
User Modeling and User-Adapted Interaction (2023) 33:617–641
https://doi.org/10.1007/s11257-022-09340-z

Automatically detecting task-unrelated thoughts
during conversations using keystroke analysis

Vishal Kuvar1,3 · Nathaniel Blanchard2 · Alexander Colby3 · Laura Allen1,3 ·
Caitlin Mills1,3

Received: 31 October 2021 / Accepted in revised form: 6 July 2022 / Published online: 19 August 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Task-unrelated thought (TUT), commonly referred to as mind wandering, is a men-
tal state where a person’s attention moves away from the task-at-hand. This state is
extremely common, yet not much is known about how to measure it, especially during
dyadic interactions. We thus built a model to detect when a person experiences TUTs
while talking to another person through a computer-mediated conversation, using their
keystroke patterns. The best model was able to differentiate between task-unrelated
thoughts and task-related thoughts with a kappa of 0.363, using features extracted
from a 15 second window. We also present a feature analysis to provide additional
insights into how various typing behaviors can be linked to our ongoing mental states.
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1 Introduction

Imagine a recent conversation with a friend. Despite your intentions to stay engaged
with the conversation, your mind may have—and likely did—drift away from the
conversation at times. You may have started thinking about what you needed to do
later that day, or something they said may have triggered you to think about a memory
from the past. These are both examples of what is known as task-unrelated thought
(TUT), which is defined here as an internal mental state that is unrelated to one’s
current task (Smallwood & Schooler, 2015). TUT, often used synonymously with
the term mind-wandering (Mills et al., 2018), occurs in virtually every scenario of
our lives while we are awake (Killingsworth & Gilbert, 2010)—whether it be driving,
reading orwatching videos. TUT is not only remarkably frequent, it also has functional
implications in our everyday lives, including affective (Killingsworth &Gilbert, 2010;
Mills et al., 2021), educational (D’Mello &Mills, 2021; Smallwood et al., 2007), and
clinical correlates (Arch et al., 2021), (Marchetti et al., 2016).

Whether positive or negative, the frequency and consequences of TUT highlight the
need for reliable methods to detect its occurrence—especially using low cost, unob-
trusive metrics in everyday life tasks. The current work takes a step in this direction
by presenting the first real-time detector of TUT in the context of computer-mediated
conversations using keystroke analyses. Cost-effective, stealth assessments of TUT in
real-time offer novel ways to measure TUT without interruptions or task demands.
TUT is currently almost exclusively measured via self-reports using online experience
sampling or ecological momentary assessments, both of which necessarily interrupt
ongoing tasks to obtain real-time assessments. Accurate real-time detection offers
unique opportunities for interventions or personalized feedback (S. K. D’Mello et al.,
2017; Hutt et al., 2021), (Mills et al., 2020). For example, knowing when and how
often someone was off task in conversational contexts may eventually help facilitate
more effective conversations, particularly in remote education and health contexts.
Here, we take the first steps toward this goal, which is to identify effective low-cost
methods for TUT detection in interactive contexts.

1.1 Related work

Below we review two relevant bodies of work. First, we describe previous work on the
development of TUT detectors—all of which have existed outside of conversational
contexts thus far. Second, we turn to a complementary body of work that has developed
detectors of related cognitive-affective states in the context of language-relevant tasks
(i.e., writing).

1.1.1 TUT

Detecting TUT in real-time is a growing area of interest, presumably for both mea-
surement purposes and due to the link between TUT and task performance. The goal
of any “good” TUT detector is to provide a real-time assessment about one’s cognitive
state (i.e., are they on vs. off task?) without needing on any prior information about
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the person. That is, a “good” detector is both accurate, and it is generalizable to peo-
ple it has never encountered before. Generalizability is commonly assessed using a
cross-validation technique where the algorithm is trained on a set of people and then
tested on a new person (or people) that it did not encounter in the testing phase. All
the work we review below has used this cross-validation approach, where the training
and testing sets have been kept explicitly separate. This is also the approach we use in
the current work.

Reading tasks have been the most popular domain for real-time TUT detection to
date, likely because of the association between TUTs and comprehension outcomes
(Smallwood, 2011; Smallwood et al., 2007). Many researchers have utilized gaze
behaviors for detecting TUT during reading, as eye movements provide a reliable
window into cognitive processing (Rayner, 1998; Reichle et al., 1998). For instance,
Faber et al. (Faber et al., 2018) used eye gaze to measure TUT during computerized
reading and found that the proportional distributions of TUT predicted by the model
and the self-reported TUT were similar and were significantly correlated, with a Pear-
son’s r value of 0.40. Physiological features have also shown considerable promise as
reliable detectors of TUT in reading tasks. Blanchard et al. (Blanchard et al., 2014)
used skin temperature and skin conductance to detect TUT and found that these phys-
iological measures could be used to detect TUT at 22% above chance. Bixler et al.
(Bixler et al., 2015) improved on this performance by combining both gaze and phys-
iological features to detect TUT during reading with 11% more accuracy than when
only one of the two feature sets was used. Finally, other work has used features of the
text itself to detect TUT during reading. For instance, Franklin et al. (Franklin et al.,
2011) and Mills et al. (Mills & D’Mello, 2015) both used features of the reading itself
(i.e., linguistic properties of the words) and participants’ reading times to successfully
classify TUT during reading.

Following the success of detection in reading tasks, researchers have also begun
to examine the potential for developing models to detect TUT during other tasks,
including ones that involve more dynamically changing external stimuli, such as video
lectures (Hutt et al., 2021; Hutt, Mills, et al., 2016), narrative films (Mills et al., 2016;
Stewart et al., 2016), and simulated driving (Baldwin et al., 2017). Hutt et al. (Hutt
et al., 2019, 2017), for example, detected TUT in more dynamic learning scenarios
using gaze as their primary modality. In one study (Hutt et al., 2017), they collected
participants’ gaze data while they watched recorded lectures, and were able to detect
TUT with an F1 score of 0.47 (chance F1 � 0.30; where F1 represents the harmonic
meanbetweenprecision and recall). Pham&Wang (Pham&Wang, 2015) also detected
TUT during video lectures using heart rate with an accuracy of 0.712 and a kappa of
0.22 (where kappa represents percent above chance prediction levels). Finally, TUT
detection is also possible in context like narrative film comprehension (i.e., while
watching The Red Balloon movie) with either eye-gaze (Mills et al., 2016) or facial
features and body movements (Stewart et al., 2016).

Taken together, these studies highlight the idea that behavior can be a reliable
predictor of cognitive states. At the same time, there is a clear gap with respect to pre-
dicting TUT in interactive tasks that require coordination from multiple users at once
(e.g., conversations, collaborative tasks). For this reason, we focus here on computer-
mediated communication, which is increasingly common today, and even more so
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with more education and workplaces shifting to dominantly remote, online interac-
tions during the COVID-19 pandemic. Further, it is also important for TUT detectors
to use unobtrusive and low-cost features for prediction. This is especially true for tasks
that take place outside of the lab where eye-trackers and other physiological measures
are not available (Baldwin et al., 2017). Although things like eye-trackers and heart
rate monitors are increasingly becoming lower cost, they still present some issues
compared to sensor-free features when considering the ability to apply solutions at
scale.

1.1.2 Keystrokes as an indicator of cognitive processing

From the detectors mentioned above, it seems clear that TUT is reliably related to
low-level physiological and behavioral patterns. At the same time, no work has linked
TUT to language-production tasks such as conversation, where most robust signals of
cognitive processing may come from the production patterns in the task itself. Here,
we explore the idea that TUTs may be reliably detected from user’s keystroke pat-
terns while engaged in a computer-mediated conversation. This builds on a substantial
body of work that has demonstrated a link between features of keystrokes and cog-
nitive processes during text production tasks (Allen et al., 2016; Bixler & D’Mello,
2013). For example, findings from keystroke analyses suggest that text production
(i.e., writing) often has bursts with more keyboard presses and pauses where nothing
is written/pressed. The alternation between these two phases and the lengths of them
can be informative of mental activity; some pauses may indicate thinking about what
to say next, whereas others may signal evaluation or even disengagement (Bixler &
D’Mello, 2013; Wengelin et al., 2009).

Previous work has attempted to capitalize on the link between keystrokes and cog-
nition to predict cognitive-affective states, such as boredom and engagement, during
writing tasks (Bixler &D’Mello, 2013), (Allen et al., 2016). In the first study, Bixler &
D’Mello (Bixler & D’Mello, 2013) attempted to classify whether students were expe-
riencing boredom, engagement, or a neutral affective during an essay writing task.
They trained their model using keystroke analyses and trait-level variables to predict
retrospective reports of affective states. Specifically, participants watched concurrent
videos of their essay and their face and make periodic ratings about what affective
state they were experiencing while writing (S. D’Mello & Mills, 2014). Their model
could differentiate between boredom and high engagement with 87% accuracy and
between boredom, neutral engagement, and high engagement with 56.3% accuracy.
Similarly, Allen et al. (Allen et al., 2016) explored if overall levels engagement could
be measured using keystroke analyses and features of the language itself during essay
writing. Results demonstrated that a combination of keystrokes and text features could
be used to detect levels of boredom during a writing task with 76.5% accuracy.

Beyond boredom and engagement, keystrokes have been used to predict other affec-
tive states as well. For example, Salmeron-Majadas et al. (Salmeron-Majadas et al.,
2014) loggedkeystrokes fromparticipants during amath taskwhere they also answered
intermittent probes questions about affective valence and arousal. Correlation analyses
revealed that keystroke features like standard deviation of time between consecutive
keystrokes, mean duration of diagraph were highly correlated with valence. Although
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these features were also correlated with arousal, there were smaller effects than for
valence. Another study by Epp et al. (Epp et al., 2011) collected timestamps for when
the key was pressed and released while the participants performed free and fixed writ-
ing tasks. Participants answered probes from the emotional state questionnaire while
performing both writing tasks. The researchers then built a model that was able to
accurately classify between two levels (agree vs. disagree) for six out of the fifteen
possible emotional states: confidence, hesitance, nervousness, relaxation, sadness, and
tiredness. Further, in both aforementioned studies (Epp et al., 2011; Salmeron-Majadas
et al., 2014), features were extracted from digraphs and trigraphs, making them reliant
on content-based information.

Although these studies lend support to the idea that keystrokes may be a reliable
indicator of TUT, it is important to point out some critical differences. First, both
studies used features that extend beyond a content-independent keystroke approach.
That is, they either took into consideration traits about the participants or what the
participant actually wrote—both of which would limit the generalizability and scal-
ability of a detector. Second, although boredom and engagement may be related to
TUT, they are not the same construct. Whereas boredom is inherently defined by
its affective components (its definition involves negative feelings; (Eastwood et al.,
2012)), TUT does not share a one-to-one mapping with affect (Fox et al., 2018). Sim-
ilarly, the relationship between boredom and TUT is unclear (Critcher & Gilovich,
2010; Eastwood et al., 2012; Raffaelli et al., 2018), but we do know that TUT can
be a much more ephemeral state. Finally, it is important to point out that typing dur-
ing an essay writing task is inherently different from typing in a conversation, where
there may be other determinants of attention and engagement, such as the respon-
siveness of their chat partner or the topic of the conversation. In sum, there is ample
theoretical and empirical support for our approach, but it is still an open question
whether content-independent keystrokes will be a reliable detection method for TUT
in a computer-mediated conversation.

1.2 Current study

We attempt to build a model that can detect TUT in a conversational setting. Partici-
pants chattedwith one another anonymously through a chat application for tenminutes
while their keystrokes were recorded. They self-reported TUT throughout the chat
session. Models were trained on content-independent features of each participant’s
keystrokes using supervised learning algorithms and validated using a leave-one-
participant-out method. We then test our model’s generalizability using a second
dataset where participants chatted with a chatbot instead of another human. To our
knowledge, our study is the first to attempt TUT detection in a conversational set-
ting as well as the first to detect TUT using keystrokes. The method proposed here
could dramatically reduce the cost and intrusiveness for reliable TUT detection and
measurement—requiring nothing more than a device that is capable of running a web
browser and a keyboard to type with.
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2 Methods

2.1 Participants and data collection

Allmethods and procedureswere approved by the IRB at [removed for blind review] in
and accordance with the Declaration of Helsinki. Data were collected from 126 under-
graduate students at a public university. We did not obtain demographics data from 13
participants due to program errors but collected complete demographics information
from the remaining 113 (75% female; Mage � 19.179, SDage � 2.483). Out of the
126 participants, chat files for 2 were lost and files for 4 participants were corrupted,
leaving us with 120 participants’ data.

Participants came to the laboratory to take part in a study involving a 10-min
computer-mediated conversation with another participant, during which they self-
reported instances ofTUT.Todisguise the purpose of the study andpreserve participant
anonymity, we recruited participants from two separate study listings on the univer-
sity’s research participation system. Each listing noted that the purpose of the study
was to test a new computer program designed by the researchers. To minimize the risk
of participants meeting prior to the session, each study listing was listed on a separate
floor of the same building. All study sessions were completed on 13′′ laptops.

2.1.1 Chat session

Conversations took place on the browser-based chat application ChatPlat. Chat-
Plat allows researchers to administer and customize synchronous text conversations
between anonymous users and has been used and validated in previous studies (Huang
et al., 2017; Wolf et al., 2016). Chat sessions were created with emoticons disabled
and were designed to expire exactly ten minutes after the last member of a pair entered
the session. Participants were informed that they could discuss any subject matter they
preferred with their partner so long as they did not disclose identifiable information
including their name, age, residence, or the university they attended. Keystrokes were
collected using a Python script that began recording keystrokes as soon as participants
entered the chat session.

2.1.2 Ground truth: TUT reports

We used a commonly employed and validated technique to collect TUT reports,
referred to as a “self-caught” method (Varao-Sousa & Kingstone, 2019; Weinstein,
2018). This method asks participants to self-report instances of TUT as soon as they
realize it occurs. We specifically asked participants to indicate TUT by pressing a
designated button on the keyboard that was otherwise irrelevant to the chat session.
Despite some limitations of this method, the self-caught method is quite frequently
in TUT detection (Baldwin et al., 2017; Kopp et al., 2016; Stewart et al., 2016) and
has the advantage of collecting TUT reports at any point in time rather than at specific
moments (using probes) or retrospectively once the session ends. We thus consider
self-caught TUT to be a suitable method for detecting TUT in the current study.
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TheTUT report button (left Control key)was coveredwith a sticker in order to avoid
any confusion. This button made a small noise when pressed to notify the participant
that their response had been registered. We instructed participants to press the button
anytime they found themselves thinking about anything besides the conversation. We
also provided participants with an example (thoughts drifting from the conversation
to a test coming up in a class) to further ensure that participants were familiar enough
with the phenomenon to be able to report it accurately.

2.2 Supervisedmachine learning

2.2.1 Data processing

Participants’ keystrokes were recorded, along with timestamps, as they conversed. We
removed all participants who did not register any TUT reports, as no TUT features
could be extracted from such participants. Since Kappa was calculated per-participant,
Kappa is difficult to quantify in the absence of reports since there is only one ‘true’
class (i.e., TUT). Further, the absence of TUT may also indicate that participants
misunderstood or forgot the instructions—i.e., we assume that although it is possible
for someone to not experience TUT in the span of ten minutes, it is highly unlikely
for that to happen in this study given that computer-mediated conversations involve a
significant period of waiting for the partner to respond. In total, 11 participants out of
the 120 did not report any TUT and were dropped, making our final count for model
building 109 participants.

The keylogger that was used to capture the keystrokes of the participants did not
register combination keys. One way to type the capital letter ‘I’ would be pressing the
shift key and the ‘i’ key simultaneously. The logger stored both of these keys separately.
To fix this, the letter key pressed after the shift key was pressed was capitalized and
shift key was removed from the keystrokes. The timestamp for the capitalized letter
would be the timestamp of the latter of the two keystrokes. The same procedure was
used to create question marks and exclamation marks.

Since this was a computer-mediated conversation, internet slang and punctuation
were to be expected. Repeating punctuation marks for emphasis is a common practice
seen in CMCs. Some common examples of these are ‘???’, ‘!!!’ and ‘…’. In such a
case, the set of punctuations are replaced with the last punctuation in that set and its
and timestamp.

2.2.2 Feature extraction

Creatingwindows for TUT vs. TRT We extracted features from 109 participants’ data.
In order to use a supervised machine learning, we first needed to create our labeled
data; that is, instances of time that represent a TUT report vs. instance that represent
task-RELATED thought (TRT). Given our self-caught method, we were able to use
the TUT reports as our “labeled” TUT data and considered all other times to be TRT.
A critical aspect of building a real-time detector is that the features (here, keystroke
patterns) used by the algorithm to make predictions needs to occur before the report.
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Fig. 1 Window creation for TUT and TRT

This way, the prediction is not based on the report itself, but rather the patterns of
data leading up to the report. For this reason, we needed to create “windows” of data
leading up to each TUT report as well as windows that represent TRT.

We took the following approach to create such windows. Our feature extraction
strategy is graphically represented in Fig. 1 and is similar to approaches used in
previous studies (Stewart et al., 2016). We wrote a program to traverse each CSV file
until a TUT report was identified. We adopted a TUT report “buffer” approach, which
is commonly used in other detection attempts (Faber et al., 2018; Stewart et al., 2016),
which involves discarding at least two seconds of data before the TUT report. This
“buffer” is intended to accommodate the gap in time when the participants recognized
and subsequently reported their TUT state, and to ensure the algorithm does not simply
learn this report behavior. Since keystroke timestamps occur at non-fixed intervals,
the buffer that was inserted may have been longer than two seconds by nature.

Once a TUT report was identified, features were extracted from the keystrokes
using two different a pre-determined window size (15 s, 30 s) preceding the buffer.
The 2 window sizes were chosen to determine how much keystroke data are needed
for TUT detection in conversational contexts. All the keystrokes that fell into a given
window were used for feature extraction.

TRT windows were created under the assumption that participants were likely
engaging in task-related thought (TRT) outside of the TUTwindows (or else wewould
have expected a TUT report to occur). TRT windows were created before, in between,
and after TUT windows. To create TRT windows in between two TUT windows, the
time difference wasmeasured between the end of the first TUTwindow and the start of
the second TUTwindow. If the difference was greater than the window size (e.g., 15 s,
30 s), we created as many TRT windows as possible. As an example, if participants
did not engage in TUT for over 2 min, we would be able to create a maximum of 8
TRT windows for the 15 s model (provided all the windows are exactly 15 s). In case
of a single TUT section present in the chat we used the remaining time in the chat to
create as many TRT windows as possible. The TRT windows did not require a similar
buffer since there is no realization period for the participant as there was during the
TUT report. The TRT windows were of the same size as the TUT ones. If no TRT
windows were created for a participant, that participant would be dropped from our
analyses; there was only 1 such case for the 15-s window and 2 for the 30-s window.
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Table 1 Distribution of TUTs and TRTs for 15-s and 30-s windows

TUT TRT

Total Mean (SD) Total Mean (SD)

15 s 374 4.021 (2.545) 1425 15.322 (7.284)

30 s 243 3.283 (1.675) 608 8.216 (4.171)

It is also important to point out that TRT will be much more common than TUT;
this is true for almost all TUT detection papers to date. In real life, we are only off-
task a subset of the time and our dataset should reflect this—producing an imbalanced
dataset with more TRT windows that TUT windows. The distributions of ground truth
TUT and TRT instances for both 15- and 30-s windows are shown in Table 1.

Extracting keystroke patterns After creating the windows for TUT and TRT
instances, we extracted features from each of them. A total of 38 features were created,
broadly spanning two categories: non-message and message. Features that required
the recreation of the messages sent by the user in the windowwere categorized as mes-
sage features and others were categorized as non-message features. Table 1 provides
a summary and definition for all features extracted.

Our non-message features were derived based on the ones use by Bixler &D’Mello
(Bixler & D’Mello, 2013). Verbosity measures the number of keystrokes that were
pressed by the participant in that window, including the idle keystrokes. Backspace
frequency measures the number of times the participant pressed the backspace key in
the feature extraction window. Latency was defined as the amount of time between
two consecutive keystrokes. We used the mean, median, maximum and the minimum
values of all the latencies present in the window. Lastly, we defined the Number of
pauses as the number of times the user paused in the window for a given period of time.
We used five different intervals to calculate these pauses, each as a unique feature:
0.25–0.75 s; 0.75–1.25 s; 1.25–1.75 s; 1.75–2.25 s; 2.25–2.75 s.

For message features, we automatically recreated the actual message by mapping
each keystroke in a sequential order. If the actual message within the window was
blank, that window was skipped for message features. Such a case could arise if the
sequence of keystrokes results in an overall blank message an example of which is-
‘h’, ‘e’, ‘y’, ‘backspace’, ‘backspace’, ‘backspace’. Message recreated from this set of
keystrokes will be blank. If the recreatedmessagewas not blank, we extracted themes-
sage features from thewindow.Note that these features were still content-independent,
meaning we purposefully ignore the content of the message for generalizability and
scalability purposes.

The first message feature was the Length of the actual message being sent. Addi-
tionally, we included the Number of words, Number of sentences, and Number of
messages sent. Words were defined as groups of letters separated by spaces. Sentences
were separated with periods, exclamation marks, and question marks, and messages
were separated by the press of the enter key. Inter-word time, Inter-sentence time and
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Inter-message time were defined as the average time between consecutive words, sen-
tences, and messages, respectively. In case of a single word, sentence or message, the
inter-word, inter-sentence, and inter-message time were set to zero, respectively. We
also used Word length as a feature. There were two different ways to calculate word
length: number of keys pressed, and time taken to type a word, which required us
to determine where a word started and ended. We considered the word to start from
where the last word ended. For example, if a participant were to hit the following
keys in order: ‘h’, ‘i’, ‘backspace’, ‘backspace’, ‘h’, ‘e’, ‘y’, ‘space’, the message
that would be sent is ‘hey’. In this case, the word length will be seven even though
the actual length of word sent is three. The indices of the start and end point of the
word were stored, and the length of each word was calculated for the entire window.
The minimum, maximum, mean and median values of all of the word lengths were
included as features. Finally, we calculated the Length of a sentence in three ways:
keys pressed, time taken to type each sentence and number of words in each sentence.
The minimum, maximum, mean and median values of all of the sentence lengths were
included as features. Table 2 summarizes the features that were extracted.

2.2.3 Validation and evaluation

Cross-validation We used the leave-one-participant-out validation method for this
study. This means that all the participants except one (k-1) were used to train a model,
and that model’s performance was then measured by testing it on the one participant
that had been held out. This validation method is performed k times, where k refers to
the number of participants in the dataset—each time, a different participant is left out
to test the model. Using the leave-one-out validation method ensures that the model
is evaluated on new and unseen participants; this ensures the models will generalize
to real-world conditions. Overall model performance is then assessed by taking the
average performance across the k iterations. Here we provide average performance as
well as histograms for how the models perform across all individuals.

Evaluationmetrics Supervised classifiers can be evaluatedmultipleways, withmuch
debate about which metric is the gold standard. Even within the TUT detection lit-
erature, different papers report different metrics. For this reason, we report multiple
performance metrics to provide easier facilitation with past and future work: accuracy,
kappa, Matthew’s correlation coefficient, ROC AUC and F1 score. We also report the
confusion matrix for the models. Accuracy is defined as the ratio of correct predictions
to the total number of predictions; however, we encourage readers to ignore accuracy
given our highly imbalanced dataset (i.e., predicting the majority class would still lead
to a very high accuracy). F1 score is the harmonic mean of precision and recall, where
precision is the ratio of total positive to total predicted positive and recall is the ratio of
total positive to total actual positive. Kappa (McHugh, 2012) measures the agreement
of predicted values and the actual values while taking the chance agreement out of the
picture. In other words, it tells us how much better our model is performing over the
performance of amodel that simply guesses at base rate based on the class distribution.
Kappa values can range from -1, which indicates opposite agreement, to 1 which indi-
cates complete agreement. A kappa value of 0 would indicate no agreement, chance
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Table 2 Description of extracted features

Type Feature name Number of
features

Feature description

Non-message
features

Verbosity 1 The number of keystrokes in the
window

Backspace
Frequency

1 The number of times the backspace key
was hit in the window

Latency 4 The difference between two successive
keystrokes in the window (min, max,
mean, median)

Pause 5 Number of pauses for each interval
(0.25 s—0.75 s, 0.75 s—1.25 s,
1.25 s—1.75 s, 1.75 s—2.25 s,
2.25 s—2.75)

Message features Length of message 1 Length of the recreated message in the
window

Number of words 1 Number of words in the recreated
message (separated by the space key)

Number of
sentences

1 Number of sentences in the recreated
message (separated by period,
exclamation mark, question mark)

Number of
messages

1 Number of messages sent in the
window (separated by enter key)

Inter-word time 1 Mean time between consecutive words
in the recreated message

Inter-sentence time 1 Mean time between consecutive
sentences in the recreated message

Inter-message time 1 Mean time between consecutive
messages in the recreated message

Word length
(keystrokes)

4 Number of keystrokes logged to type a
word (min, max, mean, median)

Word length (time) 4 Time taken to type a word (min, max,
mean, median)

Sentence length
(keystrokes)

4 Number of keystrokes logged to type a
sentence (min, max, mean, median)

Sentence length
(timestamp)

4 Time taken to type a sentence (min,
max, mean, median)

Sentence length
(words)

4 Number of words logged to type a
sentence (min, max, mean, median)

performance. The final metric we include is the Matthew’s correlation coefficient.
MCC is reported as an alternative to the F1 score, which can be asymmetric. The F1
score ignores the true negative cell of a confusion matrix, which at times might be
problematic if the dataset is imbalanced, like in our case. The metrics are defined as
follows (Ferreira, 2018; McHugh, 2012):
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TP,TN,FP,FN refer to the true positive, true negative, false positive, and false
negative in a confusion matrix, respectively.

accuracy � (T P + T N )

(T P + T N + F P + F N )

precision � (T P)

(T P + F P)

recall � (T P)

(T P + F N )

f 1 � 2 ∗ precision ∗ recall

precision + recall

random Accuracy � (T N + F P) ∗ (T N + F N ) + (F N + T P) ∗ (F P + T P)

(T P + T N + F P + F N )2

kappa � accuracy − random Accuracy

1 − random Accuracy

MCC � T P ∗ T N − F P ∗ F N√
(T P + F P) ∗ (T P + F N ) ∗ (T N + F P) ∗ (T N + F N )

2.2.4 Model building

As discussed in our Validation section, we used a leave-one-participant out validation
method. We created training sets which included all the participants but one and that
one left out participant was used as the test set. We also used a commonly applied
technique called SMOTE (synthetic minority over-sampling technique) (Chawla et al.,
2002) to deal with our highly imbalanced training set. SMOTE creates create synthetic
data points in the training data, balancing TUT and TRT as the model “learns” the
patterns; however, the test set is kept as-is. SMOTE is an increasingly common tech-
nique in supervised machine learning and is often used TUT detection as well (Faber
et al., 2018).

We also test performance across two different window sizes: 15 s and 30 s, for
the calculation of the keystroke features. This is another common approach in TUT
detection and will be of particular interest here to know howmuch text data is required
to make accurate predictions. For example, 15 s may perform the best because the data
are more proximal to the TUT report; in contrast, 30-s windows may simply provide
more data for the calculation of each feature. We are interested in assessing this trade-
off in the computer-mediated conversation context.

This is the first work to attempt detection of TUT in the context of conversations,
so it was unclear what classification algorithms and hyperparameters would perform
best.We thus trained and evaluated a series of supervised classification algorithms and
hyperparameters on the detection of TUTs. Specifically, we used seven commonly
applied different classifiers and implemented them using the Scikit-learn library in
Python (Pedregosa et al., 2011): decision tree, linear support vector machine, random
forest, K-nearest neighbor, Gaussian process, Adaboost, and quadratic discriminant
analysis. Each of these has optional hyperparameters, classifier-specific conditions or
values that are set before training.Due to the high number of possible hyperparameters,
and classifier combinations, we automated the training and evaluation of all of these
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conditions using the Hyperopt package (Bergstra et al., 2015). Hyperopt implements
Bayesian optimization (Snoek et al., 2012), using Python, to automatically find the
best hyperparameters for detecting TUTs. Bayesian optimization evaluates the results
from the previous models to decide which combinations to evaluate next. By default,
the first 20 model conditions are random to initialize the Bayesian optimization. A
model would be considered “better” than the best model if its Kappa value was higher.
This process of creating new models and comparing its kappa to the best model was
repeated an additional 130 times, creating 150 models in total, and the model with the
highest kappa at the end of this process was selected.

We note that having such a high number of possible combinations of hyperpa-
rameters made the hyperparameter tuning incredibly complex. Compared to these
combinations, the number of data points available was relatively small and thus intro-
duces a possibility of overfitting in the search itself. Accounting for this, we test our
final model on a completely separate dataset—something that it has never encountered
before and using a different chatting context (chatbot vs. human). Using this additional
validation method, we would expect to see a large drop off in performance if the model
has learnt the initial dataset itself instead of learning from it.

3 Results

3.1 Best models

Table 3 shows the best kappa values and its standard deviation for both the windows
with normal data as well as SMOTE data.

The 15-s window appears to have better performance overall compared to the 30-s
window. Although SMOTE improves model performance in both windows, the 15-s
window model is the best overall. The full performance metrics of the best models
for 15 s and 30 s can be found in Table 4. Both the windows use the random forest
classifier to train the best model.

The confusion matrices for the best models for each window are shown in Table 5.
Even though the dataset is imbalanced, the models do not selectively predict one class
over the other, which is ideal given that our main goal is to predict the minority class.

We also examined the frequency distribution of the kappa values in the leave-one-
participant-out validation method. This was necessary because the model could have
been predicting TUT with a high level of confidence for certain participants and with
extremely low confidence for the rest, creating a reasonable “average” performance
even though many people may be completely unpredictable (i.e., kappa close to zero).
Such a model may have a decent kappa value overall but would not have generalized

Table 3 Kappa values for the
best models for 15-s and 30-s
windows

No SMOTE SMOTE

15 s 0.323 (0.326) 0.343 (0.258)

30 s 0.304 (0.304) 0.331 (0.296)
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Table 4 Performance metrics for 15-s and 30-s windows trained with SMOTE

Window
size

Classifier Accuracy ROC-AUC F1
(TUT)

F1
(TUT)
chance

F1
(TRT)

MCC

15 s Random
forest

0.775 0.692 0.507 0.333 0.862 0.372

30 s Random
forest

0.730 0.690 0.557 0.461 0.814 0.373

Table 5 Confusion matrices for each window

Predicted values

Actual Values TUT TRT Total

15 s TUT (0.20) 199 175 374

TRT (0.79) 210 1215 1425

Total 409 1390 1799

30 s TUT (0.30) 140 103 243

TRT (0.69) 119 489 608

Total 259 592 851

well to new data; ideally, the models’ kappa values would have a normal distribution.
Figure 2 shows the distribution of kappa values, which indeed looks relatively normal.

Lastly, we plotted the kappa values against the number of TUT reports (note one
participant with 17 TUT reports and a kappa of 0.2 was removed from the figure
for better visualization of the linear pattern). We inspected the possibility that kappa
values were merely a function of the number of reports. Figure 3 indicates that the
kappa values are relatively independent of the number of TUT reports; a Pearson’s

Fig. 2 Kappa distribution values of 15 s model (left), 30 s model (right)
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Fig. 3 Distribution of kappa values against number of TUT reports

correlation of 0.252 suggests that the number of reports only explained about 5% of
the variance in the kappa value.

3.2 Feature analysis

We also examined how each feature group influenced model performance: message
length, latency, pauses, count, inter-element, word length, sentence length. We thus
created models that were: (1) trained on an individual feature group alone; and (2)
trained bywithholding an individual feature group. A description of each feature group
can be seen in Table 6.

We trained each feature group using the same algorithm (random forest classifier)
and hyperparameters that was used in our “best” model. The kappa values of these
models can be seen in Table 7. The feature group of Sentence length appears to have
the biggest influence; this feature group alone had the highest kappa value of 0.310,

Table 6 Feature groups

Feature group Features included

Latency All four of the latency features

Pauses All five of the pauses’ features

Count Number of words, sentences, and messages in the reconstructed window

Inter-element The average time between consecutive words, sentences, and messages in the
reconstructed window

Message length Verbosity, length of actual message

Word length All eight features that were extracted for the word length

Sentence length All twelve features that were extracted for the sentence length
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Table 7 Results of models
trained on one feature group and
by removing one feature group

Feature groups Train with feature
group

Train with all except
feature group

Sentence length 0.310 0.269

Word length 0.213 0.353

Inter-element 0.174 0.324

Count 0.148 0.336

Length 0.121 0.330

Latency 0.050 0.320

Pauses 0.018 0.338

All features 0.343 –

and largest drop in the kappa occurred when it was removed. In contrast, the feature
group of Pauses had the smallest influence on the overall model. It is also interesting
to observe that Word length had the second highest kappa of the models trained on
individual feature groups, but the overall kappa of the model also improved when
this feature is removed, suggesting its presence along with other features somehow
confounds the model, but is strong enough itself to drive the model. This feature
group’s interaction with the rest of the features is something to be examined.

We then repeated this same procedure on individual features (rather than groups)
by training on one feature individually and removing one feature at a time. The kappa
values of the top 10 models are reported in Table 8. (Each feature can be interpreted
as follows: feature group, measured as, statistic.)

Based on the results shown in Tables 7 and 8, we can infer that the model is likely
reliant on feature groups rather than individual features. Models trained on individual
features have a lower kappa, whereas models with one feature removed have a kappa
value very close to the actual model.

3.3 Feature selection

A machine learning model sometimes performs better on a subset of features as
opposed to all of them. Although we had no theoretical basis to remove features at the
beginning, there are other issues to consider including selecting a more parsimonious
model. We examined the number of features that would be ideal given our entire set of
features by re-training models using a feature selection algorithm. The first model was
trained on the best feature selected, the second one with two features. This continued
till the final model was trained with all the features included, giving us a total of 38
models, each with one extra feature than the previously trained model. We used the
select-k-best feature selection algorithm. The algorithm and hyperparameters were the
same as the best model we trained before. Figure 4 shows how each of the selection
performed. The best model had a kappa value of 0.362 with a standard deviation of
0.255 using 24 features, offering a slight improvement over the model with no feature
selection (kappa � 0.343).
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Table 8 Results of models
trained on one feature and by
removing one feature

Features Trained on one
feature by itself

Removed one
feature from best
model

Sentence length,
num. words,
minimum

0.192 0.344

Sentence length,
keystrokes,
minimum

0.190 0.328

Sentence length,
timestamp, mean

0.179 0.304

Sentence length,
timestamp,
minimum

0.178 0.334

Word length,
keystrokes, mean

0.161 0.320

Word length,
keystrokes,
minimum

0.160 0.355

Sentence length,
timestamp, median

0.158 0.319

Sentence length,
word, mean

0.153 0.347

Sentence length,
word, median

0.151 0.343

Sentence length,
timestamp,
maximum

0.148 0.324

All features 0.343 –

Fig. 4 Kappa values based on the number of features selected
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3.4 Feature importance

Out of the 24 features selected in this model, we then examined how each feature
contributed to the model. We calculated the feature importance of each feature in the
model, with the top 10 features including: maximum word length (keystrokes), max-
imum sentence length (keystrokes), maximum sentence length (timestamp), length
of message, maximum sentence length (word), mean word length (timestamp), mini-
mum latency, inter-word time, 0.75–1.25 s pause, maximum word length (keystroke).
Feature importance was determined by the Gini impurity (i.e., the probability of mis-
classifying the observation). Specifically, feature order was determined by identifying
which feature minimizes the measure.

We then sought compared the top 10 features across the TUT and TRT in order
to glean some insight into the actual keystroke behaviors associated with each class.
We performed paired samples t-tests and calculated Cohen’s d values to compare each
feature (see Table 9). Five features were significantly different across the two classes:
Maximum sentence length number of keystrokes; Maximum sentence length based on
time, Maximum sentence length based on number of words, Length of message, and
Minimum latency. The sentence length features all suggest that sentence lengths are
longer during TUT compared to TRT. There also appears to be shorter pauses in TUT
as well.

At first glance, these patterns may seem counterintuitive. One may expect that TUT
would have shorter sentences and longer pauses. However, recall that we are making

Table 9 Feature descriptive table for TUT and TRT for the 15-s window

Features Task-related thought
(N � 1425)

Task-unrelated thought
(N � 374)

p d

Mean SD Mean SD

Maximum word
length (timestamp)

8.67 6.29 10.6 11.2 0.135 0.144

Maximum sentence
length (keystroke)

33.1 8.03 37.2 13.2 0.002 0.302

Maximum sentence
length (timestamp)

13.4 6.25 16.6 10.9 0.012 0.246

Length of message 27.0 7.53 34.2 14.0 < 0.001 0.541

Maximum sentence
length (word)

5.01 1.34 5.83 2.52 < 0.001 0.339

Mean word length
(timestamp)

5.06 5.95 4.08 8.74 0.340 0.092

Minimum latency 2.81 6.01 0.577 2.42 < 0.001 0.338

Inter-word time 0.516 0.248 0.524 0.309 0.806 0.023

0.75 s – 1.25 s pause 1.19 0.488 1.82 3.42 0.341 0.092

Maximum word
length (keystroke)

13.8 4.95 12.7 4.84 0.078 0.171
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predictions across the entire chat session, including both generating and receiving
chats. TRT windows (the much more common class label) are often created between
a user’s conversational turns—for example, when a participant is waiting for their
partners’ reply. Thus, even though the average number of messages is greater for
TRT compared to TUT, there is more idle time during the TRT windows, possibly
driving the overall sentence features down. This is further evidenced by that fact that
the majority of the TUT reports came during the user’s own conversational turns
(74.12%) compared to when they were awaiting a reply. It is also important to note
that none of these features performed well individually—rather multiple features were
needed for accurate classifications.

3.5 Generalizing to new data: chatbot conversations

We next tested the generalizability of our model in a different context; namely when
users were chatting with a chatbot instead of a human. The human dataset used above
was the training dataset, and a chatbot dataset was the test set. We used the best
classifier and hyperparameters from the two-person conversation model to train these
data. The 15-s window was used since it was the one that gave the best results.

Data that were collected from the same set-up with the only exception being that
participants spoke with a chatbot instead of another human. Participants conversed
with a free online chatbot but were not explicitly informed that the other agent was
not a human. To increase the ecological validity of chatting with a chatbot, a human
transcribed the chatbot’s responses in real time so the message cadence felt more real-
istic In total, we collected data from 65 participants who chatted with the well-known
chatbot ALICE (Wallace, 2009). Besides the differences in conversation participants,
the procedure for participant pairs and participant–chatbot pairs was identical.

Our final model applied to the chatbot data had a kappa value of 0.333 (0.206),
with an accuracy of 0.753. The AUC, combined F1 score, and MCC for this model
are 0.666, 0.497, and 0.333, respectively. The individual F1 scores for TUT and TRT
for the model are 0.496 (0.396 chance) and 0.855. These metrics generally indicate
reasonable generalizability of our original model, with comparable performance to
other TUT detectors in the literature. At the same time, we do see a drop off in terms
of precision/recall compared to our original human–human chat model. As seen in the
(Table 10), TRT is predicted with higher accuracy, whereas TUT is predicted 41 out
of 83 times (49%).

Table 10 Confusion matrix for the model trained on human dataset and tested on chatbot dataset

Predicted Values

Actual Values TUT TRT Total

15 s TUT 41 42 83

TRT 41 212 253

Total 82 254 336
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4 Discussion

4.1 Major findings

Task-unrelated thought occurs when a person’s attention is focused toward internally
generated thoughts rather that task-at-hand. This is a very common phenomenon in
everyday life, but it can be difficult to study unobtrusively because of its elusive nature.
A number of studies have attempted to detect TUT with some success, but to date all
of them have been focused on single user activities like driving and reading. Ours is
the first build a detector of TUT in a multi-person interactive setting, specifically in
computer-mediated conversations.

Although a few studies to date have uses keystroke patterns to detective affective
states like boredom and engagement (Allen et al., 2016; Bixler & D’Mello, 2013), it
was unclear if this modality would be amenable for detecting TUT. TUT is a highly
covert and ephemeral state with few overt behavioral markers but mounting evidence
that suggests our movement patterns may be indicative of our cognitive states. We
thus used keystroke data, along with their associated timestamps, to build models to
detect TUTwhile two participants chatted with one another participant using an online
chat platform. Results from these models indicate that people indeed exhibit different
keystroke patterns while they are off task versus when they are not, leading to reliable
detectors using a random forest algorithm.

Our model also generalized quite well to unseen participants (leave-one-out cross-
validation), which is important because each individual has a different typing style,
dexterity, and speed. The best model that was created had a kappa value of 0.343
(0.258), which was further improved with feature selection (0.362 SD � 0.255). Fea-
ture selection analyses revealed that sentence length featuresmay be a helpful indicator
of whether someone is off task; however, it is important to note that no single feature
performed well on its own, suggesting that the random forest algorithm relied on a
combination of features for classification.

Finally, our model was also tested on an entirely new dataset where users were
talking to a chatbot instead of human. This model had a kappa of 0.333, indicating
generalizability, but with a drop in both overall performance and recall. Some of the
drop in performance may be due to participants realizing that they were talking to
a bot, which made them lose interest and/or change their overall chatting behaviors.
This above chance result also alleviates concerns about overfitting in search of the
original model. Future work will therefore explore the conditions for why and when
generalizability is degraded.

We also point out that our model was content independent, meaning we did not
use any features to capture the sentiment or meaning of the chats. We view this as a
strength of our model, as it can be applied in many different contexts (i.e., education,
work, experimental studies tracking TUT in conversations). However, future work
should explore content dimensions to improve model fit, especially if the domain is
well-defined.
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4.2 Limitations

We note a few limitations to the current work. First, we note limitations in the amount
of data. Since the performance and generalizability of a model is a function of the data
available, more data may have helped the model to yield more accurate results. We
also note that data was collected from undergraduate students at a public university in a
laboratory setting. The lack of diversity in our sample prevents us fromgeneralizing our
results to a larger population. Further, being in an unfamiliar laboratory environment
during the conversation may have influenced the dynamics of the conversation and
rates of TUT.

Finally, we note the decision to use the self-report method to detect TUT as a
limitation to our study. There are two gold-standard ways to assess TUT: self-caught
(used here) and probe-caught (Weinstein, 2018). Asking participants to self-report
TUT forces participants to remain meta-aware of their own mental state (Smallwood
& Schooler, 2006), which is a trade-off to limiting the amount of times TUT can be
reported in general (i.e., probes are only periodically inserted). Our results rely on
the assumption that participants were honest and accurate with their reports. Unlike
probe-caught measures of TUT, the self-report also does not provide us with instances
of TRT; testing our models on probe-caught data in the future would thus be benefi-
cial and might further address the issues surrounding a small number of participants
making zero TUT reports. This limitation, however, is also one of the reasons why it
is important to create “stealth” assessments of TUT in the first place. Future research
should prioritize the use of developed detectors to determine whether or not a per-
son is off-task without relying on methods that either place additional task demands
on participants (cognitive monitoring in self-caught) or necessitate task interruptions
(probes appearing in probe caught). TUT detectors such as the one developed here can
assist in this advancement, particularly during computer-mediated communications.

4.3 Future work

As noted above, self-caught TUT can force participants to constantly monitor their
thought andmental states. This issue can be circumvented in futurework byperforming
this experiment using the probe-caught method to detect off-task thought. This would
give concrete instances of what keystrokes look like when a person is completely
focused on a task. Second, future work may consider TUT not as dichotomous, but on
a continuum (Kam et al., 2021; Kane et al., 2021; Mills et al., 2018). After all it might
be possible to be ‘focused’ on a less demanding task while still not having thoughts
that are completely task-relevant, particularly during conversations. Futureworkmight
therefore consider measuring TUT on a continuum using a 7-point Likert scale instead
of a binary one. However, it is important to note that Kane et al. (Kane et al., 2021)
found that a content-based binary scale is currently the most reliable way to asses
TUT (or mind wandering), perhaps owing to the individual differences that influence
reporting on a continuous scale. Third, the actual content of the messages could be
examined such the affective state of the participant is monitored in tandem with TUT.
Finally, future work should consider combining keystrokes with other modalities that
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detect TUT. As was demonstrated by Bixler et al. (Bixler et al., 2015), combining
multimodal features to detect TUT can result in detection better than one modality
alone. Future work thus should consider combining keystrokes with other modalities
such as EEG, gaze, and facial features to determine whether this results in more
accurate models than those built on keystrokes alone.
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