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Abstract
Gaming the system, a behavior in which learners exploit a system’s properties to
make progress while avoiding learning, has frequently been shown to be associated
with lower learning.However,whenwe applied a previously validated gaming detector
across conditions in experiments with an algebra tutor, the detected gaming was not
associated with reduced learning, challenging its validity in our study context. Our
exploratory data analysis suggested that varying contextual factors across and within
conditions contributed to this lack of association. We present a new approach, latent
variable-based gaming detection (LV-GD), that controls for contextual factors and
more robustly estimates student-level latent gaming tendencies. In LV-GD, a student
is estimated as having a high gaming tendency if the student is detected to game
more than the expected level of the population given the context. LV-GD applies a
statistical model on top of an existing action-level gaming detector developed based
on a typical human labeling process, without additional labeling effort. Across three
datasets, we find that LV-GDconsistently outperformed the original detector in validity
measured by association between gaming and learning as well as reliability. LV-GD
also afforded high practical utility: it more accurately revealed intervention effects on
gaming, revealed a correlation between gaming and perceived competence in math
and helped understand productive detected gaming behaviors. Our approach is not
only useful for others wanting a cost-effective way to adapt a gaming detector to their
context but is also generally applicable in creating robust behavioral measures.
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1 Introduction

Assessing students’ engagement levels or motivation from their interaction behaviors
in digital learning environments is a compelling challenge both practically and the-
oretically. Practically, valid behavioral assessment of student engagement can drive
adaptations that adjust to students’ needs, leading to greater learning and motivation;
theoretically, it can be used to better understand when and why interventions or system
designs work for enhancing student learning or motivation. One frequently explored
behavioral indicator of student engagement is “gaming the system” (abbreviated as
“gaming” in this paper), which is defined as “attempting to succeed in an educational
environment by exploiting properties of the system rather than by learning the mate-
rial and trying to use that knowledge to answer correctly” in the seminal works from
Baker et al. (2006a, b, 2008a, b). Typical gaming-the-system behaviors include help
abuse (e.g., copying the answer from a hint, repeated help requests) and systematic
guessing (e.g., quickly answering after errors, making successive errors) (Paquette
et al. 2014). Many studies have demonstrated that gaming the system is associated
with poor learning outcomes in the short term or the long term (Almeda and Baker
2020; Baker, Corbett, Koedinger, and Wagner 2004; Cocea et al. 2009; Peters et al.
2018; San Pedro et al. 2013). Prior research suggests that interventions directly target-
ing gaming can reduce gaming behaviors (Baker, Corbett, Koedinger and Roll 2006a;
Walonoski and Heffernan 2006b) and improve learning (Baker, Corbett, Koedinger
and Roll 2006b), demonstrating the practical value of gaming detection. Recent work
(Richey et al. 2021) has also shown that the positive effect of learning with an educa-
tional game was fully mediated by lower levels of gaming the system, showcasing the
theoretical value of gaming detection for understanding how a specific intervention
influences learning.

Over the course of development of gaming detectors, one problem that challenges
the validity and practical effectiveness of gaming detectors has emerged but has not
received enough attention: detected gaming is not always associated with poorer learn-
ing. In the seminal and subsequent works on gaming detectors, the avoidance of
learning has been explicitly stated in the definitions of gaming (Baker et al. (2006a, b,
2008a, b; Cocea et al. 2009; Muldner et al. 2011). Thus, theoretically, the unproduc-
tiveness or harmfulness for learning is implied in the gaming construct.1 Practically,
a gaming detector that only detects behaviors unproductive or harmful for learning
also has higher effectiveness than a detector that does not have such a constraint. If
a system intervenes when students are productively engaged due to false alarms of
gaming, it may impair learning and reduce students’ trust in the system, leading to
actual disengagement and greater learning impairment. Thus, the negative association
between gaming measures and learning should be an important aspect of the valid-
ity of a gaming detector. However, this property is not inherently guaranteed in the
operationalization of gaming, i.e., the detected gaming behaviors.

Our direct application of a previously validated gaming detector (Paquette et al.
2014) showed that detected gaming behaviors were associated with higher learning

1 In some works, the avoidance of learning has not been explicitly stated in the definition of gaming the
system, but they have provided analyses that showed that detected gaming was associated with less learning
(Baker et al. 2004a, b; Walonoski and Heffernan 2006a), which converges to the same conclusion here.
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for a large proportion of students, and were not associated with learning for the overall
population (reported later in this paper). Several prior works have also identified cases
where detected gaming behaviors were not harmful for learning (Baker, Corbett and
Koedinger 2004; Baker et al. 2008a, b; Cocea et al. 2009), or even appeared to be
productive for learning (Shih et al. 2008). For example, in some cases the identified
behavior of bypassing hints in search of bottom-out hints acting as worked examples
can be viewed as “a positive meta-cognitive strategy that is only related to gaming the
system at a surface level” (Baker et al. 2013, p. 16). Such productive detected gaming
where gaming2 was associated with higher learning reduces the validity and practical
effectiveness of the gaming detectors.

To address this, we only found one approach proposed in Baker et al. (2008a, b),
where they used pretest and posttest scores to constrain the detected gaming labels
to be assigned only to actions from students with low learning gains and low pretest
scores. This approach utilizes the information from the “effects,” i.e., learning gains;
we wonder whether we could utilize information from the “causes,” i.e., contextual
factors that trigger productive detected gaming, which allows for generating more
actionable insights than the former approach. Limited contextual factors have been
considered during the human labeling process (in text replays or live observations),
which usually sets the “ground truth” for developing gaming detectors (Baker, Corbett,
Koedinger, andWagner 2004; Baker and de Carvalho 2008; Walonoski and Heffernan
2006a). Typically, human coders make judgments of gaming based on observed infor-
mation (e.g., action time, correctness, help request) from an individual student within
a segment (e.g., five consecutive actions in text replays or 20 s in live observations).
They do not interpret a student’s behavior in relation to the population behaviors on
the task, i.e., the general propensity of a task to trigger detected gaming due to its
design; nor do they consider a student’s knowledge on the task or the learning pro-
gression across tasks beyond the current segment. The limited contextual information
used by human coders makes labeling faster and easier but risks introducing bias. For
example, a student’s multiple fast, wrong attempts on drop-down menus in a segment
may be labeled as gaming considering only her information within the segment, but if
she did not deviate from the general behavior of the population on such steps and got
similar steps correct in the future, then it may be more accurate to label these actions
as not gaming.

To integrate contextual factors that may account for productive behaviors but are
not considered in the original labeling processes, we propose latent variable-based
gaming detection (LV-GD), an approach that integrates contextual factors in a cost-
effective way for more valid and robust gaming assessment. The cost-effectiveness
of LV-GD lies in applying a statistical model on top of an existing gaming detector
developed based on a typical human labeling process, without additional labeling
effort. The validity and robustness of LV-GD benefits from interpreting a student’s
behaviors in relation to the population’s behaviors in the same contexts represented
by critical contextual factors. In the following subsections, we review related work,
motivate the current work, and then introduce our approach and study in more depth.

2 In the current paper, gamed or gaming corresponds to detected gaming by a gaming detector, which may
or may not include productive behaviors. Readers need to interpret such words in context.
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1.1 Contextual factors for detected gaming behaviors

In this section, we review two kinds of contextual factors that might trigger produc-
tive behaviors detected as gaming, but are not considered in typical human labeling
processes. One kind is task features, i.e., characteristics of a problem, a set of prob-
lems (e.g., lessons, sections), or a system. Baker et al. (2009) examined a year-long
log dataset with 22 different lessons of Cognitive Tutor Algebra and identified a set
of task features that explained 56% of the variance in gaming, over five times the
degree of variance explained in any prior study of student individual differences and
gaming. For example, one such feature is “proportion of hints in each hint sequence
that refer to abstract principles.” Results showed that gaming was more frequent in
lessons that were abstract, ambiguous, and had unclear presentation of the content
or task. Although the authors did not investigate whether detected gaming behaviors
in such contexts were associated with better learning, results did suggest that in less
well-designed tasks, students may game to acquire necessary information to perform
the task. In another study, Baker (2007) found that lessons explained over three times
as much of the variance in gaming as student individual differences did. In partic-
ular, 31% of lessons had average gaming frequencies higher than 20% with three
lessons even reaching 40%. Paquette and Baker (2017) also found that differences in
gaming behaviors were more strongly associated with the learning environments than
with student populations. Although this indicates the important role of task features in
explaining gaming, they have not been considered in typical human labeling processes.

Another kind of contextual factor is students’ knowledge levels on tasks. Roll et al.
(2014) showed that on steps for which students have low prior knowledge, avoiding
help and entering wrong answers repeatedly (which may be traditionally considered
as systematic guessing, a form of gaming) is associated with better learning than
seeking help. Shih et al. (2008) provided evidence that when students bypass hints to
get bottom-out hints (traditionally considered as help abuse, a form of gaming), they
are sometimes seeking worked examples. Dang and Koedinger (2019) also suggested
that detected gaming can be a desirable adaptive learning behavior when students
encounter challenges far beyond their abilities. However, students’ knowledge levels
have not been considered in typical human labeling processes. Moreover, it has not
been investigated whether these two contextual factors can have an interaction effect
on detected gaming behaviors.

1.2 Existing gaming detectors

Past research has developed two classes of gaming detectors: knowledge-engineering
models and machine-learned models. In knowledge-engineered models, experts
develop rational rules (sometimes called patterns) that can predict well human labels
of gaming, and such rules are used to identify gaming behaviors (Muldner, et al. 2011;
Paquette et al. 2014; Walonoski and Heffernan 2006b). In machine-learned models, a
function between a set of features (e.g., correctness on a step) and human coded gam-
ing labels is learned on a given dataset where only predictive features aremaintained in
themodel, and the final model is used to identify gaming behaviors (Baker et al. 2008a,
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b; Pardos et al. 2014; Walonoski and Heffernan 2006a). In defining rules or features
for the detectors, the emphasis has mainly been put on student features (Muldner, et al.
2011; Paquette et al. 2014; Pardos et al. 2014), such as how a student utilizes help
(Aleven et al. 2006) or makes errors (Walonoski and Heffernan 2006a), or a student’s
estimated knowledge on the related skill (Baker et al. 2008a, b). Task features have
received less attention. We have only identified two machine-learned gaming detec-
tors that incorporated task features such as interfaces (e.g., multiple-choice or textbox;
Baker et al. 2008a, b; Walonoski and Heffernan 2006a). Meanwhile, in knowledge-
engineered gaming detectors, task features typically are not considered, i.e., rules
to identify gaming behaviors are usually described in a task type-independent way
(Muldner, et al. 2011; Paquette et al. 2014).

Among existing gaming detectors, one stands out due to its superior performance
in recent comprehensive evaluations in terms of generalizability, interpretability, and
development cost in new contexts: the knowledge-engineered gaming detector (Paque-
tte et al. 2014), which is referred to as KE-GD in this paper. KE-GDwas developed by
using cognitive task analysis to elicit knowledge about how experts code students as
gaming or not in Cognitive Tutor Algebra (Koedinger and Corbett 2006). It consists
of 13 patterns of students’ systematic guessing and help abuse behaviors. KE-GD
represents the broad class of behavioral detectors that are built based on rational rules
specified by experts. KE-GD has been initially validated by its acceptable predictive
performance on human labeled gaming (Paquette et al. 2014). Recent comprehen-
sive studies (Paquette and Baker 2019; Paquette et al. 2015) further compared KE-GD
with two separately validated, representative gaming detectors acrossmultiple datasets
collected from different systems: a machine-learned model (Baker and de Carvalho
2008), and a hybrid model (Paquette et al. 2015) that combines both knowledge engi-
neering and machine learning. The comparisons focused on predictive performance of
human labels of gaming in held-out test sets in the original data and two new datasets
collected from two other learning environments; the comparison also considered the
interpretability ofmodels. Results showed that KE-GD achieved greater generalizabil-
ity to new datasets (or systems) and interpretability than the machine-learned model,
and achieved comparable to slightly better generalizability and interpretability than
the hybrid model. Although the initial cost in developing KE-GD was higher than that
of the machine-learned model, it could be directly used in new datasets without further
cost since actions that match any of the 13 patterns can be directly labeled as gaming.
However, one may need to retrain the machine-learned or hybrid model, which needs
a machine-learned model as input, given the much lower (and even unacceptable)
predictive performance of the machine-learned model than KE-GD on new datasets.
However, despite its proven advantages, the gaming patterns ofKE-GDdonot consider
task features or students’ knowledge levels, and the association between its detected
gaming and learning has not been examined in prior studies. This raises questions of
the robustness of KE-GD on systems or datasets beyond the ones examined by the
authors.
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1.3 Evaluationmethods for gaming detectors

In past work, the standard procedure to evaluate a gaming detector is as follows (Baker
et al. 2008a, b; Pardos et al. 2014; Walonoski and Heffernan 2006a): two or more
human coders label gaming on student attempts or actions by classroom observations
or text replays; if the inter-rater reliability is acceptable, these labels are used as the
ground truth to develop detectors where a detector with better predictions of human
labels are preferred. However, as mentioned earlier, human labels could contain bias
(due to not considering task features or individuals’ knowledge) against which even a
high inter-rater reliability cannot safeguard.

One evaluation method that addresses this concern is to examine the association
between gaming estimates and learning, which is also intrinsically required by the
standard definition of gaming (Baker et al. 2006a, b, 2008a, b). Some prior works
have examined and found higher gaming levels to be associated with lower learning
(Baker, Corbett, Koedinger, and Wagner 2004; Mogessie et al. 2020; Muldner, et al.
2011;Richey, et al. 2021), but others have not (Dang andKoedinger 2019; Paquette and
Baker 2019; Paquette et al. 2015). Examining the relation with learning has not been
generally considered as an integral part of evaluating gaming detectors. However, a
gamingdetector can be viewed as an instrument for assessing the gaming construct, and
thus, validity is of great relevance. Validity provides “an overall evaluative judgment of
the degree to which empirical evidence and theoretical rationales support the adequacy
and appropriateness of interpretations and actions based on test scores or other modes
of assessment” in the seminal work (Messick et al. 1995). In particular, the association
between gaming and learning is closely related to external validity (i.e., does the test
have convergent, discriminant, and predictive qualities?).

Besides validity, there are other desirable properties for a gaming detector that can
be considered in the evaluation.Reliabilitymeasures the consistency (e.g., correlation)
of results of an instrument over multiple samples. Different samples can be collected
in various ways, such as across time or across subsets of items, which correspond
to different types of reliability with distinct focuses (e.g., test–retest reliability, split-
half reliability). Reliability does not imply validity, but it places a limit on the overall
validity of an instrument that aims at measuring stable attributes or traits of people. An
instrument with both high reliability and validity is usually desirable. To the best of our
knowledge, only one prior study has examined and demonstrated the reliability of their
proposed gaming detector (Muldner, et al. 2011) where they focused on correlations
of gaming estimates from two buckets by a random split of problems or students.

Generalizability is also a desirable property of a gaming detector. It refers to how
well a detector developed based on a sample can make predictions or estimations on a
new sample, where a new sample can be from a different set of problems, a different
student population, or a different system. It has some overlaps with reliability but
emphasizes the performance on the new sample rather than the consistency between
the estimates of the two samples. This aspect has been examined in various prior works
(Baker et al. 2008a, b; Paquette et al. 2015).

123



Using latent variable models to make gaming-the-system… 1217

1.4 Latent variable models and the trait-like property of gaming

Obtaining a student-level gaming assessment is valuable for studying the relation
between student-level attributes (e.g., motivation, learning gain) and gaming for under-
standing causes of disengagement or the effect on gaming of an intervention. Existing
gaming detectors have focused on observed action-level gaming assessment, i.e.,
whether an action is part of a sequence of gaming behaviors, and the student-level
gaming assessment is obtained by computing the proportion of gamed actions (i.e.,
observed gaming frequencies) or the average of predicted probabilities of gaming on
actions for each student (Baker et al. 2008a, b; Paquette and Baker 2017; Razzaq
et al. 2005). However, such direct aggregation may be prone to bias as illustrated
earlier. Dang and Koedinger (2019) showed that observed gaming frequencies failed
to correlate with motivation, while a statistical model that estimates a latent gaming
tendency on a student level controlling for curricular sections yielded strong correla-
tions between motivation and gaming. This is an example of a latent variable model,
although the authors did not explicitly describe it as such. Latent variable models
(LVMs) estimate values of latent theoretical variables (e.g., abilities, attitudes) based
on observed response variables (e.g., task performance, survey ratings) through a sta-
tistical model that models the observed variables as a function of the latent variables.
They have been widely used in knowledge modeling for estimating students’ abilities
or knowledge levels (Desmarais and Baker 2012). One widely used LVM for ability
assessment is item response theory (De Boeck andWilson 2004). Item response theory
models the observed correctness (responses) on each item (e.g., a problem step) of
each student as a function of item difficulties and student abilities and thus provides
an ability estimate for each student controlling for item difficulties. In essence, if a
student performs better than the expected performance of the population on the items,
the student is estimated as having a high ability; for two students with the same pro-
portion correct over items, the one who can get harder items correct is estimated as
having a higher ability than the one who only can get easier items correct. Ability
estimates obtained in this way are more accurate than simply looking at the proportion
correct over all items. Despite the prevalence of LVMs in knowledge modeling, their
application in behavior modeling has been limited. Only a handful of papers have
applied LVMs to estimate students’ affects or attitudes where latent variables were
theoretical constructs measured from surveys such as cognitive appraisal (Sabourin,
Mott, and Lester 2011) or attitudes toward learning (Arroyo and Woolf 2005).

To use LVMs in gaming detection, one requisite assumption is the existence of a
trait-like property of gaming, for which some evidence has been accumulated. Baker
et al. (2008a, b) and Dang and Koedinger (2019) both showed that gaming was asso-
ciated with a range of survey measures that measured students’ motivational goals,
beliefs, and dispositions at the beginning of the use of the system. Muldner et al.
(2011) found that student factors explained a much higher proportion of variance than
problems (50% vs. 19%) and were significantly more consistent than problems in
gaming proportions across randomly split samples. Although some studies support
the state-like property of gaming (see those cited in Sect. 1.1), they could not rule
out the trait-like property of gaming by their analyses. Several studies suggest that
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gaming is a mixture of state and trait (Dang and Koedinger 2019; Muldner et al. 2011;
Peters et al. 2018), or the domination of the state-like or trait-like property depends on
the system design (Botelho et al. 2021). For example, Muldner et al. (2011) showed
that a regression model with both students and problems as predictors explained more
variance (61%) than students alone (50%) or problems alone (19%), and both predic-
tors were significant. Thus, we can view the gaming construct at two interconnected
levels: the latent student level, which corresponds to trait-like gaming tendencies, and
the observed action level, which corresponds to state-like gaming behaviors affected
by contextual factors and latent gaming tendencies. If we are interested in obtaining a
student-level gaming measure for student-level analyses, we should consider extract-
ing the trait-like component of gaming from behaviors across contexts, and LVMs
offer an effective way to do so.

1.5 The current study

In the current study, we demonstrate a new approach, latent variable-based gam-
ing detection (LV-GD), that integrates contextual factors in a cost-effective way for
more valid and robust gaming detection. We report our comprehensive evaluation and
applications of LV-GD to support the validity, robustness, and usability of LV-GD. In
addressing the gaps in existing research pointed out above, our work makes two main
contributions. One contribution is a general cost-effective approach that can adapt an
existing gaming (or other behavior) detector to a new context by integrating contex-
tual factors not originally considered. Another contribution is the use of latent variable
modeling in behavior assessment, showing the value of latent trait level assessment
which is different from the dominant observed action level assessment.

LV-GD estimates a latent gaming tendency for each student controlling for the
propensity of contexts to trigger detected gaming. Essentially, it makes student-level
judgments about gaming by looking at a student’s behaviors across different contexts
and in relation to the population-level behaviors in the same contexts. A student is
estimated as having a high gaming tendency if the student is detected to game more
than the expected levels of the population in the same contexts. LV-GD can do so
by latent variable modeling (and generalized mixed effect modeling specifically) that
predicts the action-level gaming judgements from an existing gaming detector given
hypothesized latent factors that trigger detected gaming, without additional require-
ments on human labeling. From the fitted student random intercepts, we obtain gaming
tendency estimates as the gaming measure. In the current study, LV-GD is used on top
of the gaming detector KE-GD, a previously validated detector (Paquette and Baker
2019; Paquette et al. 2015); however, LV-GD can be used on top of any action-level
gaming detectors.

Our study on LV-GD is reported in the following structure. Section 2 describes the
development of LV-GD. We started with applying KE-GD on a dataset collected from
experimentation with an algebra tutor. Observing the lack of association between
detected gaming and learning, we conducted an iterative exploratory data analysis
informed by prior research, and identified overlooked contextual factors. We then
formulated LV-GD by incrementally integrating the contextual factors and exploring
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variants, chose the best model, and established initial validity. In Sect. 3, we examine
the generalizability of LV-GD on new datasets in terms of generating gamingmeasures
that can be negatively associated with learning. We compared LV-GD with KE-GD
in nine contexts, obtained from three datasets with three condition configurations per
dataset. To further support the validity of LV-GD, in Sect. 4 we examine reliability
of LV-GD in comparison with KE-GD, which can also be viewed as further evaluat-
ing generalizability: how well does a gaming detector generalize to new contexts in
terms of having consistent latent gaming tendencies? In Sect. 5, we demonstrate three
applications of LV-GD: to study intervention effects on gaming, to explore the relation
between gaming and motivation, and to help understand productive detected gaming
behaviors through a qualitative analysis. Finally, in Sect. 6 we conclude and discuss
the results.

2 Development of LV-GD

2.1 The tutor

We used datasets collected from an algebra intelligent tutoring system for middle
and high school students (Huang et al. 2021). Students learn about writing algebraic
expressions in story problems in various formats: writing an expression in a textbox
with dynamic scaffolding steps that appear if a student fails in the original question
(text format as shown in Fig. 1); writing expressions in a table where the main question
step and scaffolding steps are accessible at any time and are all required (table format
as shown in Fig. 2); explaining a set of expressions extracted from a given equation by

Fig. 1 A problem with the text format
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Fig. 2 A problem with the table format

choosing the matching textual description from a dropdown menu for each expression
(menu format as shown in Fig. 3); and given an equation, writing a set of expressions
that match a given set of textual descriptions (flipped-menu format as shown in Fig. 4).
These tasks also vary in the complexity of the expressions involved (e.g., one or two
operators).

The algebra tutor was continuously redesigned and tested in three experiments with
different student populations across 3 years. In each experiment (eight sessions over
4 weeks), we compared two versions of the tutor corresponding to two conditions
differing in task design and sequencing. The control (CT) condition, corresponding

Fig. 3 A problem with the menu format
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Fig. 4 A problem with the flipped-menu format

to the original tutor, provided a normal deliberate practice schedule, where students
received tasks with feedback and as-needed repetition for improving critical aspects of
performance. Students received full tasks representing the full version of the problem
and were required to fill in all steps (including scaffolding steps) given a cover story.
Therewere three consecutive units: thefirst unit contained all the table tasks, the second
unit contained less complex menu and flipped-menu tasks, and the third unit contained
more complex menu and flipped-menu tasks. Steps were labeled with coarser-grained
knowledge components (KCs; skills). Students received individualized practice until
reaching mastery of all KCs in a unit before moving on to the next unit. Across
the three experiments, the design of the control condition remained the same. The
experimental (EXP) condition corresponds to a redesigned tutor based on data mining
outcomes such as a refined KC model revealing hidden difficulties after original KCs
were split to differentiate easier and harder use cases. It provided an intense deliberate
practice schedule where students practiced on a larger number of KCs with a higher
variety of tasks targeting different subsets of KCs. Focused tasks were introduced to
reduce over-practicing easier KCs and target particularly difficult KCs. Examples of
focused tasks include: text format tasks asking for the final expression without the
mandatory intermediate steps required in the table task; text format tasks that further
remove the story and focus on learning algebraic grammar rules; and simpler menu
and flipped-menu tasks with equations less complex than the original equations. There
were three or more learning units where different task formats or task types (full or
focused) were interleaved in each unit. Students received individualized practice until
reaching mastery of all KCs in a unit before moving on to the next unit. Across the
three experiments, the design of the experimental condition was continuously refined
to promote greater learning. Our prior work has shown that the experimental condition
led to better learning outcomes compared to the control condition (Huang et al. 2021).
Here, we are interested to see whether the experimental condition also led to higher
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behavioral engagement, particularly lower levels of gaming the system, and whether
gaming was linked with motivation. We started our investigation with the first dataset
collected from the first experiment explained below.

2.2 A previously validated gaming detector did not generalize

We chose a previously validated knowledge-engineered gaming detector, KE-GD, as
the starting point for studying students’ behavioral engagementwhen using the algebra
tutor.KE-GDcontains 13 interpretable patternsmodeling systematic guessing andhelp
abuse. For example, one pattern is “the student enters an incorrect answer, enters a
similar and incorrect answer in the same part of the problem and then enters another
similar answer in the same part of the problem.” It is coded as “incorrect → [similar
answer] [same context] & incorrect → [similar answer] & [same context] & attempt,”
consisting of constituents such as “[similar answer]” (judged byLevenshtein distance),
and action types such as “attempt” (correct or incorrect) or “help.” If a sequence of
actions (i.e., attempts on steps) matches any one of the 13 patterns, then all actions
involved are labeled as gaming. Details of the patterns and the validation of KE-GD
could be found in (Paquette and Baker 2019; Paquette, de Carvalho, and Baker, 2014).

We used KE-GD to label actions as gaming or not and then examined its validity.
We defined two metrics of validity in the current study, both of which evaluate the
association between gaming and learning. The primary metric was the correlation
between gaming levels and normalized learning gains over students. For each student,
we computed a gaming level using the proportion of gamed actions (referred to as
proportion of detected gaming or detected gaming (proportion)) for KE-GD, or the
estimated gaming tendency for LV-GD (explained in Sect. 2.3.2); we computed the
normalized learning gain using the widely adopted formula, (posttest—pretest) / (1-
pretest).Weused Spearman correlation (rho) because it is less sensitive to outliers than
Pearson correlation. As a supplementary metric, we conducted a regression analysis
predicting posttest scores controlling for pretest scores and gaming levels over students
and examined the coefficient of the variable of gaming levels. We considered negative
correlations and coefficient values at a significance level of 0.10 as acceptable validity.
Prior studies have used significance levels of 0.05 and 0.10 for correlation analyses
involving behavior measures (Baker et al. 2004a, b; Dang and Koedinger 2019; Shih
et al. 2008).

Two observations emerged. First, the detected gaming proportion 18% (last column
in Table 1) was much higher than the previously reported proportions (3.5% in Dang
and Koedinger (2019) and 6.8% in Paquette et al. (2014)) of the same detector in other

Table 1 Statistics of the Fall 2019 dataset including gaming levels detected by KE-GD

#Stu #Actions #Actions of only 1st attempts of
steps w/KCs

Avg proportion of gamed actions
(considering all attempts of all steps)
over students

129 98,176 32,419 .18 (SD = .08)

123



Using latent variable models to make gaming-the-system… 1223

math intelligent tutoring systems. Second, there was a lack of association between
detected gaming and learning (correlation: rho = − 0.02, p = 0.86; regression coef-
ficient: b = 0.07, p = 0.69), challenging KE-GD’s validity in our context.

2.3 Identifying and integrating contextual factors to improve validity

Next, we conducted iterative exploratory data analysis on the first dataset to identify
contextual factors that might explain the lack of association between detected gaming
by KE-GD and learning, and integrated the contextual factors through latent variable
modeling analogous to item response theory modeling, explained as follows.

2.3.1 Identifying the effect of task formats

One notable feature of our dataset is that it was collected from experimentation with
two conditions with substantial differences in task design and sequencing. The experi-
mental conditions constituted the largest contextual variations. So, we first conducted a
moderation analysis to test whether detected gaming was associated with learning dif-
ferently between the conditions.We constructed a regressionmodel predicting posttest
scores for each student given the pretest scores, the condition indicator, detected gam-
ing proportion and an interaction term between the condition and detected gaming
proportion. We found a significant, crossover interaction (b = − 0.98, p = 0.007)
where the control condition showed a relation opposite to theoretical prediction: higher
proportion of detected gaming was associated with higher posttest scores (Fig. 5).

To explain this, a natural hypothesis was that in some contexts detected gaming
behaviors were productive learning behaviors. To identify such contexts, we broke
down the largest context—experimental condition—into smaller contexts, to examine
where detected gaming was particularly high on the overall dataset, which might
suggest misclassification of productive behaviors as gaming. We used the unit of
analysis normally used for modeling student learning, knowledge components (KCs),
for better drawing insights into the relation between gaming and learning. We used the
KCmodel previously validated for this dataset (Huang et al. 2021). It includes 26 KCs

Fig. 5 The interaction plot between the condition and detected gaming proportion of the regression model
predicting posttest scores with pretest scores controlled for
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Fig. 6 Detected gaming proportion by KCs averaged over students (95% confidence intervals are plotted;
only first attempts of steps with KCs are considered)

shared by both conditions.3 We first examined whether students gamed much more
on some KCs than on others, and if so whether there was a pattern in this variation.
A pattern emerged (see Fig. 6): KCs required in menu and flipped-menu formats had
particularly high detected gaming levels, ranging from 5 to 20% on average, much
higher than those required in table and text formats, In particular, the proportion on
menu formats, 11% to 20% on average, was much higher than previously reported
proportions (Dang and Koedinger 2019; Paquette et al. 2014). It is likely that some
of the detected gaming behaviors on menu and flipped-menu formats were normative,
productive learning behaviors.

Connecting the above finding with the previously discovered interaction, a natural
next question was: did formats distribute differently in each condition? We examined
the unit organization and found a dramatic difference: menu and flip-menu problems
were positioned later in the control condition but were given across the units in the
experimental condition. Having in mind that higher detected gaming was associated
with higher posttest scores in the control condition (Fig. 5), we wondered whether this
association was because students with higher abilities (who usually also have higher
posttest scores) progressed faster to later units and thus accessed a higher proportion of
menu and flipped-menu steps, which were highly gamed contexts, than students with
lower abilities. To investigate this,we approximated students’ abilities bypretest scores
and studied the correlation between pretest scores and proportion of menu and flipped-
menu steps. Indeed, as shown inFig. 7, studentswith higher pretest scores in the control

3 This KC model was constructed using the new data collected from the experiment (including new tasks
in the redesigned tutor), which was different from the KC models constructed before the experiment based
on older data and used in the running tutors.
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Fig. 7 Correlations between pretest scores and proportion of highly gamed formats (menu, flipped-menu)
per condition

condition accessed a higher proportion of menu and flipped-menu steps than students
with lower pretest scores, which was the opposite to the experimental condition. Thus,
the positive association between detected gaming and posttest scores in the control
condition was due to a confounder, the proportion of highly gamed format steps a
student accessed,whichwas itself confoundedwith student ability.Ahigher proportion
of menu and flipped-menu steps was associated with a higher overall proportion of
detected gaming; at the same time, it was also associated with higher posttest scores.
Thus, this resulted in a spurious, biased relation where a higher proportion of detected
gaming was associated with higher posttest scores. If we introduce task formats to
account for the detected gaming, then this bias may be reduced.

2.3.2 The basic latent variable model controlling for task formats

Based on the above exploratory data analysis, we formulated a basic latent variable
model, the simplest form of LV-GD, that explains detected gaming by both students’
latent gaming tendencies and formats’ propensities to trigger detected gaming. This is
analogous to explaining item performance by both students’ latent abilities and item
difficulties in the Rasch model (De Boeck and Wilson 2004), the simplest form of
item response theory models. To illustrate our model, we would label a student with a
high detected gaming level simply due to having a high proportion of the menu format
as not actually having a high gaming level. We use a generalized linear mixed model
that predicts the binary detected gaming label per action asserted by KE-GD, given
the student identity (modeled as a random factor) and the format (modeled as a fixed
factor):

Detected gaming : G ∼ (1|Student) + Format (1)

Gaming tendency : α = exp(θ) (2)

Formula (1) is written using the syntax of R’s lme4 package for better replicability;
a formal mathematical description is that the log odds of an action being labeled as
gaming byKE-GD is a linear function of the student’s identity (of which the coefficient
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Table 2 Associations between gaming tendencies from variants of LV-GD and learning

ID Level Predictors Cor with NLG Post ~ Pre + G

1 Format (1|Stu) + F rho = − .07, p = .44 b = − .02, p = .31

2 Format (1|Stu) + F + Pre rho = − .14, p = .11 b = − 0.03, p = .16

3 Format (1|Stu) + F + Pre + Pre:F rho= − .16, p= .07 b = − 0.03, p = .14

4 Format (1|Stu) + F + Pre + Pre:F +
Opp

rho= −.16, p= .07 b = − 0.03, p = .14

5 Format (1|Stu) + F + Pre + Pre:F +
Opp + F:Opp (The final
chosen model)

rho= − .18, p= .04* b= − 0.04, p= .09

6 Format (1|Stu) + F + Pre + Pre:F +
Opp + F:Opp (fitted on 1st
attempts of steps w/ KCs)

rho
= − .26, p= .00**

b= − 0.08, p= .01*

7 KC (1|Stu) + (1 + Pre + Opp|KC)
+ Pre + Opp (fitted on 1st
attempts of steps w/ KCs)

rho= − .25, p= .00** b= − 0.07, p= .01*

8 Problem (1|Stu) + (1 + Pre|Problem) +
Pre

rho= − .18, p= .04* b= − 0.05, p= .04*

Correlations with normalized learning gains and coefficients of gaming tendency variables in regression
predicting posttest scores are reported (p < .10: boldface p < .05: boldface and starred; F: Format, Pre:
Pretest, Opp: Opportunity). Row #7-#8: KCs and problems had a high number of levels and were treated
as random factors

is the student’s random intercept θ ) and the current format. In formula (2), a student’s
gaming tendency α is obtained by exponentiating the student’s random intercept θ

from formula (1), converting log odds scale to odds scale. This basic model improved
over KE-GD in terms of the sign and strength of the association with learning (rho =
− 0.07, p = 0.44; see Table 2 row #1); there was no longer an interaction between the
condition and gaming levels (b= − 0.04, p= 0.24). However, the association between
gaming and learning was not statistically significant, demanding further investigation.

2.3.3 Identifying other contextual factors

We further examined when detected gaming was particularly high on the overall
dataset, whichmight also suggest misclassification of productive behaviors as gaming.
Based on literature review in Sect. 1.1, we hypothesized that students’ prior knowledge
levels (approximated bypretest scores) and current knowledge levels (approximated by
practice opportunities) are also contextual factors accounting for productive detected
gaming: when students have lower pretest scores, they are more likely to try to learn
by behaving in ways being classified as gaming than those with higher pretest scores.
Likewise, when students are at earlier practice opportunities, they are more likely to
try to learn by behaving in ways classified as gaming than at later practice opportuni-
ties. We conducted correlation analyses between detected gaming levels and students’
pretest scores or practice opportunities. Since we had already identified task formats as
a contextual factor, we examined the correlations both overall and by format. Figure 8
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Fig. 8 Correlations between pretest scores and detected gaming proportion overall and per task format over
students (considering all attempts of all steps)

shows that on flipped-menu and menu formats, students with lower pretest scores
gamed much more than students with higher pretest scores, whereas this was not the
case for other formats and overall. Figure 9 shows that on table formats, students were
more likely to game on earlier than later opportunities and reduced gaming quickly
over opportunities, whereas this was not the case for other formats and overall. Dis-
cussion of these findings can be found later in Sect. 6.2. Based on this analysis, we
integrated the discovered contextual factors into a latent variable model explained
below.

Fig. 9 Correlations between practice opportunities and detected gaming overall and per task format. Each
point corresponds to the average proportion of detected gaming at an opportunity over students (consid-
ering all attempts of all steps). All actions in the same problem have the same opportunity count for the
corresponding format. The blips at the end of the curves are due to small sample sizes
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2.3.4 The full latent variable model accounting for critical contextual factors

From our two sets of exploratory data analyses, we obtained a key insight: different
contexts have different propensities to trigger detected gaming under a given system
design. A gaming detector should consider contexts’ gaming propensities in addition
to students’ gaming tendencies. If a student gamed more than the expected detected
gaming levels of the population in the contexts, then and only then should the student
be considered as gaming. This is because the proportion of detected gaming is usually
a low proportion of a population or a dataset (typically less than 7% in past studies
and less than 20% in our datasets), so the detected gaming level of all students in a
context represents the normative behavior of the population in that context. A model
that describes well detected gaming behaviors of a dataset captures the normative
behaviors of a population in the corresponding system, and the degree of deviation
from the normative behaviors should represent the intended gaming construct. The
full formulation of our latent variable model LV-GD is as follows (using a generalized
linear mixed model):

Detected gaming : G ∼ (1|Student) + Format

+ Pretest + Pretest : Format

+ Opportunity + Opportunity : Format

(3)

Gaming tendency : α = exp(θ) (4)

Formula (3) is written using the syntax of R’s lme4 package for better replicability;
a formal mathematical description is that the log odds of an action being labeled
as gaming (vs. not gaming) by KE-GD is a linear function of the student’s identity
(of which the coefficient is the student’s random intercept θ ), the current format, the
student’s pretest score, the interaction between the pretest score and the format, the
practice opportunity count of a format of the student (note that all steps of a problem
are considered as having the same opportunity count of the corresponding format),
and the interaction between the opportunity count and the format. Except for the
student identity modeled as a random factor, all other predictors are modeled as fixed
factors. In formula (4), a student’s gaming tendency α in odds scale is obtained by
exponentiating θ from formula (3).

Table 2 shows the validity metrics of full models (row #5-#8) as well as reduced
models (row #1-#4) of LV-GD. All the seven variants reached higher validity than KE-
GD in terms of having stronger associations with learning, and the four full models
reached desirable statistical significance (row #5-#8). The five predictors increasingly
strengthened the association (exceptwhen adding the single opportunity term in row#4
before adding the interaction term) andwere necessary for reaching acceptable validity
in this dataset. In formulating the fullmodels, we explored three other variants different
from the one in row #6: one that used KCs as the unit (row #7) and fit the model using
first attempts of steps with KC labels (without modifying the detected gaming labels
associated with these actions); another that used the same data subset as the KC-level
model to fit the model but maintained the unit of format (row #6); another that used
problems as the unit (row #8) and fit the model with all attempts of all steps as the
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Fig. 10 The interaction plot
between the condition and
gaming tendencies from the
chosen model of LV-GD of the
regression model predicting
posttest scores

format-level model in row #5. We found that a format-level modeling worked as well
as theKC-levelmodeling, when using the same subset (row #6 vs. #7); using the subset
with only first attempts of steps labeled with KCs could improve validity compared to
using all attempts of all steps (row #6 vs. #5) in this dataset; a problem-level modeling
using problem labels from the data worked as well as a format-level modeling (row #8
vs. #5). We chose to fit LV-GD with all attempts of all steps using formats as the unit
rather than using KCs as the unit or using only first attempts of steps with KC labels
for potentially greater generalizability, since it does not require additional KC labels;
we chose formats rather than problems as the unit due to coherence with findings from
our exploratory data analysis and potentially greater generalizability to new problems.
The final chosen model for the rest of the paper was the one in row #5 in Table 2.
Under this model, there was no interaction between the condition and gaming levels
(b = − 0.07, p = 0.15); both conditions exhibited negative associations between
gaming levels and posttest scores (Fig. 10). Its fitted parameters (Table 3) had high
consistency with the patterns observed in exploratory data analyses; some differences
may be due to the differences in statistical methods and data processing used in the
two kinds of analyses. We thus concluded the formulation of LV-GD for valid gaming
detection in our tutor.

3 Generalizability of LV-GD

In the previous section, we conducted exploratory data analysis and validity evaluation
on a single dataset, whichmight risk overfitting to the dataset. In this section, we tested
the generalizability of LV-GD to two new datasets. More specifically, we examined
whether the model structure (i.e., predictors and dependent variables) of LV-GD estab-
lished from the first dataset can be generalized to new datasets for generating gaming
measures that associate with lower learning. We looked into conditions separately
and together for all three datasets, resulting in nine contexts across different student
populations and designs of the system. The two new datasets were collected in 2020
Spring (20S) and 2021 Fall (21F) from the second and third experiments with the tutor
in different schools, where some design changes derived from data mining were intro-
duced in the experimental (EXP) condition: new units were introduced for providing
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Table 3 Parameters of the chosen full model of LV-GD (row #5 in Table 2)

Modeling purpose Regression term Coefficient

Effect of format Intercept (Text) β = − 2.09, p < .001 ***

Table β = − 1.50, p < .001 ***

FlipMenu β = 0.09, p = .03 *

Menu β = 1.12, p < .001 ***

Effect of prior knowledge adjusted by formats Pretest
(Pretest:Text)

β = − 0.09, p = .13

Pretest:Table β = 0.04, p = .37

Pretest:FlipMenu β = − 0.19, p < .001 ***

Pretest:Menu β = − 0.10, p = .01 *

Effect of current knowledge adjusted by formats Opp (Opp:Text) β = 0.01, p = .71

Opp:Table β = − 1.13, p < .001 ***

Opp:FlipMenu β = − 0.00, p = .99

Opp:Menu β = − 0.01, p = .84

Categorical variables were dummy coded and continuous variables were standardized for reducing multi-
collinearity. The coefficients are in log odds scale

focused practice on prerequisite KCs; a lower proportion of menu and flipped-menu
tasks was positioned in earlier units compared to the first dataset; a new task format
was introduced in the 21F dataset involving interactions with animations. The four
task formats identified in the first dataset were still present in the two new datasets.
On the other hand, the control condition remained the same.

Table 4 shows statistics of all datasets including detected gaming byKE-GD.Again,
the detected gaming proportions were high (16%) in the new datasets. When applying
both detectors to the nine contexts (see Table 5), LV-GD consistently outperformed
KE-GD in reaching higher associations with learning in eight of the nine contexts.
The exception was the EXP condition in the 21F dataset, in which the correlation
of LV-GD was slightly weaker but of the same level of significance as KE-GD. In
particular, when examining both conditions together and the EXP condition alone,
LV-GD reached high validity (i.e., rho < 0 and p < 0.05) in all six contexts, while
KE-GD only reached validity in half of the contexts. When examining the control

Table 4 Statistics of datasets (CT: control condition, EXP: experimental condition)

Data #students #actions Avg proportion of gamed actions over students (by
KE-GD)

All CT EXP

19F 129 69 60 98,176 .18 (SD = .08)

20S 222 106 116 109,193 .16 (SD = .11)

21F 99 46 53 59,703 .16 (SD = .11)
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(CT) condition, LV-GD also improved on KE-GD by reversing positive correlations to
the theoretically consistent negative correlations for all three CT datasets and reached
acceptable significance on the 20S CT dataset, although the correlations did not reach
acceptable significance in other CT datasets. We conducted further investigation next.

To address the lack of validity of LV-GD in the control condition in two datasets
above, we conducted further investigation on the 19F dataset where LV-GD showed
the weakest association with learning. We wondered whether the bottleneck lay in the
input detector KE-GD. If the gaming labels (i.e., values of the dependent variable for
fitting LV-GD) were too noisy, it would be hard to get accurate tendency estimates
by any means. If we decompose a gaming label, it is the union of 13 gaming labels
from 13 gaming patterns in KE-GD. Could some of the patterns in some formats be
better considered as not gaming in our control condition? In other words, there might
be deeper task format effects in students’ interaction patterns. We conducted another
exploratory data analysis where we examined the associations between detected gam-
ing proportions of each of the patterns with learning per format. We used a local
normalized learning gain computed using tasks related to a specific format rather than
all tasks in the pretest and posttest.

The results in Table 6 suggest that on different formats, the same gaming pattern
could be helpful or harmful for learning; although the statistical significance (and
strengths) of the correlations warrants caution in interpretation and further investi-
gation, the current results do hint at deeper format effect for detected gaming. We
updated the detected gaming labels from KE-GD in the control condition by using the
union of only the patterns that were negatively associated with learning (regardless of
statistical significance) for each format while maintaining the labels of the experimen-
tal condition. This was a change in the dependent variable rather than the predictors
in LV-GD. We used the updated dataset to fit new LV-GD variants, referred to as
LV-GD-PR (where PR stands for pattern reduction), and estimated gaming tenden-
cies for the control condition and the overall dataset. Table 7 shows that LV-GD-PR
achieved acceptable validity for the control condition and also boosted the validity
for the overall dataset compared to LV-GD and KE-GD. We leave for future work to
further improve and test this local refinement method.

4 Reliability of LV-GD

In this section, we examined the reliability of LV-GD by seeing whether gaming
levels estimated from a set of items correlate or equate well with those estimated
from another set of items for the same set of students. This analysis is important for
two reasons. First, reliability can further support the validity of LV-GD. Specifically,
reliability can support its underlying assumption on the existence of a student-level
trait-like component of the gaming construct stable across contexts (as supported
by some prior work reviewed in Sect. 1.4), and the ability of LV-GD to extract this
component. We expect that gaming estimates from LV-GD demonstrate stability over
different subsets of items due to controlling for contextual factors. Second, reliability
can also demonstrate the ability of LV-GD to generalize or extrapolate to new contexts.
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Table 7 Associations between gaming (from KE-GD, LV-GD, or LV-GD-PR) with learning

Detector All CT (control condition)

Cor w/ NLG Post ~ Pre + G Cor w/ NLG Post ~ Pre + G

KE-GD − .02(.86) 0.07(.69) .14(.25) 0.34(.11)

LV-GD − .18(.04) − 0.04(.09) − .02(.86) − 0.01(.62)

LV-GD-PR − .27(.00) − 0.07(.01) − .23(.06) − 0.06(.04)

Rho and p values are reported for correlation with normalized learning gains; coefficients and p values of
Gaming variables are reported for regression (p < .10: boldface and italicized; p < .05: boldface)

Specifically,we examinedwhether the estimated gaming tendencies extrapolate to new
contexts for the same students.

We used three data splitting methods and two metrics to examine reliability. Dif-
ferent data splitting methods are relevant to different meaningful problem selection
designs or intervention designs. Each method corresponds to one way of splitting the
data into two sets of non-overlapping items, i.e., two buckets. We only kept overlap-
ping students shared by both buckets for analysis. The three data splitting methods
are temporal split, one-vs-rest format split, and random format split. Details will be
explained in the following subsections. We measured reliability by two metrics: the
correlation between the gaming levels of two buckets (using Spearman correlation) as
the primary metric, and the equality between the gaming levels of two buckets (using
a paired t-test) as a secondary metric. The correlation metric tells whether a student
with a higher gaming level on a set of items still has a higher gaming level on another
set of items, i.e., whether the relative gaming levels hold. Such a correlation analysis
was used in prior work investigating the reliability of a gaming detector (Muldner et al.
2011). The equality metric tells whether a student’s gaming level on a set of items
stays the same on another set of items, i.e., whether the absolute gaming levels hold.
This metric may be relevant in some scenarios, such as when system designers need to
derive thresholds from absolute gaming levels on a set of items to trigger interventions
for other items.

We were primarily interested in whether LV-GD could reach acceptable reliability,
i.e., having positive correlations and reaching a significance level of 0.10 for both
the correlation and equality analyses. We also compared the reliability between KE-
GD and LV-GD and investigated factors affecting the (relative) reliability of LV-GD
to obtain a deeper understanding of the two detectors. We examined reliability over
the three datasets introduced earlier. In the following subsections, we explained the
details of the data splitting and results under each data splitting; then, we investigated
the factors that affect the reliability of both detectors.

4.1 Temporal split

Here, we split each student’s temporally ordered data into two buckets by the midpoint
of their sequence (i.e., each bucket has the same number of attempts), and then exam-
ined the correlation and equality between the gaming levels of two buckets. We expect
that gaming levels estimated by LV-GD from earlier interactions correlate with and
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Table 8 Reliability under the temporal split for KE-GD and LV-GD across three datasets (correlation p <
.10: boldface; paired t-test p > .10 boldface)

Data Detector Avg Gaming Level Correlation Paired t-test

Bucket 1 Bucket 2 rho p Correlated p Equal

19F (N =
129)

KE-GD 0.16 0.20 .50 < .001 Yes < .001 No

LV-GD 1.23 1.27 .35 < .001 Yes .71 Yes

20S (N =
222)

KE-GD 0.16 0.17 .41 < .001 Yes .09 No

LV-GD 1.51 1.44 .32 < .001 Yes .61 Yes

21F (N =
99)

KE-GD 0.17 0.15 .45 < .001 Yes .25 Yes

LV-GD 1.67 1.62 .34 < .001 Yes .82 Yes

stay the same as those from later interactions, because LV-GD controls for contextual
factors that may vary across time for estimating stable trait-like gaming tendencies.
Table 8 shows the result. Overall, LV-GD reached reliability in all datasets, while
KE-GD reached reliability in correlation but not always in equality over the datasets.
More specifically, LV-GD reached positive significant correlations (ps < 0.001) and
equality (ps > 0.10) over three datasets. Although KE-GD also reached positive sig-
nificant correlations (ps < 0.001) over three datasets, the equality was violated in two
datasets (ps < 0.10). To our surprise, the rho values of KE-GD were larger than those
of LV-GD. We investigate this in Sect. 4.4.

4.2 One-vs-rest format split

Here, we split each student’s data into two buckets by putting all the data of one
format into one bucket, and the remaining three or four formats into another, and then
examined the correlation and equality between the gaming levels of two buckets. We
repeated this process for each format. The estimated gaming levels by LV-GD from a
set of formats should correlate with and stay the same as those from a new format (or
estimated gaming levels from a format correlate with and stay the same as those from a
set of new formats), because LV-GD controls for contextual factors such as formats for
estimating trait-like gaming tendencies independent of formats. This splitting poses a
higher challenge to extrapolate than the temporal split where both buckets may still
share some formats.

Table 9 shows the result. Overall, LV-GD reached reliability in the majority of
cases and in more cases than KE-GD over the datasets. Looking into LV-GD first, the
correlations were all positive and most of the time (11/13 = 85%) the significance
levels were met (ps < 0.10), except for two cases where sample sizes were small.
Equality was met (ps > 0.10) the majority of the time (7/13 = 54%), except for some
cases, especially where the new format was table or text. In this data splitting setting,
the reliability of LV-GD in terms of correlation appears to require having sufficient
data to estimate the normative behaviors of the population (i.e., the fixed effects) in
a bucket in order to extrapolate to another bucket. Also, the reliability of LV-GD in
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Table 9 Reliability under the one-vs-rest format split forKE-GDandLV-GDacross formats on three datasets
(correlation p < .10: boldface and italicized, p < .05: boldface; paired t-test p > .10 boldface)

Data Bucket 1
versus
Bucket 2

N Correlation Paired t-test

KE-GD LV-GD KE-GD LV-GD

rho p rho p p p

19F Text versus
Rest

59 .27 .04 .20 .13 < .001 .06

Table versus
Rest

118 .20 .03 .20 .03 < .001 < .001

FlipMenu
versus Rest

109 .31 < .001 .23 .02 < .001 .50

Menu versus
Rest

117 .42 < .001 .29 .001 < .001 .64

Avg over
above four
cases

– .30 – .23 – – –

20S Text versus
Rest

100 .12 .23 .24 .02 .006 .35

Table versus
Rest

182 .08 .29 .15 .04 < .001 .006

Flip-menu
versus Rest

112 .52 < .001 .26 .005 < .001 .01

Menu versus
Rest

110 .47 < .001 .31 .001 < .001 .70

Avg over
above four
cases

– .30 – .24 – – –

21F Text versus
Rest

53 .32 .02 .49 < .001 .053 .053

Table versus
Rest

78 .25 .03 .22 .051 < .001 .03

Flip-menu
versus Rest

55 .27 .046 .39 .004 < .001 .78

Menu versus
Rest

27 .11 .58 .23 .25 < .001 .75

Animation
versus Rest

53 .51 < .001 .42 .002 .059 .65

Avg over
above five
cases

– .29 – .35 – – –

All % cases
correlated
or equal

– 10/13 = 77% 11/13 = 85% 0% 7/13 = 54%
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terms of equality is challenged when the new format is of certain formats (e.g., table).
Looking into KE-GD in comparison with LV-GD, the correlations were all positive
and the significance levels were met (ps < 0.10) in one fewer case than LV-GD (10/13
= 77%), where the exceptions did not necessarily have small sample sizes; equality
was never met (ps < 0.10).

4.3 Random format split

Lastly, we split each student’s data into two buckets by randomly selecting half of
the formats and putting them into one bucket, and putting the remaining formats into
another bucket, and then examined the correlation and equality between the gaming
levels of two buckets. Note that for different students, different formats might have
been selected for a bucket (e.g., student A may have table and text formats in the
first bucket while student B may have menu and text formats in the first bucket). This
data splitting allows for seeing how well a detector extrapolates from a set of formats
to another set of formats, i.e., whether a student who has a higher estimated gaming
level on some formats also has a higher estimated gaming level on other formats, and
whether a student’s estimated gaming level on some formats stays the same on other
formats. This is relevant when different students are given formats in different orders in
a tutor. This setting is different from the one-vs-rest format split where students in the
same bucket have the same format coverage which is relevant when students are given
formats in the same order in a tutor. Also, this way of splitting (i.e., format-stratified)
places a higher challenge to test reliability (or extrapolate) than randomly splitting the
data by problems (i.e., problem-stratified) used in prior work (Muldner et al. 2011). In
problem-stratified splitting, both buckets likely share formats for the same student and
thus a detector can utilize data on a format from one bucket to extrapolate to the same
format in another bucket for the student, which is not the case for format-stratified
splitting.

Table 10 shows the result. Overall, LV-GD reached reliability in all datasets, while
KE-GD did not reach correlation-based reliability in any dataset and reached equality-
based reliability in two datasets. More specifically, LV-GD reached positive significant

Table 10 Reliability under the random format split for KE-GD and LV-GD over three datasets (correlation
p < .10: boldface; paired t-test p > .10 boldface)

Data Detector Avg Gaming Level Correlation Paired t-test

Bucket 1 Bucket 2 rho p Correlated p Equal

19F (N =
118)

KE-GD 0.19 0.15 − .20 .03 No .04 No

LV-GD 1.23 1.28 .24 .009 Yes .57 Yes

20S (N =
182)

KE-GD 0.16 0.15 .06 .41 No .75 Yes

LV-GD 1.36 1.59 .25 < .001 Yes .15 Yes

21F (N =
79)

KE-GD 0.17 0.17 .11 .34 Yes .84 Yes

LV-GD 1.33 1.63 .32 .005 Yes .19 Yes
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correlations (ps < 0.01) and equality (ps > 0.10) in all datasets. However, KE-GD
did not reach positive significant correlation in any dataset and even had a negative
significant correlation in the 19F dataset (rho = − 0.20, p = 0.03); the equality was
met in two datasets (ps > 0.10) but was violated in the 19F dataset (p = 0.04).

4.4 The effect of format context similarity

Across the above three data splitting methods, LV-GD reached reliability in all cases
(under temporal split and random format split) or in the majority of cases (under
one-vs-rest format split), and reached reliability in more cases than KE-GD. Yet we
also noticed the relative performance of LV-GD in comparison with KE-GD varied
across the splitting methods, and KE-GD sometimes reached higher correlation rho
values than LV-GD (e.g., all cases under temporal split and some cases under one-
vs-rest format split). Thus, we conducted further investigation into factors that affect
the (relative) reliability of LV-GD. We hypothesized that format context similarity
within a bucket across students and between buckets for a student may affect the
(relative) reliability of LV-GD. We broke down format context similarity into two
kinds: between-student format context similarity and within-student format context
similarity. More specifically, in this subsection, a context is defined with respect to the
data of a student in a bucket (and refers to a bucket in a particular split such as Text
vs. Rest in the one-vs-rest format split), and is represented as a context vector whose
dimensions are the proportions of attempts over different formats of the student in the
bucket. For example, if the data of a student in a bucket consists of 40% of the text
format, 10% of the table format, 30% of the flip-menu format and 20% of the menu
format, then the context vector is (0.4, 0.1, 0.3, 0.2). Between-student format context
similarity indicates the similarity between the context vectors of different students in
the same bucket; it is defined for a student pair within a bucket at the lowest level
using the cosine similarity between the context vectors, and is then aggregated for a
bucket, a dataset, or multiple datasets by computing the average over student pairs,
buckets, or datasets, respectively. Within-student format context similarity indicates
the similarity between the context vectors of different buckets of the same student; it is
defined for a student across two buckets at the lowest level using the cosine similarity
between the context vectors, and is then aggregated for a dataset or multiple datasets
by computing the average over students or datasets, respectively. These two kinds of
similaritymeasures can be further averaged to obtain a single format context similarity
measure.

Table 11 presents the detailed statistics of format context similarity for each dataset
for each data splitting method, and Table 12 presents the aggregated statistics con-
necting both reliability and format context similarity measures over the three datasets.
We focus on Table 12 for obtaining insights. In general, the advantage of LV-GD over
KE-GD (especially in correlation) increases from temporal split to random format
split, as the format context similarity decreases. Looking closer into where LV-GD
had the greatest advantage over KE-GD, the random format split, the between-student
format context similarity here is the lowest and is lower than 0.50, meaning that the
contexts between students within a bucket are actually dissimilar. In this case, KE-GD
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Table 11 Format context similarity under different data splitting methods on three datasets

Data splitting
method

Data Betw-student format context
similarity

Within-student
format context
similarity M(SD)

Avg of
similarity
measures

Bucket
1 M(SD)

Bucket
2 M(SD)

Avg of
buckets

Temporal
split

19F .68(.30) .68(.32) .68 .76(.26) .72

20S .53(.35) .40(.41) .47 .67(.32) .57

21F .53(.34) .39(.38) .46 .70(.31) .58

One-vs-rest
format split

19F 1(0) .86(.15) .93 0(0) .47

20S 1(0) .69(.31) .85 0(0) .43

21F 1(0) .68(.28) .84 0(0) .42

Random
format split

19F .48(.39) .35(.40) .42 0(0) .21

20S .36(.39) .30(.43) .33 0(0) .17

21F .34(.36) .26(.38) .30 0(0) .15

A similarity value is measured by the cosine similarity between two context vectors and ranges from zero
to one with higher value indicating higher similarity

could not obtain reliable relative estimates of gaming levels at all (0% of cases corre-
lated) and only obtained moderately reliable absolute estimates (67% of cases equal),
while LV-GD could still reliably estimate students’ relative and absolute gaming levels
(100%of cases correlated and 100%of cases equal). Looking closer intowhere LV-GD
had the worst performance, the one-vs-rest format split, this is the only setting where
two buckets do not share formats in any way either from the same student or from
other students. In this setting, it is hard for both detectors to extrapolate to completely
new formats, but LV-GD could still estimate the relative and absolute gaming levels
well in the majority of cases and in more cases than KE-GD, and KE-GD performed
extremely badly in the equality metric—the absolute gaming level estimates from one
bucket could not be extrapolated to the other bucket in any case.

Altogether, format context similarity indeed affects the relative reliability of LV-
GD compared to KE-GD. KE-GD relies more heavily on format context similarity to
exhibit reliability or extrapolate; its gaming level estimates likely reflect the charac-
teristics of the contexts. On the other hand, LV-GD is much less dependent on format
context similarity to exhibit reliability or extrapolate; its gaming level estimates reflect
students’ intrinsic trait-like gaming tendencies.When format context similarity is high,
KE-GD can reach reliability comparable with (or even better than) LV-GD in terms
of the strength of correlations, but LV-GD reaches reliability in more cases than KE-
GD for both correlation and equality, and is more robust against challenges posed
by context dissimilarity than KE-GD. Meanwhile, we also noticed that the reliability
of both KE-GD and LV-GD has a decreasing trend with the decrease of format con-
text similarity, suggesting some degree of influence from the contexts on the gaming
estimates.

Looking across analyses on reliability in this section, results consistently demon-
strate the reliability of LV-GD across different data splitting methods and datasets.
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These results further support the validity of LV-GD. More specifically, results support
the trait-like property of the gaming construct besides the state-like property, and the
ability of LV-GD to extract this trait-like component. In addition, results also show
the ability of LV-GD to extrapolate to new situations (e.g., new problems with seen or
unseen formats) in terms of its gaming tendency estimates.

5 Applications of LV-GD

In this section, we demonstrated three applications of the estimated gaming tendencies
from LV-GD: to study intervention effects on gaming (i.e., whether there was a differ-
ence in the gaming levels between the two conditions from our experimentation with
the tutor), to explore the relation between gaming and motivation, and to understand
productive detected gaming behaviors.

5.1 Studying intervention effects on gaming

Our prior work (Huang et al. 2021) showed that intense deliberate practice (exper-
imental condition) led to greater learning outcomes compared to normal deliberate
practice (control condition) in the first experiment (19F dataset); we are interested to
see whether the intervention also led to higher behavioral engagement, particularly
lower levels of gaming the system. We conducted a regression analysis predicting lev-
els of gaming over students given the condition indicator on the three datasets. The two
detectors had contradicting results on the 19F and 20S datasets. On the 19F dataset,
KE-GD showed that the intervention led to significantly higher levels of gaming while
LV-GD showed that there was no statistical difference (Table 13 the 2nd column). The
suggested intervention effect of increased gaming levels by KE-GD contradicted the
previously validated intervention effect of improved learning, since higher levels of
gaming are usually associated with lower learning. Thus, LV-GD more accurately
revealed the intervention effect on this dataset. We hypothesized that this could be due
toKE-GDnot being able to account for the task format effect.We computed the propor-
tion of highly gamed formats over actions and the normalized learning gain per student
per condition. We found that the EXP condition had a higher average proportion of
highly gamed formats (Table 14 the 2nd column), consistent with our hypothesis. On
the 20S dataset, KE-GD showed that the intervention led to significantly lower levels
of gaming while LV-GD showed that there was no statistical difference (Table 13 the

Table 13 Intervention effects on gaming examined by regression predicting gaming proportions or tenden-
cies given the condition variable (Control: 0, Experimental: 1; p < .05: boldface)

Detector 19F 20S 21F

KE-GD b= 0.02, p= .03 b= − 0.09, p < .001 b = 0.03, p = .15

LV-GD b = − 0.05, p = .68 b = 0.03, p = .79 b = 0.16, p = .48

Coefficients of the condition variable are reported
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Table 14 The proportion of highly gamed formats (PHGF) in actions and normalized learning gain per
condition

Cond 19F 20S 21F

PHGF NLG PHGF NLG PHGF NLG

CT .38(.22) .16(.29) .31(.22) .12(.34) .16(.17) .14(.20)

EXP .44(.09) .24(.28) .06(.13) .14(.39) .40(.16) .15(.25)

Mean and SD are reported. Higher values are in boldface

3rd column). However, both conditions have similar normalized learning gains, and
the control condition had a much higher average proportion of highly gamed formats
(Table 14 the 20S columns). This again suggests that KE-GD provided biased gaming
assessment by using direct proportion of gaming without accounting for formats. This
set of analyses shows that LV-GD more accurately revealed intervention effects on
gaming than KE-GD in our experiments.

5.2 Studying the relation betweenmotivation and gaming

The investigation of the relation between motivation and gaming contributes to under-
standing why students game and developing behavioral measures of motivation. Prior
work (Baker et al. 2008a, b) indicated that students’ attitudes and interest toward
the domain was related to detected (observed) gaming frequency. More recent work
(Dang and Koedinger 2019) identified strong associations between several motiva-
tional measures and estimated gaming tendencies. Our investigation of the relation
between motivation and gaming adds to the limited empirical evidence in this space.
On our datasets, motivational surveys with four scales (Table 15) were collected at the
first and the last sessions of each month-long experiment. Responses for each scale
were averaged to present students’ motivation along the scale for a pre-survey or a
post-survey. Table 16 shows correlations betweenmotivational measures from surveys
measured at the beginning of the first session and estimated gaming tendencies over

Table 15 Motivational survey inventory (7-point Likert rating)

Scale Question

Perceived competence in math How good at math are you?

Compared to most of your other school subjects, how good are you at
math?

Math utility value How important is it to you to learn math?

How important do you think math will be to you in the future?

Interest in math How interesting is math to you?

Interest in tutor How excited are you to do math on a computer?
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Table 16 Correlations (Spearman’s rho) betweenmotivationalmeasures from surveys and estimated gaming
tendencies (p < .10: boldface)

Scale Cond 19F 20S 21F

Perceived competence in math CT − .00(.97) − .10(.31) − .03(.84)

EXP − .26(.046) − .18(.05) − .32(.02)

All − .11(.20) − .15(.03) − .12(.25)

Math utility value CT − .11(.38) .00(.98) − .31(.04)

EXP .09(.50) − .03(.78) − .17(.22)

All .01(.94) − .02(.78) − .21(.04)

Interest in math CT .04(.73) − .03(.75) − .05(.73)

EXP − .07(.60) − .13(.18) − .11(.41)

All .02(.87) − .08(.21) − .04(.66)

Interest in tutor CT .11(.37) − .03(.75) − .01(.97)

EXP .06(.64) − .06(.55) − .01(.93)

All .12(.19) − .04(.54) − .01(.93)

Pretest CT − .04(.74) − .01(.91) − .06(.68)

EXP − .01(.92) − .03(.74) − .06(.66)

All − .01(.90) − .04(.61) − .07(.52)

Correlations with pretest scores were added for contrast

students. Only perceived competence in math showed consistent significant correla-
tions with gaming and only in the experimental condition across three datasets; the
sign of the correlations was negative as theoretically predicted. These correlations did
not appear to be due to students’ abilities approximated by pretest scores, because we
did not find correlations between pretest scores and gaming tendencies. To understand
why perceived confidence was only associated with gaming in the experimental but
not in the control condition, we compared objective difficulties measured by the pro-
portion correct of first attempts and subjective difficulties measured by the difference
between the final and the initial values of perceived confidence between the conditions
(Table 17). We found that the experimental condition tended to have lower objective
difficulties but higher subjective difficulties. We discuss the results in Sect. 6.3.

Table 17 Proportion correct of first attempts (objective difficulties) and the difference of perceived compe-
tence in math between the final value and the initial value (subjective difficulties; � PC)

Cond 19F 20S 21F

prop cor � PC prop cor � PC prop cor � PC

CT .60(.17) .02(.86) .60(.14) − .03(.83) .61(.16) .02(1.11)

EXP .62(.10) − .22(.91) .69(.11) − .09(.86) .70(.10) − .22(.98)

Mean and SD are reported. Higher values are in boldface
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5.3 Understanding productive detected gaming

In this section, we demonstrate a preliminary case study where we used LV-GD to
help select cases for understanding productive detected gaming behaviors and generate
insights into improving action-level gaming detection. In Sect. 2 on 19F dataset, we
observed a significant crossover interaction where the control condition exhibited a
positive association between gaming levels by KE-GD and learning (Fig. 5), while
both conditions showed negative associations using LV-GD (Fig. 10) consistent with
the theoretical construct of gaming. The difference in the judgements between KE-GD
and LV-GD—more specifically, when KE-GD asserts high gaming levels but LV-GD
asserts low gaming levels—likely indicates productive detected gaming, because low
gaming levels asserted byLV-GDwere associatedwith high learning gains.We focused
on the 19F dataset in this analysis. Details are as follows.

First, we identified a representative case of productive detected gaming. We used
medians to separate students into low and high groups for detected gaming by KE-GD,
gaming tendencies by LV-GD, and normalized learning gains (NLGs). We considered
students with high detected gaming and high NLGs, resulting in 31 students. We then
utilized LV-GD to keep only those with low gaming tendencies, which reduced the
sample size by 77% resulting in seven students. Then we considered students from
the control condition and selected the one with the highest NLG. Next, we selected
a problem for the chosen student. We focused on menu problems for their highest
detected gaming levels and picked one with the highest number of attempts detected
as gaming for the student (Fig. 11). This problemwas the eighthmenuproblem she saw.

Fig. 11 The chosen menu problem with a high number of attempts detected as gaming from a student with
a high level of productive detected gaming
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Table 18 The selected case representing productive detected gaming behaviors

ID DG Step Position Result Second Answer Correct ans

1 0 3/5 2rd step Correct 15 The portion of the present that
your parents’ money covered

2 0 50 6th step Correct 18 The amount of money you
have saved from babysitting

3 1 (3/5)x 1st step Wrong 17 The total
amount of
money you
have for
the present

The amount of
money your
parents gave
you

4 1 (3/5)x 1st step Wrong 8 The cost of
the present

5 1 x 3rd step Wrong 11 The amount
of money
your
parents
gave you

The cost of the
present

6 1 x 3rd step Wrong 12 The total
amount of
money you
have for
the present

7 1 (3/5)x + 50 5th step Correct 9 The total amount of money
you have for the present

Second, we conducted observations of the selected case. Table 18 shows her first
seven actions. She first chose the easiest steps 3/5 and 50 (57% and 67% correct for all
students in such steps) and got them correct. She then accessed the remaining first step
in the interface, (3/5)x, spent 17 s and then selected an optionwhichwaswrong but still
relevant. After 8 s, she chose another option which was wrong but not completely off
since the description appears in the text right after 3/5, part of the expression (3/5)x.
Having failed twice on this hardest step (34% correct), she switched to the second
step in the interface, x. After 11 s, she chose an option which was wrong but on the
right track because it refers to (3/5)x that involves x. After 12 s, she selected an option
which was farther away from the correct option but not as irrelevant as some other
options. Having failed twice on this step, which is the second hardest (42% correct),
she paused for 9 s and jumped to the fourth step in the interface (3/5)x + 50, used the
option just selected as the answer, and got it right.

Third, we generated hypotheses about productive detected gaming and recommen-
dations to refine KE-GD based on its detected gaming patterns. Table 19 shows the
detected gaming patterns by KE-GD in the seven actions. In contrast, Table 20 shows
our hypothesized productive meta-cognitive strategies for detected gaming actions
(actions 3–7) and actions around them (actions 1–2). Specifically, actions 3–7 may be
considered as a sample of productive detected gaming behaviors, which all involve
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Table 19 The gaming patterns detected by KE-GD on actions in Table 18

Action IDs Pattern ID Matched gaming pattern in KE-GD

3 → 4 → 5 9 incorrect → [similar answer] & incorrect →
[switched context before correct] & incorrect

4 → 5 → 6 10 incorrect → [switched context before correct]
& incorrect → [similar answer] & incorrect

5 → 6 → 7 3 incorrect → [similar answer] & incorrect →
[same answer in different context] & attempt
(correct or incorrect)

[similar answer] means an answer was similar to the previous action (Levenshtein distance of 1 or 2). We
have adapted the computation of Levenshtein distance for texts by counting overlapping words between two
phrases after removing stop words. If the number of overlapping words is no less than half of the number
of words of the shorter phrase, then the two phrases are considered as being similar
Actions of giving answers (incorrect or attempt) are in boldface

Table 20 Hypothesized productive meta-cognitive strategies on actions in Table 18. All except the first two
actions were detected as gaming by KE-GD in Table 19

Action IDs Hypothesized productive meta-cognitive strategies

1,2 Select an easier step to work on first, with duration suggesting
deliberation

3,4,5,6 Gives answers relevant to the correct answer, with duration suggesting
deliberation

4 Locate relevant information in the problem statement, with duration
suggesting deliberation

3 → 4 → 5, 5 → 6 → 7 Move on to another step after multiple failures (on a hard step), with
duration suggesting deliberation

6 → 7 Move on to the step that matches a previously wrong answer (on a hard
step), with duration suggesting deliberation

durations that suggest deliberation. We generated two recommendations to refine KE-
GD. First, at a step level, more contextual information of current actions may be
considered in defining gaming patterns, such as time spent on an action or the diffi-
culty of a step. Second, looking at behaviors at a problem level beyond current actions
may be helpful. For example, a likely productive meta-cognitive strategy in earlier
or later actions within the problem (e.g., select an easier step to work on first) may
increase the likelihood of the student being productively engaged in current actions.

6 Conclusions and discussion

In this paper, we present an approach using latent variable models for more valid and
robust gaming assessment and demonstrate its validity, reliability, generalizability as
well as practical usability through a comprehensive evaluation on multiple datasets.
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We started with applying a previously validated, winning gaming detector, KE-GD,
to a dataset collected from an algebra tutor with varying task designs and sequencing
across conditions. However, the detected gaming was not associated with learning
overall and was even associated with better learning in the control condition, chal-
lenging its validity in our context. We identified contextual factors that capture the
normative behaviors of the population that might induce bias and might explain this
lack of association. We then integrated the contextual factors through LV-GD, a sta-
tistical model, where detected gaming from KE-GD is predicted by both contextual
factors and students’ intrinsic gaming tendencies. LV-GD generates gaming measures
as student-level latent gaming tendencies, each of which captures the degree of devi-
ation of a student’s behavior from normative behaviors of the population in the same
contexts. We evaluated LV-GD on three datasets collected from different populations
and versions of the system. LV-GD consistently outperformed KE-GD in validity in
terms of association between gaming and learning, suggesting that it effectively iso-
lates unproductive detected gaming behaviors. LV-GD also showed higher reliability
(measured by consistencies of gaming estimates from different data subsets). Across
the analyses, LV-GD demonstrated generalizability in various ways: its structure gen-
eralized to new datasets (Sect. 3) and its latent tendency estimates generalized to new
contexts (including to new formats; Sect. 4). LV-GD also afforded high practical util-
ity: it more accurately revealed intervention effects on gaming, revealed a correlation
between gaming and perceived competence in math, and helped understand produc-
tivity detected gaming behaviors.

Our work makes three key contributions to the field of behavior modeling. First,
we introduce a general cost-effective approach using latent variable models (LVMs),
to adapt an existing detector to new contexts by integrating contextual factors not
originally considered. Most related work has focused on showing that a previously
developed detectorworks in a newcontext, and in terms of accurately predicting human
labels; it is rare to encounter awork that reports that a previously validateddetector does
not work in a new context in terms of identifying behaviors unproductive for learning,
and demonstrates how to adapt it to the new context. Although we only demonstrated
applying our approach to one detector, theoretically our approach can be applied to any
behavior detector due to the statistical modeling framework. In addition, our approach
does not require additional human labeling or complex feature engineering, which
may be attractive for the learning engineering community to minimize adaptation
efforts. For example, the knowledge level effect on detected gaming is incorporated
through practice opportunity counts without an additional process to estimate dynamic
knowledge as in Baker et al. (2008a, b) and Walonoski and Heffernan (2006a). The
format as a unit of context can be easily operationalized in other datasets and can be
replaced by other reasonable units available in a dataset, such as lessons, topics or
problem types, thanks to the flexibility of our approach. Second, we show the value
of latent trait-level assessment—different from the dominant observed action-level
assessment—and open doors for model transfer from the knowledge modeling field
where LVM flourishes (Desmarais and Baker 2012; González-Brenes et al. 2014).
Specifically, we showed that a latent trait-level assessment through looking across
contexts and across students provided a more valid and robust gaming assessment
against context variations than an observed action-level assessment from a previously
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winning detector. Our examination, especially the reliability of LV-GD, also added
evidence for the trait-like property (besides the state-like property) of the gaming
construct. Third, we showed the importance of establishing validity in a new context
when applying a behavior detector to the context. We should not assume that validity
is met in a new context and should adapt the detector when validity is not met. Overall,
the implication of our work is not that LV-GD should replace existing detectors, but
rather, LV-GD or more generally the LVM approach can be used to enhance existing
detectors, especially when they lack validity in a new context. Our work may help
advance the field by increasing cross-system transfer as well as building more valid
and robust behavior detectors. Below, we discuss more in depth our work in relation
to existing research, while also pointing out limitations and future work.

6.1 Validity and generalizability of LV-GD

The validity of LV-GD, especially in comparison with KE-GD, is supported by various
aspects in this work, including the association between gaming and learning, relia-
bility, and generalizability. We did not examine its predictiveness on human labels
typically used as the ground truth of gaming behaviors and primary evaluation of a
gaming detector. This is a feature rather than a limitation of LV-GD: it builds on human
labels indirectly and can reduce bias in the labels. It builds on human labels indirectly
because LV-GDpredicts the gaming labels ofKE-GD,which has been shown to predict
human labels well. It can reduce bias in the labels by integrating contextual factors not
considered in the original human labeling processes but may help differentiate unpro-
ductive detected gaming from productive detected gaming. As validity is typically
established incrementally through an accumulation of supporting evidence, there is a
need and also room to further improve the validity of LV-GD, as discussed below.

The results of the relation betweenmotivation and gaming appeared to challenge the
validity of LV-GD at first glance. We found a negative correlation between perceived
competence in math and gaming in the experimental condition, consistent with the
reported negative correlation between self-efficacy in math and gaming in the work of
Dang and Koedinger (2019). We did not, however, find any correlations between other
motivational measures and gaming, such as students’ interest toward the domain and
gaming (Baker et al. 2008a, b; Dang and Koedinger 2019), or any correlations in the
control condition.4 Rather than prematurely attributing the general lack of correlation
between motivation and gaming to the lack of validity of LV-GD, we hypothesize
several reasons. First, there may be covariates, interactions between different student
attributes (measured or unmeasured in the current study) or between student attributes
and system attributes not considered in simple zero-order correlations we did here.
For example, Dang and Koedinger (2019) had controlled for gender, ethnicity, and
free/reduced lunch status in all their reported partial correlations. They also found that
gaming estimates using only non-highly gamed materials were significantly related

4 The positive (rather than the expected negative) correlation rho values in some cells under the 19F column
in Table 11 are considered as a result of statistical noise, since none of these values are even marginally
significant.
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to all targeted motivation measures, which was not the case of highly gamed materi-
als. Second, our motivational survey was not designed to study motivational factors
underlying gaming and only measured a small set of constructs; it is possible that the
gaming estimates of LV-GD correlate with some unmeasured motivational constructs.
Lastly, there is still a lack of empirical evidence and theory of the relation between
motivation and gaming. Altogether, we think this set of results do not suffice to chal-
lenge the validity of LV-GD; further investigation is needed to understandmotivational
factors that underlie gaming.

We did not find an association between pretest scores and gaming tendencies from
LV-GD (Table 15), whereas prior studies have shown that lower prior knowledge levels
were associated with higher gaming frequencies (Baker et al. 2004a, b; Mogessie et al.
2020). We think that the association with lower prior knowledge is not implied in the
standard definitions of gaming (Baker et al. 2006a, 2008a, b), and somework found that
gaming could occur on skills where students had high estimated knowledge (Baker,
Corbett andKoedinger, 2004). LV-GD includes pretest scores and relevant interactions
as predictors for detected gaming and thus can be viewed as being designed to extract
latent gaming tendencies that are not (primarily) triggered by prior knowledge, but by
other factors such as students’ motivation or metacognition. Such gaming measures
may be useful for system designs or analyses that are concerned with motivation or
metacognition. However, our approach is flexible in that one could drop the pretest
score-related predictors if they are interested in gaming (primarily) triggered by prior
knowledge.

Our reliability analysis supports the trait-like property of the gaming construct
(besides the state-like property), yet it is still unclear the causal factors for this trait-
like property. Possible causal factors to be tested include students’ certainmotivational
attributes, meta-cognitive attributes, as well as domain-independent skills or learning
abilities. Identifying such factors may help design interventions to reduce gaming.

In some contexts (e.g., the control condition), the standard full formulation of LV-
GD (Table 2 ID = 5) did not reach statistical significance for the association between
gaming and learning, although its associations were still better than those of KE-GD.
In one of such contexts, we investigated a variant of LV-GD where we integrated
deeper format effects, i.e., the interaction between formats and specific interaction
patterns, into the labels of the input detector, KE-GD. Our refinement led to acceptable
statistical significance and demonstrates the flexibility of our latent variable modeling
approach. A next step is to test the robustness of this refinementmethod and investigate
better ways to integrate deeper format effects, such as considering the strength of the
correlation (Table 6) when updating the detected gaming labels from KE-GD.

Generalizability is also an important desirable property of behavior detectors. In the
currentwork,we have demonstrated the generalizability of LV-GD in variousways, but
there are still a few to be examined and also there is room to improve. First, we have not
examined whether a fitted LV-GD from past data can estimate gaming tendencies well
for new students. This aspect is especially relevant to online intervention where the
systemhas to react to unproductive detected gaming for new students. In theoryLV-GD
allows such an extrapolation: before observing any data points of the student, we can
assume the average gaming tendency (which is zero) for the student; after observing
at least one data point of the student, we can (repeatedly) reestimate the parameters
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with the accumulated data fitting a new random intercept (i.e., a gaming tendency) for
the new student. Second, we have only investigated extrapolating estimated gaming
tendencies to an unseen format without using any data points from the unseen format
(Sect. 4.2). However, in an online setting, we can utilize the accumulated data of
the unseen format: after observing at least one data point of the new format, we
can (repeatedly) reestimate the parameters (e.g., gaming tendencies) with a parameter
added and fitted for the new format.5 A promising modification of LV-GD that enables
greater generalizability to new formats is to replace the dummy coded format variables
with a variable that describes key properties of formats, e.g., whether a response set
is given or can be easily inferred. Third, our three datasets are from the same system
albeit with changes in the designs, and we need to test the generalizability of LV-GD to
other systems. Lastly, we may also test whether our approach can also enhance other
behavior detectors.

6.2 Implications for developing gaming detectors

The findings in this work have implications for developing gaming detectors. First,
we have identified contextual factors that could be broadly interpreted and considered
in the development of gaming detectors. The format factor we identified may imply a
general contextual factor—cognitive cost (Flake et al. 2015). Two formats exhibited
high detected gaming levels,menu andflipped-menu formats, coheringwith priorwork
that included related task features in the final detectors hinting at the high propensity
of the menu or multiple-choice formats for triggering detected gaming (Baker et al.
2008a, b; Walonoski and Heffernan 2006a); this finding also coheres with prior work
that reported a high average gaming proportion (13.8%) on a tutor that consists of
only multiple-choice format problems (Peters et al. 2018). Such formats appear to
require low cognitive cost in making an attempt because a response set is given or
can be easily inferred in the task design (e.g., in flipped-menu problems, students
can write expressions extracted from a given equation with limited possibilities rather
than writing expressions from scratch). When the cognitive cost in making an attempt
is low, students may use game-like learning strategies such as a trial-and-error strat-
egy with genuine engagement. Moreover, the interaction between format and pretest
scores where menu and flipped-menu formats exhibited significant negative correla-
tions (Fig. 8) suggests that low cognitive cost may also trigger game-like learning
strategies for lower-level students to a greater extent than for higher-level students.
Thus, it is worth paying more attention to cognitive cost in developing gaming detec-
tors especially for excluding productive detected gaming behaviors. For example, in
human labeling processes, we can display information related to the cognitive cost in
a current format or problem type, which may include the median time of an attempt
and average number of attempts per step of the population, of the low-level students
and of the high-level students; if and only if a student deviates much (e.g., in terms of
SD) from the (sub) population, we consider the behaviors as gaming.

5 Treating a categorical variable with few levels as a random factor may lead to imprecise estimates (Bolker
2022). Thus, we do not consider this as a next step when the number of formats is small (e.g., < 10).
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The format by practice opportunity interaction where the table format exhib-
ited a significant negative correlation (Fig. 9) suggests another general contextual
factor—the clarity of the instruction. Examining table problems, we did not find
instructions on how to fill in the various cells of the table (Fig. 2) and there are
places that may cause confusion. For example, under the column labeled as “Show
your work,” it is not clear whether a student could enter 15 + 10 (graded as wrong)
instead of 3*5 + 10 (the correct answer). This coheres with prior work suggesting that
students gamed more when the presentation is unclear (Baker et al. 2009), and that
students may game as a way to obtain worked examples (Shih et al. 2008). When the
instruction is unclear, students may use game-like behaviors at the beginning to get to
know the format; this kind of difficulty decreases quickly resulting in a fast decrease
in detected gaming levels as students become more familiar with the format. Thus, it
is worth paying more attention to the clarity of instructions or presentation in develop-
ing gaming detectors, especially for excluding productive detected gaming behaviors.
For example, in human labeling processes, we can display the interface of the current
problem, population statistics (e.g., number of attempts and help requests) at the same
or similar opportunities, as well as the student’s deviation from the population, to help
make judgments of gaming. A final remark regarding task formats is that in the tutor
we studied, the interpretation of task formats requires caution since a task format is not
only coupled with a specific interface design (as the name format suggests), but also
a specific scaffolding design (e.g., fixed or dynamic scaffolding) as well as specific
KCs. A future direction is to study them separately through experimentation.

Second, our preliminary case study empowered byLV-GDalso points out directions
to improve gaming detectors in general (Sect. 5.3). Specifically, we generated two
recommendations: considering more contextual information of current actions at a
step level and looking at behaviors beyond current actions at a problem level. As a next
step, we may inspect more cases and combine qualitative and quantitative analyses to
identify common, consistent patterns or characteristics of productive detected gaming
behaviors for more robust gaming detection, which is still under-investigated in the
field.

Lastly, LV-GD also has the potential to conduct action-level gaming detection. For
example, we can first fit an LV-GDmodel to past data using the full formulation. Then,
on a new dataset or a running system, we can apply the fitted model without using the
random student intercepts (i.e., student gaming tendencies) to predict how likely an
average or typical student will game (as defined byKE-GD) at a current step according
to current contextual factors. If a typical student is unlikely to exhibit detected gaming
behaviors in a context according to this population-level prediction (with an interval
of uncertainty), but a student was detected as gaming (by KE-GD), we will label such
behaviors as gaming or activate a pre-designed intervention; otherwise, if the student
was detected as gaming but did not deviate much from the norm, we will not label
such behaviors as gaming or activate the intervention.
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6.3 Implications for system design

Our work also provides implications for system design different from prior work. Past
research (Baker et al. 2009) investigating task features that encourage and discour-
age gaming has generated design recommendations to reduce gaming (e.g., replacing
textual references to abstract principles in hints with other ways of communicating
abstract principles), but they have not examined whether detected gaming was asso-
ciated with less learning. In this work, although we also identified task features that
triggered high levels of detected gaming, our results suggest that some detected gaming
behaviors could actually be productive. Thus, instead of immediately recommending
redesigns to reduce gaming, our work encourages further investigation of whether cer-
tain task features trigger high levels of unproductive detected gaming before redesign
decisions. Before the answer is clear, one may consider focusing on improving gam-
ing detection so that it isolates unproductive detected gaming and designing reactive
interventions.

Our investigation of the correlation between motivation and gaming (Sect. 5.2)
also provides implications for motivational design in the context of intense deliberate
practice. We found a negative correlation between perceived competence in math and
gaming in the intense deliberate practice condition (the experimental condition) but
not in the normal deliberate practice condition (the control condition). We conducted
a preliminary exploration and found that the objective difficulty (measured by the pro-
portion correct of first attempts) of the intense deliberate practice condition appeared
to be lower than the normal deliberate practice condition but the subjective difficulty
(measured by perceived competence in math) of it appeared to be higher. One hypoth-
esis is that the patterns of successes or failures may matter more than the proportion of
success for students’ perceived competence. The intense deliberate practice driven by
a more fine-grained and larger KC model may have more constantly pushed students
to work on their weak spots in new tasks (i.e., put them on the edge of competence),
challenging their perceived competence. It may be worth considering letting students
occasionally work on already mastered skills to boost their perceived competence, or
preparing students better for desirable difficulties or failures. Combining this finding
with the finding that intense deliberate practice alone did not reduce gaming tenden-
cies (Sect. 5.1), one promising direction is to introduce motivational interventions or
designs that could maintain or promote perceived competence or self-efficacy in the
task domain under intense deliberate practice, to reach a potential multiplier effect of
both cognitive and motivational interventions.
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