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Abstract
Recent advances in graph-based learning approaches have demonstrated their effec-
tiveness in modelling users’ preferences and items’ characteristics for Recommender
Systems (RSs). Most of the data in RSs can be organized into graphs where various
objects (e.g. users, items, and attributes) are explicitly or implicitly connected and
influence each other via various relations. Such a graph-based organization brings
benefits to exploiting potential properties in graph learning (e.g. random walk and
network embedding) techniques to enrich the representations of the user and item
nodes, which is an essential factor for successful recommendations. In this paper,
we provide a comprehensive survey of Graph Learning-based Recommender Systems
(GLRSs). Specifically, we start from a data-driven perspective to systematically cate-
gorize various graphs in GLRSs and analyse their characteristics. Then, we discuss the
state-of-the-art frameworks with a focus on the graph learning module and how they
address practical recommendation challenges such as scalability, fairness, diversity,
explainability, and so on. Finally, we share some potential research directions in this
rapidly growing area.

Keywords Recommender system · Graph learning · Graph neural network

1 Introduction

In the last few decades, the rapid development ofWeb 2.0 and smartmobile devices has
resulted in the dramatic proliferation of online unstructured data, such as news articles.
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They are explicitly or implicitly connectedwith each other and can naturally be formed
into graphs representing objects and their relationships in varied domains, including
e-commerce, social networks, and so on. On the one hand, the interconnection of
objects shows a direct (e.g. social relations in a social network) or indirect interactive
relationship (e.g. item co-occurrence in an item homogeneous network), which pro-
vides a more intuitive and effective way for recommendation systems to explore the
hidden relationships between the target user and the recommended items. On the other
hand, the data structure of graphs breaks the independent interaction assumption1 by
linking users or items with their associated attributes such that the recommender sys-
tems are able to capture not only the user–item interactions but also the rich underlying
connections by mining item–item/user–user relations to make more accurate recom-
mendations. Moreover, most recommendation models work as black boxes that only
provide predictive results rather than exhibiting the reasons behind a recommendation,
such as collaborative signals in collaborative filtering or knowledge-aware reasoning
in knowledge graph-based recommendation. Some recommender systems give users
such as “users who bought A also bought B” as an explanation of the recommended
results. However, no in-depth explanations of the intrinsic recommendation mecha-
nism for the selected itemsmay result in the users over-relying on the recommendation
system and ignoring that the purpose of the recommendation is to make the recom-
mendation platform profitable (Jannach et al. 2019). Recent advances in graph-based
recommender systems have demonstrated their effectiveness in improving the explain-
ability of the recommender systems by using explicit connections between objects in
graphs to reveal the recommendation results (He et al. 2015; Ma et al. 2019; Hu et al.
2018). Therefore, it is of crucial significance to fully explore the semantic connec-
tions and potential relations of the graphs to improve the performance on both the
explainability and accuracy of recommendations.

However, there exist some problems and challenges in how recommender systems
(RSs) can make full use of these data:

(1) Heterogeneous Objects: Unstructured data can be organized into a graph includ-
ing different-typed objects and links. Modelling and abstracting such a space of
information have been a challenging task encountered in RSs.

(2) Large-scale Volume: Real graphs, such as social networks, can easily havemillions
even billions of nodes and edges, which renders most traditional recommendation
algorithms computationally infeasible.

(3) Dynamic Contents: Most real-world graphs are intrinsically dynamic with addi-
tion/deletion of edges and nodes. Meanwhile, similar to a graph structure, node
attributes also change naturally such that new content patterns may emerge and
outdated content patterns will fade.

Recently, graph learning (GL) has exhibited the potential to obtain knowledge
embedded in different kinds of graphs. Many GL techniques, such as random walk,
graph embedding, and graph neural networks, have been developed to learn the com-
plex relationsmodelled ongraphs and achieve a great improvement in recommendation

1 The techniques, e.g. factorization machine (Koren et al. 2009), Neural FM (He and Chua 2017), based
upon the independent interaction assumption model the user or item as a single object, but ignore the
connection relationship among them.
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performance. An emerging RS paradigm built on GL, namely Graph Learning-based
Recommender Systems (GLRSs), has attracted growing attention in both research and
industry communities. For example, researchers leverage random walk to propagate
users’ preference scores from historical item nodes and output a preference distribu-
tion over unobserved items, such as ItemRank (Gori et al. 2007) over the item–item
correlation graph, RecWalk (Nikolakopoulos and Karypis 2019) over the user–item
bipartite graph, andTriRank (He et al. 2015) over the user–item–aspect tripartite graph.
Moreover, various graph embedding techniques and graph neural networks have been
proposed and incorporated into the representation learning of RSs, using direct or
multi-hop connections within graphs to enrich the representations of the user and item
nodes. These approaches further improve the recommendation performance.

To date, there are only a handful of literature reviews related to our paper.Wang et al.
(2021a) surveyKG-embeddingmodels for link prediction. InGuo et al. (2020), Liu and
Duan (2021), the authors summarize recent works utilizing KGs as side information
for accurate and explainable recommendations. The authors of (Wu et al. 2020a)
summarize themost recent works onGNN-based recommender systems and propose a
classification schema for organizing existingworks.Ourwork differs from the previous
works in that we give a systematic and comprehensive review of recommendation
techniques starting with different types of data-driven graphs rather than focusing on
one specific branch.

Another closely related topic is linked data-based recommendation. Figueroa et al.
(2015) present a systematic literature review to summarize the state of the art in RS
that uses structured data published as Linked Data for providing recommendations
of items from diverse domains. Tarus et al. (2018) present a comprehensive review
of ontology-based recommendations for e-learning. The main distinction is that these
works discuss making recommendations with the subject of linked data, which is
structured interlinked data that manifest as a Web of Data from multiple sources. 2

In fact, both works focus on knowledge-based recommendations without referring
to recent deep learning-based technologies. In this paper, we focus on how raw data
can be extracted into a wider range of graphs (e.g. tree-based graphs, homogeneous
graphs, and hypergraphs) and how traditional as well as state-of-the-art graph learning
techniques can be applied to these graphs for recommendation purposes.

Although there is a variety of literature on this subject, only one study analysed
the role of GLRSs (Wang et al. 2020e). The limitations lie in that they only cover a
limited number of references and do not go into the technical details on graph learning
modules in GLRS and how they address those challenges. Furthermore, they do not
give a systematic summarization of existing datasets adopted by graph learning-based
recommendation research. To overcome such an information gap, in this paper, we
contribute the most comprehensive overview of state-of-the-art GLRSs. We system-
atically analyse the benchmark datasets in GLRSs, provide detailed descriptions of
representative models, make the necessary comparisons, and discuss their solutions to
practical recommendation issues such as scalability, fairness, diversity, and explain-
ability.

2 https://en.wikipedia.org/wiki/Linked_data.
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Contributions:This survey provides a thorough literature review on the approaches of
graph learning-based recommender systems and the involved various types of graphs
from a data perspective. It provides a panorama starting from various data charac-
teristics to applied technologies, with the hope that both academic researchers and
industrial practitioners can have a rough guideline and step into the field of graph
learning-based recommendation from the data resources available at hand. This sur-
vey serves to promote the innovation and development in the field of GLRSs, while
exploring the possibility of enhancing the richness by discussing and summarizing
existing open issues in the field. To this end, the main contributions of this work are
threefold:

• We explore different data input categories based on their acquisition and intrinsic
characteristics and further proposed a novel taxonomy to categorize various graphs
in GLRSs from data perspectives. Meanwhile, we summarize resources regarding
GLRSs, including benchmark datasets and open-source knowledge graphs.

• We conduct a systematic literature review on traditional and recent developments
and progress of graph learning-based techniques for recommender systems, which
correspond to associated different graph taxonomies.

• We analyse the limitations of existing works and suggest future research directions
of GLRSs such as dynamicity, interpretability, and fairness, for giving references
for this community.

Organization of Our Survey: The rest of the survey is organized as follows. In
Sect. 2, we review our research methodology on how we collected the related papers
and provide an initial analysis of datasets adopted by reference papers. In Sect. 3,
we introduce the definitions of the basic concepts required to understand the graph
learning-based recommendation problem, followed by a formal problem definition of
graph learning-based recommendation. Section4 provides a new taxonomy of graphs
that are related to specific datasets. Section5 provides an overview of state-of-the-
art GLRSs techniques. Section6 discusses the current challenges and suggests future
directions, followed by the conclusions in Sect. 7.

2 Researchmethodology

2.1 Paper collection

Toachieve a systematic structure of existing research ongraph-based recommendation,
this study was performed based on a bibliographic review proposed by Webster and
Watson (2002), Kitchenham (2004), Wolfswinkel et al. (2013). Specifically, we first
conducted a comprehensive review of previously published papers concerning GLRSs
and used Scopus as the main source of information. The search strings are listed
in Table 1. Other bibliographic databases and archives also constitute the auxiliary
sources used for literature search, such as ACM Digital Library,3 IEEE Xplore, 4

3 https://dl.acm.org.
4 https://ieeexplore.ieee.org.
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Table 1 Search string

Key words Search string

graph, hypergraph, recommender,
recommendation, recommender system,
recommendation system, recommendation
service, recommendation approach,
recommendation model, recommendation
method, recommendation algorithm,
recommendation application, recommendation
engine, recommendation agent,
recommendation framework, collaborative
filtering, social recommendation,
representation learning, knowledge graph,
graph neural network

(TITLE-ABS-KEY�(recommender) OR
TITLE-ABS-KEY(recommendation system)
OR TITLE-ABS-KEY(recommendation
service) OR
TITLE-ABS-KEY(recommendation approach)
OR TITLE-ABS-KEY(recommendation
model) OR
TITLE-ABS-KEY(recommendation method)
OR TITLE-ABS-KEY(recommendation
algorithm) OR
TITLE-ABS-KEY(recommendation
application) OR
TITLE-ABS-KEY(recommendation engine)
OR TITLE-ABS-KEY(recommendation
agent) OR
TITLE-ABS-KEY(recommendation
framework) OR
TITLE-ABS-KEY(collaborative filtering) OR
TITLE-ABS-KEY(social recommendations))
AND (TITLE-ABS-KEY(graph) OR
TITLE-ABS-KEY(hypergraph) OR
TITLE-ABS-KEY(knowledge graph) OR
TITLE-ABS-KEY(graph neural network) OR
TITLE-ABS-KEY(representation learning))

�TITLE-ABS-KEY is a combined field that searches abstracts, keywords, and document titles

Springer, 5 ResearchGate, 6 and Web of Science. 7 We conducted the same keyword-
based search in these search engines.

We first checked the paper titles and then reviewed the abstracts, keywords, results,
and conclusions to obtain the first list of studies.We then double-checked the reference
list in those papers to identify additional studies that were relevant to our review topic.
After that, the publications retrieved needed to be further filtered in order to eliminate
false positives, which are irrelevant to the current survey. Therefore, a pre-defined set
of inclusion and exclusion criteria displayed in Table 2 were applied to the retrieved
papers. Finally, we obtained a collection of 182 papers that meet thementioned criteria
and then are summarized in Sects. 3 and 4. Figure1 gives the statistics of the collected
papers with the publication time and venue.

Note that these papers were mainly selected according to the two criteria: (1) pub-
lication time; (2) impact. Therefore, the references cited in this paper on the field of
GLRS are representative, but still limited. The uncited literature is only limited by the
length of this paper and the pre-set filtering criteria.

5 https://www.springer.com.
6 https://www.researchgate.net/.
7 https://www.webofknowledge.com.
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Table 2 Inclusion criteria and exclusion Criteria

Criteria Inclusion Criteria Exclusion Criteria

Recommender System The study focused on
recommender system in
multiple domains

The study presents a system or
technique other than a
recommender system

The use of graph as input The study presents a system that
uses a type of graph as the
input, and other data structures
such as texts, image or acoustic
information can also be the
auxiliary means of system input

The study presents a system
using a data structure except
graph as input

Publication Date The paper is published between
2007 and September 2021

The paper is published before
2007 or after September 2021

Language The paper is written in English The paper is written in a language
different than English

Publication type The paper has been peer reviewed
and published in prestigious
and top-tier international
conferences and journals e.g.
SIGIR, NIPS, ICML, RecSys,
CIKM, ICLR, AAAI, IJCAI,
WWW, WSDM, KDD, UMAP,
TOIS, TKDE, and UMUAI etc.
The paper is a primary study

The paper has not been peer
reviewed (e.g. theses, books,
technical reports, (extended)
abstracts, talks, presentations,
tutorials, guidelines) or not
published in top-tier
conferences or journals. The
paper is a secondary study (e.g.
systematic literature review,
survey)

Accessibility The paper’s content can be
accessed from a technical
university (e.g. Norwegian
University of Science and
Technology) without additional
payment

The paper’s content cannot be
accessed from a technical
university (e.g. Norwegian
University of Science and
Technology) without additional
payment

Fig. 1 Statistics of publications related to GLRSs grouped by the publication year and venue
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2.2 Data analysis

Analyzing the collected papers, we made two observations on the utilized datasets: (1)
They were across different domains, such as e-commerce and entertainment domains;
(2) Some datasets could be used to construct multiple types of graphs for different
recommendation purposes, while some were only used to construct one type of graph.
For instance, we found nearly all classified graph types were utilized for the Amazon
dataset, while only a multi-source graph could be found for the Epinions dataset. To
clearly make comparisons and show the difference of these datasets in terms of both
domains and graph types, we made a detailed comparison of all datasets in Table 5
(“Appendix A”).

Recent advances in GLRS either focus on incorporating explicit or implicit
user/item information into the process of mapping, and design learning algorithms
for specific graph structures (Christoforidis et al. 2021; Pang et al. 2022), or focus on
how to incorporate time information into graph forming and learning processes to bet-
ter capture the dynamic needs of users to improve recommendation performance (Fan
et al. 2021; Zhang et al. 2022). In Lv et al. (2021), the authorsmake reproductions of 12
heterogeneous graph neural network based modes and test them on 11 public available
datasets regarding node classification, link prediction and knowledge-aware recom-
mendation tasks. Their reported experimental results reveal that the superiority of the
performance of the most advanced HGNN models rely on the lack of fair comparison
with the homogeneous GNNs and other baselines in their original paper. Beside, some
works also reveal issues such as data leakage, tuning on test set, cost of large amount
of memory, and time for training. Meanwhile, the authors of Lv et al. (2021) release a
heterogeneous graph benchmark (HGB) for open, reproducible heterogeneous graph
research, and present a GAT-based heterogeneous GNN model resulting in promising
results on three aforementioned tasks.

We count the corresponding datasets for GLRS technologies adopted in this survey
and present the results in Table 7 (“Appendix C”). From the table, we can observe
that both datasets and their leveraged GLRS technologies are distributed extremely
unbalanced. The reason for the former one may be attributed to whether the dataset
is public, the date of publication, whether the dataset contains various attributes of
users/items and so forth. The reason for the uneven distribution of technology can be
roughly attributed to the development of deep learning in the field of graph learning
to bring more possibilities.

3 Problem formalization

In this section, we first introduce the definition of the basic concepts in graph-based
recommendations and then provide a formal definition of the graph-based recommen-
dation problem.
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3.1 Basic definitions

The definitions related to GLRSs are as follows.

Definition 1 (Graph) A graph is G = (V , E), where v ∈ V is a node and e ∈ E is an
edge. Each edge ei j is a pair between vertex vi and v j . Each edge of G can be mapped
to a real number (if any), denoted as W : E → R+ from edge e ∈ E to a real number
w ∈ R+. Such weights can represent e.g. costs, lengths or capabilities, depending on
the specific problem. G is associated with a node type mapping function fv : V → A
and an edge type mapping function fe : E → R. A and R denote the set of node
types and edge types, respectively. Each node vi ∈ V belongs to one particular type,
i.e. fv(vi ) ∈ A. Similarly, for ei j ∈ E , fe(ei j ) ∈ R. When a graph has ei j �≡ e ji and
fe(ei j ) �≡ fe(e ji ), it is a directed graph. Otherwise, the graph is undirected.

Definition 2 (Network Schema) The network schema (Sun and Han 2013), denoted as
TG = (A,R), is a meta template for a heterogeneous network G = (V , E) with the
node type mapping fv and the edge mapping fe, which is a directed graph defined
over node type set A with edges as relations fromR.

Definition 3 (Homogeneous Graph)Ahomogeneous graphGhomo = (V , E) is a graph
in which |A| = |R| = 1. This is to say that all nodes in G belong to a single type and
all edges to one single type.

Definition 4 (Tree Graph) A tree graph Gtree = (V , E) is a graph in which all nodes
are connected with each other and there is no cycles in G. The leaf node in a tree graph
has degree 1, where degree of a vertex v, denoted as d(v), is defined as the number of
vertices that are adjacent to v.

Definition 5 (Heterogeneous Graph) A heterogeneous graph Gheter = (V , E) can be
defined as a graph in which |A| > 1 and/or |R| > 1.

Definition 6 (k-partite Graph) A k-partite graph Gkpar = (V , E) is a graph in which
nodes are partitioned into k different disjoint sets {A1,A2 . . .Ak} where A = A1 ∪
A2∪. . .∪Ak andAi ∩A j = ∅, where i �= j; i, j ∈ {1, . . . , k}. InGkpar , no two nodes
within the same set are adjacent. If ∃emn between nodes vm and vn where fv(vm) ∈ Ai

and fv(vn) ∈ A j , then i �= j ; i, j ∈ {1, . . . , k}.
Definition 7 (Knowledge Graph) A knowledge graph Gknow = (V , E) is a directed
graph whose nodes are entities and edges are subject–property–object triple facts.
Each edge of the form (head entity, relation, tail entity), denoted as < h, r , t >,
indicates a relationship of r from entity h to entity t . h, t ∈ V are entities and r ∈ E
is the relation. Entities and relations in a knowledge graph are usually of different
types, such that A ∩ R = ∅. Knowledge graphs can be viewed as another type of
heterogeneous graphs.

The network schema of a heterogeneous graph specifies type constraints on graph
objects/nodes and relationships of links/edges between the objects/nodes. The con-
straints make the heterogeneous graph semi-structured data, guiding the exploration
of the semantics of the graph.
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3.2 Problem definition

Given a data source X , normally a user set U and an item set I, for each user u ∈
U , the recommendation problem can generally be seen as a mapping function Y =
argmaxu f (U , I) generating the corresponding recommendation results from I that
are of interests to the user u. However, there is no formal definition of GLRSs to
date due to different implementations of various models on different datasets with
specific characteristics. Graphs in GLRSs can be built upon input data sources, e.g.
user–item interactions as well as other auxiliary information, for instance, considering
the graph G = (V , E), where nodes in V can represent e.g. users, items and other
named entities, while edges in E can represent e.g. purchases, clicks, social relations
as well as other relationships among entities. In this survey, we formulate the GLRS
problem from a general perspective. Specifically, for the input data source(s) X , we
would like to find a mapping M(X ) → G, which is used as the input to generate the
corresponding recommendation results Y by modelling graph properties as the main
way complemented with other auxiliary features of graphs:

Y = argmaxu f (M(X ) → G|�) (1)

where G can be of different types, e.g. homogeneous, k-partite, tree-based, complex
heterogeneous graph, etc., based on specific recommendation scenarios, while Y can
be of different forms, e.g. rating scores, possible links, classifications, or ranked lists.
� is the model parameter set to be optimized during model training. In this survey,
we will focus on different types of input data sources X , different types of graphs G
formed from X , the main technologies used for recommendation purposes f , and the
connections between these aspects to elaborate on GLRSs-related studies.

4 From data to graphs

Most of the existing reviews on GLRSs only focus on the input graph types and related
recommendation technologies, but none of them associated different graph types with
original datasets. In fact, the construction of the graph is largely determined by the
dataset at hand. A large amount of semantic and structural information is hidden in the
graphs constructed by analyzing the dataset, and more and more research results show
that the performance of recommendation can be improved in many aspects, such as
accuracy (Wang et al. 2020d; Sun et al. 2021), fairness (Farnadi et al. 2018), diversity
(Mansoury et al. 2020; Isufi et al. 2021), and explainability (Liu et al. 2021a), by
appropriate learning and modelling the graphs. Based on this, before diving into the
specific types of graphs, it is necessary to understand the input data structures, their
attributes, and how these attributes are related to the formation of graphs. Broadly
speaking, there are two types of input data: user–item interaction and side information
(Shi et al. 2014), from which side information can also be further classified into
user/item attributes and external resources. Hence, we classify the input data into
three major categories: interactive data, context data, and external data. The rationale
of the classification is twofold: (1) If it is interactive data for GLRS, e.g. user–item
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interactions, or context data on user/item side. (2) Whether the information should
be from additional data sources, e.g. external knowledge bases. Table 3 illustrates
the taxonomy of datasets, and their relations to graph types as well as techniques in
GLRSs.

Interactive Data in GLRSs. Recommendation is inheritly a tool and technique
that provides users with potentially interesting items based on past user–item inter-
actions. The user–item interaction data as a prerequisite for GLRS naturally form
a relational connection between the user and item. The connections can appear in
explicit or implicit form depending on whether obvious numerical numbers or posi-
tive/negative responses are directly observed. User implicit feedback data are inferred
by indirect user behaviour such as clicking, page viewing, purchasing, watching and
listening (example datasets are Last.fm (Cantador et al. 2011), Bing-News (Wang et al.
2018b, c), and YahooMusic (Dror et al. 2012)), whereas explicit interactive data are
collected directly by prompting users to provide numerical feedback or clear attitudes
on items such as ratings, likes, and dislikes (example datasets are MovieLens (Canta-
dor et al. 2011), Amazon (McAuley et al. 2015; He and McAuley 2016), and Douban
(Ma et al. 2011a; Zheng et al. 2017)). Such connections most commonly appear in
the form of a user–item matrix, where each row encodes the preferences of a user
with his/her interacted items. Each element in the user–itemmatrix represents the user
interaction with the item, which can be binary numbers if implicit interactive data
were found or non-negative numbers if explicit interactive data were found.

Contextual Data in GLRSs.Context refers to the information collected during the
interaction between the user and the item, such as timestamps, locations, or textual
reviews, serving as an additional information source appended to the user–item inter-
actions. Contextual data8 are rich information attached to an individual user or item
that depicts user characteristics such as job and gender (in e.g. dataset) or item prop-
erties such as description and product categories (in e.g. Foursquare (Gao et al. 2012),
Yahoo! traffic stream (Menon et al. 2011) datasets). Such information associated with
the user/item can form natural connections in certain relationships and therefore result
in a network structure that can be used as GLRSs. In addition to the directly col-
lected data attached to users/items, indirect information can also be obtained by a
preliminary analysis of the dataset, such as user similarities, and entities derived from
texts (Phuong et al. 2019). Undoubtedly, there exist obvious relationships between
the implicitly derived information and the analysed user/item. For instance, the user
similarity exhibits a hidden connection between users, and the entities extracted from
an item text are originally attached to the item. It is indisputable that by rationally
taking the graphs formed from contextual data, it can enrich information sources, pro-
vide more possibilities for graph learning-based recommendations, and improve the
performance other than the accuracy of GLRSs (e.g. diversity).

External Data in GLRSs. To obtain more valuable resources apart from user–
item interactions and their attached data from datasets, one can also seek external
sources for GLRSs. A typical example can be found in knowledge graphs (KGs)
which are graph structured data that describe entities or concepts and connect them

8 Other terms may be used to indicate contextual data interchangeably such as side information, features,
demographic data, categories, contexture information, etc. (Chen et al. 2020b). We do not distinguish them
in this paper due to the same mathematical representation they share.
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Fig. 2 An example tree structure from the Amazon and Last.fm websites. From the root node to the leaf
node, the hierarchical structure gradually refines and embodies the types of goods and music

with different types of semantic relationships (Liu et al. 2019a). External data can also
provide complementary information to overcome data sparsity issues though some
of them e.g. KGs may require domain knowledge for recommendation in specific
domains such as e-commerce. Cross-domain knowledge is another type of external
data, which refers to user/item side information from multiple sources. For instance,
user profiles across different networks connected through anchor links (e.g. the link
which connects the same entity from different platforms is called an anchor link)
(Wang et al. 2017), item profiles from different communities (Farseev et al. 2017),
user social relationships through information sharing platforms (Shi et al. 2021) are
leveraged to improve both recommendation accuracy and diversify recommendation
output. Accordingly, multiple subgraphs are built upon various sources which are then
jointly learned for recommendation tasks (Wang et al. 2017).

Depending on different data shown above, one ormore specific graph structures can
be applied to form the input network to GLRSs. Based on this, we further innovatively
propose to classify different graph types as tree-based graphs, homogeneous graphs,
K-partite graphs, complex heterogeneous graphs, hypergraphs, and multiple graphs.
The relations between different data and graph types are shown in Table 5 (“Appendix
A”).

4.1 Tree-based graphs

A tree-based graph where the items are organized in a hierarchy by a certain attribute
of them (e.g. the category) is a natural yet powerful structure for human knowledge.
It provides a machine- and human-readable description of a set of items and their par-
allel or hierarchical relationships like affiliatedTo, subClass and isAPartOf relations.
Such hierarchical relations between items have been widely studied and proven to be
effective in generating high-quality recommendations (Menon et al. 2011;Koenigstein
et al. 2011; Mnih 2012; Kanagal et al. 2012; He et al. 2016; Yang et al. 2016; Sun et al.
2017). Tree-structured data are mostly obtained in a user/item context in explicit con-
textual data. The most common example is the categories of items. Typical domains
of tree-based graphs in GLRSs consist of online products [e.g. the Amazon web store
(McAuley et al. 2015)], foods (e.g. Gowalla (Liu et al. 2013)), movies (e.g. IMDB),
and music (e.g. Last.fm).
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Fig. 3 Homogeneous graph illustration. a An example attributed homogeneous graph with nodes repre-
senting users and edges representing social relations between users in Song et al. (2019b). Node attributes
are from implicit interactive data. bAn example of a session graph with nodes representing interacted items
and edges connecting consecutive interacted items in one session (Xu et al. 2019a)

Figure2 illustrates an example of tree-based graphs in Amazon and Last.fm to
organize electronics or music by categories/genres. If a user buys a Monitor, she may
possibly prefer Power Strips to match her Monitor instead of Aviation Electronics.
This is due to both Monitor and Power Strips belonging to a higher layer category—
Computers according to their intrinsic electrical characteristics. If a user prefers one
song under a certain genre, she is more likely to favor other songs under this genre.

Representative algorithms coping with such graphs include Latent Factor Models
(LFM) (Kanagal et al. 2012), Graph Distributed Representation-based Techniques
(GDRM) (He et al. 2016), Deep Neural Networks (DNN) (Huang et al. 2019), and
Attention Mechanism (AM) (Gao et al. 2019b).

4.2 Homogeneous graphs

A homogeneous graph is a graph with a single type of objects and links in GLRSs.
Typical examples are user graphs in social networks, which include different types
of social relations between users (Verma et al. 2019; Fan et al. 2019b). User–user
relations can be derived from interactive data if recommending other users as the
ultimate goal of the recommender system such as friend recommendation (Fan et al.
2019b), or contextual data if social relations are potential critical factors affecting
users’ next choices (Fan et al. 2019b; Farseev et al. 2017). The hypothesis behind tak-
ing a user social effect as essential contextual information is that two connected users
in a user graph usually share similar preferences and influence each other by recom-
mending items. Besides, various relationships among items, e.g. item co-occurrence
and substitution items (Wang et al. 2020b; Xin et al. 2019; Gori et al. 2007) in a
user behaviour sequence, connect all the items together and thus result in a homoge-
neous item graph. The co-occurrence relations in item graphs implicitly derived from
interactive data not only reflect certain latent relations between items, but also reveal
some behaviour patterns of users. It has been proved that the fusion of co-occurrence
relations between items can yield significant performance enhancements (Wang et al.
2020b). With the development of Graph Neural Network (GNN) and its varieties,
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Fig. 4 K-partite graph
illustration. a A user–item
bipartite graph with nodes
representing user and items and
edges representing interactions
between users and items in
Wang et al. (2019f). b A
k-partite graph with nodes
separated into four parts
representing user, genre, movie,
actor and director, and edges
only existing among different
node sets (Jiang et al. 2018a)

it becomes possible to capture consecutive transitions among nodes while generat-
ing accurate node embeddings for recommendation use. Based on this, in Xu et al.
(2019a), Wu et al. (2019c), Abugabah et al. (2020), by considering the dynamic tran-
sitions in the interactive sequence within one session, the authors construct directed
homogeneous session graphs inwhich a node represents an interacted item and an edge
connects adjacent interacted items while retaining the order of interaction. The nodes
of these homogeneous graphs are without attribute information, which is referred to as
non-attributed homogeneous graphs. In practice, many real-world networks usually
have attributes with their nodes that are also important for making sense of modelling
network topological as well as contextual information for recommendation purposes.
Such networks with node attributes and a single type of nodes as well as edges are
named attributed homogeneous graphs9 (Gao et al. 2018; Jamali and Ester 2009). An
example can be found in a friend networkwhere edges represent friendship (e.g. follow,
like) between two users, and nodes represent users with attributes e.g. demographic
information, or a sequence of items the user interactedwith (Song et al. 2019b). In such
a case, both social influence and user attributes can help to learn user preferences and
thus affect the recommendation performance (Song et al. 2019b). Figure3 illustrates
examples of non-/attributed homogeneous graphs to help resolve the cold start issue
of recommender systems.

Typical approaches in coping with such graphs include PageRank-based Models
(PRM) (Gori et al. 2007), Translation-based Embedding Models (TEM) (Wang et al.
2020b; Gao et al. 2018), Random Walk-based Models (RWM) (Jamali and Ester
2009), Deep Neural Networks (DNN) (Xu et al. 2019a; Isufi et al. 2021), Graph
Neural Networks (GNN) (Qiu et al. 2020b), and Deep Hybrid Models (DHM) (Wu
et al. 2019c; Abugabah et al. 2020; Song et al. 2019b; Chen et al. 2019a).

4.3 K-partite graphs

A k-partite graph, also called multipartite graph, is a kind of graph whose nodes can be
partitioned into k different independent sets so that no two nodes within the same set
are adjacent. In the GLRSs scenario, the k-partite graphs are unipartite graphs when

9 Some articles also categorize graphs into directed and undirected graphs. In our point of view, the undi-
rected graph can be readily converted into a directed graph by replacing each edge with two oppositely
directed edges. Thus, in this survey, without loss of generality, we assume that all graphs are directed graphs.
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k = 1, bipartite graphs when k = 2 and tripartite graphs when k = 3. In Xin et al.
(2019), the authors constructed unipartite graphs where nodes are items, and different
relations exist between two nodes. Relations can be extracted from contextual data
or external sources like knowledge graphs. Especially, bipartite graphs have attracted
significant attention in areas like social network analysis (Tay and Lin 2014). They
divide network nodes into two types and edges exist only between different types of
nodes. User–item interactions can be naturally considered a bipartite graph, where
the nodes represent users and items, and user nodes are linked with those interacted
item nodes. Figure4a gives an example of a bipartite graph formed from user–item
interactive data (Wang et al. 2019f). The edges of the bipartite graph can either be a
single type or multiple types of interactions, e.g. click, like, purchase or view (Li and
Chen 2013; Zheng et al. 2018; Wang et al. 2019f; Zhang et al. 2019a; Phuong et al.
2019; Nikolakopoulos and Karypis 2019; Gori et al. 2007; Sun et al. 2020). In addition
to user–item interactions, auxiliary information of user/item can also be constructed as
a bipartite graph. For instance, items and their attributes (e.g. pin-boards for Pinterest
dataset (Ying et al. 2018)) can also be seen as two types of nodes in forming an
item–entity bipartite graph.

Apart from user–item interactions, bipartite graphs can be extended to multi-partite
graphs by mining the contextual information of user/item and leveraging beneficial
attributes or related information such as user query, actors and actresses of movies as
other groups of nodes (Kim et al. 2019; Fan et al. 2019a; Berg et al. 2017; Cheng et al.
2007; Lei et al. 2020a; Jiang et al. 2018a). For instance, the authors of Cheng et al.
(2007) built a user–movie–genre tripartite graph for personalized recommendation. In
Fig. 4b, a multi-partite graph is formed by utilizing contextual information of items
(movies), such as genre, actor, director (Jiang et al. 2018a).

K -partite graphs can be weighted by assigning numerical points like a rating or
similarity score on corresponding edges (Chen et al. 2020a; Zhang et al. 2019a; Yao
et al. 2015). In Yao et al. (2015), the authors constructed a multi-partite graph incor-
porating user, item, and their related contextual features. Each number on the edge
represents the co-occurrence of two end-nodes. Figure4 shows examples of k-partite
graphs in the GLRS scenario.

Various GLRS-based approaches have been proposed to learn such kind of graphs,
such as Kernel-based Machine learning methods (KML) (Li and Chen 2013), RWM
(Eksombatchai et al. 2018; Jiang et al. 2018a), Meta-path based Methods (MPM)
(Yu et al. 2014; Lu et al. 2020; Yu et al. 2013), GDRM (Cen et al. 2019), TEM (He
et al. 2015), DNN (Zheng et al. 2018), Auto-Encoder (AE) (Zhang et al. 2019a), AM
(Wang et al. 2019d), GNN (Wang et al. 2019f; Chen et al. 2020a) (see Table 3 for
more details).

4.4 Complex heterogeneous graphs

Complex heterogeneous graphs are related to graphs with multiple types of nodes and
edges. The connections among nodes do not follow specific rules (Xu et al. 2019b;
Jiang et al. 2018b; Shi et al. 2018; Lu et al. 2020; Wang et al. 2020f; Kyriakidi et al.
2020; Feng and Wang 2012; Zheng et al. 2017). For instance, in Wang et al. (2020f)
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Fig. 5 Complex heterogeneous graph illustration. aAn example of complex heterogeneous graphs in which
there are three kinds of nodes representing group, user, and item, respectively, and group–user, user–item
two kinds of edges, for social recommendations (Shi et al. 2018). b An illustration of KGs with multiple
kinds of entity nodes relation edges for exploring high-order user preferences for recommendations (Wang
et al. 2019a)

the authors constructed long- and short-term graphs in which nodes are divided into
user and item nodes, and edges can exist either between user and item, or among
items. Complex heterogeneous graphs are usually non-weighted by default, but they
can also be weighted. In Zheng et al. (2017), Shi et al. (2016), numbers on user–item
edges depict the user’s rating on the item. Figure5a, b gives examples of weighted and
unweighted complex heterogeneous graphs, respectively.

The goal of complex heterogeneous graph learning is to obtain the latent vertex
representations by mapping vertexes into a low-dimensional space, which then can be
leveraged for recommendations (Xu et al. 2019b; Jiang et al. 2018b; Shi et al. 2018; Lu
et al. 2020). The authors of Jiang et al. (2018b) constructed a complex heterogeneous
graph with four types of nodes and ten types of edges. The node representations are
learned for citation recommendations. In Shi et al. (2018), the authors constructed a
heterogeneous graph with user, item, and various types of attributes as nodes. Finally,
the learned user/item representation is adopted to predict the user’s rating score of the
item to make recommendations. Differently, in Kyriakidi et al. (2020), the connection
mode can be revealed via path traversing, so that the similarities between two nodes
can be calculated for a recommendation.

Another typical example falling into this category is a Knowledge Graph (KG).
KG is a multi-relational graph composed of entities as nodes and relations as different
types of edges as illustrated in Fig. 5b. Each edge of KG represents a triple of the
form (head entity, relation, tail entity), also called a fact, indicating that two entities
are connected by a specific relation. Recent years have witnessed a rapid growth
in KG application in recommendation, resulting in promising improvements in both
recommendation accuracy and explainability due to the rich structured information
that KG provides about the items. Existing KGs, e.g. Yago (Suchanek et al. 2007),
DBPedia (Lehmann et al. 2015), provide auxiliary information apart from user–item
interactions. The relational properties in KGs break down the independent interaction
assumption by linking items with their attributes. Meanwhile, the introduction of KGs
alleviates the data sparsity and cold-start issues raised in recommender systems (Wang
et al. 2019b; Ma et al. 2019; Wang et al. 2020g; Zhou et al. 2020b; Song et al. 2019a;
Yang and Dong 2020; Wang et al. 2020a; Ai et al. 2018; Zhang et al. 2016; Ma et al.
2019; Catherine andCohen 2016; Shi et al. 2020; Chen et al. 2019d;Wang et al. 2020g;
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Zhou et al. 2020a, b; Cao et al. 2019; Yu et al. 2013; Ostuni et al. 2013). However,
various types of entities and relations in KGs also pose the challenge of capturing
semantically interconnected information for effective recommendations. In addition,
how to reasonably and vividly provide recommendation results through KG internal
reasoning and the linkage amonguser–item interactions deservesmore attention (Wang
et al. 2019g), for instance, how to impartially and convincingly explain the reasoning
process of the recommendation list to the target user. The resources of all KGs used
for GLRSs have been collected and are displayed in Table 4.

Typical technologies related to learn complex heterogeneous graphs include LFM
approaches (Zhao et al. 2017), PRM(Catherine et al. 2017;Catherine andCohen2016),
RWMapproaches (Bagci and Karagoz 2016;Ma et al. 2019), Rule-basedModel (RM)
(Shi et al. 2020), MPM (Shi et al. 2015; Ostuni et al. 2013), GDRM (Shi et al. 2018;
Fu et al. 2020; Palumbo et al. 2017; Jiang et al. 2018b), TEM (Chen et al. 2019d;
Wang et al. 2018b, 2019a; Ai et al. 2018), AE (Zhang et al. 2016), AM (Han et al.
2018), Graph Neural Network (GNN) (Wang et al. 2019e, c), Deep Reinforcement
Learning (DRL) (Song et al. 2019a; Lei et al. 2020a), and DHM (Sheu and Li 2020;
Wang et al. 2020g; Zhou et al. 2020a; Wang et al. 2018c). Other techniques such as
Spectral Clustering (Farseev et al. 2017) are also adopted to learn such kind of graphs.
(Refer to Table 3 for more details)

4.5 Hypergraphs

Hypergraphs are defined as a generalization of graphs in which the edges are arbitrary
non-empty subsets of the vertex set (Agarwal et al. 2006). Instead of having edges
between pairs of vertices, hypergraphs have edges that connect sets of two or more
vertices. Correspondingly, such edges of hypergraphs are called hyperedge. If the
hyperedge always has the degree of 2, the hypergraph reduces to an ordinary graph.
For clarity, we only refer to hypergraphs with multiple hyperedge degrees. The moti-
vation for introducing hypergraphs for recommendations is twofold (Feng et al. 2019):
first, the data correlations can be more complex than the pair-wise relationship, which
is difficult to model with traditional graph structures; second, the data representations
can be multi-modal, which means that data can be connected through e.g. text infor-
mation, visual information, or social connections, which is difficult to capture with the
traditional graphs. Thus, a hypergraph is a way to model a more general data structure,
and the recommendation performance can be improved through the modelling of the
high-order proximity in the constructed hypergraphs (Yu et al. 2021).

Recent years witness the learning of hypergraphs in promoting the development of
recommender systems (Wang et al. 2020c; Bu et al. 2010; Li and Li 2013; Tan et al.
2011; Zhu et al. 2016;Mao et al. 2019; Yu et al. 2021; Gharahighehi et al. 2021, 2020).
Hypergraphs can be generalized explicitly from data sources or derived implicitly indi-
rectly through, for instance, a clustering technique. In Bu et al. (2010), the authors
constructed a hypergraph with six types of vertices and nine types of hyperedges rep-
resenting complex relationships of nodes rather than a pair-wise form. Specifically,
user–item interactive data, contextual data such as social relations, tagging and
album information, are adopted. Meanwhile, the group information obtained through

123



Recommending on graphs: a comprehensive review from a data… 821

Table 4 A collection of commonly used knowledge graphs

Name Domain Type Main Knowledge Source

General KG YAGO (Suchanek
et al. 2007)

Cross-Domain Wikipedia

Freebase
(Bollacker et al.
2008)

Cross-Domain Wikipedia, NNDB, FMD, MusicBrainz

DBpedia
(Lehmann et al.
2015)

Cross-Domain Wikipedia

Satori20 Cross-Domain Web Data

CN-DBPedia (Xu
et al. 2017)

Cross-Domain Baidu Baike, Hudong Baike, Wikipedia (Chi-
nese)

NELL (Carlson
et al. 2010)

Cross-Domain Web Data

Wikidata21 Cross-Domain Wikipedia, Freebase

Google
Knowledge
Graph22

Cross-Domain Web data

Facebooks
Entities Graph23

Cross-Domain Wikipedia, Facebook data

ConceptNet
(Speer et al.
2017)

Cross-Domain Web data

MultiWordNet
(Pianta et al.
2002)

Cross-Domain Princeton WordNet

Babelfy (Moro
et al. 2014)

Cross-Domain BabelNet

Open Multilingual
Wordnet (Bond
and Paik 2012)

Cross-Domain Wiktionary, Unicode Common Locale Data
Repository

Domain Specific
KG

Bio2RDF (Belleau
et al. 2008)

Biological Domain Public bioinformatics databases, NCBIs
databases

KnowLife (Ernst
et al. 2014)

Biomedical Domain Scientific literature, Web portals

IMDB24 Movie Domain Web data

KnowIME (Yan
et al. 2020)

Intelligent
Manufacturing
Domain

Internet, Baidu Encyclopedia, and related
intelligent manufacturing websites

K nearest neighbour and K-means also forms part of the hyperedges. Pliakos and
Kotropoulos (2014) used a unified hypergraph model boosted by group sparsity opti-
mization and encapsulated the high order connections among users, images, tags, and
geo-information for tag recommendation. An hyperedge can be weighted by binary
values indicating whether to participate or whether the link exists between two nodes,
or integer values indicating the frequency of participation (Yu et al. 2021). Besides,
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Fig. 6 aAn example hypergraph inwhich nodes are represented in different colours and edges exist between
colours of nodes (Wang et al. 2020c).bAnexample ofmultiple graphs inwhich there is a user–item–attribute
tripartite graph and a homogeneous social graph (Wang et al. 2017)

decimal values such as similarity scores can also be assigned as edge weight depend-
ing on recommendation context (Bu et al. 2010; Tan et al. 2011). Different weights
assigned to a hypergraph differentiate the impact of each hyperedge. An example
of a hypergraph is illustrated in Fig. 6a, in which the hypergraph consists of three
nodes with one hyperedge in September 2017 and four nodes with two hyperedges in
September 2019 (Wang et al. 2020c).

Representative approaches in dealing with hypergraphs in GLRS include Regular-
ization Theory-based Graph Ranking (RTGR) (Bu et al. 2010), GNN (Yu et al. 2021),
and DHM (Wang et al. 2020c; Gharahighehi et al. 2020). More specific details are
found in Sect. 5 and Table 3.

4.6 Multiple graphs

Incorporating various types of information involved into a graph will often make the
composed graph too complicated and not conducive to subsequent algorithms. There-
fore, many researchers choose to split complex heterogeneous graphs into multiple
subgraphs for learning separately. While such a “divide and conquer" strategy disas-
sembles the complexity of the graph, it can also be adapted to certain graph learning
algorithms (Verma et al. 2019; Fan et al. 2019b; Wu et al. 2019b; Vijaikumar et al.
2019; Wang et al. 2017). For instance, in Fan et al. (2019b), the authors disassem-
bled the complex multigraph with more than one type of edge between two nodes,
into three homogeneous subgraphs, which are then learned separately through the
DeepWalk technique for friend recommendation. More researches choose to separate
interactive data from contextual data/external data as a powerful supplementary
information for learning user/item representations and meanwhile to some extent alle-
viating the cold-start issue (Liu et al. 2020; Ali et al. 2020). The authors of (Fan et al.
2019b; Wu et al. 2019b) extract the user social relations from original data to build a
homogeneous graph of the social network. Similarly, in Fig. 6b, the authors of Wang
et al. (2017) use the users as anchor links (e.g. the link which connects the same entity
from different platforms is called an anchor link) to obtain the user social informa-
tion from cross-domain knowledge resulting in homogeneous subgraphs to improve
recommendation performance. In Monti et al. (2017), Isufi et al. (2021), the authors
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construct two homogeneous graphs, namely an item graph and a user graph in which
nodes represent items and users, respectively, and edges represent similarities between
adjacent nodes.

Another advantage of leveraging a multi-graph for recommendation is scalability.
When a new data source is added, it can be constructed as a separate graph independent
of the original data source, and the learned embedding representations can be merged
in the upper layer. In such cases, different data sources can be separated into a more
concise and clear form for subsequent maintenance and learning (Vijaikumar et al.
2019).

Various ways can be adopted to learn multiple graphs for recommendations. For
graphs with similar structures (e.g. either homogeneous or heterogeneous), similar
learning strategies are usually adopted to obtain the low-dimensional representation of
nodes (Ali et al. 2020;Monti et al. 2017), while it is usually necessary to adopt different
learning strategies for graphs with different structures. This is reasonable because
usually a certain learning strategy should be performed under certain assumptions or
rules (Ma et al. 2011a; Chen et al. 2019a).

To deal with multiple graphs, the most common way is to learn each independent
graph separately and then aggregate the results for recommendation purposes. Typical
examples are GDRM (Verma et al. 2019; Ali et al. 2020), LFM (Ma et al. 2011a), AM
(Vijaikumar et al. 2019), GNN (Fan et al. 2019b; Wu et al. 2019b), DHM (Monti et al.
2017), and DNN (Wang et al. 2017).

4.7 Graph discussion

Graphs, ranging from a flat tree-based structure to a complex network structure, from
a homogeneous network to a heterogeneous one, evolve from both structural and con-
textual sides. As summarized in “Appendix Table 5”, though many different datasets
overlap across various graphs and recommendation tasks, it is undeniable that there is
no perfect graph type that can embrace all types of data or solve all problems of the
recommender system. However, we can still make several observations:

First, tree-based graphs aremainly derived from e-commerce datasets (e.g. Amazon
and JD) in which types of commodities can be broken down by the category’s level of
granularity. Suchkindof tree structure provides recommender systemswith a paradigm
which can be further refined in a “top-down” manner.

Second, homogeneous graphs can be formed by leveraging user social networks
(user graph) or interlinking of items (item graph). A session graph is a kind of directed
item graph with nodes of items that are clicked by the user and links of relations
that are according to the clicked order. Homogeneous graphs can be used to mine
the relationships between a single type of node (e.g. users/items/sessions) to make
targeted modelling for recommendations.

Third, most k-partite graphs, especially for k = 2, are constructed based on user–
item interactions, which are the preliminary requirements for RS and can be naturally
formed into a graph with users and items as two groups of nodes. For generalized
k-partite graphs, they normally formalize by extending the user–item bipartite graph
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with contextual knowledge w.r.t. users/items that are deemed to potentially benefit
recommendation performance.

Besides, complex heterogeneous graphs incorporating multi-types of nodes and
relations reveal the intricate relationship between user, item, and other related infor-
mation from contextual/external data sources in real scenarios. Especially, KGs are
generally leveraged in the domains of movies, music, books, or news, where named
entities are highly recognizable and have been witnessed, and most of which can be
found in the corresponding entries in e.g. Wikipedia, DBpedia, Yago, etc.

Furthermore, hypergraphs have recently been introduced to represent the connec-
tions between sample groups such as user groups according to social relationships,
or item groups according to a user’s co-purchase history, which breaks the traditional
node-to-node pattern, pursuing a higher-level representation of data structure. With
their diversity, heterogeneous graphs with various aspects of information can be used
to model more complex situations than other types of graphs so as to better solve the
cold-start and data sparsity issues of recommender systems. However, such complex-
ity of both graph structure and content leads to a more complicated modelling process
and brings challenges that cannot be ignored. One possible solution is to break down
such complexity into multiple subgraphs. In this way, the complex relationship of
the graph is degraded, and the relationship between nodes is more concise and clear.
To reveal the group knowledge among nodes and meanwhile incorporate multi-modal
information for better recommendations, a hypergraph is proposed to express multiple
relationships beyond the pair-wise relations. With the development of technology, the
types of graphs that computers can process tend to be increasingly complex and fine-
grained, which suggests that RS can handle more sophisticated and multi-dimensional
problems and scenarios.

5 Graph-basedmodels for GLRS

In this section, we will go through various models adopted in GLRS and analyse them
from the technical perspective, as shown in Fig. 7. Many GLRS recommendation
algorithms are not only based on a specific technology but often include multiple
different types of technologies. Therefore, our classification is mainly based on the
technology used by the key components of the model pointed out in the paper. A
comprehensive technology summary in GLRS is found in Table 6 (“Appendix B”).

5.1 Traditional techniques

Traditional machine learning techniques used in GLRS can generally be classi-
fied into PageRank-based models (PRM), regularization theory-based graph ranking
techniques (RTGR), kernel-based machine learning techniques (KML), latent factor
models (LFM), and others (e.g. association mining and clustering). Graph learning-
based traditional techniques can be used for multiple types of graphs from various
domains of data sources. The classic PageRank algorithm computes an importance
score for every node according to the graph connectivity, which is usually exploited to
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Fig. 7 A categorization of GLRS techniques from the technical perspective

tackle the recommendation as a ranking problem.Many adapted PageRank algorithms
have been proposed and widely applied to a variety of graphs like homogeneous item
graphs (Gori et al. 2007), K-partite graphs (Shams and Haratizadeh 2017; Jäschke
et al. 2007; Musto et al. 2017, 2021), and complex heterogeneous graphs (Catherine
and Cohen 2016; Lee et al. 2013) for recommendation. A separate line of work in this
area—regularization theory-based graph ranking techniques—is widely exploited to
learn the ranking results on hypergraphs for recommendations (Bu et al. 2010; Li and
Li 2013; Tan et al. 2011; Mao et al. 2019). They usually use hypergraphs to model
high-order relations among various types of objects in social networks and use the
regularization framework (Zhou and Schölkopf 2004) for ranking graph data. Some
research works use kernel-based machine learning techniques to compute similarities
between structured objects, such as nodes of a graph, that cannot be naturally repre-
sented by a simple set of numbers, and demonstrate their effectiveness in a variety
of graphs in RS (Li and Chen 2013; Yajima 2006; Li et al. 2014; Fouss et al. 2012;
Ostuni et al. 2014) (homogenous graph, K-partite graph and knowledge graph). For
instance, Yajima (2006) used a Laplacian kernel to capture the positional relations
among nodes on a homogenous item graph and built one-class SVM models for each
user to recommend items that are positionally closer to their previously bought items.
Li and Chen (2013) propose a generic kernel-based machine learning approach of link
prediction in bipartite graphs and apply it in recommender systems. In a later work,
Li et al. (2014) inspect a spectrum of social network theories to systematically model
the multiple facets of a homogeneous user graph in social networks and infer user
preferences. They design and select kernels corresponding to major social network
theories and then adapt a non-linear multiple kernel learning technique to combine
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the multiple kernels for recommendation. Latent factor models are usually adopted by
many researchers to learn the latent feature of users and items for recommendation
purposes. In GLRS, LFM can be accompanied by regularization terms constraining
the trust/distrust relations between users to integrate contextual information extracted
from users’ social networks (Du et al. 2011; Ma et al. 2009; Sun et al. 2015). Ma et al.
(2008), Ma et al. (2011b) proposed a factor analysis based on probabilistic matrix
factorization to alleviate the data sparsity and poor prediction accuracy problems in
recommender systems by incorporating social contextual information, such as users’
social trust networks and social tags. In addition, there are many other traditional
machine learning techniques used to model the relations between the nodes in GLRS,
such as clustering (Farseev et al. 2017; Song et al. 2011), association mining (Huang
et al. 2004) and graphing complex numbers (Xie et al. 2015), and applied to K-partite
graphs (Song et al. 2011), complex heterogeneous graphs (Huang et al. 2004; Xie et al.
2015), and multiple graphs (Farseev et al. 2017).

5.2 Path-based techniques

For heterogeneous graphs with multiple types of nodes and relations, the basic idea
of earlier recommendation strategies is to leverage path-based semantic relatedness
between users and items over the constructed graphs. Different from similarity-
based techniques based upon the item/user attributes, path-based techniques especially
emphasize the essential role of links in graphs, and links between start node and end
node can form a path serving a recommendation purpose. In this case, the underlying
relationships via network propagation show particularly important for indirectly con-
nected objects. They can be used mainly for complex heterogeneous graphs (Bagci
and Karagoz 2016; Ma et al. 2019; Feng andWang 2012; Shi et al. 2015, 2018, 2020;
Zheng et al. 2017; Shi et al. 2016; Ostuni et al. 2013) and k-partite graphs (Li and
Chen 2013; Cheng et al. 2007; Yao et al. 2015; Jiang et al. 2018a; Nikolakopoulos and
Karypis 2019; Sharma et al. 2016; Eksombatchai et al. 2018; He et al. 2015; Cen et al.
2019; Lu et al. 2020; Yu et al. 2013, 2014), but can also be adopted for multiple and
homogeneous graphs (Yin et al. 2010; Vijaikumar et al. 2019; Jamali and Ester 2009;
Gori et al. 2007), covering various domains such as POI recommendation, academic
and book, e-commerce, and entertainment domains.

Earlier studies leverage a series of predefined rules to generate a path on the
constructed graphs followed by different similarity measurements for ranking the
candidate items for recommendation (He et al. 2015; Catherine and Cohen 2016;
Catherine et al. 2017; Kyriakidi et al. 2020). Another graph tracing algorithm initially
designed for homogeneous networks is a random walk-based algorithm (Andersen
et al. 2008). It starts at a node and follows outgoing edges, uniformly at random or
according to predefined transition probability, until the stop condition is reached. The
output paths indicate the context of connected vertices. The randomness of walks gives
the ability to explore the graph while considering both the global and local structural
information by walking through neighbouring vertices. The random walk mechanism
enables capturing complex, high-order, and indirect relations between nodes for rec-
ommendations. Due to these advantages, random walk and its various variants are
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Fig. 8 Bibliographic network schema and meta paths defined in Sun et al. (2011)

favored for a long period in the GLRS domain for generating paths in homogeneous
as well as heterogeneous graphs (Jamali and Ester 2009; Feng and Wang 2012; Jiang
et al. 2018a; Eksombatchai et al. 2018; Nikolakopoulos and Karypis 2019; Gori et al.
2007; Li and Chen 2013; Yin et al. 2010; Vijaikumar et al. 2019; Sharma et al. 2016;
Mao et al. 2019; Bagci and Karagoz 2016; Ma et al. 2019; Cheng et al. 2007; Yao
et al. 2015). For instance, Jiang et al. (2018a) propose a generalized randomwalk with
restart model on a k-partite graph to extract the paths. Then, a BPR-based machine
learning technique is leveraged to learn the weights of links in the graph.

To integrate different types of objects and links in heterogeneous networks, the
work of Sun et al. (2011) proposed the concept of a meta-path, which is adopted
by many later researches (Yu et al. 2013; Cen et al. 2019; Lu et al. 2020; Shi et al.
2018, 2015; Zheng et al. 2017; Shi et al. 2016; Ostuni et al. 2013; Yu et al. 2014).
Specifically, a meta-path is a path defined on the graph of network schema TG =
(A,R),25 and normally denoted in the form of A1

R1−→ A2
R2−→ A3 . . .

Rl−→ Al+1,
which defines a composite relation R = R1 ◦ R2 ◦ . . . ◦ Rl between types A1 and
Al+1, where → explicitly shows the direction of a relation from graph G, ◦ denotes
the composition operator on relations. Figure8 illustrates two examples of meta-paths
Fig. 8b, c derived from network schema Fig. 8a. When a user-specific meta-path e.g.
P = (A1A2 . . . Al) has been given, several similarity measures can be defined for a
pair-wise nodes comparison, namely to compare vi ∈ A1 and v j ∈ Al according to
a series of paths derived based on P , referred to path instances. Random walk is one
representative to generate paths instances p ∈ P following the predefined meta-path
schema (Shi et al. 2015). To further learn the attributed heterogeneous information
network (HIN) for better recommendations, later studies attempt to combine meta-
paths with a traditional latent model, e.g. FM (Zhao et al. 2017), MF (Shi et al. 2018;
Yu et al. 2014). Though random-walk-based similarity measures require less domain
knowledge compared to meta-path-based measures,26 the latter turn out to be more
meaningful and interpretable in most GLRSs (Sun et al. 2011).

25 Please refer to Definition 1 and 2 in Section 3.1 for the meaning of the symbols.
26 Meta-path-based approaches usually require handcrafted features to represent path semantics and thus
further require domain knowledge (Sun et al. 2011).
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Fig. 9 A toy example of embedding a graph into 2D space with different granularities (Cai et al. 2018).
G1,2,3 denotes the substructure containing node v1, v2, v3

Despite that path-based similarity strategies have achieved initial success in
improving RS accuracy to some extent, challenges still exist. First, meta-path-based
similarities rely on explicit path reachability and the quality would be affected by the
sparse and noisy input data, especially for links that are accidentally formed but do
not convey meaningful information for recommendations. Second, the explicit path
relatedness derived from the path-based similarity does not necessarily have a positive
impact on recommendation performance. For instance, the work of Yu et al. (2013)
learns a linear weighting mechanism to integrate the extracted meta-paths for the
subsequent recommendations, ignoring the complicated mapping mechanism of the
constructed k-partite graphs. Third, path-based similarity strategies need to generate
similarity scores for all candidate items at each step for every user which reduces the
effectiveness of the system and thus makes it difficult to be applied in a large-scale
scenario.

5.3 Graph embedding-based techniques

The motivation for applying graph embedding (GE) strategies lies in that they can
provide an effective yet efficient way to solve the graph analytics problem (Cai et al.
2018). GE-based techniques are mainly applied to complex heterogeneous graphs (Fu
et al. 2020; Wang et al. 2020a; Jiang et al. 2018b; Palumbo et al. 2017; Wang et al.
2018b; Cao et al. 2019; Wang et al. 2021b; Cao et al. 2019; Ai et al. 2018; Chen et al.
2019d) from multiple data sources but can also be applied to homogeneous graphs
(Gao et al. 2018; Wang et al. 2020b), tree graphs (He et al. 2016), k-partite graphs
(Li et al. 2021b), and multiple graphs (Verma et al. 2019; Ali et al. 2020) in different
recommendation domains.

Specifically, graph embedding converts a graph into a low dimensional space in
which the graph information can be retained as much as possible. By representing a
graph as a (or a set of) low-dimensional vector(s), graph algorithms can be applied
efficiently. Figure9 illustrates how graph embedding projects a graph into the vector
space with different granularities, e.g. w.r.t. node/edge/substructure/whole graph (Cai
et al. 2018). Some researches differentiate graph representation learning and graph
embedding by comparing the dimension of the output embedding vectors with the
dimension of the inputs (Cai et al. 2018). Graph embedding focuses on learning the
low-dimensional representations, while graph representation learning does not require
the learned representations to be lowdimensional. Though they have slight differences,
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we do not make a special distinction in this survey. Essentially, the two approaches
aim to project a graph into the vector space while preserving the graph structure and
capturing the connectivity information within the graph to serve the recommendation
task. The mapping can be defined as:

f : vi → xi ∈ Rd (2)

where d � |V|, and xi = {x1, x2, . . . , xd} is the embedded or learned vector that
captures the structural properties of node vi .

The recent advances on GE-based GLRSs have been largely influenced by the skip-
gram model (Mikolov et al. 2013a) designed originally to learn word representations
w.r.t. the words context in a sequence e.g. a sentence. For a specific type of graph,
skip-gram can be used on path sequences extracted from the graph in which nodes can
be analogous to words, and paths can be analogous to sentences. Inspired by this, a
series of graph distributed representation-based GLRSs using skip-gram-related algo-
rithms, e.g. DeepWalk (Perozzi et al. 2014), LINE (Tang et al. 2015), and Node2vec
(Grover and Leskovec 2016), gradually emerged and achieved encouraging success
(Verma et al. 2019; Palumbo et al. 2017; Jiang et al. 2018b; Vijaikumar et al. 2019;
Gao et al. 2018; Ali et al. 2020; He et al. 2016; Wang et al. 2020a; Gharahighehi et al.
2021; Fu et al. 2020). For instance, the authors of Gao et al. (2018) apply DeepWalk
which aims to maximize the average logarithmic probability of all vertex context pairs
in a random walk sequence, to learn user and item representations on a multi-source
homogeneous item graph to consider item structure, textual content and tag informa-
tion simultaneously which are then used for collaborative filtering. In Palumbo et al.
(2017) the authors generate user and item representations with Node2vec, an exten-
sion of DeepWalk by leveraging a biased random walk to navigate the neighbourhood
nodes, on a complex heterogeneous knowledge graph, which are then used to com-
pute property-specific relatedness scores between users and items as the input for the
learning to rank approach, resulting in optimizing top-N item recommendations.

Another research line of GE-based technique adopts translation-based embedding
models inspired by Mikolov et al. (2013b), e.g. TransE (Bordes et al. 2013). Different
from DeepWalk-related approaches, TransE explicitly models entities and relation-
ships among entities into the same space or different spaces while preserving certain
information of the graph, which is later generalized into a hyperplane translation
(TransH (Wang et al. 2014)) and a translation in separate entity space and relation
spaces (TransR (Lin et al. 2015)). The basic idea behind TransE is that the relation-
ship between two entities corresponds to a translation between the embeddings of
entities, that is, h + r = t where h, t , and r represent head entity, tail entity and
relation between h and t in triplet (h, r , t) in a graph. Researchers attempted to adopt
such translation-based models for e.g. a knowledge graph embedding for recommen-
dation (Ai et al. 2018; Wang et al. 2020b; Chen et al. 2019d; Cao et al. 2019; Wang
et al. 2018b, 2019a). For example, Wang et al. (2020b) assign a basic representa-
tion and various relational ones for each item from a directed homogeneous graph via
TransE,which are then combined dynamically by temporal kernel functions, providing
both recommendations and explanations. Chen et al. (2019d) adopt TransH to embed
the objects’ social relationships from the homogeneous graph into a shared lower-
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dimensional space and learn a user’s dynamic preference via a probabilistic model
from the user–item bipartite graph. Finally, the recommendation list is generated with
item-based collaborative filtering.

5.4 Deep learning-based techniques

Deep learning (DL) has driven a remarkable revolution in recommender applications
as can be seen by the number of research publications on deep learning-based rec-
ommendation techniques having increased exponentially recently. It has been applied
to multiple types of graphs from single graph to multiple graphs, from homogeneous
to heterogeneous graphs from different recommendation domains. To draw an overall
concept of this field, we further classify the existing DL-based approaches into DNN,
auto-encoder, attention mechanism, reinforcement learning, graph neural network,
transformer-based approaches and deep hybrid models as shown in Fig. 7.

5.4.1 Deep neural network (DNN)

A deep neural network (DNN) is adopted to model complex non-linear relationships
with generated compositional models where the object is expressed as a layered com-
position of primitives. By piling up layers, composition of features from lower layers
can be extracted and learned (Bengio 2009). DNNs are typically feedforward networks
in which data flow from input layer, are transformed into vector representations, and
projected into a different space to an output layer without looping back. DNN-based
techniques can be used for tree graphs (Huang et al. 2019) and complex heteroge-
neous graphs (Sun et al. 2018; Mezni et al. 2021; Wang et al. 2019g) in e-commerce
and entertainment domains, or homogeneous graphs (Wu et al. 2019a) in social net-
work domain. Taking graphs as input, DNN can learn high-order interactions among
nodes by stacking layers with non-linear transformations (Wang et al. 2017; Wu et al.
2019a). For instance, Wang et. al (Wang et al. 2017) apply several multiple layers
with a pooling operation to explore interaction patterns between user, item and their
attributes frommultiple cross-domain graphs taking nodes’ one hot encoding as input.
To learn the propagation effect of social influence of users, they further employ the
smoothness regularization term to closely embed users connected by social networks
from different data sources.

Another variation in DNN is Recurrent neural networks (RNNs) (Cho et al. 2014;
Hochreiter and Schmidhuber 1997). The original superiority of RNNs canwell capture
the dependencies among items from graphs in time-sensitive user–item interaction
sequences or in session-based recommendation settings. However, the limitations lie
in that it is difficult to model dependencies in a longer sequence, and training is
burdened with high cost, especially with the increase in sequence length. Thus, some
works combine RNNwith othermechanisms to balance this disadvantage of RNN. For
instance, Huang et al. (2019) design a memory-module to extract a user’s fine-grained
preference on a taxonomy frommultiple hops reasoning on a tree-based graph, together
with a GRU layer to learn the sequential pattern. Wang et al. (2019g) make it different
by adopting an LSTM layer to model the sequential dependencies of entities and
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Fig. 10 Illustration of the graph auto-encoder framework in GLRS (Berg et al. 2017).The system input
bipartite user–item graph which is represented an input data source X and adjacency matrix M . Then, the
graph encoder learns node representations of users and items U , V , which go through the decoder to derive
the predicted rating matrix M̂

relations on a complex heterogeneous KG, generating path representations followed
by a pooling operation to obtain a prediction signal for user–item pairs. Besides, using
RNN for long sequence modelling also suffers from the vanishing and exploding
gradient problem because of the choice of the number of layers and the activation
functions, which is a common problem in many types of neural networks, e.g. feed-
forward neural network, and CNN. Despite its limitations, the RNN-based approach
still dominates in sequential recommendations due to its recurrent nature that matches
the natural way of our brain to read one after another in a sequence mode.

Convolutional neural networks (CNNs) (Krizhevsky et al. 2012) are capable of
extracting local and global representations from heterogeneous data sources such as
textual and visual information. To leverage CNN for extracting graph structured data,
Wang et al. (2018c) extend traditional CNN which allows flexibility in incorporating
symbolic knowledge from a complex heterogeneous knowledge graph for learning
sentence representations.

5.4.2 Auto-encoder

A basic auto-encoder (AE) contains an encoder which encodes (projects) high-
dimensional inputs X to low dimensional hidden representations Z, and a decoder
which decodes (re-projects) hidden representations Z to the output X̂ that looks like
the original input X . The objective is to minimize the reconstruction error, and find the
most efficient and informative compact representations for the inputs. In most GLRSs
studies, AE is applied to learn a complex heterogeneous graph (Zhang et al. 2016) in
the entertainment and book recommendation domains.

To apply AE to graph-structured data for a recommendation purpose, Zhang et al.
(2016) first use TransE to learn graph topological information from the complex het-
erogeneous knowledge graph. Then, stacked denoising auto-encoders and stacked
convolutional auto-encoders are adopted to learn textual and visual representations
of items, which are the input for the collaborative filtering framework. Later, Berg
et al. (2017) consider a recommender system as a matrix completion task, and pro-
pose to apply a graph auto-encoder to produce latent features of user and item nodes
through a form of message passing on the bipartite user–item interaction graph. The
learned latent user and item representations are used to reconstruct the rating links
through a bilinear decoder. Generally speaking, a graph auto-encoder takes node fea-
ture embedding X and adjacency matrix A as inputs, generating latent variable Z as
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output through the encoder (inference model). To reconstruct the graph structure data,
the decoder (generative model) takes Z as input and outputs a reconstructed adja-
cency matrix Â. Based on Berg et al. (2017), Zhang et al. (2019a) go a step further by
proposing a new stacked and reconstructed graph convolutional network for a user–
item bipartite graph, which takes low-dimensional user and item embeddings as the
input to themodel and solves the cold start problem by reconstructing themasked node
embeddings with a block of graph encoder-decoder in the training phase. Figure10
illustrates how an auto-encoder operates on graph-structured data for a recommenda-
tion purpose. The problem of the auto-encoder framework is that it usually leads to
a local optimum due to the back-propagation algorithm it employs (Tian et al. 2014),
which is also the common problem of most deep learning-based techniques that adopt
back-propagation as a training procedure. Besides, the encoder-decoder architecture
requires that the complete sequence of informationmust be captured by a single vector,
which poses problems in holding on to information at the beginning of the sequence
and encoding long-range dependencies.

5.4.3 Attention mechanism

The attention mechanism (Bahdanau et al. 2014) is motivated by human visual atten-
tion. For example, people only need to focus on specific parts of visual inputs to
understand or recognize them. The attention mechanism is proposed to determine
the significance of the inputs e.g. sequences. The effectiveness of the attention-based
techniques in RSs has been verified and aroused considerable attention over recent
years. In attention-based GLRSs, inputs are weighted with attention scores and out-
puts are normally vectors that combine different importance of the inputs. Attention
mechanism can be used to allow the learning process to focus on parts of a graph
that are more relevant to a specific task. Generally, it can be used in conjunction with
MLP, CNN, RNN and other deep learning-based architectures. Thus, the heart of
the attention-based techniques is how to obtain and calculate the attention weight of
each input part. In this paper, attention mechanism can be used for multiple different
types of graphs in various recommendation domains. For instance, in the e-commerce
domain, the Amazon dataset can be formed into a tree graph (Gao et al. 2019b), k-
partite graph (Wang et al. 2019d) and complex graph (Han et al. 2018) learned with an
attention network. The Ciao, Epinions, Taobao and Kuaishou datasets can be formed
into homogeneous graphs (Chen et al. 2019a; Chang et al. 2021b) learned with atten-
tion mechanisms. Data sources in the entertainment domain can be constructed into
k-partite graphs (Wang et al. 2019d; Xin et al. 2019), complex heterogeneous graphs
(Han et al. 2018; Wang et al. 2019a), homogeneous graphs (Hao et al. 2021b; Chen
et al. 2019a) and multiple graphs (Xia et al. 2021a) learned with an attention network.
Attentionmechanisms can also be applied in POI (Wang et al. 2019d; Hao et al. 2021b)
and book (Wang et al. 2019a) domains.

There are three attention mechanisms commonly used in recent studies: (1) the
vanilla attention mechanism learns the attention scores for the input data by trans-
forming the representations of input data via fully connected layers, and then adopting
a softmax layer to normalize the scores (Han et al. 2018; Wang et al. 2019d; Gao et al.
2019b). Han et al. (2018) propose to use multi-layer MLP to learn a user/item aspect-
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Fig. 11 Illustration of different attention mechanisms in GLRS. a In Xu et al. (2019b), the co-attention
component takes embeddings derived from different meta-paths as inputs. Then the query vectors qu , qi
transformed from user and selling agent embeddings, as well as the item embeddings hρ

vi go through the
parallel co-attention network to learn the item embedding ỹvi . b To update the representation of the ring
node 2 in the context of the annular-graph, a self-attention mechanism takes two context vector and the
node 2 vectors as input to learn the importance of context nodes to the central node (Hao et al. 2021b)

level representation based on extracted meta-paths from the complex heterogeneous
graph. Then an attention mechanism is adopted to weigh the contribution of differ-
ent aspect-level latent factors to final user/item representations. (2) The self-attention
mechanism (Vaswani et al. 2017) gained exposure recently as it can replace RNN and
CNN in sequence learning, achieving better accuracy with lower computational com-
plexity. It focuses on the self-matching of a sequence whereby the attention weights
are calculated by the multiplication between key and query vectors transformed from
the input sequence (Cen et al. 2019; Wu et al. 2019b). For instance, Cen et al. 2019
adopt self-attention to capture the influential factors between different edge types of
the neighbours of a specific node on the attributed bipartite graph. (3) The co-attention
mechanism focuses on co-learning and co-matching of two sequences whereby the
attention weights of one sequence are conditioned on the other sequence, and vice
versa. Some studies prefer to classify co-attention and self-attention as one category
(Zhang et al. 2019b; Sun et al. 2019), but for clarity, in this survey we describe them
separately. In Xu et al. (2019b), the authors design a parallel co-attention mechanism
to dynamically infer the primary reasons of the user purchase decision, assigning
higher attention weights to more relevant meta-paths extracted on the k-partite graph.
Other studies adopt attention variations based on these three categories. For instance, in
Verma et al. (2019) the authors adapt a skip-gram to amerged heterogeneous user–item
interaction and use social networks followed by a multi-layer and multi-head atten-
tion (Vaswani et al. 2017) mechanism to learn the different importance of entities.
Multi-head attention improves self-attention mechanisms to draw global dependen-
cies between inputs and outputs by eschewing the use of recurrence in neural network
and running through an attention mechanism several times in parallel. In Liu et al.
(2020) the authors adopt Sentence-BERT (Reimers and Gurevych 2019), a language
model that is based on multi-head attention and a bidirectional training procedure, to
explore the potential links between item based on reviews. The learned item represen-
tations from BERT are then used to generate an item subgraph according to the cosine
similarities between all items.

Figure11 illustrates several abovementioned attentionmechanism architectures for
GLRSs. The core of the attention mechanism of focusing on the most relevant parts of
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Fig. 12 Deep reinforcement learning-based GLRS with a knowledge graph (Lei et al. 2020a). The system
first performs the walking starting with the target user u0 over the adjacent attribute vertices on the complex
heterogeneous graph, resulting in a path to the desired item. Two reasoning function f and g score attributes
and items. Then, the policy network takes the state vector s as input and outputs the values Q(s, a), indicating
the estimated rewards for two actions aask and arec

the input by providing a direct path to the input helps to alleviate the bottleneck prob-
lem of the vanishing gradient and to resolve the disadvantage of the encoder-decoder
architecture that has the problem of remembering long sequence dependencies. How-
ever, one believes that the attention mechanism adds more weight parameters to the
model, which increases training time, especially for long input sequences.

5.4.4 Deep reinforcement learning (DRL)

Reinforcement learning (RL) uses a trial-and-error experiencewith an agent that learns
a good behaviour by modifying or acquiring new behaviours and skills incrementally.
During such a learning process, the agent interacts with the environment and must
make value judgements so as to select good actions over bad. Actions that get them
to the target outcome are rewarded (reinforced). Deep reinforcement learning (Mnih
et al. 2015) goes a step further by incorporating deep neural networks to represent the
knowledge acquisition progress. It has been mainly adopted to learn k-partite (Song
et al. 2019a) and complex heterogeneous graphs (Lei et al. 2020a; Liu et al. 2021a;
Xian et al. 2019) in entertainment, book and e-commerce domain for recommendation
purposes.

In GLRSs, one can take a path generation procedure as a decision-making process
for training with RL, so that the optimal recommendation results as well as the inter-
pretation of the results can be generated at the same time (Song et al. 2019a; Xian et al.
2019; Lei et al. 2020a; Wang et al. 2020g). For instance, Xian et al. (2019) propose to
use an RL approach where an agent starts from a given user, and learns to navigate to
the potential items of interest on the complex heterogeneous KG. After that, the rea-
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soning path history can serve as a genuine explanation for the recommendation results.
Similarly, Song et al. (2019a) formulate the generation of user-to-item paths extracted
from a k-partite graph as a sequential decision process. Specifically, it defines the
target user as the initial state and then walks on the constructed heterogeneous user–
item–entity graph as actions. In the work of Zhou et al. (2020b), the authors adopt a
complex heterogeneous KG to improve the sample efficiency as well as interactive
recommendation performance by applying a deep Q-network to fit on samples from
the local graph of the KG rather than the whole graph. Interestingly, we can find that
most DRL-based recommendation approaches utilize a KG as an important medium
to learn user-to-item inference. Figure12 illustrates a typical example of adopting a
KG with DRL for recommendation purpose. It is probably due to the explicit asso-
ciation between the target user and items which reveals the user’s potential interests,
compared with traditional recommendation systems, a KG-based recommender sys-
tem can mine more potential relationships between nodes for learning user and item
representations.

DRL-based approaches have great potential in decision-making and long-termplan-
ning in a dynamic environment (Silver et al. 2016). However, the ideal way to train a
DRL model to learn the optimal recommendation policy is to train the agent online,
which cannot always be satisfied. One commonly used training strategy is to make use
of offline logged data directly, but it will suffer from the estimation bias problem under
the real-time interaction setting (Chen et al. 2019c). Besides, similar to other deep
learning-based techniques, DRL-based approaches also lack interpretability. More
importantly, few appropriate platforms or resources for developing and testing DRL-
based techniques in academia exist (Fang et al. 2020).

5.4.5 Graph neural networks

Graph neural network (GNN) enjoys a massive hype as recent works have witnessed a
boost of performance inRSs. They aremotivated fromCNNandgraph embeddings and
designed specifically on graph-structured data in the non-Euclidean domain (Zhang
et al. 2020). GNN can be applied from homogeneous graphs (Zhu et al. 2021b; Isufi
et al. 2021), k-partite graphs (Wang et al. 2019f; Chen et al. 2020a; Wang et al. 2019e;
Sun et al. 2020; Wu et al. 2021b; Fan et al. 2019a; Chen et al. 2021a; Ying et al.
2018; Wei et al. 2021; Li et al. 2021a) to complex heterogeneous (Zhao et al. 2019;
Zheng et al. 2021; Wang et al. 2019c, b; Wu et al. 2021a; Zhang et al. 2021d) and
multiple ones (Zhu et al. 2021a; Zhang et al. 2021c; Liu et al. 2020; Huang et al.
2021b; Tang et al. 2021; Wu et al. 2019b; Tian et al. 2021; Chang et al. 2021a) in
different recommendation domains.

GNN achieve improvements in recommendation results by capturing the higher-
order interaction in user–item relationships through iterative propagation resulting
in better user/item representations. Specifically, GNN aim to iteratively aggregate
feature information from neighbours and integrate the aggregated information with
the current node representation (Wu et al. 2020b). Further, they can simultaneously
model the diffusion process on the graph with the RNN kernel. Following the existing
work of Wu et al. (2020a), we categorize GNN as spectral (Zheng et al. 2018; Wang
et al. 2020a; Farseev et al. 2017) and non-spectral approaches (Sun et al. 2020; Isufi
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Fig. 13 Illustration on GNN-based GLRSs. (I) The representation of the central node updates by incor-
porating the influence of its neighbourhood representation in GNN algorithm (Wang et al. 2019c). (II)
GGAT takes into account the different effects of neighbour nodes on the central node, and combines the
attention mechanism with the GNN node propagation process to update the representation of the central
node (Veličković et al. 2017)

et al. 2021; Kim et al. 2019; Chen et al. 2020a;Wang et al. 2019c, f, b; Fan et al. 2019a;
Liu et al. 2020; Ying et al. 2018; Zhao et al. 2019). Spectral GNN are based on spectral
graph theory (Shuman et al. 2013) which studies connections between combinatorial
properties of a graph and the eigenvalues of matrices associated with the graph, e.g.
laplacian matrix. They focus on the connectivity of the graph rather than geometrical
proximity. For instance, Farseev et al. (2017) performs spectral clustering to form
user community w.r.t. user side information e.g. geographical regions, user’s active
timestamp from a complex heterogeneous graph, which are then considered to sort
all candidate items to a generate ranked list for recommendation. Zheng et al. (2018)
propose to use a spectral convolution operation in the spectral domain of the bipartite
user–item graph to alleviate the cold-start problem of RS.

The non-spectral approaches mainly include aggregator and updater to learn a
multi-layer graph. The aggregator is responsible for collecting information fromneigh-
bourhood nodes and related edges, while the updater aims to merge the propagation
information around the central node and collected through the aggregator. Normally,
GNN are utilized to learn the representations of nodes and links of the graphs, which
are then used for the following recommendation strategies, e.g. rating prediction and
link prediction etc. For instance, Monti et al. (2017) propose a GCN-based technique
for recommender systems for the first time, in which GCN is a variant of GNN and
used to aggregate information from two auxiliary user–user and item–item homoge-
neous graphs with the convolutional operation. The latent factors of users and items
were updated after each aggregation step, and a combined objective function of GCN
andMFwas used to train the model. Ying et al. (2018) propose to use GCN to generate
item embeddings from both a bi-partite graph structure as well as item feature infor-
mation with random walks for recommendations. It can be applied to very large-scale
web recommenders and has been deployed in Pinterest to address a variety of real-
world recommendation tasks. In Chen et al. (2019a) the authors adopt a GNN layer for
modelling both the local and global influence of user social relations on constructed
homogeneous user social graph. Graph attention networks (GATs) (Veličković et al.
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2017) are an enhanced version of GNN which utilize masked self-attention layers to
limit the shortcomings of prior graph convolutional-based approaches. An attention
weight αi ∈ [0, 1] is assigned to the neighbourhood nodes of a target node nt , where∑

i∈N (t) αi = 1 and N (t) denotes the set of neighbouring nodes of nt . One advantage
of applying attention to graphs is to avoid the noisy part of a graph so as to increase
the signal-to-noise ratio in information processing. Specifically, GAT aims to compute
the attention coefficients

αi j = exp(Leaky ReLU (
−→a T [W−→

hi ||W−→
h j ]))

∑
k∈Ni

exp(Leaky ReLU (
−→a T [W−→

hi ||W−→
hk ]))

(3)

where −→a and W is the weight matrix. hk is the neighbour node embedding of node
ni whose node embedding is hi . Figure13(II) illustrates the schematic diagram of the
attention operation of GAT.

Despite their verified effectiveness in the community of graph-based recommen-
dations, they suffer from the expensive computation overhead with the exponential
growth of the neighbourhood size as the layers stacked up (Ying et al. 2018). Besides,
researchers empirically show that the performance of GNN quickly degenerate when
the number of layers is deep owing to that the effectiveness of informative neighbours
will be diminished in large amount irrelevant neighbours (Liu et al. 2019b). To solve
this, Xu et al. (2019b) design a relation-aware GNN with an attention mechanism to
prioritize neighbours based on their importance. Then a meta-path defined receptive
field sampler is integrated to derive the node embeddings as well as address the rapid
growth of the multiple-hop neighbourhood of each node from a k-partite graph, which
is followed by a co-attention mechanism for differentiating purchase motivations. In
Zhang et al. (2019a), the authors also point out that training GCN-based models for
rating prediction faces the label leakage issue, which results in the overfitting problem
and significantly degrades the final performance, which can be improved by removing
the sampled edges. Figure13a, b illustrates examples of how GNN can be used for
recommender systems in Wang et al. (2019c), and the main component of GAT in
Veličković et al. (2017), respectively.

Although some problems have been proposed by researchers for improvement or
solutions, other challenges still exist and deserve more attention from both academia
and industry. First, though GNN-based graph recommendation strategies can incor-
porate a high-order proximity of vertices, it suffers from the problem of performance
degradation and complexity increase with the increase of the number of layers. As a
result, it is more prone to encounter the over-smoothing problem with the increase in
the network depth (Liu et al. 2019b; Li et al. 2018a; Yu et al. 2021). This phenom-
ena can become a pervasive problem when learning large-scale graph/networks when
aggregating high-order information from distant neighbours is necessary. Second, cur-
rent GNN are mainly applied for a static graph, but how to apply GNN for dynamic
graphs with changing structures is still an open challenge.
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5.4.6 Deep hybrid models

In order to deal with more complicated and diverse problems, as well as process more
complex graphs, many graph-based recommendation models utilize more than one
deep learning technique. Theflexibility of neural blocks in deep neural networksmakes
it possible to combine several neural components to complement one another and form
amore powerful hybrid model. The use of a variety of different DL-based components
can also maximize the strengths and improve the defects of a single technology to a
certain extent. Such hybrid models can be leveraged to learn homogeneous graphs
(Song et al. 2019b; Abugabah et al. 2020; Xu et al. 2019a; Wu et al. 2019c; Huang
et al. 2021a), k-partite graphs (Kim et al. 2019; Zhang et al. 2019a; Wang et al.
2020f; Liu et al. 2021c; Xie et al. 2021; Xu et al. 2019b; Xia et al. 2021b), complex
heterogeneous graphs (Wang et al. 2020g; Xie et al. 2021; Yang and Dong 2020; Zhou
et al. 2020b; Sang et al. 2021; Sheu and Li 2020; Shi et al. 2021; Wang et al. 2018c;
Zhou et al. 2020a; Yang et al. 2021a), hypergraphs (Wang et al. 2020c; Gharahighehi
et al. 2020), andmultiple graphs (Monti et al. 2017; Zhang et al. 2021a;Xia et al. 2021c;
Fan et al. 2019b; Liu et al. 2021b; Monti et al. 2017) in social network, e-commerce,
entertainment, academic, book and many other recommendation domains.

In Sun et al. (2018), the authors employ a batch of bi-directional recurrent net-
works (Schuster and Paliwal 1997) to learn the semantic representations of each path
extracted from complex heterogeneous KG. Then an attention gated hidden layer is
applied to learn the different importance of the derived paths between two entities
followed by a pooling operation and a fully connected layer for rating prediction.
Zhang et al. (2019a) propose to leverage multi-link GCN as an encoder and two-layer
feedforward neural network as a decoder to learn the user and item (users and items
are denoted as nodes) representations, considering both node’s content information
as well as structural information of the undirected user–item bipartite graph. Some
studies leverage different techniques to learn various graph features, such as node
attributes and graph structure. Zhang et al. (2016) construct a complex heterogeneous
knowledge graph to learn a user’s potential preferences, where the item nodes asso-
ciate with textual and visual features as their attributes. To model such multi-modal
information, the authors first apply a network embedding (TransR) approach to extract
items’ structural representations by considering the heterogeneity of both nodes and
relationships, followed by a stacked denoising auto-encoder and stacked convolutional
auto-encoder to extract items’ textual and visual representations, respectively. Finally,
the pair-wise ranking between items is considered to learn the CF architecture. Deep
hybrid approaches have become a trend in solving complex recommendation prob-
lems, facing the complicated and changeable network structure for modelling dynamic
user preferences.

5.5 Discussion of graph-based recommendationmodels

In this section, we present the main ideas and the basic technical details of each class
of graph learning-based recommendation approaches. From the descriptions above,
we make several observations: (1) traditional graph learning-based approaches may
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suffer from information loss, e.g. nearest neighbour-based approaches. Some of them
ignore long-term or high-order dependencies such as the latent factor model (Tao
et al. 2021). However, they laid a theoretical foundation for the later development of
graph learning-based technologies, so that many recent advanced deep learning-based
techniques for graphs still use traditional algorithms as the basic framework. (2) For
path-based approaches, they either rely ondomain knowledgewhichmaynot always be
applicable e.g. meta-path-based similarities, and/or require explicit path reachability
whichmay incorporate noisy,meaningless paths and thus do not always have a positive
impact on recommendation results (Noia et al. 2016). Besides, recommendations that
rely on similarity measures cannot be easily applied to large-scale networks. (3) Graph
embedding-based approaches pave the way for more complex and high-order features
among nodes and links modelling. More and more state-of-the-art GLRSs leverage
GE combined with deep learning approaches such as an attention network for more
efficient recommendation tasks. (4)With the many achievements of the deep learning-
based GLRSs, the number of research works in the field has become exponentially
increased. Deep learning-based approaches can be applied tomore complicated graphs
with multi-type nodes and links, as well as additional attributes associated with graphs
(Song et al. 2019b). Besides, deep learning-based approaches aremore robust to sparse
data and can adapt to the varied magnitude of the input (with the help of e.g. attention
mechanism) (Fang et al. 2019). However, interpretability and efficiency are still the
main concerns for most GE-based and deep learning-based GLRSs which need to be
further studied in the future. (5) FromTable 5, by relating graph types to their associated
modelling technologies, we observe that tree graphs aremodelledmainly by traditional
techniques, while other types of graphs are modelled and learned mainly through
deep learning and graph embedding-based approaches. Besides, attentionmechanisms
become especially prevalent and are adopted for nearly all types of graphs for selecting
branches, filtering noisy nodes, and learning better nodes and edges representations
for recommendation purposes.

6 Challenges and open issues in GLRS

Graph-based recommendation is an exciting and rapidly growing research area that
attracts attention from both industrial and academic domains. While existing works
have established a solid foundation for GLRSs research, this section reveals several
challenges and promising prospective research directions. Specifically, there are two
types of challenges: (1) Challenges still unsolved by graphs, which include explain-
ability, fairness and generality issues; (2) Challenges caused by graphs and their
limitations, including scalability, dynamic graph, and complex heterogeneity learning
issues. We will explain these issues separately.
Explainability on graphs.Agood explanation for recommendation results can help to
improve the transparency, persuasiveness, effectiveness, trustworthiness and satisfac-
tion of recommender systems, facilitate system designers for better system debugging,
and allow a user to control how the systemutilizes her profilesmaking theRS scrutable.
Earlier studies provide explanations of GLRSs highlighting top keywords or aspects
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as an explanation for recommendation results (He et al. 2015), but none of them shows
the constructed graphs.

With the surge of deep learning-based approaches in GLRSs, it is even harder
to provide convincing explanations and calibrate why the recommendation models
are effective and thus yield a robust model for varied scenarios. Ma et al. (2019)
provide recommendation explanations according to the learned reasoning rules on
heterogeneous graphs with ground-truth item associations in the knowledge graph.
The emergence of attention mechanisms has more or less eased the non-interpretable
concerns of deep learning-based recommendations on graphs. The learned attention
weights can tell which parts of the input graph contribute more than others with higher
attention scores to the recommendation results. However, the faithfulness of the higher
attention weights in contributing to the performance of the recommendation is still
doubtful (Liu et al. 2022).

In addition, most existing graph leaning-based recommendation models generally
consider paths along with nodes in the KG as pertinent signals for recommendation
(Hu et al. 2018). User–item paths in the KG can directly serve as explanations that
provide the reason why an item is recommended (Xian et al. 2019). In (Fu et al. 2020),
Fu et al. considered a relational structure serving as explanation across different paths
with similar semantics w.r.t. relations in each path. We argue that this lacks reliable
evaluation metrics for the explainability and persuasiveness for target users, such as
GLUE (Wang et al. 2018a) for language understanding. For some kinds of graphs, e.g.
hypergraphs and multiple graphs, it is more difficult to provide explanations with such
graphs due to the dispersion of edges or nodes. Besides, how to show user dynamic
preferences on graphs is also worth studying. Besides, we need to consider the target
population who we provide explanations for. This can be the end-users or researchers.
For both groups, whether they are satisfied with this explanation and whether this
explanation is sufficient still requires further empirical verification. Such verification
cannot just stay on a small-scale user study or case study. It requires more target
audience participation and different situations should also be taken into account.
Fairness. Fairness in recommendation has gradually attracted increasing attention in
recent years andhas been studiedmainly as an equity andparity problem for individuals
or groups of users. Current RSs discriminate unfairly among the users in terms of
recommendation performance, and further, the systems may discriminate between
users in terms of explanation diversity (Farnadi et al. 2018). One reason is probably
related to the issue of data imbalance. E.g. economically disadvantaged customers tend
to make fewer purchases, leading to imbalanced data. However, such imbalances may
lead to biased models that exhibit unfairness w.r.t. the recommendation quality and
explanation (Fu et al. 2020). Though active users tend to interact with more items, an
empirical study (Fu et al. 2020) shows that the majority of users are inactive users who
are easily disregarded by recommendation engines. The imbalanced data can easily
lead to biased observation on graphs where path inference from user-to-item usually
participates in the process of graph learning and meanwhile provide recommendation
explanations. Many researches have been done to alleviate data sparsity issue. Farnadi
et al. (2018) propose to solve the fairness on the user side for both the individual-
and group-level for KG enhanced explainable RSs. Specifically, they reveal that the
unfairness issue is due to data imbalance through an empirical study on e-commerce
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dataset, namely Amazon. Then they propose fairness metrics in terms of path diversity
as well as recommendation performance disparity based on KG. In Gharahighehi et al.
(2021), the authors constructed a hypergraph taking into accountmultiple stakeholders
in the news domain to mitigate the imbalance problem caused by stakeholders with
few articles. Exposure bias can be caused by the users being only aware of a very small
fraction of items in a large dataset. Chen et al. (2019a) pointed out the exposure bias
that users are only aware of a very small fraction of items in a large dataset so that they
infer data confidence with the help of users’ social network and draw different weights
on training instances via personalized random walk to alleviate it. Another possible
reason lies in the incomplete evaluation metrics, which renders the inclination of the
learning objectives on accuracy driven for recommendation purposes.

Despite some studies considering the influence of fairness in GLRSs, related
research is still quite limitedwithmany issues remaining to be focused on. For instance,
whether the construction and learning process of the graphs affects the fairness and
discrimination of the ranking of recommendation results, whether there exists algo-
rithmic bias among various graph learning technologies, and whether fairness, bias,
and discrimination conflict with the accuracy of graph-based recommendations. Some
biases can be dynamic. For instance, in the real world, users’ preferences, exposure,
and relations may evolve over time (Chen et al. 2019a). How to solve the dynamic
bias problem in GLRS is also one of the research directions worth thinking about in
the future.
Scalability on large-scale graphs. Scalability is an essential factor that affects the
applicability of recommendation models in real-world scenarios. To deal with large-
scale graphs, most existing models choose to adopt a sampling scheme to construct
subgraphs following the sampling strategy proposed in GraphSage (Hamilton et al.
2017). Some use the random walk strategy to get the neighbourhood nodes and links,
while others consider using the shortest path algorithm for subgraph construction.
Another algorithm to increase model scalability is to use a clustering scheme.Whether
using sampling or clustering, a model will lose part of the graph information. The
scalability is gained at the price of corrupting graph completeness. A node may miss
its influential neighbours with a bad sampling strategy, and a graph may be deprived
of a distinct structural pattern by clustering. Though the subgraph strategy makes
GNN-based algorithms applicable no matter how large-scale the whole graph is, the
shortcoming is that the node representation should be recalculated for each propagation
layer. Thus, how to tradeoff the algorithmscalability andgraph integrity could be one of
the further research directions.More researches can be studied on the sampling strategy
in integratingmore informative information fromneighbourhoodnodes and linkswhile
minimizing the harm to the graph integrity. Recently, Kyriakidi et al. (2020) propose
to adopt graph databases as a base to improve the data scalability and meanwhile
build recommendation models on top. Different from other graph-based recommender
systems which focus on model complexity when considering the efficiency problem,
the work of Kyriakidi et al. (2020) transforms the recommendation problem into a
path optimization problem from start nodes to end nodes on heterogeneous graphs,
which sheds light on a new perspective for improving the scalability of GL-based
recommendations.
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Data Sparsity on Graphs. Data sparsity issues will cause the graph’s adjacency
matrix to be sparse and affect recommendation performance. In order to alleviate this
problem, one way is to construct auxiliary graphs by mining contextual information of
users or items, such as friendship connections amongst users, co-purchase networks
associated with products and services to the end-users, or trust relationships associ-
ated with users, entities associated with items. On the other hand, data augmentation
techniques can be used. The former has been widely used and studied (Wu et al.
2019b), while the latter has not been extensively explored. Recently, some studies try
to alleviate the data sparsity problem with item/segment dropout to augment data (Wu
et al. 2021b), with which edges are randomly dropped out in the constructed graph,
resulting in the robustness of recommendation models facing noisy input data such as
unsatisfied clicking or viewing behaviour. However, it may also lead to sparser data. In
Xia et al. (2021c), the authors adopted a self-supervised graph co-training strategy for
learning session representations with two different encoders in the session-based rec-
ommendation. As the initial attempt in many graph learning-based recommendation
domains, more in-depth attempts are still needed, and the advantages and disadvan-
tages of different data augmentation technologies with different types of graphs in
different recommendation domains also require a comprehensive analysis.
Recommendation on Dynamic Graphs. Most research focuses on the modelling
and learning of static graphs, but neglects the dynamic properties of graphs. In many
real-world scenarios, the graphs changes over time, such as people may be followed
or unfollowed day to day in a social network, or newly published news articles appear
everyday resulting in changes of news-related graphs for news recommendation.
As a result, some works crop the dynamic graph as a sequence of graph snapshots
(Abugabah et al. 2020; Xia et al. 2021d; Huang et al. 2021a), most of which are in
session settings. Though a surge of works consider modelling dynamic graphs from
the changes of the adjacency matrix (Li et al. 2017), leveraging dynamic random walk
sampling (Nguyen et al. 2018), Hawkess process (Huang et al. 2020) or combining
with other algorithms capturing the dynamic properties of the graph (Xu et al. 2020),
they do not adapt to recommendation scenarios. Thus, we believe it is an important
research direction with significance and practical value.
Complex Heterogeneity Learning. Apart from the user–item bipartite graph, most
heterogeneity of graphs is reflected in the integration of different side information.
Side information has demonstrated a high degree of effectiveness in improving rec-
ommendation performance, especially for data sparsity and cold-start issues (Zhang
et al. 2016). It can appear in different forms: textual, visual, or audio information;
structure or non-structure. In current studies of graph-based recommendations, side
information is extensively involved either as extra attributes of nodes or edges (Song
et al. 2019b), or as sources being learned to construct heterogeneous graphs (Sheu
and Li 2020), or as external resources outside the graph, which are learned in parallel
with the graph and then integrated at a high level. Despite the variety of utilizing side
information, no study can indicate which fusion strategy is better in general cases, or
suitable for which recommendation scenarios (Farseev et al. 2017). These we believe
are extremely significant references and guidance for future researchers and technol-
ogy users. Besides, some side information is from multi-sources such as user social
relationships pointing out user–user interlinks directly (Farseev et al. 2017), while
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item–item relations may be from the co-interaction pattern from a specific user or user
group (Xia et al. 2021a). To integrate multi-sourced side information for recommen-
dation purposes, some works learn representations from different graphs separately
and combine the vectors from different sources (Zhang et al. 2021c). Some works
combine different graphs into a large-scale heterogeneous graph which is then learned
in a unified way (Wu et al. 2021a). These two kinds of integration strategies can both
contribute to the improvement in recommendations, but there is no evidence showing
which one is better. This is thus another research question for further study.
Generality of Graph Learning. Currently, no model can be applied for all types of
input graphs. For existing GLRS approaches, given a data source, the common way
is to take graph(s) formed by data objects and their explicit or implicit relationships
as input, and the model usually needs to be reformulated and retrained under certain
conditions, or a general model is applied for a specific task in a specific scenario,
rather than extending the existing models for new tasks. This led to thousands of new
models corresponding to thousands of different kinds of input graphs, which is far from
the true generality of the graph model for recommendations. Therefore, one possible
future research direction is whether there is a model suitable for learning all kinds
of graphs. The dynamic property of online graphs shows the inevitability of changes
in modelling input graphs. When additional attributes are added to the input data,
for instance, when contextual or external information is attached to interactive data,
resulting in the expansion of the graph, a model with generality should be expanded
in a small range on the basis of the previously learned content to adapt to the change
of the input graph rather than retraining new models. This should be one of the future
research directions in the long run.
Privacy Issue Of Graph Learning. Though existing GLRSs reveal promising
improvements on recommendation tasks, the graph topological and node binding fea-
tures may cause privacy issues. The users’ private information may be inferred from
such a recommendation, which falls into the attribute inference attack problem. To deal
with such an issue, in Zhang et al. (2021b) a privacy-preserving graph learning-based
recommender is designed with a two-stage perturbation on input feature encoding
and an optimization process to defend against attribute inference attacks. However,
the authors also point out the challenge of balancing the personalized recommenda-
tion performance and the extent of the privacy protection mechanism, which means
the privacy-preserving recommender systems are far from mature and deserve more
attention in the future.

7 Conclusion

The study systematically investigated graph learning-based recommendation. The rec-
ommendation algorithms based on graph-structured data can be well applied to solve
the sparsity and cold-start problems with improved accuracy by mining and leverag-
ing the explicit as well as implicit relations revealed in graphs. In GLRSs, the core
is how to process graph-structured data, how to learn and obtain adequate informa-
tion from the graph to fulfil the final recommendation purpose, and how to adapt
the graph operation process to more complex and diverse graph structures as well
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as large-scale node and edges in the real world. Looking at the changes of GLRSs
in recent years, the graph structure has gone from homogeneous to heterogeneous,
the graph attribute from zero to multiplex, the technology used from the traditional
recommendation algorithm to deep learning-based models, and the evaluation of rec-
ommendation performance from focusing only on accuracy and click-through rate to
increasingly multidimensional development. Such developments shed light on a new
perspective for the community of recommendation researchers and practitioners. We
argue that the current graph-based recommendation algorithms are far from being fully
developed, and further research investment and empirical studies are still needed.
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Appendix A Statistics of datasets commonly used in GLRS

See Table 5.
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Appendix B Technology summary in GLRS

See Table 6.

Table 6 Technology summary in GLRS

Technology Class Tech Subclass Domain Dataset Graph Type

Traditional Machine
Learning
Techniques

PRM E-commerce Yelp Complex Heterogeneous
Graph: Catherine and
Cohen (2016)

Entertainment InMind Movie
Agent

Complex Heterogeneous
Graph: Catherine et al.
(2017)

MovieLens Complex Heterogeneous
Graph: Catherine and
Cohen (2016), Lee et al.
(2013)

K-partite Graph: Shams and
Haratizadeh (2017),
Musto et al. (2017)

Last.fm K-partite Graph: Jäschke
et al. (2007)

DePaulMovie K-partite Graph: Musto
et al. (2021)

Academic or
Book

BibSonomy K-partite Graph: Jäschke
et al. (2007)

DBbook K-partite Graph: Musto
et al. (2017)

POI Tripadvisor K-partite Graph: Musto
et al. (2021)

RTGR E-commerce Yelp Hypergraph: Mao et al.
(2019), Yu et al. (2021)

Entertainment Last.fm Hypergraph: Bu et al.
(2010), Tan et al. (2011),
Yu et al. (2021)

Multiple News
Portal

Hypergraph: Li and Li
(2013)

HetRec Delicious Hypergraph: Zhu et al.
(2016)

Adressa Hypergraph: Gharahighehi
et al. (2021)

Roularta Hypergraph: Gharahighehi
et al. (2021)

Social
Network

Douban Hypergraph: Yu et al.
(2021)

Academic or
Book

CiteULike Hypergraph: Zhu et al.
(2016)
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Table 6 continued

Technology Class Tech Subclass Domain Dataset Graph Type

POI Trip.com+Face
book+Twitter

Multiple Graphs: Gao et al.
(2019b)

KML Entertainment MovieLens K-partite Graph: Fouss
et al. (2012)

Complex Heterogeneous
Graph: Ostuni et al.
(2014)

mtime Homogeneous Graph: Li
et al. (2014)

Academic or
Book

Book-Crossing K-partite Graph: Fouss
et al. (2012)

LFM E-commerce Amazon Complex Heterogeneous
Graph: Zhao et al. (2017)

Tree-based Graph: Sun
et al. (2017)

Yelp Complex Heterogeneous
Graph: Zhao et al. (2017),
Kyriakidi et al. (2020)

Epinions Multiple Graphs: Ma et al.
(2011a)

Homogeneous Graph: Ma
et al. (2009), Ma et al.
(2008), Ma et al. (2011b)

Yahoo! Shopping Tree-based Graph: Kanagal
et al. (2012)

LFM Entertainment Yahoo!Music Tree-based Graph:
Koenigstein et al. (2011),
Mnih (2012)

MovieLens Complex Heterogeneous
Graph: Du et al. (2011)

Social
Network

Douban Multiple Graphs: Ma et al.
(2011a)

Academic or
Book

User-Tag Homogeneous Graph: Du
et al. (2011), Sun et al.
(2015)

POI Foursquare Tree-based Graph: Yang
et al. (2016)

Other Yahoo! traffic
stream

Tree-based Graph: Menon
et al. (2011)

Traditional Machine
Learning
Techniques

Others (Spectral
graph)

E-commerce Amazon K-partite Graph: Zheng
et al. (2018)

Entertainment MovieLens K-partite Graph: Zheng
et al. (2018)

HetRec Delicious K-partite Graph: Zheng
et al. (2018)
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Table 6 continued

Technology Class Tech Subclass Domain Dataset Graph Type

POI NUS-MSS Homogeneous Graph:
Farseev et al. (2017)

Others
(Similarity)

Entertainment DepaulMovie K-partite Graph: Phuong
et al. (2019)

MovieLens K-partite Graph: Phuong
et al. (2019)

InCarMusic K-partite Graph: Phuong
et al. (2019)

Others
(Clustering)

Social
Network

User-Tag K-partite Graph: Song et al.
(2011)

BbSonomy K-partite Graph: Song et al.
(2011)

Academic or
Book

CiteULike K-partite Graph: Song et al.
(2011)

Others (Complex
Number)

E-commerce AppChina Complex Heterogeneous
Graph: Xie et al. (2015)

Entertainment MovieLens Complex Heterogeneous
Graph: Xie et al. (2015)

E-commerce Clothing-Retail K-partite Graph: Li and
Chen (2013)

Amazon Multiple Graphs:
Vijaikumar et al. (2019)

Complex Heterogeneous
Graph: Ma et al. (2019)

Path-based
Techniques

RWM Yelp Multiple Graphs:
Vijaikumar et al. (2019)

Epinions Homogeneous Graph:
Jamali and Ester (2009)

Entertainment IMDB Multiple Graphs: Yin et al.
(2010)

MovieLens K-partite Graph: Cheng
et al. (2007), Jiang et al.
(2018a), Nikolakopoulos
and Karypis (2019)

Homogeneous Graph: Gori
et al. (2007)

Last.fm K-partite Graph: Yao et al.
(2015)

Complex Heterogeneous
Graph: Feng and Wang
(2012)

Yahoo2RMusic K-partite Graph:
Nikolakopoulos and
Karypis (2019)
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Table 6 continued

Technology Class Tech Subclass Domain Dataset Graph Type

HetRec Delicious Complex Heterogeneous
Graph: Feng and Wang
(2012)

Restaurant &
Consumer

K-partite Graph: Jiang et al.
(2018a)

Social
Network

Twitter K-partite Graph: Sharma
et al. (2016)

Pinterest K-partite Graph:
Eksombatchai et al.
(2018)

Path-based
Techniques

RWM Academic or
Book

Book-Crossing K-partite Graph: Li and
Chen (2013)

DBLP Multiple Graphs: Yin et al.
(2010)

OHSUMED K-partite Graph: Cheng
et al. (2007)

CiteULike K-partite Graph: Yao et al.
(2015)

POI Brightkite Complex Heterogeneous
Graph: Bagci and
Karagoz (2016)

Gowalla Complex Heterogeneous
Graph: Bagci and
Karagoz (2016)

Foursquare Complex Heterogeneous
Graph: Bagci and
Karagoz (2016)

RM E-commerce Amazon K-partite Graph: He et al.
(2015)

Yelp K-partite Graph: He et al.
(2015)

Academic or
Book

Educational
Website and
Textbooks

Complex Heterogeneous
Graph: Shi et al. (2020)

MPM E-commerce Amazon K-partite Graph: Cen et al.
(2019)

Alibaba K-partite Graph: Cen et al.
(2019)

Yelp K-partite Graph: Lu et al.
(2020); Yu et al. (2014)

Complex Heterogeneous
Graph: Shi et al. (2018),
Shi et al. (2015), Zheng
et al. (2017), Shi et al.
(2016)
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Table 6 continued

Technology Class Tech Subclass Domain Dataset Graph Type

Entertainment YouTube K-partite Graph: Cen et al.
(2019)

MovieLens K-partite Graph: Lu et al.
(2020), Yu et al. (2014),
Yu et al. (2013)

Complex Heterogeneous
Graph: Shi et al. (2016),
Ostuni et al. (2013)

Last.fm Complex Heterogeneous
Graph: Ostuni et al.
(2013)

Social
Network

Twitter K-partite Graph: Cen et al.
(2019)

Douban Complex Heterogeneous
Graph: Shi et al. (2018),
Shi et al. (2015), Zheng
et al. (2017), Shi et al.
(2016)

Academic or
Book

DBook K-partite Graph: Lu et al.
(2020)

Graph
Embedding-based
Techniques

GDRM E-commerce Amazon Complex Heterogeneous
Graph: Fu et al. (2020),
Wang et al. (2020a)

Tree-based Graph: He et al.
(2016)

Taobao Multiple Graphs: Wang
et al. (2020d)

Entertainment MovieLens Complex Heterogeneous
Graph: Wang et al.
(2020a); Palumbo et al.
(2020)

Multiple Graphs: Wang
et al. (2020d)

Last.fm Complex Heterogeneous
Graph: Palumbo et al.
(2020)

Xing Complex Heterogeneous
Graph: Wang et al.
(2020a)

GDRM Social
Network

Hike Network Multiple Graphs: Verma
et al. (2019)

Academic or
Book

Citation Complex Heterogeneous
Graph: Jiang et al.
(2018b)

LibraryThing Complex Heterogeneous
Graph: Palumbo et al.
(2020)
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Table 6 continued

Technology Class Tech Subclass Domain Dataset Graph Type

DBLP Multiple Graphs: Ali et al.
(2020)

ACL Anthology
Network

Multiple Graphs: Ali et al.
(2020)

POI Foursquare Multiple Graphs:
Christoforidis et al.
(2021)

Graph
Embedding-based
Techniques

Gowalla Multiple Graphs:
Christoforidis et al.
(2021)

E-commerce Amazon Complex Heterogeneous
Graph: Ai et al. (2018)

Homogeneous Graph:
Wang et al. (2020b)

TEM Alibaba Complex Heterogeneous
Graph: Wang et al.
(2021b)

Entertainment MovieLens Complex Heterogeneous
Graph: Palumbo et al.
(2017), Wang et al.
(2018b), Cao et al. (2019)

Bing-News Complex Heterogeneous
Graph: Wang et al.
(2018b)

Last.fm Complex Heterogeneous
Graph: Wang et al.
(2021b)

Book-Crossing Complex Heterogeneous
Graph: Wang et al.
(2018b)

Academic or
Book

CiteULike Homogeneous Graph: Gao
et al. (2018)

DBBook Complex Heterogeneous
Graph: Cao et al. (2019)

Other MIT AI+CASAS Complex Heterogeneous
Graph: Chen et al.
(2019d)

VizML Corpus K-partite Graph: Li et al.
(2021b)

E-commerce Amazon Tree-based Graph: Huang
et al. (2019)

JD Tree-based Graph: Huang
et al. (2019)

DNN Yelp Homogeneous Graph: Wu
et al. (2019a)

123



Recommending on graphs: a comprehensive review from a data… 863

Table 6 continued

Technology Class Tech Subclass Domain Dataset Graph Type

Complex Heterogeneous
Graph: Sun et al. (2018);
Mezni et al. (2021)

Entertainment MovieLens Complex Heterogeneous
Graph: Sun et al. (2018),
Wang et al. (2019g)

Last.fm Tree-based Graph: Huang
et al. (2019)

KKBox Complex Heterogeneous
Graph: Wang et al.
(2019g)

Social
Network

Flickr Homogeneous Graph: Wu
et al. (2019a)

AE Entertainment MovieLens Complex Heterogeneous
Graph: Zhang et al.
(2016)

Academic or
Book

IntentBooks Complex Heterogeneous
Graph: Zhang et al.
(2016)

Amazon Tree-based Graph: Gao
et al. (2019b)

K-partite Graph: Wang
et al. (2019d); Zhang
et al. (2022)

Complex Heterogeneous
Graph: Han et al. (2018)

Yelp Tree-based Graph: Gao
et al. (2019b)

Multiple Graphs: Xia et al.
(2021a)

Deep Learning-based
Techniques

AM E-commerce Epinions Homogeneous Graph: Chen
et al. (2019a)

Ciao Homogeneous Graph: Chen
et al. (2019a)

HOOPS Complex Heterogeneous
Graph: Fu et al. (2021)

Taobao Homogeneous Graph:
Chang et al. (2021b)

Kuaishou Homogeneous Graph:
Chang et al. (2021b)

Entertainment MovieLens Complex Heterogeneous
Graph: Han et al. (2018),
Wang et al. (2019a)

Homogeneous Graph: Hao
et al. (2021b)
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Table 6 continued

Technology Class Tech Subclass Domain Dataset Graph Type

K-partite Graph: Wang et al.
(2019d); Xin et al. (2019);
Zhang et al. (2022)

Multiple Graphs: Xia et al.
(2021a)

Bing-News Complex Heterogeneous
Graph: Wang et al.
(2019a)

KKBox K-partite Graph: Xin et al.
(2019)

Last.fm Homogeneous Graph: Chen
et al. (2019a)

Academic or
Book

Book-Crossing Complex Heterogeneous
Graph: Wang et al.
(2019a)

POI Foursquare K-partite Graph: Wang
et al. (2019d)

Gowalla Homogeneous Graph: Hao
et al. (2021b)

DRL E-commerce Amazon Complex Heterogeneous
Graph: Xian et al. (2019)

Yelp Complex Heterogeneous
Graph: Lei et al. (2020a)

Entertainment Last.fm K-partite Graph: Song et al.
(2019a)

Complex Heterogeneous
Graph: Lei et al. (2020a)

DRL MovieLens K-partite Graph: Song et al.
(2019a)

MIND Complex Heterogeneous
Graph: Liu et al. (2021a)

Bing-News Complex Heterogeneous
Graph: Liu et al. (2021a)

Academic or
Book

DBbook K-partite Graph: Song et al.
(2019a)

Amazon K-partite Graph: Wang
et al. (2019f); Chen et al.
(2020a); Wang et al.
(2019e); Sun et al.
(2020); Wu et al. (2021b)

Homogeneous Graph: Zhu
et al. (2021b), Ma et al.
(2020)
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Table 6 continued

Technology Class Tech Subclass Domain Dataset Graph Type

Deep Learning-based
Techniques

GNN E-commerce Complex Heterogeneous
Graph: Zhao et al. (2019)

Multiple Graphs: Zhang
et al. (2021c); Zhu et al.
(2021a)

Yelp Homogeneous Graph: Zhu
et al. (2021b)

K-partite Graph: Wang
et al. (2019f), Wang et al.
(2019e), Wu et al.
(2021b), Sun et al.
(2021), Sun et al. (2021),
Yang et al. (2021b)

Multiple Graphs: Liu et al.
(2020), Huang et al.
(2021b), Tang et al.
(2021), Zhu et al. (2021a),
Guo et al. (2021a)

Epinions Multiple Graphs: Wu et al.
(2019b); Liu et al. (2020);
Huang et al. (2021b)

Taobao Homogeneous Graph:
Ouyang et al. (2021)

K-partite Graph: Fan et al.
(2019a), Chen et al.
(2021a)

Complex Heterogeneous
Graph: Zhao et al. (2019)

Alibaba K-partite Graph: Tan et al.
(2020), Wu et al. (2021b)

Multiple Graphs: Guo et al.
(2021b)

Beibei K-partite Graph: Chen et al.
(2021a)

Criteo Complex Heterogeneous
Graph: Zheng et al.
(2021)

Tmall Multiple Graphs: Wang
et al. (2020h), Guo et al.
(2021b)

Diginetica Homogeneous Graph: Qiu
et al. (2020a), Pan et al.
(2020)

Multiple Graphs: Wang
et al. (2020h), Xia et al.
(2021c)
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Table 6 continued

Technology Class Tech Subclass Domain Dataset Graph Type

Yoochoose Homogeneous Graph: Qiu
et al. (2020a), Pan et al.
(2020)

Multiple Graphs: Xia et al.
(2021c)

Avazu Complex Heterogeneous
Graph: Zheng et al.
(2021)

USCFC Complex Heterogeneous
Graph: Zheng et al.
(2021)

Adult Complex Heterogeneous
Graph: Zheng et al.
(2021)

Entertainment MovieLens Homogeneous Graph: Ma
et al. (2020), Isufi et al.
(2021), Ouyang et al.
(2021)

K-partite Graph: Lei et al.
(2020b), Tan et al. (2020),
Yang et al. (2021b),
Zhang et al. (2021b)

Complex Heterogeneous
Graph: Wang et al.
(2019c), Wang et al.
(2019b)

Multiple Graph: Tang et al.
(2021)

Deep Learning-based
Techniques

GNN Last.fm Homogeneous Graph: Qiu
et al. (2020b)

K-partite Graph: Wang et al.
(2019e), Lei et al. (2020b)

Complex Heterogeneous
Graph: Wang et al.
(2019c), Wang et al.
(2019b)

Multiple Graphs: Tian et al.
(2021)

Dianping-Food Complex Heterogeneous
Graph: Wang et al.
(2019b)

Flixster Homogeneous Graph: Isufi
et al. (2021)

Multiple Graphs: Tang et al.
(2021)
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Table 6 continued

Technology Class Tech Subclass Domain Dataset Graph Type

MIND Complex Heterogeneous
Graph: Wu et al. (2021a),
Zhang et al. (2021d)

Netease Multiple Graphs: Chang
et al. (2021a)

YahooMusic Multiple Graphs: Tang et al.
(2021)

Tiktok K-partite Graph: Wei et al.
(2021)

Kwai K-partite Graph: Wei et al.
(2021)

Social
Network

WeChat Multiple Graphs: Wu et al.
(2019b)

Pinterest K-partite Graph: Ying et al.
(2018), Lei et al. (2020b),
Tan et al. (2020), Yang
et al. (2021b)

Douban Homogeneous Graph: Isufi
et al. (2021)

Multiple Graphs: Tian et al.
(2021), Guo et al. (2021a)

Academic or
Book

Book-Crossing Complex Heterogeneous
Graph: Wang et al.
(2019c), Wang et al.
(2019b)

Librarything Multiple Graphs: Liu et al.
(2020)

Youshu Multiple Graphs: Chang
et al. (2021a)

Goodreads Homogeneous Graph: Ma
et al. (2020)

POI Gowalla Homogeneous Graph: Qiu
et al. (2020b)

K-partite Graph: Wang
et al. (2019f), Chen et al.
(2020a), Tan et al. (2020)

Google Local Homogeneous Graph: Zhu
et al. (2021b)

Multiple Graphs: Zhu et al.
(2021a)
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Table 6 continued

Technology Class Tech Subclass Domain Dataset Graph Type

Other MALib-Dataset K-partite Graph: Li et al.
(2021a)

Amazon K-partite Graph: Fan et al.
(2021)

Complex Heterogeneous
Graph: Wang et al.
(2020g), Liu et al.
(2021c), Xie et al. (2021),
Chen et al. (2021b)

Hypergraph: Wang et al.
(2020c)

Yelp Homogeneous Graph: Song
et al. (2019b)

Complex Heterogeneous
Graph: Wang et al.
(2020g), Liu et al.
(2021c), Xie et al. (2021)

Deep Learning-based
Techniques

DHM E-commerce Diginetica Homogeneous Graph: Xu
et al. (2019a); Wu et al.
(2019c); Huang et al.
(2021a)

Multiple Graphs: Xia et al.
(2021c)

Retailrocket Homogeneous Graph: Xu
et al. (2019a), Huang
et al. (2021a)

Yoochoose Homogeneous Graph: Wu
et al. (2019c), Huang
et al. (2021a)

Ciao Complex Heterogeneous
Graph: Salamat et al.
(2021)

Multiple Graphs: Fan et al.
(2019b), Zhang et al.
(2021a)

Epinions Complex Heterogeneous
Graph: Salamat et al.
(2021)

Multiple Graphs: Fan et al.
(2019b); Zhang et al.
(2021a)

Etsy Hypergraph: Wang et al.
(2020c)
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Table 6 continued

Technology Class Tech Subclass Domain Dataset Graph Type

Beidia K-partite Graph: Xu et al.
(2019b)

Taobao K-partite Graph: Xia et al.
(2021b)

Beibei K-partite Graph: Xia et al.
(2021b)

Tmall Multiple Graphs: Xia et al.
(2021c)

RetailRocket Multiple Graphs: Xia et al.
(2021c)

Cosmetics Multiple Graphs: Liu et al.
(2021b)

UserBehavior Multiple Graphs: Liu et al.
(2021b)

Google Play Complex Heterogeneous
Graph: Xie et al. (2021)

Entertainment MovieLens K-partite Graph:
Wang et al.
(2020f), Zhang
et al. (2019a), Wu
et al. (2021c), Fan
et al. (2021), Hao
et al. (2021a), Hsu
and Li (2021)

Complex Hetero-
geneous Graph:
Yang and Dong
(2020), Zhou et al.
(2020b), Sang
et al. (2021)

Multiple Graphs: Monti
et al. (2017)

Deep Learning-based
Techniques

DHM Entertainment Last.fm K-partite Graph: Wu et al.
(2021c), Hao et al.
(2021a)

Complex Hetero-
geneous Graph:
Yang and Dong
(2020), Wang
et al. (2020g),
Sang et al. (2021),
Pang et al. (2022)
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Table 6 continued

Technology Class Tech Subclass Domain Dataset Graph Type

Entertainment HetRec Delicious Homogeneous Graph: Song
et al. (2019b)

Adressa Complex Heterogeneous
Graph: Sheu and Li
(2020), Shi et al. (2021)

Roularta Hypergraph: Gharahighehi
et al. (2020)

Bing-News Complex Heterogeneous
Graph: Wang et al.
(2018c)

Flixster K-partite Graph: Zhang
et al. (2019a)

Multiple Graphs: Monti
et al. (2017)

Xing Homogeneous Graph:
Abugabah et al. (2020)

Complex Heterogeneous
Graph: Pang et al. (2022)

Deep Learning-based
Techniques

DHM YahooMusic Multiple Graphs: Monti
et al. (2017)

Filmtrust Multiple Graphs: Zhang
et al. (2021a)

Sougou Complex Heterogeneous
Graph: Shi et al. (2021)

Douban Homogeneous Graph: Song
et al. (2019b)

Social
Network

K-partite Graph: Zhang
et al. (2019a)

Complex Heterogeneous
Graph: Salamat et al.
(2021)

Multiple Graphs: Monti
et al. (2017), Zhang et al.
(2021a)
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Table 6 continued

Technology Class Tech Subclass Domain Dataset Graph Type

WeChat K-partite Graph: Wang
et al. (2020f)

Reddit Homogeneous Graph.:
Abugabah et al. (2020)

Complex Heterogeneous
Graph: Pang et al. (2022)

Others K-partite Graph: Kim et al.
(2019)

Academic or
Book

Goodreads Hypergraph: Wang et al.
(2020c)

Book-Crossing K-partite Graph: Hsu and
Li (2021)

Complex Heterogeneous
Graph: Yang and Dong
(2020), Zhou et al.
(2020b), Sang et al.
(2021)

DBLP Complex Heterogeneous
Graph: Zhu et al. (2021c)

Others REDIAL Complex Heterogeneous
Graph: Zhou et al.
(2020a)

Legal
recommendation
dataset

Complex Heterogeneous
Graph: Yang et al. (2021a)
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Appendix C Statistics of datasets and related technologies in GLRS

See Table 7.

Table 7 Quantitative summarization of different datasets on adopted GLRS technologies

Domain Dataset Traditional ML Path-based Graph
embedding

Deep Learning

DNN AE AMDRL GNN DHM

E-commerce Amazon 3 4 5 1 4 1 12 6

Yelp 5 8 3 2 1 9 4

Epinions 4 1 1 3 3

Diginetica 4 4

Ciao 1 3

JD 1

Retailrocket 3

Clothing retail 1

Alibaba 1 1 3

Taobao 1 1 4 1

Beidian

YOOCHOOSE 3 2

Etsy 1

Beibei 1 1

HOOPS 1

Tmall 2 1

Cosmetics 1

UserBehavior 1

Criteo 1

Avazu 1

USCFC 1

Adult 1

Google Play 1

AppChina 1

Yahoo!
shopping
dataset

1

MovieLens 10 9 6 2 1 7 1 9 10

Last.fm 4 3 2 1 1 2 6 6

YahooMusic 2 1 1 1

Flixster 2 2

Bing-News 1 1 1 1

KKBox’s
music

1 1
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Table 7 continued

Domain Dataset Traditional ML Path-based Graph
embedding

Deep Learning

DNN AE AMDRL GNN DHM

Entertainment HetRec
Delicious

2 1 1

Xing 1 2

DepaulMovie 2

InCarMusic 1

Dianping-
Food

1

InMind Movie
Agent

1

IntentBooks 1

IMDB 1

YouTube 1

Adressa 2 2

Roularta 2 1

MIND 1 2

Multiple News
Portal

1

Sougou News 1

Filmtrust 1

Mtime 1

Netease 1

Kuaishou 1

Tiktok 1

Kwai 1

Restaurant
&consumer

1

Social Network Douban 2 4 3 5

WeChat 1 1

Twitter 2

Reddit 2

Pinterest 1 4

Flickr 1

Hike network 1

BookCrossing 1 1 1 1 2 4

Academic or
Book

DBbook 1 1 1 1

DBLP 1 1 1

CiteULike 2 1 1

Goodreads 1 1
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Table 7 continued

Domain Dataset Traditional ML Path-based Graph
embedding

Deep Learning

DNN AE AMDRL GNN DHM

User-Tag 3

Librarything 1 1

Youshu 1

ACL
Anthology
Network

1

OHSUMED 1

POI Gowalla 1 1 1 4

Trip.com+
Facebook+
Twitter

1

Foursquare 1 1 1 1

Brightkite 1

Google Local 2

Tripadvisor 1

NUS-MSS 1

Other Educational
website and
textbooks

1

MIT AI +
CASAS

1

REDIAL 1

VizML corpus 1

Legal recom-
mendation
dataset

1

Yahoo traffic
stream

1
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