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Abstract
This paper introduces a novel approach for leveraging inertial data to discern exper-
tise levels in motor skill execution, specifically distinguishing between experts and
beginners. By implementing inertial data transformation and fusion techniques, we
conduct a comprehensive analysis of motor behaviour. Our approach goes beyond
conventional assessments, providing nuanced insights into the underlying patterns
of movement. Additionally, we explore the potential for utilising this data-driven
methodology to aid novice practitioners in enhancing their performance. The findings
showcase the efficacy of this approach in accurately identifying proficiency levels
and lay the groundwork for personalised interventions to support skill refinement and
mastery. This research contributes to the field of motor skill assessment and interven-
tion strategies, with broad implications for sports training, physical rehabilitation, and
performance optimisation across various domains.

Keywords Psychomotor learning · Inertial data analysis · Multivariate time series
forecasting · Martial arts · User modelling · Features extraction and selection ·
Coordinate systems · Quaternions · Data fusion

B Miguel Portaz
mportaz@dia.uned.es

Alberto Corbi
alberto.corbi@unir.net

Alberto Casas-Ortiz
alberto.casasortiz@dia.uned.es

Olga C. Santos
ocsantos@dia.uned.es

1 Artificial Intelligence Department, Universidad Nacional de Educación a Distancia (UNED),
Madrid, Spain

2 Research Institute for Innovation and Technology in Education (UNIR iTED), Universidad
Internacional de la Rioja (UNIR), Logroño, Spain

3 PhyUM Research Center, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11257-024-09393-2&domain=pdf


M. Portaz et al.

1 Introduction

According to some business intelligent market research databases, such as GrandView
Research,1 the number of connected wearable devices worldwide by 2025 is expected
to be more than 1.5 billion, being the recognition of human activities one of their most
predominant uses.

The recognition of human activities through wearable technology represents a
groundbreaking approach with broad implications across several domains. This versa-
tile technology finds invaluable applications in well-being and healthy ageing (Camp
et al. 2021; Debes et al. 2016; Kańtoch 2018), enabling individuals to maintain a high
quality of life by tracking their movements and activities. Additionally, wearable-
based activity recognition approaches plays a pivotal role in physical rehabilitation
(Réby et al. 2023; Kim et al. 2021; Meng et al. 2020), offering real-time feedback for
tailoring exercise plans to expedite and enhance recovery.

Furthermore, the integration of wearable activity recognition systems into human–
machine interaction interfaces is revolutionising the way we engage with technology
(Mannini and Sabatini 2010; Huang et al. 2022). Gesture-based controls and motion-
sensitive interfaces offer intuitive and seamless interactions with devices, from gaming
consoles to virtual reality environments (Dallel et al. 2023), enhancing user experi-
ences and accessibility.

In the realm of sports, this technology serves as a game-changer, providing coaches
and athletes with unprecedented insights into performance metrics (Camomilla et al.
2018). From analysing the bio-mechanics of a golf swing (Najafi et al. 2015) to dis-
secting the intricacies of a gymnast’s routine (Krüger and Edelmann-Nusser 2009),
wearable devices empower sports professionals to fine-tune training regimens and
optimise athletic potential. In addition, the integration of wearable technologies for
activity recognition offers a comprehensive perspective approach on how individuals
interact with their environment.

However, the future of wearable technology should focus on give more compre-
hensive assessment on performance analysis (Mason et al. 2022), rather than focus on
data analysis for identifying patterns. Although some efforts have been made to sup-
port personalised training (Smyth et al. 2021), there are still challenges to transform
the captured data into user models that can offer personalised interaction to the users
(Hopfgartner et al. 2020).

Embedded sensorswithinwearables capture intricate details ofmotion, allowing for
comprehensive analysis by experts and delivering quantitative and qualitative insights.
This combined approach, marrying precise measurements with expert judgement,
ensures an integral understanding of motor actions, paving the way for tailored inter-
ventions and finely tuned training, injure prevention and rehabilitation programmes
(Portaz et al. 2023). This approach not only considers the technical aspects of the sys-
tem but also delves into the intricate taxonomies of psychomotor behaviour (Newell
2020). Understanding these diverse categories of motor behaviour provides a nuanced
understanding of how our motor actions are planned, executed, and adapted, enriching
the overall comprehension of human activity recognition systems.

1 https://www.grandviewresearch.com/industry-analysis/wearable-patch-market.
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Thus, our research aims to classify practitioners of psychomotor activities according
to their expertise level in order to provide personalised multisensorial support (e.g.
following an approach similar to Santos et al. (2016), where feedback is delivered
through visual, auditory and/or tactile channels to provide a personalised response
to the user aimed to support the corresponding learning process) when learning psy-
chomotor behaviours.

Additionally, since Physics are intrinsic to themartial arts domain (Santos andCorbí
2019), and following the idea suggested in James et al. (2014), in our research we have
explored if changes in the Cartesian coordinate system used by accelerometers can
improve the user modelling. This includes the conversion from Cartesian coordinates
to spherical or cylindrical coordinates for redefining points in terms of radial distance,
inclination, azimuth angles and height, offering a more specialised perspective. We
have also explored fusion approaches to represent spatial orientations, as well as
rotations of elements in the three-dimensional space with the use of quaternions. In
this context, we pose the following research question:

RQ

Can inertial data transformations be reliably utilised to assess the proficiency
level of a user in the process of acquiring motor skills?

To approach this research question, we have selected themartial arts domain, where
it seems possible to identify beginners and experts in the practice of the art from the
inertial signals collected (Corbí and Santos 2018). In fact, previous studies on martial
arts show that expert’s inertial signals are clearer, more regular and balanced (Heinz
et al. 2006; Kunze et al. 2006). Furthermore, from a practical point of view, martial
arts performance involves exercising physical movements in the sports domain, but
they have established a detailed system to differentiate beginners and experts while
they progress in the practice.

This paper is structured as follows. First, in Sect. 2 we present the background of our
research, including taxonomies of psychomotor behaviour. Next, in Sect. 3 we present
the materials and methods. Specifically, in Sect. 3.1 we described the datasets built
from practitioners performing three different movements of two different martial arts.
After that, in Sect. 3.2 we explain the geometrical representations used to define the
spatial orientation of the movements carried out. Following, in Sect. 3.3, we present
the modelling approaches applied. In Sect. 3.4, we present the experimental setup,
and in Sect. 4, the results obtained are presented and followed by a discussion on the
findings. Finally, in Sect. 5 some conclusions are outlined.

2 Background

According to Voelcker-Rehage (2008), motor development belongs to adaptive
changes in movement behaviour over a person’s lifespan, resulting in a long-term
progress (ontogenesis). Motor learning involves lasting enhancements in motor skill
proficiency resulting from training and targeted interventions, which are considered
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short-term changes (microgenesis). Despite this distinction, learning and development
are interdependent; the effectiveness of learning motor skills is influenced by devel-
opmental status, and learning outcomes also impact development.

In this context, executing skilledmotor actions entails achieving a specific objective
with the highest level of assurance, like successfully performing a martial art move-
ment (Schmidt and Lee 2014). A proficient motor behaviour involves a structured
and harmonised series of deliberate movements involving body, head, and/or limb
actions aimed at achieving a specific result. The coordination of various body parts
is essential for executing this motion. Sensory and cognitive inputs play a vital role
in shaping an individual’s decisions regarding the action and in organising and refin-
ing the movements. In addition, motor ability is inherent to an individual, impacting
the execution of diverse motor skills. For instance, when executing a punch or kick
in martial arts, a practitioner engages in distinct components of the skill, including
positioning, release, and follow-through. These actions draw upon underlying motor
abilities such as hand-eye coordination, shooting accuracy, agility, and upper body
strength (Magill and Anderson 2010).

In skilled motor performance, the goal is to carry out specific limb movements
with precise timing and coordination to achieve a desired outcome. Establishing a
well-defined ontology for psychomotor planning activities, structured in the form of a
tasks hierarchical tree, holds immense significance (Paraschiakos et al. 2020). Such a
structuredmethod helps to analyse the relationships between different skills and assess
them effectively. This not only enhances our comprehension of psychomotor planning
but also serves as a valuable foundation for designing effective training programmes,
rehabilitation strategies, and interventions in fields ranging from sports performance
to physical therapy.

Our research follows the reverse and analogous process described in Ehatisham-
Ul-Haq et al. (2020), evaluating the transition from a fine-grained activity (i.e. walk
on your knees, turn and come back in the case of one of the martial arts analysed)
to a coarse-grained assessment (expert or beginner) in a basic hierarchical ontology
(Fig. 1), and involving a process of increasing generality and abstraction (Olugbade
et al. 2022). This process allows amore generalised understanding of the subjectmatter
(expertise level), providing a broader overview of related assessment, enabling to view
information in amore encompassingmanner, facilitating high-level categorisation and
analysis.

2.1 Psychomotor learning systems

Psychomotor learning involves the integration ofmental andmuscular activitywith the
purpose of learning amotor competence by consolidating it intomemory through repe-
titions (Gagne et al. 1992) and this is done in a gradualmanner from a low-performance
level (i.e. the learner can hardly recognise the movement) to a high-performance
level (i.e. the learner has internalised the movement) (Santos 2016). Nonetheless,
supporting personalised learning in this area is still in an early stage of research
(Casas-Ortiz et al. 2023) due to the need of modelling more sophisticated or skilled
behaviours. The importance of providing personalised support while executing these
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Fig. 1 Hierarchical ontology diagram for different martial art activities. Fine-grained activities are included
in Level 4, as coarse-grained assessment is in Level 3

highly skilledmovements relies on the relationship between psychomotor learning per-
formance (Fitts and Posner 1967; Schmidt 1976), motor plasticity (Voelcker-Rehage
and Willimczik 2006; Guglielman 2012) and its reinforcement by the fact that psy-
chomotor learning systems can be seen as a closed-loop system (Adams 1971) ready
to provide feedback and error detection at latter stage.

Nevertheless, determining the user’s personalised behaviours is mentioned as a
current challenge (Qiu et al. 2022) and the way users perform the activities is only
explored for authentication purposes (Lateef and Abbas 2022). Even so, some of
these reviews acknowledge that users have different motion patterns so the way they
perform the activities vary from one user to others (Zhang et al. 2022) (between-
users variations) and even for a single user the performance of the activity can vary
depending on their physical and mental state (Saha et al. 2022) or because the user
motion pattern evolves (Miranda et al. 2022) (within-user variations).

Artificial intelligence algorithms on inertial data collected from wearables can be
used to compare learner’s executions with those from experts during the psychomotor
learning process, and this can be used either (i) to recognise specific motion learning
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units, or (ii) to assess the learning performance in a motion unit (Santos 2019). In these
two cases, the modelling goal should differ, in particular, while in the latter the kind
of movement performed is already known, but not how well the user is executing it. In
our research, we focus on the recognition of complex human activities using inertial
sensor data. Instead of classifying the activity performed, we focus on modelling the
level of user motion performance through the knowledge obtained from the motion
features, extracted of the movement performed.

2.2 Martial arts sensor integration

Our study centres onmodelling users expertise level inmartial artsmovements through
the information extracted from inertial sensors. The analysis of psychomotor move-
ments in martial arts represents an opportunity for deploying personalised guided
intervention during its practice (Santos 2017). Competence levels are clearly stan-
dardised in the form of belts, grading the degree of the practitioner’s expertise level
(Cox 1993). In particular, practitioners expertise improvement relays on minor details
that are revealed when the movement is executed correctly following the Physics
involved.

However, up to our knowledge, not many research works to date have focused on
analysing martial arts to build personalised psychomotor learning systems. Nonethe-
less, we have found some works that aim to differentiate between novice and experts
from inertial signals, such as Kunze et al. (2006) in Tai-Chi and Heinz et al. (2006) in
Kung Fu. In turn, James et al. (2014) used four accelerometers on a practice wooden
sword (known as bokken in the Aikidō jargon), which measured the inertial signals
produced in a basic swing (shōmen) and found a correlation between experience level
and sensor output. The analysis of the movement consisted in visualising the time
series in a cylindrical coordinate system, which turned out to be a very useful way of
movement tracking in a three-dimensional space. In other works, accelerometers and
gyroscopes were placed on different parts of the body to assess the acceleration profile
of a Judo student during the performance of a ukemi (soft fall) (Glowinski et al. 2016).

These works show the potential and feasibility of modelling the expertise level of
martial arts practitioners with inertial data. Thus, in order to provide some insights
about how tomodel the expertise level addressing the research question posed, we have
built three specific datasets. These datasets contain inertial information for specific
complex movements and from different practitioners. The sensors used to build these
datasets (accelerometers, gyroscopes and magnetometers) are embedded into specific
micro-electro-mechanical system (MEMS), often referred as inertial measurement
unit (IMU).

2.3 Multivariate time series

The depiction of the inertial information gathered by any of the IMUs is in the form
of multivariate time series (MTS) and follows a (x, y, z) three-dimensional Cartesian
coordinate plane representation. Due to the circular nature of martial art movements
and following (James et al. 2014), who opted to transform Cartesian values into a
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(ρ, φ,z) three-dimensional cylindrical coordinate system, in our research we have
explored different options to transform the rawCartesian information, including trans-
formations to a (r, φ, θ) three-dimensional spherical coordinate system.2

Moreover, besides the above coordinate systems transformations, we introduced
another innovation for modelling users on psychomotor learning systems deploy-
ments, transforming the raw inertial data into a specific group of hyper-complex
numbers, the quaternions. Therefore, we can estimate pitch and roll orientationmotion
fusing accelerometer and gyroscope information in form of quaternions. Although
quaternions have been widely used in different disciplines not directly related to the
recognition of human activity andmainly linkedwithmultirotor unmanned aerial vehi-
cles, like in Fresk and Nikolakopoulos (2013); Guerrero-Sánchez et al. (2017); Yang
et al. (2017); Xing et al. (2019), Sabatini (2005) uses a quaternion-based integration
method for gait analysis, applying the spherical Linear intERPolation (SLERP) pro-
cedure disclosed in Shoemake (1985). Furthermore, Sabatini (2006); Renaudin and
Combettes (2014); Sung et al. (2018); Bergamini et al. (2014) use magnetic data to
increase orientation accuracy and mitigate drift issues (Sabatini 2005). Thus, Sabatini
(2006) introduces a quaternion-based extended Kalman filter (EKF) to figure out the
orientation of rigid bodies, with applications in the analysis of human movements,
while Renaudin and Combettes (2014) and Sung et al. (2018) use wearable sensor
data, transformed in quaternions, for indoor pedestrian navigation, and for accurate
motion estimation respectively. In Bergamini et al. (2014), similar approaches for
manual and locomotion tasks are followed.

To recognise human activity or to assess expertise level, inertial MTS data gath-
ered need to be processed prior to perform psychomotor behaviour classification and
recognition. Several approaches can be followed to analyse the collected MTS.

At first glance, Bagnall et al. (2016) categorises classification techniques into differ-
ent groups according the type of discriminatory features used. The complete MTS can
be analysed, as Zhou et al. (2006) did for estimating the upper limb motion registered,
although a time series feature extraction workflow (i.e. preprocessing, segmentation,
feature extraction, dimensionality reduction and classification) is a more efficient and
effective process for the recognition of human activity (Avci et al. 2010). In this sense,
Barandas et al. (2020) provides a complete library for simplifying the extraction of
features in several domains, including temporal, statistical and spectral. In the sport
domain, extracting features from inertial data was also the method used by Benson
et al. (2018) for classifying running speed conditions.

Alternatively, the use of CNNs forMTS classification have also shown good results,
as the outcomes obtained with the use of ResNet (Wang et al. 2016) or AlexNet
(Fawaz et al. 2020). Since MTS data have essentially the same topology as images,
it is possible to apply the same techniques used for image classification to MTS
classification. Thus CNNs, which are effective for classifying images, should also be
effective for classifying MTS data. The main drawback of these methods is their high
computational complexity.

2 The convention used in this article follows ISO 80000-2:2019, where ρ is the radial coordinate, θ the
azimuth, z the height, r the radial distance and φ the polar angle.
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These CNN methods use convolutional kernels to detect patterns in the input time
series data. These kernels are convolved through a sliding dot product operation to
generate a feature map. As disclosed in Goodfellow et al. (2016), kernels have some
basic parameters: size (length), weights and bias, dilation and padding. The resultant
kernel, although smaller, has the same basic structure as the MTS. In this case, each
kernel is a vector of weights, with a bias term added to the result of the convolution
operation between an input MTS and the weights of the given kernel.

In this sense,Choi et al. (2019) used feed-forward artificial neural networkmodels to
classify the inertial time series data estimating the centre of mass–centre of pressure
(COM-COP) inclination angle during walking using a wearable magnetic IMU. In
addition, the framework proposed in Dempster et al. (2020) achieves state-of-the-art
accuracy in MTS classification but with a much lower computational expense than
previous methods.

Thus, two different approaches seem of interest for our research problem: on the
one hand, feature extraction on the time series, and on the other hand, a CNN-based
approach.

3 Materials andmethods

We now present the datasets used for the corresponding modelling process. We also
set up the methods we have followed for transforming the original raw Cartesian
data (baseline), included in the aforementioned datasets, into spherical and cylindrical
coordinates systems. Prior to performing any form of classification, we also explored
the benefit of reducing the datasets dimensionality by fusing the inertial data with
quaternions. Finally, to infer performance level, we use and compare two modelling
alternatives, one based on time series features extraction (Barandas et al. 2020) and
the other on a convolutional neural network (Dempster et al. 2020).

3.1 Datasets

To explore the research question, whether inertial data can be used to model the
users’ expertise level when learning psychomotor skills, and whether the physical
characteristics of the movement can be considered in the modelling process, we have
built three datasets that collect specific complexmovements with different commercial
IMUs and in real-world scenarios (i.e. we have collected free-living data on the wild).

The first two datasets gather movements from Aikidō. Aikidō is a non-aggressive
Japanese martial art that consists of entering and turning movements that redirect
the momentum of an opponent’s attack, and ends with a throw or joint lock that
terminates the technique (Seitz et al. 1991). To determine the expertise level in the
Aikidō datasets, two groups were defined in terms of the corresponding grading belts:
expert practitioners (1st kyū to 6th dan)3 and beginners (7th to 2nd kyū). Note that

3 Kyū and dan are two levels of rank in Japanese martial arts. The lower rank of kyū is for beginners, while
the higher rank of dan is for experienced practitioners. In Japan, dan ranks are typically recognised with a
black belt.
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we considered 1st kyū Aikidō practitioners as experts because passing from this level
to the 1st dan requires a formal external exam and some practitioners delay their
examinations. This entails that they stay in the 1st kyū level formally (sometimes for
years), but in practice, their mastery of this martial art already fits into the 1st dan.

The third dataset gathers some arm movements of American Kenpo Karate, a mod-
ern martial art focused on self-defence, that keeps a balance between tradition but
applying modern ideas, like the principles of Physics. It uses quick, body-delivered
strikes, enhanced by quick posture changes. Kenpo techniques are taught through
scripted outlines that define a set of situations (e.g. an opponent attacks you frontally
with a punch, while another opponent is grabbing your arms) (Parker 2009). In this
case, the expertise level of the practitioners was defined by belt and years practicing
the art. In American Kenpo Karate, a white or yellow belt practitioner is considered
a beginner, an orange or purple belt practitioner is considered intermediate, a green
or brown belt practitioner is considered advanced, and black belt practitioner is con-
sidered an expert. After that, there is a rank of ten black belt dans that ranges from
instructor to professor, and finally master and grand master. Reaching this level can
take several years of training and continuous learning of movements, concepts and
effort.

3.1.1 Dataset 1: Aikido–Bokken shomenuchi

This first dataset (D1) gathers one of the Aikidō movements performed with a wooden
sword (bokken). This movement it is used in James et al. (2014) and explored the
utility of changing the coordinate system to improve the modelling of the movement
taking into account the Physics behind its execution.

It includes 153 participants (N = 153). Ages are between 18 and 69 years old and
corresponds to 13 different performance levels, being the highest 6th dan (assigned
to −6 for computational purposes) and the lowest 7th kyū (assigned to 7). We con-
sidered experts from level −6 to level 1 and beginners above. Other biographical and
anthropometric data were also gathered, including the years of martial arts experience,
weight, height, gender and the arm and forearm length.

To collect the dataset, we used an Axivity AX3 device4 attached to the tip of the
bokken (see right picture on Fig. 2), following a similar approach to the one used in
James et al. (2014). Moreover, as in that work, we also video-recorded the data collec-
tion to manually label and segment the signal obtained with the device. In particular,
the goal of video recording all participants has been no other than to comfortably
determine the starting and ending points of each lapse and the overall exercise time,
besides easily keeping visual hints of any issues or events worth highlighting.

The movement included in this dataset consisted in performing repeated straight
bokken swings (see Fig. 2), for a few seconds (80 s in our setup). In this sense, the
Shomenuchi movements itself is a strike to the top of someone else’s head. Although
this movement might seem simple at first sight, it requires a right body positioning and
a correct sword grip. What is more, although speed, and thus, cadence, is important,
there is no direct correlation between performer’s levels and swing intensity, as shown

4 AX3 Axivity, Ltd., Newcastle upon Tyne, UK..
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Fig. 2 Three left images represent one straight blade swing (bokken shomenuchi) sequence performed by
an Aikidō practitioner (who authorised the recording and publication of the images). The rightmost image
shows the experimental setup comprising an AX3 accelerometer tightly attached to the tip of one of these
wooden Japanese swords

Fig. 3 Intensity of the linear acceleration as measured in the Aikidō bokken shomenuchi setup depicted in
Fig. 2

in Fig. 3, where the learner’s performance represented shows roughly 22 blade swings
during 80s.

In Fig. 3, the linear acceleration intensity is in fractions of g (y-axis) and the duration
of the exercise is in seconds (x-axis). In this case, the maximum intensity of almost all
of these 22 blade swings registered is around 1 g. During the first 30 s the movements
registered show certain level of consistence with similar top intensity. After these 30s
top intensity levels are less regular, whichmay represent a symptom of possible fatigue
in the learner.

3.1.2 Dataset 2: Aikido–Shikko (knee-walking)

To complement the bokken shomenuchi dataset, in Corbí and Santos (2018) we pro-
posedmodelling another characteristicmovement inAikidō called shikko (very similar
to a rhythmic knee-walking and schematically depicted in Fig. 4). Shikko movement
is difficult to master as it relies on keeping the body centre aligned. It also requires
hours of practice and can cause long-term problems on the knees if it is not performed
correctly and supervised by an instructor (Homma 2007). However, it is also very
useful to develop awareness of one’s own centre of mass, also known as hara in the
Aikidō jargon. The hara is the name given in Aikidō for the gravity centre of the body
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Fig. 4 Left and centre images: schema of the movement and representation of the experimental setup. Right
image: approximate location of the hara in a 3D human figure obtained with the origin to centre of mass
operator in Wartmann (2001). The hara also represents the origin of the coordinate system of the inertial
sensors that we have used to collect the data

and corresponds with just below or directly behind the umbilicus5 (and is drawn in
the right picture of Fig. 4). A correct control of the hara contributes to keep a stable
position that is later needed for other stand-up techniques as it helps to achieve a
correct and swift hip movement, which is essential to master the rest of the Aikidō
techniques. Thus, it can (and effectively does) improve the learner’s balance even
for movements outside of the shikko practice itself. The rotational movement that is
required to turn when knee-walking is particularly good for learning how to properly
shift the hips during the practice of Aikidō, encouraging the development of a strong
awareness of the body’s centre of mass. Additionally, the shikko movement gathered
in this dataset can also be analysed to help understand complex concepts of Physics
when an embodied learning approach is used (Corbi et al. 2019).

This second dataset (D2) includes 185 participants (N = 185). The ages of the
participants are between 19 and 69 years old, and participants were classified into
13 different performance levels (from 6th dan to 7th kyū). As in D1, the highest
was assigned to −6 and the lowest 7, considering experts from level −6 to level 1 and
beginners above. Other biographical and anthropometric data (i.e. years of martial arts
experience, weight, height, gender and arm and forearm length) were also gathered.

To collect the data for theD2 dataset, theAikidō practitionerswere asked to perform
two 20ms lapses (40ms in total), as shown on the left two pictures in Fig. 4 (and also
in Fig. 5), while their movements were recorded with the inertial sensors embedded
inside a smartphone attached to the practitioners’ waists using a fanny pack (also
known as bum bag), carefully positioned between the skin (at the level of the navel)
and the aikidogi (the traditional Japanese garment worn by Aikidō practitioners).
This use of type of smartphones devices have proven to meet the expectations for
movement recording, as evinced by Saponas et al. (2008); Kos et al. (2016); del
Rosario et al. (2015). In this way, the physical variables acceleration and angular
velocitywere registered relative to thehara’s coordinate systemusing, respectively, the
accelerometer and gyroscope packed in the smartphone. The information comprised
both acceleration and gyroscopic data along the three (x, y, z) spatial axes; hence, six
axes are used.

5 https://en.wikipedia.org/wiki/Hara_(tanden)#In_the_martial_arts.
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Fig. 5 Some snapshots (from two of the authors of this research work) showing some straight (go and
return) steps of the shikko exercise and the associated 180◦ turns or ho tenkans (two rightmost pictures in
both rows). The practitioners are wearing an attached fanny pack (enclosing a smartphone) around their
waist

The overall exercise was also video-recorded as in D1 with a second synchronised
smartphone to facilitate manually segmenting and labelling of the movements. For
this, the videometadata included precise timestamp information and both smartphones
(including their corresponding data streams) were in sync thanks to the application of
Network Time Protocol (Mills 2006, 1985) at the system level.

For this D2 dataset we split every shikko performance in any of the phases dis-
closed in Fig. 4. As a result, we segmented every shikko movement in up to 7 different
phases (see Fig. 6). This segmentation was useful for either data augmentation and to
identify if we can improve the modelling results for any specific phase using different
dataset versions, e.g. in the case of the 3 different turn phases (ho tenkans) included
in the shikko movement. Thus, D2 can be analysed in several ways, since it actually
includes two different movements: knee-walking in a straight line (going and return)
and turning, as represented in Figure 5.

In Fig. 6 we can observe the x spatial axis component corresponding to the
accelerometer (right y-axis, dark line) and the gyroscope (left y-axis, light line) streams
for a complete shikko exercise with four straight walks (two go’s and two return’s)
and three turns (ho tenkans). Focusing on any of the four straight walks, every knee-
walking step is represented by a succession of crests and troughs. Thus, counting each
of these peaks, either in the acceleration or the gyro component, the number of steps
made by this practitioner can be guesstimated. In any of the turn phases, we are only
representing gyro information as an example of how well turns are performed fol-
lowing only x gyro component. In this sense, the last turn is less regular, which may
represent a symptom of fatigue.

Regarding the technological setup, the IMU embedded inside the smartphone
(model Apple iPhone 8 ®) was set to factory default for gathering inertial data for this
dataset.
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Fig. 6 Component x of the accelerometer (left y-axis) and the gyroscope (right y-axis) streams for a
complete shikko exercise with four straight walks (2 ’go’s and 2 ’return’s) and three turns or ho tenkans
(highlighted in grey and referred to the two right most pictures in Fig. 5)

3.1.3 Dataset 3: American Kenpo Karate (Blocking Set I)

This third dataset (D3) gathers the Blocking set I of American Kenpo Karate,6 which
is the first defence set learned by an American Kenpo Karate practitioner. This set of
movements has been designed to teach the learners to block hits aiming to different
parts of the body. It is formed by six defensive armmovements (upward block, inward
block, outward extended block, downward block, rear elbow block and push-down
block). However, to gather the dataset, we added a start position and removed the
last movement, which is complicated for new practitioners. Thus, we capture the six
movements that are shown in Fig. 7. In this way, the D3 dataset complements the
other two by including differentiated executions within the movement. In addition, it
is easy to compare these different executions as well as to teach the set to facilitate the
capturing process with different participants on the wild.

The dataset includes 16 participants (N = 16) and 192 total movements (5 different
movements performed twice by each practitioner and static noise to detect absence of
motion, with right and left arms: (6 + 6) times 16 = 192). We evaluated 9 different
performance levels, being the highest 18 and the lowest 0 for computational purposes.
We considered experts from level 9 and beginners below.

For gathering the inertial information, a smartphone (XiaoMi Mi A2) attached
to the practitioners wrist through a running wristband was used, as depicted in the
rightmost picture of Fig. 7. For data collection, an ad hoc motion capture software was
also developed using Android Studio, whose details and setup are more extensively
described in Casas-Ortiz and Santos (2021a, b).

The information obtained from the gyroscope was used to manually label and
separate each movement, obtaining the total 192 movements. We only considered
the movements performed using the martial artist’s dominant hand for a total of 96
movements (192 divided by 2 = 96), as we centred this research on analysing the

6 https://github.com/Physical-User-Modeling-PhyUM/KSAS-Dataset.
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Fig. 7 An American Kenpo Karate learner (one of the authors of this research work) showing the start
position and the 5 blocks conforming the Blocking Set I included in this study (start position, upward block,
inward block, outward extended block, downward block and rear elbow block). The right most picture
shows the experimental setup consisting in an smartphone attached to the martial artist by means of an
runner wristband

Fig. 8 Intensity of the acceleration stream (grey points) from the set of the Kenpo dataset defence technique
that appears in Fig. 7, executed by an expert. The black thick line is the Bézier curve approximation (from
the experimental points) overlaid with the goal of highlighting each of the 6 sequential gestures

expertise level. This segmentation was also useful to analyse if we can improve the
modelling results for any specific partial movement using different dataset versions.
From the technical point of view, themain difference of this dataset (in comparisonwith
the other Aikidō datasets), is that also comprised information from a magnetometer
(for obtaining heading information).

A sample stream of the captured acceleration from a participant’s execution of
Blocking Set I is shown in Fig. 8. In the figure, each one of the oscillations represents
a movement. The higher the oscillation, the higher the acceleration and the longer the
movement. The reason of this is that eachmovement is usually executed approximately
in the same amount of time, and longermovementsmust thus be quicker to be executed
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Table 1 Summary of the three datasets used in this research

Dataset Discipline Movement #Mov #Participants #Sensor Axis

D1 Aikidō bokken shomenuchi 1 153 3

D2 Aikidō shikko (go/return and turn) 2 185 6

D3 American Kenpo Karate Blocking Set I 6 16 9

Table 2 Segmentations performed for analysing the datasets

Dataset Reference (per practitioner) #Participants (samples) Segmentation #Segmented samples

D1 Unique movement 156 1 156

D2 Unique movement 185 7 phases 1,193

D3 Differentiated moves 16 6 movements 96

in the same time as shorter movements. In this case, the participant is an expert that is
executing the six movements (including the one removed from the dataset).

3.1.4 Summary of datasets

From now on, we will use the following tags to account any of these datasets:

• D1 (bokken shomenuchi dataset)
• D2 (shikko dataset)
• D3 (Blocking Set I dataset)

Data acquisition for all these datasets was made on real-world environments with
free-living data and using commercial devices (i.e. a small accelerometer7 in D1 and
two smartphones in D2 and D3) that embed inertial, and occasionally magnetic and
virtual, sensors and are attached to the martial art practitioner (or to an instrument
intimately linked to the martial art, as in D1).

These movements and their associated datasets are summarised in Table 1. The
column sensor axis represents the information collected by the sensors in any of the
three (x, y, z) dimensions as an independent variable or predictor. In particular, D1
uses only the three axes of the accelerometer, D2 uses six as it includes a gyroscope
in addition to the accelerometer, and D3 uses nine, as it also includes a magnetometer.
Graphical depictions of any of the movements are included in Fig. 3 (for D1), Fig. 6
(for D2) and Fig. 8 (for D3).

In Table 2, we depict the segmentations performed within each of the three datasets
to explore different modelling approaches from the reference movements captured by
the participants. For D1 no further segmentation was done as the movement captured
is very short. For D2 dataset, seven different segmented phases were considered: 1st
go, 1st turn, 1st return, 2nd turn, 2nd go, 3rd turn and 2nd return, thus resulting in two
different movements: four straight walks (2 go’s and 2 return’s) and three turns. In this

7 Note that attaching a smartphone on the tip of the bokken for the D1 dataset was not feasible.
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Table 3 Devices and sensors used for capturing the datasets

D1 D2 D3

Device Axivity AX3 ® Apple iPhone 8 ® Xiaomi Mi A2 ®

Accelerometer ADXL3451 SP183822 BMI1202

Gyroscope – SP183822 BMI1202

Magnetometer – – AK099183

1ADXL345 is manufactured by Analog Devices, Inc
2SP18382 and BMI120 are manufactured by Bosch Sensortec GmbH. They are six-axis IMUs that embed
accelerometer and gyroscope sensors under one unique encapsulation. The only difference is in their total
thickness (BMI120 is 0.9 mm, representing roughly the industry standard, and SP18382 is 0.6 mm). As
shown in Table 4, both output resolution and sensitivity are the same
3AK09918 is manufactured by Asahi Kasei Microdevices Corporation

case, although the ideal number of segmented samples should be 1295 (185 times 7),
some of the phaseswere not completely registered becausewere not properly executed,
e.g. 2 turns (ho tenkans) instead of 3, or because were not completely performed,
e.g. due knee injuries, resulting in 1193 samples. For D3 dataset, the 16 participants
performed the 6 different partial movements corresponding to the aforementioned arm
blocks: start, upward block, inward block, outward extended block, downward block
and rear elbow block, thus resulting in 96 segmented samples.

Table 3 contains a summary of all the sensors included in each of the devices.
For each of these sensors, Table 4 shows details about sensor output resolution and
sensitivity. Note that, in the case of sensitivities, comparing for instance BMI120 and
ADXL345 accelerometers at minimum output resolution (±2 g), we have a sensitivity
of .06 mg (or 1/16384 g) for the Bosch Sensortec GmbH model and 3.9 mg (or
1/256 g) for the Analog Devices, Inc. model. This means that every time the least
significant bit (LSB) changes, we receive variations of .06mg and 3.9mg respectively.
And therefore, the sensors used in either D2 and D3 datasets are roughly six times
more sensitive than the one used in D1 dataset.

3.2 Coordinate systems and quaternions transformations

For recognising psychomotor behaviours, either related with martial arts, as in Santos
(2019); Kunze et al. (2006); Heinz et al. (2006); Glowinski et al. (2016), or in general
for any type of activity, as in Ariza-Colpas et al. (2022); Yuan et al. (2018), analyse
the inertial data collected following a Cartesian coordinate system, which is the output
information processed by the inertial sensors. In our research, besides using the original
raw Cartesian system and the transformed cylindrical system, we have also explored
the utility of a spherical coordinate system transformation. As disclosed in Sect. 1 and
following the same principle stated in James et al. (2014), the reasons are grounded on
the helicoidal nature of some martial arts, including Aikidō and Kenpo. A summary of
the different transformations performed is included in Table 5. Note that Cartesian in
column coordinates represents the raw original data as output information provided by
the sensors (without any transformation), while spherical and cylindrical represent the

123



Exploring raw data transformations on inertial sensor data...

Table 4 Sensor output resolution and sensitivity

model sensor axis output resolution sensitivity

ADXL345 accelerometer 3

±2 g : 10− bit
±4 g : 11− bit
±8 g : 12− bit
±16 g : 13− bit

256 LSB/g
128 LSB/g
64 LSB/g
32 LSB/g

BMI120
SP18382

accelerometer 3

±2 g : 16− bit
±4 g : 16− bit
±8 g : 16− bit
±16 g : 16− bit

16384 LSB/g
8192 LSB/g
4096 LSB/g
2048 LSB/g

gyroscope 3

±2000°/s:16-bit
±1000°/s:16-bit
±500°/s:16-bit
±250°/s:16-bit
±125°/s:16-bit

16.4 LSB/°/s
32.8 LSB/°/s
65.6 LSB/°/s
131.2 LSB/°/s
262.4 LSB/°/s

AK09918 magnetometer 3 16-bit .15 μT /LSB

Table 5 Raw data and transformations made with the datasets used in this research. Original raw Cartesian
data have been transformed into spherical and cylindrical coordinates systems. Subscripta for accelerometer
data, subscript g for gyroscope data and subscript m for magnetometer data

dataset coordinates dimensions raw + transformations

D1
Cartesian (raw) 3 (xa , ya , za)

spherical 3 (ra , φ a , θa)
cylindrical 3 (ρa , φ a , za)

D2
Cartesian (raw) 6 (xa , ya , za) (xg , yg , zg)

spherical 6 (ra , φa , θa) (rg , φg , θg)
cylindrical 6 (ρa , φa , za) (ρg , φ g , zg)

D3
Cartesian (raw) 9 (xa , ya , za) (xg , yg , zg) (xm , ym , zm )

spherical 9 (ra , φ a ,θa) (rg , φ g ,θg) (rm , φm ,θm )
cylindrical 9 (ρa , φa , za) (ρg , φg , zg) (ρm , φm , zm )

transformations of the raw Cartesian data into a spherical and cylindrical coordinates
system, respectively.

Moreover, in this research, aside these coordinate transformations, quaternion rep-
resentations were also derived from the collected (x, y, z) spatial data. As stated in
Sect. 2, quaternions have proven to be specifically useful for describing spatial rota-
tions, estimating pitch and roll orientations, encoding axis-angle rotation data, fusing
raw data and consequently reducing the complexity of the datasets (Sabatini 2005).
In fact, the classification of the skilled movements discussed in Sect. 2 demands to
accurately define, either the position and the heading of the centre of mass of the body,
as in the D2 dataset (Sect. 3.1.2), or the wrists, as in the D3 dataset (Sect. 3.1.3).

User modelling in the context of intelligent psychomotor learning systems also
needs to orchestrate away to provide certain level of feedback, as defined in the SMDD
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framework (Santos 2016). Thus, instead of classifying the psychomotor behaviour
performed, within a set build with different activities, we need to classify the level
of expertise (within a set of different performances of the same activity). In this
context, quaternion fusion, besides of providing a more accurate depiction of the
movement, also reduces the complexity in the analysis for the personalisation support.
Consequently, the process is computationally more affordable, as the classification is
implemented with less dimensions, 4 in the case of quaternions versus 6 (in D2) or 9
(in D3) dimensions.

Before introducing the different methods used to derive quaternions, we define
them as an extension of complex numbers with three square roots of −1(i jk) instead
of just i :

i2 = j2 = k2 = i j k = −1 (1)

Thus, the first component is a scalar real number s and the other 3 form a vector −→v
as follows:

q = q0 + iq1 + jq2 + kq3 = 〈s, v〉 (2)

where s = q0 and v = [
q1 q2 q3

]
. For convenience we will use only unit length

quaternions:

| q |=
√

q2
0 + q2

1 + q2
2 + q2

3 = 1 (3)

To fuse inertial data into quaternions, we need, at least, information from a six-axis
device (which includes at least inertial information from accelerometer and gyroscope
sensors, as in D2 and D3 datasets) being not possible to fuse the information gathered
with a three-axis sensor (just an accelerometer sensor, as in D1 dataset). Consequently,
we performed quaternion fusion in D2 and D3 datasets but not in D1 datasets, see
Table 1 and Table 3.

Quaternion calculation from the original datawas based on the framework described
in Haslwanter (2020), which provides up to four different methods for fusing sensor
data: analytical, Mahony (Mahony et al. 2008),Madgwick (Madgwick et al. 2011) and
Kalman, as in Sabatini (2011); Guo and Hong (2019). Analytical method does not take
into account magnetometer values, while the Mahony and Madgwick ones use this
information for improving the accuracy. The Kalman method requires magnetometer
information in order to properly operate. Without this sensor, quaternion fusion is
often degraded (as evinced by Fig. 9).

Using the analyticalmethod, simple quaternion integration is performed calculating
orientation and position analytically from angular velocity and linear acceleration
without drift compensation, so no magnetometer information is used. In the case
of using Madgwick and Mahony methods, magnetometer information is optional.
Madgwick method uses gradient descent filter and consequently is computationally
more demanding. This method usually represents the most accurate transformation
when magnetometer information is used (Ludwig et al. 2018) and includes gyroscope
bias drift compensation.

Therefore, for each of the datasets included in this research (see Sects. 3.1.1, 3.1.2
and 3.1.3), we explore whether we can get better results in assessing the level of
experience of martial arts practitioners by transforming and/or fusing the original
raw inertial (and occasionally magnetic) data. The reasons for including the analysis
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Fig. 9 Value of the q3 component according to several methods for deriving quaternions and using sensor
information encoded in Cartesian coordinates. The represented data correspond to D2 dataset, in particular
to the first go lap of shikko exercise (performed by a beginner student). In this case, the magnetometer
information was missing and was introduced as a constant in the computation for the Kalman method (this
translates itself into a roughly degraded outcome)

of different coordinates system transformations and quaternion fusions are to have a
better andmore accurate representation of the psychomotor behaviour analysed.While
coordinate systems transformations better characterise the nature of the motor skill,
the quaternion fusion provides a more accuracy depiction of this. To perform a skilled
movement classification, where all registries represents the same movement, we need
to refine the inertial information to better represents the movement to classify, which
we aim to achieve by performing transformations and fusions.

A summary of the different dataset versions used in this research is included in
Table 6, where the baseline (v0) in any of the dataset portrays the original data without
any transformation or fusion. In fact, we evaluated up to 33 different datasets, including
the three original ones. In this sense, for D1 we only evaluated the raw Cartesian (v0)
and both, spherical (v1) and cylindrical (v2) transformations, as quaternion fusion
was not possible without gyroscope information. For either D2 and D3 datasets, we
evaluated 15 different dataset versions for each of them, from (v0) to (v14). As an
example, in the case of D3 dataset, version 7 (v7) corresponds to the original Cartesian
D3 dataset transformed into a spherical coordinate system and then fused into quater-
nions following analytical method, that is, quaternion fusion without magnetometer
data. Consequently, while any of the versions (v0), (v1) and (v2) of D3 represent a
dataset with 3 + 3 + 3 = 9 dimensions (see Table 5), the version (v7) of dataset D3
represents the same, but with only 4 dimensions (see equation 2).
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Table 6 Summary of the 33 different versions built for this research, from the original raw Cartesian data
gathered from the sensorwithout anymodifications, referred as version 0 (v0) and considered as the baseline
version for each of the datasets

dataset version coordinates Fusion method (following [81])

D1

v0 Cartesian -

v1 spherical -

v2 cylindrical -

D2

v0 Cartesian -

v1 spherical -

v2 cylindrical -

v3 Cartesian Analytical

v4 Cartesian Madgwick

v5 Cartesian Mahony

v6 Cartesian kalman

v7 spherical Analytical

v8 spherical Madgwick

v9 spherical Mahony

v10 spherical kalman

v11 cylindrical Analytical

v12 cylindrical Madgwick

v13 cylindrical Mahony

v14 cylindrical kalman

D3

v0 Cartesian -

v1 spherical -

v2 cylindrical -

v3 Cartesian Analytical

v4 Cartesian Madgwick

v5 Cartesian Mahony

v6 Cartesian kalman

v7 spherical Analytical

v8 spherical Madgwick

v9 spherical Mahony

v10 spherical kalman

v11 cylindrical Analytical

v12 cylindrical Madgwick

v13 cylindrical Mahony

v14 cylindrical kalman

3.3 Modelling approaches

We considered all the 33 dataset versions in Table 6, to explore ways to assess exper-
tise level, modelling skilled human motion movements, and to explore ways to offer
personalised support to students when learning psychomotor skills (Santos 2019).

As data is collected in form ofMTS, themodelling processes need to identify trends
and patterns in the inertial data gathered. This requires to analyse the relationship
between dependent variables (i.e. the expertise level) and independent variables (i.e.
the inertial data registered in each of the corresponding dataset versions obtained
(15 for D2 and D3 and just 3 in the case of D1). To model these skilled movements
performed by martial art practitioners, exploring the underlying relationships between
outcome (expertise level) and predictors (inertial data), we followed two different
approaches, as disclosed in Sect. 2.
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To identify MTS trends and patterns, we need to extract the most relevant features
which best represent the inertial data gathered. One of the two different approaches
used in this research for this extraction is similar to the one used in Avci et al. (2010),
which conducts the feature extraction in different domains, including time (extract-
ing, for example, MTS mean, variance or standard deviation features) and frequency
(extractingMTS spectral centroid or energy features among others). For this approach,
we used (Barandas et al. 2020) library, which provides a reliable and rapid method to
follow (Avci et al. 2010).

The second approach uses a neural networks based method instead for extracting
features andwas initially introduced in Jafari et al. (2007); Yang et al. (2008), although
in neither case they focused on skilled analysis, performing movement classification
but not expertise level assessment. Recent efforts have been made to classify human
activity using neural networks, as in Dempster et al. (2020); Fawaz et al. (2020), where
the convolutional kernels used in convolutional neural networks are applied to detect
patterns in the input MTS (inertial data).

Although the first approach, without using neural networks, is computationally
faster, deep learning approaches for classifying human activity have gained relevance
(Babangida et al. 2022) andwe can find different neural network approaches for human
activity recognition, including (Tran et al. 2019; Fu et al. 2020; Wang and Miao 2018;
Ferscha and Mattern 2004). However none of them analyse skilled movements and
efficiency limitations are still challenging (Zhou et al. 2020), especiallywhenone of the
ultimate goals is to provide real-time feedback as required in intelligent psychomotor
learning systems (Santos 2016). The reason of using random convolutional kernels in
this research for classifying MTS that represent skilled movements is that the random
kernels used have less computational requirements and consequently are faster than
other neural network methods.

3.3.1 Time series feature extraction

The process included in Avci et al. (2010) for activity recognition follows the stages of
pre-processing, segmentation, feature extraction, dimensionality reduction and clas-
sification. In the same way, this processing approach has already been discussed as
appropriate to model the performance of psychomotor activities from inertial sensor
data (Santos 2019). In any case, we will not delve into the first pre-processing stage
because in the three datasets used here the raw signals obtained have been partially
processed by the sensors themselves through their data processing units.

In order to evaluate how we can use extracted features from MTS, we followed
(Barandas et al. 2020) and their Time Series Feature Extraction Library (TSFEL),
which provides extraction methods for different features across 3 different domains
(temporal, statistical and spectral).8 The analysis performed in this research was con-
figured using all these domains. In this sense and according to Barandas et al. (2020),
most of the spectral domain features have higher computational complexity than the
features included in the other domains (temporal and statistical). We applied this

8 List of available features: https://tsfel.readthedocs.io/en/latest/descriptions/feature_list.html.
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extraction methods to each of the 33 different versions (3 + 15 + 15) obtained from
Sect. 3.2 and depicted in Table 6.

After performing the feature extraction stage on each of the versions included in
Table 6 for each of the three different datasets, we carried out the dimensionality
reduction stage. However, instead of Hartmann et al. (2021), which applied linear
discriminant analysis (LDA) for dimensionality reduction, we applied least absolute
shrinkage and selection operator (LASSO) linear model with iterative fitting along a
regularisation path, as in Liu et al. (2020). We used this method as a general rule in
all datasets for its speed and versatility and because it usually produces better results
when the dimensionality is high, which is our case after applying TSFEL.

3.3.2 Random convolutional kernel transform

One step forward to the use of typical CNN methods for classifying MTS data is the
use of Random Convolutional KErnel Transform (ROCKET) framework, introduced
in Dempster et al. (2020). This method may achieve good accuracies, even with basic
linear classifiers, while using a fraction of the computational complexity of other
CNN methods, like Wang et al. (2016) or Fawaz et al. (2020). In contrast to the
convolutional kernels typically used in CNNs, ROCKET generates a large number
of random convolutional kernels which, in combination, capture features relevant for
MTS classification.

ROCKET computes two features from each convolutional layer. The first feature is
calculated using a standard approach called global/average max pooling,9 which takes
the maximum value from each part of the layer. The second feature is calculated using
a unique approach called positive proportion value (ppv), which takes the proportion
of positive values from each part of the layer. These two features are then combined
to create a more robust feature map.

In our research, for convenience and simplicity we set ROCKET with the default
number of random kernels (k = 10, 000), having 2k features (20, 000) per time series
as output from the transform.Once the transformed featuremap is generatedwe canuse
it as input data for any classification algorithm. Dempster et al. (2020) suggest to use
some common linear algorithms like ridge regression classifier or logistic regression.

In addition for this research, we also tested some CNNs, including ResNet (Wang
et al. 2016), InceptionTime (Fawaz et al. 2020), Time Le-Net (Fawaz et al. 2019;
Guennec et al. 2016) or Time Warping Invariant Echo State Network (TWIESN)
(Lukosevicius et al. 2006). Our outcomes using ROCKET surpassed those obtained
with these CNNs, which were also adding high computational complexity to the clas-
sification. In this sense, our initial results comparing different CNNs methods versus
ROCKET are similar to those already included in Dempster et al. (2020). Finally,
while ROCKET execution takes minutes, CNNs may take hours with similar or lesser
accuracy results.

9 The difference between global and average is that the first method become the process of taking the
maximum value from the entire result of the convolution whether the second method is the process of
taking the average maximum value within a predetermined area of the convolution result.
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Table 7 List of classifiers used with TSFEL and ROCKET extracted features

Abbreviation Classifier parameters

RF Random forest n_estimators = 100, criterion = “gini”

LR Logistic regression solver = “lbfgs”

RCV Ridge cross-validation alphas=(0.1, 1.0, 10)

SGD Stochastic gradient descent max_iter=1000

kNN k-Nearest neighbour k = 4

3.4 Experimental setup

We have analysed 33 different dataset versions obtained from the 3 original datasets
(v0, v1 and v2) as compiled in Table 6 and with the 2 methods disclosed in Sect. 3.3.1
(TSFEL) and Sect. 3.3.2 (ROCKET). In order to evaluate the classification behaviour
of the proposed approaches for features extraction, we used some well-known classi-
fiers included in the reputed scikit-learn library,10 so we could compare the different
proposals. A summary of the classifiers and the parameters used is included in Table
7. The parameters were established after several trials. The input for any of them is
the features obtained by either method used: TSFEL and ROCKET.

In particular, the random forest (RF) classifier was chosen because it is more robust
and easier to train than others. For this classifier, the number of trees was set to
100, and Gini impurity was established as the function to measure the quality of the
splits. The logistic regression (LR) classifier was included as suggested while using
ROCKETframework, and the algorithm (solver) for optimisationwas the limitedmem-
ory Broyden-Fletcher-Goldfarb-Shanno (lBFGS). The ridge cross-validation (RCV)
classifier is also recommended by ROCKET framework for smaller datasets (due to
fast cross-validation of the regularisation parameter). For the RCV classifier the values
for the regularisation strength (α) were chosen accordingly for reducing the variance
of the estimates. The stochastic gradient descent (SGD) classifier is particularly use-
ful when the number of samples is very large. For SGD the maximum number of
iterations taken for the solvers to converge was 1000. Finally, the k-nearest neighbour
(kNN) classifier was chosen because is robust to noisy training data and effective when
training data is large. The number of neighbours (k) was set to 4 after several trials
and due showed good results. For the configuration of these classifiers, we decided to
mainly use default values in order to better compare the different types of algorithms
and representations, without worrying about differences in the parameters.

Before applying the classifiers, all MTS values were scaled using min-max nor-
malisation with a feature range between 0 and 1. This was done basically because, as
disclosed in Sect. 3.2 and in Eq.3, we use only unit length quaternions, so most of the
features obtained are already normalised in this scale.

Thus, applying the classifiers depicted in Table 7 we evaluated the accuracy on
modelling users performing skilled movements. We also analysed if we can obtain
better results using the baseline version (v0 in Table 6) or using different coordinates

10 https://scikit-learn.org/stable/.
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systems or quaternions (other versions than v0 in Table 6). For all dataset versions
included in Table 6, we performed MTS re-sampling method before applying any of
the classifiers in Table 7. This operation was particularly useful while using ROCKET,
where all kernel input data sizes were equal, but also when using TSFEL, for avoiding
window overlaps.

As disclosed in Sects. 3.1.2 and 3.1.3, besidesmodelling the complete skilledmove-
ments performed by any of the martial artists in each dataset, we also extended our
analysis for comparing specific segmented movements as disclosed in Table 2. Thus,
in this research, for either D2 and D3 datasets, we analysed both the whole skilled
movement and its corresponding segmentations into 7 phases or 6 partial movements,
respectively.

We included a basic number of re-shuffling and splitting iterations (2) and the
proportion of the dataset included in the test split was (30.%). In order to control
the randomness of the training and testing indices produced, we used the same seed
value for a reproducible output across multiple function calls. A visual overview of
the experimental setup, specifically for D2 and D3 datasets, is presented in Fig. 10 and
Fig. 11.

Initially, see Fig. 10,we start with basic transformations (2) from the original dataset
collected (1). Then, sensor fusion is performed (3), resulting in a total of 15 dataset
versions.11 Then in Fig. 11, the next step (4) is the homogenisation performedwith any
of the dataset versions. Since martial artist performances differ in time, the execution
of each practitioner is represented by a different number of rows, re sampling each
performance we got homogeneous12 input data for the next phase (5). As disclosed in
Sects. 3.3.1 and 3.3.2, feature extraction (5) is performed with ROCKET and TSFEL.
The resultant feature map and feature list (6) are finally used to feed the classifiers
disclosed in Table 7.

4 Results and discussions

In this section, we provide a detailed study of the results obtained to assess the level
of experience of martial artists when they execute skilled movements. As we have
been anticipating, there are important differences when it comes to modelling users
psychomotor behaviour depending on the type and form of the motion data collected.
Therefore, as we might suppose, the accuracy in the results will differ accordingly
depending on the dataset used.

Regarding the methods used for extracting the discriminatory features, in the case
of TSFELwe obtained better results while using the statistical domain above the others
(temporal and spectral). Besides, applying this domain we balanced the computational
complexity, the total number of extracted features and the final accuracy obtained. In
most of the cases, the resulting feature list, after removing redundancies and noise,

11 As an example and in the case of D2, dataset versions V0, V1 and V2 have an structure of 596, 495 rows
by 6 columns, while the remaining fusion versions (from V3 to V14) comprise a dataset of 596, 495 rows
by 4 columns.
12 As an example and in the case ofD2, all dataset versions (any of themwith 596, 495 rows) are re-sampled,
resulting in datasets of 925, 000 rows (5000 rows for any of the 185 martial artists).
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Fig. 10 Transformations on a martial art dataset collected with inertial sensors (accelerometer, gyroscope
and/or magnetometer) that result in alternative dataset versions for modelling the user expertise. V0 is
considered the baseline version fromwhich the initial v1 and v2 (basic transformations) are obtained. Then,
for any of these 3 initial versions, a fusion into quaternions is performed

4 - TIME SERIES HOMOGENIZATION
RESAMPLER

5 - FEATURE EXTRACTION

ROCKET TSFEL

6 - CLASSIFICATION

RF LR RCV SGD kNN

FEATURE MAP
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FEATURE LIST

Fig. 11 General overview of the experimental setup for D2 and D3 datasets. For any of the 15 different
versions obtained during the process depicted in Fig. 11, a phase of time series homogenisation and feature
extraction is made prior performing the final classification
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Table 8 D1—TSFEL statistical domain results. In bold the best result obtained

Dataset version Highest accuracy (%) Classifier Samples

v0 (raw)-baseline 56.52 RF 153

v1 54.34 RF 153

v2 60.89 kNN 153

Table 9 D1—ROCKET results. In bold the best result obtained

Dataset version Highest accuracy (%) Classifier Samples

v0 (raw)—baseline 67.39 LR, RCV and SGD 153

v1 65.21 LR and RCV 153

v2 67.39 LR and SGD 153

usually include only few dimensions, just the most representatives. In the case of using
ROCKET, the process is more straightforward, as the only parameter to choose is the
number of random kernels. In any case, the features obtained with any of these two
methods and for any of the dataset versions can be used directly as input data for any
classification algorithm disclosed in Table 7.

In all the result tables disclosed in this section, in column classifier we are including
the classifier or classifiers whose highest accuracy is obtained among those included
in Table 7. Column samples represents the number of martial artist performances
included in any of the different datasets (see Table 1).

4.1 D1 dataset results

In the case of D1 dataset (see Sect. 3.1.1), the results obtained after extracting features
with TSFEL (see Sect. 3.3.1) are summarised in Table 8. The results after classifying
the feature map obtained using ROCKET (see Sect. 3.3.2) are disclosed in Table 9.
Note that for D1 dataset we can only consider 3 different versions (see Table 6), as
quaternion fusion was not possible to perform with this dataset because we only have
information from one sensor (i.e. the accelerometer). This dataset also did not support
either any kind of segmentation (see Table 2).

The best result for user (martial artist) modelling when performing the bokken
shomenuchi movement is obtained while using the dataset version with cylindrical
coordinate transformations (v2) and after applying kNN as classifier (seeTable 7) in the
case of using TSFEL (60.89%). In turn, ROCKET best results (67.39%) are obtained
both while using baseline dataset version (v0) and dataset version with cylindrical
coordinate transformations (v2) and after applying different classifiers (LR, RCV and
SGD) (see Table 7). Furthermore, for the D1 dataset, even in the worst case version
(v1), the lower accuracy result after applying ROCKET (65.21%) is better than any
result obtained when using TSFEL (see Table 8).
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4.2 D2 dataset results

As expected, with D2 dataset (see Sect. 3.1.2) we are improving the accuracy in mod-
elling users (martial artists) from D1, because we have the information from two
sensors (accelerometer and gyroscope). The results obtained after using TSFEL are
summarised in Table 10, while the results applying ROCKET are available in Table 15.
In either case, we are only showing the results obtained with the baseline (v0) version
and with basic transformation versions, (v1) and (v2), plus the best result obtained
with any of the quaternion fusion versions (see Table 6).

Focusing first on the TSFEL modelling, upper half of the Table 10 (segmented)
includes the summarised results obtained while analysing D2 dataset per phases. Ver-
sion (v6) corresponds to the quaternion fusion following the Kalman method (see
Sect. 3.2) with Cartesian coordinates (see Table 6). In the lower half of the Table
(complete), we have the results obtained while analysing D2 dataset per martial artist,
considering the complete movement, given that in this case, contrary to the previous
dataset, it is possible to split the movements into different phases (see Table 2). Ver-
sion (v4) corresponds to the quaternion fusion following the Madgwick method (see
Sect. 3.2) with Cartesian coordinates (see Table 6).

After using TSFEL, the best results for user (martial artist) modelling, when per-
forming the shikko movement, analysed per phases, are obtained while using baseline
dataset version (v0), and dataset version with spherical coordinate transformations
(v1) and after applying RF as classifier (see Table 7) in both cases. When analysing
the complete movement, the best result is obtained while using baseline dataset ver-
sion (v0) and also after applying RF as classifier (see Table 7). The baseline dataset
version (v0) in the complete dataset is the one that obtains the highest accuracy for
D2 dataset using RF classifier.

As an example of the use of TSFEL in this dataset, one of the features that is usually
included in the resultant feature list, in almost all versions except in versions (v3), (v5)
and (v6), is the histogram of the signal, computed as follows:

n =
k∑

i=1

mi (4)

Table 10 D2-TSFEL statistical domain results-summary. In bold the best result obtained

dataset version

se
g

m
en

te
d v0 (raw) - baseline 76.12% RF

v1 76.12% RF

v2 73.87%

v6 65.16% RF

co
m

p
le

te v0 (raw) - baseline 78.57% RF

v1 75.% RF

v2 71.42% RF

v4 71.42% RF

highest accuracy classifier samples

1184

1184

RF and kNN 1184

1184

185

185

185

185
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Table 11 List of the relevant
features for the version v4 of the
D2 dataset

Input variable Feature Bin

q0 ECDF 7

q1 ECDF 6

q1 Histogram 0

q1 Histogram 1

q1 Histogram 2

q1 Root Mean Square None1

1As this feature does not use bins, TSFEL calculates this feature only
4 times, 1 per input variable

where mi represents the histogram in which n is the total number of observations and
k the total number of bins (Barandas et al. 2020). For the versions (v4), (v5) and (v6),
the most representative feature that is included in all its feature list is the empirical
cumulative distribution function (ECDF) along the time axis, which is also included
in other versions, and which formula is as follows:

1

n

n∑

i=1

I [xi � x] (5)

where n is the number of data points, I is the indicator function, and xi is the i th data
point. In this case, the indicator function is used to count the number of data points
that are less than or equal to a given value (x). If the result of this comparison is true,
then I is equal to 1, and 0 otherwise.

Other features, although present in some of the feature list versions, are less com-
mon, including variance, median, mean, root mean square, skewness and kurtosis
among others. As a practical example of this, in Table 11 we are representing the
most relevant extracted features for the v4 version of the D2 dataset (see Table 6), that
were used to feed the classification algorithms. In this case, after using LASSO for
dimensionality reduction, we finally picked only 6 features from the total number of
features obtained with TSFEL. Initially and for this dataset, for any of the 4 differ-
ent input variables (q0, q1, q2 and q3) TSFEL calculates up to 16 different statistical
domain features. TSFEL also calculates several times (10 by default and so called
bins) some of this features (e.g. Histogram and ECDF), so each bin correspond to a
different feature. Therefore, in Table 11, column bins represents the number of those
that are more relevant. For example, in the case of q1 and Histogram there are up to 3
relevant bins: 0, 1 and 2, where the other 7 bins were not relevant in this case.

Note that, in addition to the above results, for D2 dataset and TSFEL method,
we also evaluated movements considering only some stages separately (see Fig. 6),
specifically the 2 different going phases (see Table 12), the 2 different return phases
(see Table 13), as well as any of the 3 turns analysed jointly (see Table 14). In this case,
for the going and return phase analysis, the best results are obtained with the spherical
coordinate transformations (v1) and the turn phase, due its circular nature, is better
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Table 12 D2—TSFEL only going movements results—summary. In bold the best result obtained

Dataset version Highest accuracy (%) Classifier Samples

v0 (raw)—baseline 71.42 RF and RCV 185

v1 75. RF 185

v2 73.21 RF 185

v4 67.85 LR 185

Table 13 D2—TSFEL only return movements results—summary. In bold the best result obtained

Dataset version Highest accuracy (%) Classifier Samples

v0 (raw)—baseline 66.07 RF and RCV 185

v1 73.21 RF 185

v2 71.42 RF 185

v10 71.42 RCV 185

Table 14 D2—TSFEL only turn movements results—summary. In bold the best result obtained

Dataset version Highest accuracy (%) Classifier Samples

v0 (raw)—baseline 63.04 RF and LR 185

v1 65.21 RF, LR and SGD 185

v2 65.21 RF, LR and RCV 185

v5 76.08 RF 185

Table 15 D2—ROCKET results—summary. In bold the best result obtained

dataset version highest accuracy classifier

se
g
m

en
te

d v0 (raw) - baseline 72.62% kNN

v1 78.21% RCV

v2 76.25% LR

v6 68.43%

co
m

p
le

te v0 (raw) - baseline 73.21% kNN

v1 82.14%
v2 78.57%

v9 73.21% LR

samples

1193

1193

1193

RF and LR 1193

185

RCV and SGD 185

LR and RCV 185

185

to model using quaternions (v5). In all these 3 analysis (see Table 12, Table 13 and
Table 14) the best results are obtained after applying RF as classifier (see Table 7).

Finally, in the case of usingROCKETwithD2 dataset, the best results for user (mar-
tial artist) modelling, when performing the shikko movement, analysed per phases, is
obtained while using dataset version with spherical coordinate transformations (v1)
and after applying RCV as classifier (see Table 7). The best result analysing the com-
plete movement, is obtained while using dataset version with spherical coordinate
transformations (v1) and after applying RCV and SGD as classifiers (see Table 7).
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Table 16 D3—TSFEL statistical domain results—summary. In bold the best result obtained

dataset version highest accuracy classifier samples

se
g
m

en
te

d v0 (raw) - baseline 68.96% kNN 96

v1 65.51% RF 96

v2 65.51% RF and kNN 96

v4 75.86% RF 96

co
m

p
le

te v0 (raw) - baseline 80.% RCV and SGD 16

v1 80.% RF, SGD and kNN 16

v2 80.% RF, RCV and SGD 16

many 80.% kNN 16

Table 17 D3—ROCKET results—summary. In bold the best result obtained

dataset version highest accuracy classifier samples

se
g
m

en
te

d v0 (raw) - baseline 48.27% kNN 96

v1 58.62% kNN 96

v2 48.27% RF and kNN 96

v11 72.41% RF and LR 96

co
m

p
le

te v0 (raw) - baseline 60.% RF, LR, RCV and kNN 16

v1 60.% RF, LR, RCV and kNN 16

v2 60.% LR all 16

v14 80.% RF 16

In any case, considering both TSFEL and ROCKET methods for this D2 dataset,
the best results in either case, regarding the whole movement or any of the seg-
mented phases, are obtained with the baseline version (v0) in the case of using TSFEL
(78.57%) or with one of the basic transformations (v1) in the case of using ROCKET
(82.14%), representing the best efforts obtained for this D2 dataset after applying
any of the methods disclosed in Sects. 3.3.1 and 3.3.2. On the other hand, quaternion
versions are only useful to model turn phases separately, obtaining in this case a best
result of 76.08% versus the 65.21% obtained with baseline and basic transformation
versions.

Note that sample figures in the TSFEL analysis (1184 in Table 10) differs from
those obtained with ROCKET (1193 in Table 15) because in the case of TSFEL, we
removed some very short phases to avoid distortions in the extraction of features.

4.3 D3 dataset results

Reciprocally to Sect. 4.2, in the case of D3 dataset, we have a summary of TSFEL
results in Table 16 and the summary of ROCKET results in Table 17. In either case,
using TSFEL or ROCKET, in Tables 16 and 17, we are only showing the results
obtained with the baseline (v0) version and with basic transformation versions, (v1)
and (v2), plus the best result obtained with any of the quaternion fusion versions (see
Table 6). In the same way than before, the upper half of the table (segmented) includes
the summarised results obtained while analysing D3 dataset per partial movement. In
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the lower half of the table (complete), we have the results obtained while analysing
D3 dataset per martial artist, considering the complete movement.

For this D3 dataset and using TSFEL, the best results (80.%) for user (martial
artist) modelling, when performing the blocking set I movement, analysed per partial
movement (segmented), are obtained while using quaternion fusion (Madgwick) ver-
sion with Cartesian coordinates (v4) and after applying RF as classifier (see Table 7).
The best results for the complete movement are obtained while using many dataset
versions, including baseline (v0), basic transformations, (v1) and (v2), and some
quaternion fusions.

In the case of using ROCKET in this D3 dataset, the best results (80.%) for user
(martial artist) modelling, when performing the blocking set I movement, analysed
per segmented movements, are obtained while using quaternion fusion (Analytical)
version with cylindrical coordinates (v11) and after applying RF and LR as classi-
fiers (see Table 7). Analysing the complete movement, we obtained the best results
while using quaternion fusion (Kalman) version with cylindrical coordinates (v14)
and after applying RF as classifier (see Table 7). For this D3 dataset, the improvement
of using quaternions is notorious, specificallywhen usingROCKETmethod and either
when analysing the segmented and the complete movement, achieving results that are
between 40. and 50.% better than the baseline or the basic transformation versions,
see Table 17.

4.4 Results findings and discussion

In Table 18 we include a summary the most representative findings obtained after
analysing the results of Sects. 4.1, 4.2 and 4.3.

Despite the diverse nature of the different datasets used in this research, following
the results introduced in Sects. 4.1, 4.2 and 4.3 we initially may conclude that, espe-
cially in the case of using complex datasets, such D2 and D3, we can model users
by automatically classifying martial artists between experts and beginners through
datasets built with inertial information. As expected, expert martial artists in D2 and
D3, tend to fulfil the movements smoothly, showing autonomous behaviour in their
performance. In Fig. 12, we have the signals gathered while an expert and a beginner
are performing one of the shikko movement phases. As we can appreciate, beginner
movements are erratic and less predictable.

In the same way, and following (Santos 2016), we may conclude that the learning
experience in the psychomotor domain is not explained through the conscious knowl-
edge of the discipline but associated with physical skills related to manual tasks and
physical movements, acquired through the experience. In the case of D1, the basic
swing (shōmen) movement performed with the bokken, the analysis is not so conclu-
sive. We may explain this because the performance level in this movement is often
difficult to appreciate, in addition to the fact that the sensor used in this dataset (see
Table 3), only registered 3 dimensions and its sensitivity was also much lower com-
pared with the one gathered in the other datasets (see Table 4). Thus, while in D2 and
D3, over 80.% of the times we achieved to distinguish between beginner or expert
practitioner, in D1, although we could not reach 70.% of accuracy, we could slightly
distinguish between beginner or expert too.
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Table 18 Most relevant result
findings—summary 1 Inertial datasets with 3 dimensions (accelerometer only)

are limited for expertise level assessment

2 When using inertial datasets with 3 dimensions
(accelerometer only), classification results considering
the featuremap extracted from randomconvolutional ker-
nels (ROCKET) are better than when using the statistical
features extracted from raw time series (TSFEL)

3 In inertial datasets with 6 dimensions (accelerometer and
gyroscope information), the quaternion fusion does not
provides any improvement in the classification accuracy
due the degraded fusion

4 Quaternion fusion appears to be promising for the classifi-
cation of eminently circularmovements (turns). Spherical
coordinates represent better the movement with con-
stant and repeating patterns, even in datasets with only
6 dimensions (accelerometer and gyroscope)

5 When having 6 ormore dimensions (accelerometer, gyro-
scope and/or magnetometer), the classification analysis
of the complete movement versus the segmented ones, as
depicted in Fig. 5, provides better results in any case

6 In inertial datasets with 9 dimensions (accelerometer,
gyroscope and magnetometer), quaternion fusion pro-
vides better results in either case, when using TSFEL
or ROCKET and especially when considering the seg-
mented movements

7 The number of samples is crucial for improving the accu-
racy of the classification

8 Classification algorithm resultsmay vary according to the
nature of the movement, as well as to the features used

Fig. 12 Fourth component of the Cartesian-based quaternion (q3) for two Aikidō practitioners (beginner
and expert) while performing the first (of the four) straight lap of the shikko-knee-walking exercise

123



Exploring raw data transformations on inertial sensor data...

In this sense, all datasets used in this research include practitioners from 19 to 69
years old, for the datasets D1 and D2, and from 21 to 65 years old in the case of
dataset D3, and consequently the proposed analysis demonstrates how we can infer
performance level independently of other physical parameters, such age (Voelcker-
Rehage and Willimczik 2006; Voelcker-Rehage 2008). The relevance of this is that
our AI-driven analysis mainly considers mastering psychomotor skills as a gradual
process where execution improvements comes from the experience, as discussed else-
where (Santos 2019). Thus, improving belt rank means acquiring more experience,
independently of other external factors.

With the proposed analysis, we fulfil the basis for personalising tangible psy-
chomotor learning support, as defined in Santos (2016): sensing the learner’s corporal
movement and comparing this against the accurate movement. Thus, once the infor-
mation collected has been analysed, we can compare beginner movement against the
expert movement and decide whether it is appropriate or not to provide the tangible
support.

Generally speaking, in the case of D2 dataset, we can assess expertise level with
an accuracy of 78.57%, while using TSFEL, and with up to 82.14%, in the case of
using ROCKET. In the case of D3 dataset, we reach an accuracy of 80.% using both
methods, TSFEL and ROCKET.

In relation to D2 dataset, as the movement registered was basically rotational, trans-
forms made from raw inertial data (Cartesian) to other coordinate systems (spherical
and cylindrical) demonstrated, as expected, an improvement inferring performance
level. In this sense, we may distinguish between the two approach methods used,
comparing the results obtained with TSFEL and ROCKET. While using ROCKET,
the highest accuracy (82.14%) is obtained using spherical coordinates during the
whole shikko movement. On the contrary, with TSFEL we barely match the highest
accuracy obtained with the raw inertial data collected: 75.% versus 78.57%. However,
analysing TSFEL’s results for this shikko movement separately per phases (Table 12,
Table 13 and Table 14), we always reach better accuracies with spherical coordinates
(goings and returns) orwith quaternions (turns). This entails that bothmethods, TSFEL
and ROCKET, work better with transformations (spherical) or fusions (quaternions)
than with the baseline version. In addition, the extracting statistical domain features
(TSFEL) are more adequate for analysingmovement phases and convolutional kernels
(ROCKET) are better analysing the whole movement. Using TSFEL in the most rota-
tional shikko movement phase, the turns, we achieved the best accuracy result using
quaternions (see Table 14). This is consistent with what was stated above, although
we need to take into account that, unfortunately for this D2 dataset, magnetometer
data was missing, so quaternion fusion was not as accurate as the one obtained in D3.

Regarding the D3 dataset, both methods, ROCKET or TSFEL, allowed better accu-
racy results using quaternions, as evinced in Tables 16 and 17. As stated in Sect. 3.1.3,
the American Kenpo setup also comprised magnetometer information, which has
resulted in a more accurate quaternion derivation. In this case, due we have a small
number of practitioners (16), we estimated the analysis to be more realistic in the case
of considering any of the six different movements registered separately, as phases for
a total number of samples of 96. The results obtained show us the usefulness of using
quaternions. In this case, as D3’s movements were not as rotational as the movement

123



M. Portaz et al.

included in D2, the results using spherical or cylindrical were similar (ROCKET) or
slightly worse (TSFEL) than those obtained in baseline (Cartesian).

Only in the case of using TSFEL, and related with the most representative features
obtained after LASSO reduction, in the case of D2, together with some of the different
histograms computed from the collected signals, we also found relevant the ECDF
computation (Barandas et al. 2020). In the other hand and in the case of D3, the best
quaternion accuracy was also with two of the different histograms computed. Thus,
in both datasets, D2 and D3, the most relevant TSFEL feature used for distinguish
between expert and beginner is the histogram, understood as the relative frequency
which is equal to the frequency for an observed data value divided by the total number
of data values in the sample.

We also confirmed that the main differences between TSFEL and ROCKET, is the
time consumed in their executions: while ROCKET takes minutes, TSFEL extract
features in seconds. As expected, although ROCKET is considerable faster than the
mentioned CNNmethods, its completion time it is not comparable with TSFEL, which
is much faster. Thus, as the TSFEL approach is faster than ROCKET, this entails that
it might be easy to implement into small devices due its low computer complexity
(embedded devices).

Finally, the above is still valid for analysing specific behaviours that are not directly
related with expertise level assessment, such fatigue monitoring or emotional level
evaluation. As disclosed in Sects. 3.1.1 and 3.1.2, throughout the execution of the
movement, we can observe how performance evolves, being able to appreciate certain
symptomsof fatigue. Flexibility, aswell as JointRange ofMotion (JROM)assessments
(Thorpe et al. 2017), are elements that can be analysed, gathering for instance inertial
information, to monitor fatigue in sports. Moreover, physical and mental fatigues are
related, not only from the point of view of physical performance deterioration, but also
via changes in technique execution (Russell et al. 2019). Thus, technical impairments
can also be detected analysing inertial information in order to monitor mental fatigue.
The foregoing can be directly extrapolated to the analysis of emotional factors and its
relationship with psychomotor behaviours (Avalos et al. 2022).

4.5 Limitations and future works

Although D2 is a very detailed and complete dataset to perform our research, the
main limitation of this is the lack of information coming from a magnetometer sensor.
Having these 3 more coordinates, we could have improved the quaternion fusion as
confirmed with D3 dataset, the only dataset used with real magnetometer data. This
highlights the need to include enriched inertial data to model in a more precise and
accurate way the performances of the practitioners. Furthermore, we can add more
devices and thus more sensors to improve the assessment.

In this case, D3 dataset, the number of martial artists included was only 16 and,
although we performed some data augmentation, splitting every blocking set I move-
ment into six other different movements, the reduced number or participants was also
a limitation of this research. In the same way, it is essential to be able to orchestrate
experiences to allow the collection of a greater amount of data. What is exposed in
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this article, like most of the researches, would be benefited from the inclusion of a
greater number of participants.

Despite the intrinsic disclosed limitations derived from the use of other capture
devices for the purpose of solving the research question, such as video images (Tee
et al. 2022; Ige and Mohd Noor 2022; Qiu et al. 2022; Gupta et al. 2022; Saha et al.
2022; Pereira and Gonçalves 2022; Babangida et al. 2022; Lateef and Abbas 2022),
our research could have benefited from a multi modal and multi sensor approach,
incorporating video images into the inertial analysis. To resolve this eventuality and
to include video images to support inertial analysis, in future researches we will fol-
low similar approaches to those considered with the iBAID (intelligent Basket AID)
system (Portaz et al. 2023) where video images are used to support inertial analysis
by providing a human-centred approach with the aim of recommending the physical
activities and movements to perform when training in basketball, either to improve
technique, to recover from an injury or even to stay active when ageing.

The current approach of analysing movement practice individually does have its
limitations, particularly in scenarios where collaborative psychomotor efforts are
essential. However, in these cases, and as outlined in Echeverria and Santos (2021),
there exists a promising avenue for enhancement. By introducing an intermediate level
between the existing Level 1 and Level 2 in the suggested hierarchical ontology (as
shown in Fig. 1), we can effectively address whether movements are executed indi-
vidually or within a collaborative scenario. This addition to the hierarchy not only
expands the scope of applicability but also ensures a more comprehensive and adapt-
able approach to movement practice. It holds the potential to significantly enrich the
learning experience and outcomes, particularly in contexts where collective coordina-
tion is paramount.

Another limitation is the current gender distribution,which shows a clear dominance
of male martial artists, depending of the dataset, the percentage of female participants
vary from 12.5% (D3) to 13.63% (D1) and 14.59% (D2). In order to fulfil one of the
aims of this research, which is to develop psychomotor learning systems that favour
gender equality and social inclusion, we should put more efforts into favouring more
diverse data collection in the future.

5 Conclusions

This work demonstrates a promising correlation between the inertial sensor data
gathered by inertial systems and the modelling of users’ expertise levels during the
acquisition of psychomotor skills. The findings suggest that such technology holds
potential in providing valuable insights into skill acquisition and proficiency assess-
ment. This novel approach not only enhances our understanding of learning processes
but also opens new avenues for personalised and adaptive training methodologies.
Further research and refinement in this area have the potential to revolutionise skill
acquisition across various domains, benefiting both beginners and experts alike.

As an overview, we have tested whether it was possible to classify martial artists
according to their expertise level and by measuring very specific movements or ges-
tures, solving affirmatively the initial research question. These measurements have
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been carried out just with simple inertial sensors (accelerometers, gyros and magne-
tometers) attached to a single spot on the practitioner’s body or martial instrument
(sword). Two martial arts have been researched as a proof-of-concept: Aikidō and
AmericanKenpoKarate. The logged data streams have been subsequently transformed
and prepared by several means prior to be fed into state-of-the-art classification algo-
rithms. These transformations have comprised coordinate transformations, quaternion
fusion, feature extraction and convolutional neural networks, applied to multivariate
time series data.

Thus, themethod proposed in this research tomodel users in the frameof psychomo-
tor learning system, uses martial art datasets with transformed and fused inertial raw
data, which was collected with magnetic and non-magnetic IMUs and applying dif-
ferent approaches for the classification of the discriminatory features extracted. One
of the approaches has been chosen due it represents the current state-of-the-art for
time series classification (i.e. TSFEL library), while the other approach used in this
research has been specifically conceived for human activity recognition and MTS (i.e.
ROCKET framework for CNN).

Results have shown that it is possible to achieve a > 82% classification success
rate. We also demonstrated how transforming raw data into spherical or cylindrical
coordinates can improve the accuracy in the classification, overall if the studied move-
ment includes rotational behaviour. The application of quaternions has also shown to
be adequate in this setup (above all when magnetometer information is available, as
it has been the case of American Kenpo Karate dataset).

Several other final conclusions may be taken into consideration regarding the
method used. Thus, while the extraction of features (performed using the TSFEL
library) may work better when analysing a unique movement or phase, ROCKETmay
produce better results when the analysis includes a complete movement or a joint
sequence of movements.
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