • Sérsic AN, Cocucci AA (1996) A remarkable case of ornithophily in Calceolaria: food bodies as rewards for a non-nectarivorous bird. Bot Acta 109:172–176

    Article  Google Scholar 

  • Shida T, Tominaga T (2014a) Sexual reproduction of Pinellia ternata. Tohoku Weed J 13:15–19

    Google Scholar 

  • Shida T, Tominaga T (2014b) Myrmecochory and ombrohydrochory of Pinellia ternate. Tohoku Weed J 13:20–22

    Google Scholar 

  • Shida T, Tominaga T (2016) Pollinator of Pinellia ternata and their behavior. Tohoku Weed J 15:1–5 ([in Japanese])

    Google Scholar 

  • Singh SN, Gadgil M (1995) Ecology of Amorphophallus species in Uttara Kannada District of the Karnatake State, India: implications for conservation. Aroideana 18:5–20

    Google Scholar 

  • Skubatz H, Nelson TA, Dong AM, Meeuse BJD, Bendich AJ (1990) Infrared thermography of Arum lily inflorescences. Planta 182:432–436

    Article  CAS  Google Scholar 

  • Stensmyr MC, Urru I, Collu I, Celander M, Hansson BS, Angioy AM (2002) Rotting smell of dead-horse arum florets. Nature 420:625–626

    Article  CAS  Google Scholar 

  • Suetsugu K (2018) Independent recruitment of a novel seed dispersal system by camel crickets in achlorophyllous plants. New Phytol 217:828–835

    Article  CAS  Google Scholar 

  • Suetsugu K, Shitara T, Yamawo A (2017) Seed dispersal by ants in the fully mycoheterotrophic plant Sciaphila secundiflora (Triuridaceae). J Asia-Pac Entomol 20:914–917

    Article  Google Scholar 

  • Sugawara T (1988) Floral biology of Heterotripa tamaensis (Aristolochiaceae) in Japan. Plant Species Biol 3:7–12

    Article  Google Scholar 

  • Takahashi S, Itino T (2012) Larger seeds are dispersed farther: the long-distance seed disperser ant Aphaenogaster famelica prefers larger seeds. Sociobiology 59:1401–1409

    Google Scholar 

  • Uhlarz VH (1984) Ist Pinellia tripartita (Blume) Schott (Araceae, Aroideae) habituell anemophil geitonogam? Beitr Biol Pflanzen 60:277–291

    Google Scholar 

  • van der Pijl L (1937) Biological and physiological observations on the inflorescence of Amorphophallus. Recueil Trav Bot Néerl 34:157–167

    Google Scholar 

  • Vieira EM, Izar P (1999) Interactions between aroids and arboreal mammals in the Brazilian Atlantic rainforest. Plant Ecol 145:75–82

    Article  Google Scholar 

  • Vislobokov NA, Galinskaya TV, Degtjareva GV, Valiejo-Roman CM, Samigullin TH, Kuznetsov AN, Sokoloff DD (2014) Pollination of Vietnamese Aspidistra xuansonensis (Asparagaceae) by female Cecidomyiidi flies: Laevae of pollinator feed on fertile pollen in anthers of anthetic bisexual flowers. Am J Bot 101:1519–1531

    Article  Google Scholar 

  • Vogel S (1965) Kesselfallen-Blumen. Umsch Wiss Tech 65:12–17

    Google Scholar 

  • Westoby M, Rice B, Howell J (1990) Seed size and plant growth form as factors in dispersal spectra. Ecology 71:1307–1315

    Article  Google Scholar 

  • Whitehead MR, Phillips RD, Peakall R (2012) Pollination: the price of attraction. Cur Biol 22:680–682

    Article  Google Scholar 

  • Yukawa J, Sato S, Xu H, Tokuda M (2011) Description of a new species of the genus Resseliella (Diptera: Cecidomyiidae), a pollinator of Kadsura longipedunculata (Schisandraceae) in China, with comments on its flower-visiting habit. Entomol Sci 14:297–303

    Article  Google Scholar 

  • Zhu Z, Li H, Li R (2007) A synopsis and a new species of the E Asian genus Pinellia (Araceae). Willdenowia 37:503–552

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Shoko Taniguchi and the staff of the Botanical Garden attached to the Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University for allowing us to study the introduced plants in their care; Chika Ōe and Shuken Ōe for granting field work permission; Iori Ito and Yoshiki Matsuoka for help with sample collection in a natural P. tripartita population; Takafumi Shida for providing information about the reproductive biology of P. ternata; Dr. Fujio Hyodo, Dr. Koki R. Katsuhara, Dr. Naoko H. Miki, Dr. Keiji Sakamoto, and two anonymous reviewers for helpful comments on this study.

Funding

No applicable.

Author information

Authors and Affiliations

Authors

Contributions

TKM and MO: Study concept and design, field survey, insect identification, data analysis, and manuscript drafting. TM, KO, and KT: Sample collection in natural populations and manuscript drafting. MH and YM: Study concept and design, and manuscript drafting.

Corresponding author

Correspondence to Tetsuya K. Matsumoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by Chuihua Kong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, T.K., Onoue, M., Miyake, T. et al. Gall midge pollination and ant-mediated fruit dispersal of Pinellia tripartita (Araceae). Plant Ecol 224, 59–72 (2023). https://doi.org/10.1007/s11258-022-01278-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-022-01278-x

Keywords

Navigation