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Abstract
Socially assistive robotics (SAR) is getting a lot of attention for its potential in assist-
ing elderly users. However, for robotic assistive applications to be effective, they need
to satisfy the particular needs of each user and be well perceived. For this purpose,
a personalization based on user’s characteristics such as personality and cognitive
profile, and their dynamic changes is a crucial factor. Moreover, most of the existing
solutions rely on the availability of specific technological infrastructures, generally
requiring high economic investment, and that cannot be easily placed in different envi-
ronments. Personalization and adaptation of assistive robotics applications to different
user’s characteristics and needs, and even to different technological environments, are
still not fully addressed in real environments. In the present work, the results of the
UPA4SAR project are presented. The project aimed at providing a social robotic sys-
tem to deliver assistive tasks for home care of patients with mild cognitive impairment
in a personalized and adaptiveway.We introduce the general architecture of the system
and the developed robotic behaviors. Personalization and dynamic adaptation of assis-
tive tasks are realized using a service-oriented approach by taking into account both
user’s characteristics and environmental dynamic conditions. Field experimentation
of the project was carried out with 7 patients, using the robotic system autonomously
running in their homes for a total of 118 days. Results showed a reliable functioning
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of the proposed robotic system, a generally positive reaction, and a good acceptability
rate from patients.

Keywords Social assistive robotics · User profiling for HRI ·
Personalization for HRI · Service-oriented robotics · Field experimentation

1 Introduction

Assistive Robotics and Socially Assistive Robotics (SAR) are nowadays receiving a
lot of attention from the scientific and technological communities for their potential
impact on improving the quality of life of elderly people. An improvement in their
autonomywould allow them to stay for longer in their homes and to alleviate the burden
on caregivers and familymembers. This is evenmore crucial when they are affected by
neurological disorders, such as Alzheimer’s disease characterized by a decline in cog-
nitive functions and memory loss, as well as mild cognitive impairments (MCI) that
have an impact on the performance in conducting daily living activities (Chiaravalloti
and Goverover 2016). Applications of SAR in this domain as patient monitoring to
provide information about the patient’s daily life, alerts for possible anomalies (Do
et al. 2018), cognitive stimuli, and reminders to limit cognitive reserve with its con-
sequences, are crucial. First of all, assistive applications depend on the user’s clinical
needs. The typical approach for the development of a care protocol, i.e., a sequence
of assistive tasks, requires the intervention of an expert to manually accommodate the
different needs of each user through software updates (Gu et al. 2020). This limits the
possibility to deploy an effective assistive application for different patients, requiring
continuous intervention, while their assistive requirements change. To address these
limitations, assistive application design should allow for easy personalization of the
system functionality to different contexts, technology availability, and users’ clinical
needs. Moreover, to effectively use robotic systems in domestic environments, it is
necessary to work on reducing their cost, but also on increasing the reliability and
robustness of the developed devices (Francillette et al. 2020). Reliability is typically
obtained by endowing the environments with different sensors and supporting devices
that require costly, and sometimes invasive, modifications of the environment. As a
consequence, testing of these systems relies on the availability of controlled envi-
ronments, such as laboratories or retirement houses, while field experimentation is
deemed to properly assess the benefits and acceptance of such technologies. Robotic
systems deployment should not be dependent on specific hardware installations in
environments with their specific characteristics and structural limitations, to adapt to
different technological contexts. Secondly, to be widely accepted, users must expe-
rience the utility of the system and the easiness of use in interacting with the robot
(Ghafurian et al. 2021; Casey et al. 2016; Koh et al. 2021) while limiting the feeling
of intrusiveness that the continuous use of monitoring devices may involve (Cavallo
et al. 2018). This requires the personalization of the robotic system interactions to each
patient profile to increase its acceptance. It has been shown that personalization to the
specific needs of an elderly adult, especially in cases of vulnerability and cognitive
impairments, has an impact on technology acceptance (Moro et al. 2018). Typical
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approaches to SAR development address the problem with ad-hoc manual creation of
robot behaviors for the general needs of the considered population (Tapus et al. 2007),
without addressing the personalization of the interaction with technological devices
to individual patients’ needs, preferences, and profile.

Adaptation is another essential feature of any interaction with a non-human device.
Patterns of adaptation that can be considered when interacting with virtual human-like
entities with communicative and emotional capabilities concern a behavioral level, a
conversational level, and a signal level (Biancardi et al. 2021). Various SAR systems
have been designed with a user-specific adaptation mechanism in different appli-
cation domains (healthcare and therapy, education, work environment, and public
spaces), and with different adaptation features. They are based on understanding emo-
tions, communicating with high-level dialogue, learning/adapting according to user
responses, establishing a social relationship, and reacting to different social situations
(Ahmad et al. 2017). Less work has been reported on adaptive social robots that can
modify their behavior in settings characterized by a short-term adaptation in human–
robot interaction (Andriella et al. 2020), i.e., settings where the user does not have any
training on how to interact with the robot and he/she is not fully aware of the robot
capabilities, as in our case, so learning approaches are not adopted to adapt the robotic
behavior.

This paper presents the results of the Italian research project UPA4SAR—User
Profiling and Adaptation for Socially Assistive Robotics—which aimed at the devel-
opment and deployment of a well-accepted assistive system for home care of patients
with neurological impairments. The system is based on a mobile social robot capa-
ble of delivering personalized assistive services. We report on how personalization
and adaptation are addressed in terms of functional and non-functional requirements
of the assistive robotic application and how these requirements are mapped to a
service-oriented approach to tailoring the assistive application for every single user.
In detail, we focus on the user and technological personalization and adaptation. The
first accounts for the possibility to personalize the robot assistance behavior in terms
of delivered assistive tasks (what), the time to be executed (when), the mode they are
executed with (how), the entertainment contents, and to adapt them in case dynamic
events occur. The second accounts for the possibility to select the devices delivering
assistive services depending on the equipment of the home environment and changing
them on the fly if more devices are available to deliver the same service.

The results of a field study running from July 2019 to January 2020 are presented.
The study involved 7patients (average age 72years, 1 patientwithAlzheimer’s disease,
4 with mild cognitive impairment, and 2 with subjective memory impairment) that
experimented with the system autonomously running in their homes for an average
of 16 days each, without the need of supervision of technical help. For each patient,
we evaluate the experience in terms of the perceived usefulness and acceptability by
relying on the analysis of interviews conducted before and after the experiments. We
also collected feelings and emotions during the experimentation using a daily visual
mood scale and interviews on-site or over the telephone. Moreover, technical aspects
related to the practical suitability, technology readiness, and robustness of the system
are evaluated. According to (Martins et al. 2019), while in HCI personalization and
adaptation techniques are mature and they lead to high Technology Readiness Levels
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(TRL), in HRI these values are still very low (from 4 to 5). Hence, the challenges
and opportunities gathered from the reported field experimentation in the context of
an easily deployable, low-cost, and fully autonomous robotic system represent a step
forward in the HRI field.

2 Related works

In the last decade, several projects have been funded and different robotics devices
investigated to be used in elderly assistive settings. A recent systematic review on
the use of social robots for the care of patients with dementia and their evaluation
by caregivers is reported in (Ghafurian et al. 2021). The review covered a range of
robots with different levels of autonomy (e.g., from teleoperated robots that were fully
controlled by another person to robots that were designed to work autonomously). The
robots considered in the study had different assistive objectives, such as connecting
a patient with family members that were physically away, providing companionship,
promoting health or therapeutic support, and helping with completing daily tasks
(Saunders et al. 2016; Bonaccorsi et al. 2016; Fischinger et al. 2016; Portugal et al.
2019). Among the issues reported in the analysis, the necessity of having systems that
are easy to use emerged (e.g., in learning how to interact with it with respect to other
devices). Indeed, using an assistive robot typically requires more maintenance effort
as compared to other types of intelligent systems, such as virtual assistants. Further,
the robustness and reliability of robots are shown to affect caregivers’ perception of the
usefulness of the robot. To accomplish these goals, robot technologies for sophisticated
perception, natural interaction, and autonomous navigation, as well as for monitoring
and localization are needed. This implies the development of robotic systems with
high costs not easily affordable in a private home environment.

In the “Accompany” project (Saunders et al. 2016), theCare-O-Bot 3was developed
for complex interactions with elderly people, providing services to facilitate indepen-
dent living at home, and assisting the user in the daily tasks. The authors proposed an
ontology for the robotic home, consisting of sensors, locations, objects, people, the
robot, and the robot’s behaviors. The house is equipped with about 50 additional sen-
sors, including cameras mounted on the ceiling. Hence, the system requires expensive
home automation with an expensive robot that cannot be available in any environ-
ment. This project allows for manual customization/selection of the robot behaviors
by both experts and non-experts, via simple interfaces. Even the elderly person can
issue commands via the tablet. However, there is no mention of clinical planning of
elderly care activities.

The need for an ontological approach to domain representation is also explored in
(Umbrico et al. 2020). This paper proposes a cognitive approach integrating ontology-
based knowledge reasoning, automated planning, and execution technologies. The
envisioned approach aims at providing a socially assistive robotic system with the
capability to autonomously identify the set of assistive services that are needed in
a given scenario. Moreover, it aims at scheduling the needed services to guarantee
continuous assistance during daily home living and to decide how to execute these
services according to the profile of the user. Automated planning techniques for the
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administration of personalized and adaptive reminders were realized in the context of
the Giraff+ project relying on a fully teleoperated (non-autonomous) robot (De Bene-
dictis et al. 2015). However, only the feasibility of personalization and adaptation
attainable with an ontological approach is discussed, and real experimentation has not
been carried out as in our case.

In the “CompanionAble” project (Schroeter et al. 2013), services provided by the
robot include reminders of appointments, predefined or added by the user or caregiver,
frequent recommendations for specific activities provided by the caregiver, video calls
with family and friends, and cognitive stimulation games to monitor cognitive decline.
In addition, the robot can be controlled either via displays located in the smart envi-
ronment or via voice commands. Volunteers tested the system by freely using the
robot for two days. On the contrary, our project does not rely on specific IoT devices
for smart homes to limit both the cost of the platform and their invasiveness, and the
system was used for longer in real home environments.

The robotic application developed for the “Hobbit” project (Fischinger et al. 2016)
aimed at manipulating objects but also providing entertainment functionalities, such
as games, exercise, films, music, and books to keep the user cognitively and physically
active. The application design allows for basic robot customization through user choice
of sound volume, robot speed, and robot voice gender, but does not allow for more
advanced customization on the schedule and the type of assistive services offered by
the robot.

A modular approach for the development of assistive behaviors was considered in
the “Robot-Era” project (Bonaccorsi et al. 2016). The project proposes the use of cloud
systems for service delivery and the use of sensors to locate the person in the apartment,
such as mobile radios worn by the users. While a service-oriented architecture was
embraced as in our project, our platform does not rely on costly robotic devices and
extensive use of ambient sensors for user localization and monitoring.

The “SocialRobot” project is the more similar to ours (Portugal et al. 2019). In this
project, researchers developed their mobile robotic platform consisting of a modular
system to support caregivers, family members, and friends, helping the elderly during
their daily tasks, while we used an off-the-shelf low-cost robotic solution. Similar to
our project, they adopted a service-oriented approach proposing a platform that does
not involvemodifying the environment or adding smart devices andmonitoring sensors
to the environment. In “SocialRobot,” the adaptation of human–robot interactions is
achieved through emotion recognition and empathic interaction. Through a web inter-
face, caregivers canmanage the user profiles and edit the personalization features, such
as the patient agenda, medicine, and favorite activities. Hence personalization is real-
ized using a web-based virtual collaborative social community network that enables
the effective administration and coordination of the user profiles and assistance of the
elderly person. On the contrary, in our approach, personalization and adaptation are
addressed in terms of functional and non-functional requirements mapped to service-
oriented assistive tasks to tailor their provision for every single user’s characteristics
and environment. Finally, in the “SocialRobot” project, the robot was tested only in a
care center during aweek-long pilot study focusing on the evaluation of security, auton-
omy, privacy, and safety. In our case, the system operated in private houses without
any remote intervention with a focus on robot acceptance. Indeed, another important
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issue in HRI is the necessity of experimentation in the field and uncontrolled settings
such as home environments.

In the “MARIO”project (Casey et al. 2016), a robotwas developed to promote social
connection and reduce loneliness and isolation by providing Patients with Demen-
tia (PwD) access to several applications via speech and/or touchscreen commands.
MARIO was developed, tested, and evaluated in a long-stay residential setting over
13 months. The important result of the experimentation, conducted in the real setting
and including the views of people with dementia, was that robots are acceptable for
this class of users, so strengthening the claim that social robots are acceptable for
dementia care. However, residential settings are still more controlled environments
with respect to private houses.

Personalized and adaptive interaction with a robot strongly relies on the availability
of a model of the user, and the integration of this model in the decision-making algo-
rithms of the robot. But user modeling and profiling techniques in robotics are still
at an early stage. According to Martins et al. (2019), personality traits and their use
in HRI personalization still constitute a research gap. When the interaction requires
the robot to move in the surrounding space (Nikolaidis et al. 2015), the user’s prefer-
ences concerning only proxemics (Rossi et al. 2017) and the legibility of trajectories
are considered (Cakmak et al. 2011). While the use of stereotypes (Wagner 2015),
in the form of personas, is nowadays quite typical in HRI when dealing with cogni-
tive disabilities, the individual differences between subjects are still considerable and
relevant, so requiring a user-based profiling process. For example, in (Duque et al.
2013), users’ profile variables were identified to provide different personas in terms of
the user gender, educational level, technical background, computer experience, pre-
vious experience and attitude toward robots, users’ personality traits, and the robot’s
role (e.g., companion, tutor, and so on). However, once having this information about
the user, the robot’s behavior adaptation should not be hard-coded for these features,
but they should be treated as parameters to adapt interaction on a single user case-
based, as in our case. Moreover, both static parameters such as gender and personality,
and dynamic parameters, such as changes in psychological distress, engagement, and
distraction should be considered (Rossi et al. 2018).

The social component of the interaction with a robot was considered in (De Carolis
et al. 2017) whose approach requires the development of user models that involve
reasoning on cognitive and affective components of the user’s state of mind. The user
model is obtained from the experience of human caregivers and knowledge about the
role of empathy in assisting elderly people to make the robot’s behavior believable. In
our approach, we did not focus on achieving a robotic emphatic behavior.

Finally, in the context of assisting dementia patients, someworks propose the use of
the ICF framework (International Classification of Functioning, Disability andHealth)
to build user profiles and personalized assistance. This standard framework seems quite
useful to represent different aspects (e.g., physical and cognitive) thatmay characterize
the state of a user (Umbrico et al. 2020; Kostavelis et al. 2019; Filippeschi et al. 2018;
García-Betances et al. 2016). In our work, we are not dealing with detailed modeling
of physical/cognitive impairments since the assistive requirements are directly pro-
vided by the patient’s doctors and caregivers. Adaptation is focalized on some user’s
characteristics also considered in the ICF.
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3 Personalization requirements for assistive robotic applications

To address the different types of personalization and adaptation of the SAR appli-
cation, due to the variability of every single user and each home environment, we
defined a set of functional and non-functional requirements. They take into account
the user’s daily needs, the interaction modality with the robot and other devices, and
the availability of technological devices. The elderly with cognitive impairments have
specific needs and characteristics depending on their personal cognitive, emotional,
psychological status, and cultural background not always easily modeled according
to well-defined classifications. In the same way, differently from hospitals or nursing
homes, home environments are characterized by specific structural characteristics,
space, and network connectivity features.

3.1 Functional requirements

In a recent study (Johnson et al. 2020), functional requirements expressed by the
elderly, clinicians, and caregivers for developing an affordable mobile robot are pre-
sented. The survey identified thirty-six priority tasks, and among these, the most
important tasks desired by seniors in a low-cost robot concern the possibility to be
helped in their daily living activities, be entertained with leisure activities, have a cus-
tomized interaction, and the ability to socialize with others. In contrast, clinicians and
caregivers prioritized tasks to remind care plans and monitor the health and safety of
the elderly. Moreover, the robot’s autonomous monitoring activities, where the user is
only a passive agent, may not be perceived as useful, and considered intrusive, while
non-personalized reminders may annoy the patient. Hence, while the plan of assistive
functionalities of the robot has to be provided by clinicians, user requirements should
be taken into account, and entertainment activities should be provided not only to limit
cognitive reserve but also to make the robot system more valuable. Ad hoc designed
technologies providing a one for all solution now available on the market are not a
complete answer to the different and changing needs of this class of users.

A set of functional requirements to take into account the home robotic assistance
functionalities coming from the user’s clinical needs are identified. They concern:

• The definition of assistive functionalities necessary to meet the patient monitoring
and medical treatment needs, together with entertainment and cognitive activities;

• The guarantee that assistive functionalities are delivered in compliance with the
time requirements of each user;

• The easy adaptation of the delivered assistive functionalities when changes occur
because of the new patient’s needs.

To meet these requirements, it is fundamental to collect as much information as
possible from different actors, such as patients, physicians, neuropsychologists, fam-
ily members, and caregivers to compile an added value personal daily assistive plan
including the necessary assistive functionalities based on their daily needs, their med-
ication requirements, and the schedule of their activities.
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3.2 Non-functional requirements

Personalization and adaptation of robotics-based home-care applications depend on
the available technological environment, and the modes the assistive application is
delivered for each user, and, as such, they are related to non-functional requirements.
Regarding the technological environment andperformanceof assistive tasks, reliability
is the first requirement. To be effectively deployed and tested, the robot has to be fully
autonomous in its operations. The reliability of robotic operations may be enhanced
by the use of supporting technology and sensors to be deployed in the environment, so
creating an ambient assistive living space. Nevertheless, a low-cost approach requires
trade-offs in the use of different technologies in private homes (Moyle et al. 2018).

The identified non-functional requirements are split into two categories. The first
is environmental non-functional requirements as follows:

• The adoption of affordable but still sufficiently reliable technology that can be
made easily available in home environments, so a wide penetration of technology
is guaranteed;

• No tight coupling of the provided functionalities to the available technology, to
manage both technology evolution and/or technology unavailability;

• Heavy structural intervention in home environments that may be costly and not
well perceived by the elderly should be avoided;

• Remote control of technological devices and dependence on internet connection
should be avoided as much as possible to guarantee the autonomous functioning
of the assistive application;

• Easy deployment of both the application and the required technological devices
in the home environments.

Regarding the user perception of assistive tasks, personalization of the interaction
with the technology is a key requirement to achieve the possibility of long-term adop-
tion of companion robots (Castellano et al. 2008). Elderly users prefer to interact
with adaptive systems (Heerink et al. 2010) that perform tasks not only correctly and
efficiently, but also in an acceptable manner according to their individual preferences
(Karami et al. 2013). So, when interacting with a robot, personalization is related both
to the type of necessary assistive actions to be provided, and to how these actions are
provided in terms of usefulness, satisfaction, intrusiveness, and privacy (Di Napoli
and Rossi 2019).

To take into account perceived usefulness, and satisfaction, while limiting intrusive-
ness, a set of additional user-centric non-functional requirements for personalizing the
assistive application is identified:

• Physical, cognitive, and social interaction with the robot, should be personalized
taking into account the user profile;

• In the case different devices providing the same functionality with different deliv-
ering modalities are available, the one better matching the user profile should be
selected;

• Whenproviding entertainment activities, usermodeling and recommendation tech-
niques should be deployed to suggest them according to the user preferences;
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• Both the assistive plan and the interactions with the robot should be adapted to
changes that may occur in the patient’s state during the assistance period.

4 System design for functional and non-functional requirements

To take into account both functional and non-functional requirements, the assistive
robotic application has been conceived according to a service-oriented approach (Wu
et al. 2015). It allows for clearly separating the functional and non-functional prop-
erties of a software system through the service abstraction. In particular, functional
properties of a service concern the actual implementation of a given functionality and
the necessary technical information to interact with it: the provider, communication
protocols, invocation address, and input and output formats. Non-functional properties
of a service define how the functionality operates, i.e., its Quality of Service (QoS)
properties referring to the set of characteristics a functionality can be delivered with.
In addition, the service abstraction allows decoupling the description of a functionality
delivered by a service and its QoS parameters from the actual implementation. The
implementation is platform-dependent, but since it relies on standardized web service
technology to interoperate with other services, platform dependence does not affect
the design and the operation of the assistive application.

According to the proposed service-oriented approach, the robotic home-care assis-
tance is designed as an Assistive Daily Plan that is a collection of independent and
autonomous Assistive Tasks. Assistive tasks are represented as a composition of Ser-
vices that can be delivered by the robot or other devices.

In our approach, the identified functional requirements refer to the functional prop-
erties defined at the level of the assistive daily plan. It refers to the types and the
timing of the assistive needs of the users derived by analyzing the activities they
usually perform at their home during the day, i.e., their daily routine. The identified
non-functional requirements refer to non-functional properties defined at the level of
the assistive daily plan, the single assistive tasks, and the single services composing
each task. Both functional and non-functional properties are used for personalizing
the daily assistive plan according to the specific user profile and available devices, and
for its adaptation when changes in both the assistive environment and the user profile
occur.

The identified types of assistive tasks are:

• Monitoring tasks tomonitor some activity of daily living, e.g., having lunch, having
dinner;

• Cognitive and Entertainment tasks to suggest cognitive and entertainment activi-
ties such as playing cards and mind-training exercises, watching a leisure video,
listening to music, or watching an informative video;

• Reminder tasks to remind critical activities such as taking medications.

The types and the schedule of assistive tasks are extracted from the user’s daily
routine, so forming a personal daily assistive plan (an example is reported in Fig. 1).

123



414 C. Di Napoli et al.

Time
Range

Assistive Task Description

07:00-07:30 Wakeup Monitor Monitor the user woke up
09:30-11:00 Cognitive Stimulation Suggest the user a cognitive activity
11:30 Remind Medicine Remind the user to take the planned medicine
12:30-13:30 Lunch Monitor Monitor the user is having lunch
16:30-18:00 Entertainment Stim. Suggest the user an entertainment activity
20:00-21:00 Dinner Monitor Monitor the user is having dinner

Fig. 1 An example of a daily assistive plan

4.1 User data

To personalize the daily assistive plan for each user, detailed personal information
should be collected. In the UPA4SAR project, the neurologist team ran cognitive tests
to provide the patient cognitive profile according to the CDR scale (Morris 1993)
(very mild, mild, moderate, and severe dementia). Regarding CDR values, only three
intervals were considered (no dementia (CDR = 0), MCI (CDR = 0.5/1), and moderate
cognitive impairment (CDR = 2)). Patients with severe cognitive impairment (CDR =
3) were not considered.

Neurologists were also responsible to collect information about users’ routines,
their medication therapy plans, and their entertainment needs through interviews with
family members or caregivers and the patients. This information is organized in the
form of the patient daily routine, to determine the assistive tasks to be performed by
the robot. Finally, they provided users personal data including their education level,
in terms of the number of years of education, and their entertainment preferences.

The psychologist team ran personality tests to provide the personality profile of
each patient according to the Neo Personality Inventory 3 test (Neo-Pi-3) (McCrae
et al. 2005) measuring five personality traits (Neuroticism, Extraversion, Openness to
Experience, Agreeableness, and Conscientiousness). Only Neuroticism and Openness
were included in the personality profile as the traits impacting the interaction with the
robot and the technology acceptance. The other personality traits such as extraversion,
agreeableness, and conscientiousness, were not sufficiently supported by literature
findings to provide clear suggestions in the application context. For the personality
profile, each user is profiled as having a Low or High value of the considered traits
according to the two intervals provided by the psychologists.

To help neurologists and psychologists to provide this information, structured web-
based forms were provided. All collected information is structured in XML formats
and automatically translated into a relational database representing the static user’s
profiling data, as reported in Fig. 2. In addition, dynamic profiling data resulting
either from monitoring tasks or from human monitoring are registered in the database
as Daily Observations.
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Fig. 2 Profiling data collected for the patients

4.2 Service-oriented daily assistive plans

Adaily assistive plan is a sequence of assistive tasks characterized by a set of functional
attributes that are the daily duration, the number, and the types of the component
assistive tasks.

According to the service-oriented approach, each assistive task is a composition of
sub-functionalities needed to accomplish it. It is represented by a so-called Abstract
Workflow (Di Napoli et al. 2017) that is an oriented graph whose nodes represent
the sub-functionalities and arcs their execution dependencies. Each assistive task is
characterized by a set of functional attributes that are the daytime when its execution
is scheduled, and the time range the assistive task may take place, according to the
user’s daily routine. Each sub-functionality is represented by an Abstract Service that
is an atomic functionality, i.e., a self-contained functionality that can be delivered by
a device. The definition of a sub-task in an abstract way allows selecting the suitable
actual service implementation available to provide it, at the time it is scheduled for
execution. An example of abstract workflow is reported in Fig. 3 for the Entertainment
Stimulation assistive task.

The actual implementation of an abstract service, called a Daily Assistive Action,
depends on the specific device providing the corresponding functionality. It relies on
standard web service technologies for communication and standard network protocols
for their invocation and interoperation with other services. An abstract service can
be provided by more than one daily assistive action. Daily assistive actions have
non-functional QoS attributes accounting for how the corresponding functionality is
delivered (Di Napoli et al. 2018). They depend on the specific device responsible for
their execution (DiNapoli andRossi 2019), and their values are personalized according
to the specific user profile. A daily assistive plan for a specific user is a composition
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Fig. 3 Abstract workflow for the Entertainment Stimulation task

of executable assistive tasks that are obtained starting from the corresponding abstract
workflows, by replacing each abstract servicewith a personalized daily assistive action.

4.3 Daily assistive actions as microservices

Daily assistive actions implementing assistive robot behaviors, as well as perceptual
capabilities of the smart environment are provided as Microservices (Ercolano et al.
2019). Each microservice may implement a daily assistive action alone or it can be
combined with others to provide a more complex functionality that is exposed as an
atomic service.

In Table 1, we briefly recap the developed microservices specifying the device
providing them and a short description of their functionality. More details on the
developed services can be found in (Raggioli and Rossi 2019; Tizzano et al. 2020;
Ercolano et al. 2017, 2018, 2019). It should be noted that since no environmental
sensors are used to detect the user position or activity, Find, Look and Approach User
are microservices provided by the robot. In the same way, the Activity Recognition
microservice is realized by using the robot camera once the user is recognized by
the robot (Ercolano and Rossi 2021). Moreover, there are monitoring services whose
results are registered in the user profile database as Daily Observations to take into
account dynamic events impacting the user’s state. Examples of these services are
Check, Mood Recognition, and Activity Recognition. Due to technology availability,
and security concerns, all the daily assistive actions were developed to work offline
without requiring an internet connection. Hence, it was not possible to rely on cloud-
based services for speech interaction. Indeed, communication between the user and
the robot takes place using the tablet that shows robot dialogues via speech and text,
while the user can provide input and answers via the tablet touch display.

The QoS attributes of microservices can be static or variable. The former has a
single value, like the intrusiveness, and so they cannot be adapted. For these services,
personalization relies on the possibility to select the microservice with the QoS static
attribute valuesmore suitable to the user’s profile in the casemore servicesmay provide
the same functionality (see for example InRoomDetection microservice in Table 1).
The latter may have different values for a given QoS attribute, as the proxemics, or
interaction modalities. Hence, these are parameters that can be used to personalize a
behavior according to the user’s profile.
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Table 1 A summary of the developed assistive services

Services Device Brief Description

Monitoring Services

HR Detection Wearable The smartwatch detects the heart rate of the user for approx-
imately 15 seconds

Pose Detection Wearable The smartwatch gathers accelerometer and gyroscope data
samples and a Deep Neural Network recognizes and outputs
the activity performed

In-Room Detection Wearable Distances from the reachable beacons placed in each of the
rooms considered are detected

In-Room Detection Robot The label associated with the room with the smaller dis-
tance is returned. If this service is called after the robot has
approached the user, it provides the location of the user

Emotion Recognition Robot It recognizes the user’s emotions relying on the Affectiva
SDK

Mood Recognition Wearable It analyzes walking patterns to evaluate the user’s mood

Activity Recognition Robot The robot’s camera records a video of the user. For each
frame, the skeleton coordinates of the joints of the user are
extracted and a Deep Neural Network is used for activity
classification

Navigation Services

Find Charging Station Robot The robot wanders toward the room where the charging sta-
tion is located (using In Room Detection)

Find User Robot The robot wanders while avoiding obstacles for one minute.
To find a user, this service has to be combined with the “Look
User” service

Look User Robot The robot rotates on itself to look for a person. PoseNet is
used to check if a person is in the field of view of the robot

Approach User Robot It relies on the evaluation of the user pose from his/her skele-
ton data and on the recognition of a specific userwith FaceNet

Interaction Services

Speech and Utterance Robot An utterance is shown on the robot tablet and/or using the
robot speech

Check Robot An interface with a question and two buttons (for positive and
negative answers) is shown on the robot tablet. It is used to
implement reminders and to check the health status through
a dialogue with the patient

Suggest Robot An interface with a suggestion and a button, to check if the
user accepts the suggestion, is shown on the robot tablet

Video Robot A video is played on the tablet of the robot

Audio Robot A list of songs is played by the robot and shown on the tablet

Game Robot A cognitive game is shown on the robot tablet

Photos Robot The robot takes pictures of the user to populate the dataset of
the feature vectors extracted by the FaceNet
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Fig. 4 The architecture of the assistive robotic framework

The architecture of the robotic system for generating and executing assistive tasks
starting from the corresponding abstract workflows and the available microservices is
reported in Fig. 4. It is composed of the smart environment (blue boxes) including the
technological devices and a human caregiver, and of software modules (green boxes)
running on a server node. The devices, such as the “Robot,” the “Smartwatch,” and
the other “Server Components,” are registered in an application server represented by
the “Server nodejs (socket.io)” that exploits the Socket.IO communication library to
manage the communication with the client devices.

Additional robotic skills or new functionalities provided by other devices developed
by different stakeholders and with different technologies can be added as new daily
assistive actions. They can be registered in the application server once agreed exter-
nal interfaces to bind them to the corresponding abstract services are provided. The
interfaces specify their invocation address, the input and output formats, and the com-
munication protocols to be adopted for their invocation and the correct exchange of
inputs and outputs, to guarantee their interoperability. Hence, platform dependence is
transparent to the robotic application. In our case, we developed daily assistive actions
for the robot asAndroid applications, but the same actions could be implemented using
ROS or other robot operating systems.

4.4 Personalization criteria

Daily assistive plans are personalized by taking into account functional and non-
functional properties at different levels concerning the daily assistive plan, the single
assistive task, and the single services composing an assistive task.

The first level relies on the following functional properties of a daily assistive plan,
derived from the user’s daily routine:
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Table 2 Repetition frequency
for the reminder task

CDR Low Neuroticism Low Neuroticism

2 5 m 10 m

0.5–1 10 m 20 m

0 15 m 30 m

1. the types of assistive tasks composing the daily assistive plan (i.e., monitoring,
entertainment, and reminder);

2. the number of assistive tasks composing the daily assistive plan compliant with the
user’s daily routine;

3. the time at which assistive tasks are delivered during the day.

The assistive needs of each patient are given by clinicians suggesting the number
of entertainment activities. According to their guidelines, the higher the cognitive
impairment level is, the higher the number of the suggested entertainment stimulation
activities to reduce cognitive reserve is.

The second level relies on the following non-functional properties of a single assis-
tive task:

1. The content type of the suggested entertainment stimulation activity (video, music,
game);

2. The repetition frequency at which a reminder task is repeatedly executed in the
case of an unsuccessful outcome of the reminder;

3. The repetition frequency at which an entertainment task is repeatedly executed in
the case of an unsuccessful outcome of the corresponding entertainment activity;

In detail, the type of suggested entertainment (video, game, music) and the con-
tents are personalized to both the entertainment preferences of the user, but also the
age, gender, and education level. The cognitive and personality profiles are used to
determine the repetition frequency of reminder assistive tasks in case the user does not
perform the reminded activity. According to the guidelines of clinicians, the higher
the cognitive impairment level is, the higher the repetition frequency of the reminder
assistive task is, since users are more subject to easily forget to perform activities.
Moreover, according to the psychologists’ guidelines, also the neuroticism personal-
ity trait of the user should be considered to personalize the remind frequency value. A
high value of the neurotic trait requires a lower reminder frequency to limit discomfort.
The two requirements are balanced as reported in Table 2.

The personality profile provides information also to individuate the frequency at
which entertainment stimulation activities may be suggested to the user to limit dis-
comfort. As suggested by psychologists, the personality factors that may impact the
perception of intrusiveness of the robot are openness and neuroticism. Hence, the fre-
quency at which the robot interacts with the user should be modulated according to
the values of these personality factors, to limit a possible aversion to the suggestions.
The frequency was set for different classes of users according to their neuroticism
and openness personality traits as reported in Table 3 (Di Napoli et al. 2019). All
frequency values were determined after an analysis conducted by the project teams
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Table 3 Repetition frequency
for the suggest activity task

Openness Low neuroticism Low neuroticism

Low 40 m 60 m

High 20 m 40 m

Table 4 A subset of implemented microservices and their non-functional attributes

Service Device Interaction modality

FindUser Robot Distance[Near, Medium, Far], Interaction_Mode[GUI,
GUI-Voice], Voice[Male, Female], Sound[High, Regu-
lar], Led_Lights[Off, On]

ActivityRecognition Robot Distance[Near, Medium, Far], Led_Lights[Off, On]

Suggest Robot Distance[Near, Medium, Far], Interaction_Mode[GUI,
GUI-Voice], Voice[Male, Female], Sound[High, Regu-
lar], Led_Lights[Off, On]

ApproachUser Robot Distance[Near, Medium, Far]

Check Robot Distance[Near, Medium, Far], Interaction_Mode[GUI,
GUI-Voice], Voice[Male, Female], Sound[High, Regu-
lar], Led_Lights[Off, On]

that observed the reactions of a set of patients carrying out trial sessions with the robot
in the controlled environment of the Robotic laboratory of the University of Naples.

The third level of personalization concerns the selection and the interaction modal-
ities of the daily assistive actions represented by their non-functional attributes.
Examples of non-functional attribute values of somedaily assistive actions are reported
in Table 4.

The values of the interaction modalities attributes are set for each user following
the profile characteristics that can potentially have an impact on the acceptance of
the technology for the considered classes of users (Di Napoli and Rossi 2019). These
associations are reported in Table 5.

4.5 The daily assistive planmiddleware

The composition, personalization, adaptation, and execution of the assistive plan for
each user are managed by the Daily Assistive Plan Middleware. It plays the role of
a middleware layer between the application layer of daily assistive actions, and the
smart environment layer of the technological devices, as reported in Fig. 4. The daily
assistive plan middleware is composed of three main components: the Scheduler,
the QoS Manager, and the Cron Manager. The scheduler and the QoS manager are
responsible to manage user personalization and adaptation by processing, at execution
time, the abstract workflows that compose the daily assistive plan for each user.

The scheduler processes information regarding the user’s daily routine to determine
the schedule, the number, and the types of assistive tasks to be executed every day
to compose the daily assistive plan. The number of days the assistance is planned
for is set in the configuration files for each user. The scheduler is responsible for
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Table 5 Robot interaction modalities for user profiles

User profile Interaction modality

Openness [High], Neuroticism [Low] Distance [Near]

Openness [High], Neuroticism [High] Distance [Medium]

Openness [Low], Neuroticism [Low] Distance [Medium]

Openness [Low], Neuroticism [High] Distance [Far]

Impairment [Visual] Interaction_Mode [GUI-Voice]

Impairment [Visual] Led_Lights [On]

Impairment [Visual] Sound [Regular]

Impairment [Hearing] Interaction_Mode [GUI]

Impairment [Hearing] Sound [High]

Impairment [Hearing] Led_Lights [On]

Impairment [None] Sound [Regular]

Impairment [None] Led_Lights [Off]

Impairment [None] Interaction_Mode [GUI]

scheduling the sequence of assistive tasks by assigning the corresponding abstract
workflow a validity time. It is set according to the time range the corresponding activity
is planned to take place in the daily routine. In fact, monitoring activities, reminding
medicines, and suggesting entertainments cannot be delivered outside the time interval
planned in the daily routine. The length of the time interval is set also according to
the priority and the constraints of the corresponding activity. For example, the time
interval for the reminding medicine task is shorter since the patients cannot take the
medicine at the wrong time, while for entertainment activities the time interval is
longer to allow for different contents such as videos, music, and so on, to be played
by the user. The scheduler assigns to each abstract workflow also a frequency value
at which the corresponding task can be repeated, set according to the Cognitive and
Psychological user profile, in the case of either a failure of some component service
or of an unsuccessful output due to the lack of user response. The number of allowed
repetitions is guaranteed to occur always within the validity time of the corresponding
task. In addition, the scheduler processes data in the Daily Observations to detect if
dynamic changes occurred that require changes in the planned assistive tasks scheduled
for execution.

The QoS Manager is responsible for selecting a daily assistive action for each
abstract service of the abstract workflows and for setting their corresponding QoS
parameter values regarding the interaction modalities. It processes the User Pref-
erences, and the Cognitive and Psychological profile, to select the corresponding
executable assistive tasks.

The Cron Manager is responsible for the actual execution of the daily assistive
plan by triggering it using a time-based event-driven policy. It consists in activating
the execution of the component executable assistive tasks obtained from the QoS
manager. The Cron Manager invokes the daily assistive actions by communicating
with the application server they are registered in. It is responsible for managing the
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correct execution of the temporal sequence of the planned assistive tasks, preventing
their overlapping or conflicting execution, so guaranteeing their timely execution and
adherence to both their schedule and their validity time.

4.6 Dynamic adaptation

In addition to user-centric personalization, the adopted service-oriented approach
allows also for a dynamic adaptation of the daily assistive plan at the execution time
in case of changing conditions that may occur both in the availability of the techno-
logical devices used to deliver daily assistive actions and in the user profile data, i.e.,
the patient status.

Because of the limited use of environmental sensors placed in the patients’ houses
this dynamic information is registered by updating the Daily Observations of the
user’s profiling database as the result of the execution of some daily assistive actions,
as a Check action reporting a bad health state, or by caregivers through a special
Alert service, as any dynamic change in the daily routine. Some dynamic changes are
characterized by a validity time specifying the time themodification is in place for. For
example, in the case the user is not available for a time range during the day because
of a not planned event, the insertion of this information allows the scheduler module
to change the timing of the corresponding assistive tasks, or to disable the execution
of the assistive tasks that cannot take place any more.

Let us consider the abstract workflow for the Entertainment Stimulation in Fig.
4. It is processed by the Scheduler and the QoS Manager so resulting in the Daily
Assistive Plan reported in Fig. 5 (top) ready to be executed by the Cron Manager.
During execution, runtime conditions are checked either by processing information
in the Daily Observations or as the output of the invoked monitoring services, as the
Check State. As shown in Fig. 5 (bottom), in the case the user is not present at the
scheduled time for the entertainment, the activity is repeated at a later time (if still in
its validity time). For what concerns technological adaptation, in case a device is out
of power, as for the wearable device as shown in the same figure, or not reachable
for problems in the network connections, or not in the availability of the user (e.g.,
the user could not wear a smartwatch), the Cron Manager implements a recovery
mechanism replacing the not available daily assistive action with an equivalent one
from a functional point of view but delivered by the robot. The QoS Manager sets
the QoS parameter values corresponding to the new selected daily assistive action
accordingly. In addition, information regarding the user’s mood is used by the QoS
manager to change the contents of the suggested entertainment activity, from a video
to audio, and the approaching distance of the robot to limit possible discomfort.

Hence, both functional and non-functional adaptation of the robotic application is
guaranteed since the binding of abstract services to actual daily assistive actions occurs
at the time when the daily assistive plan is scheduled for the execution and the corre-
sponding assistive tasks are triggered, so allowing processing dynamic information if
it occurred.
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Fig. 5 Adaily assistive plan for theEntertainment Stimulation task (top) and an example of runtime dynamic
adaptation (bottom)

5 Experimental design

All experimental procedures performed with human participants were in accordance
with the ethical standards of the institutional and national research committee and
with the 1964 Helsinki declaration and its later amendments or comparable ethical
standards. The experimentation was approved (no. 167/18) by the ethical committee
of the University of Naples Federico II.

A multiple single-subject study was planned with two objectives: (1) to test the
feasibility and reliability of a low-cost robotic system autonomously running in
real environments without on-site technical support, and (2) to get information on
the patients’ acceptability of the proposed robotic assistive system in their home
environments. Indeed, individual differences between subjects in terms of cognitive
impairments, but also education level, and psychological traits are relevant to the
phenomenon of interest, so preventing to conduct statistical analysis that considers
different individual factors in the evaluation. In any case, recruiting a large signifi-
cant number of subjects is difficult due to possible reluctance to be involved in such
experimentation and to have an interaction with the robot that lasts for multiple days.
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Table 6 Overview of the participants

ID Gender Age Education Memory Familiarity
Impairments with Tech. [1–5]

1 F 84 13 AD 1

2 M 61 5 MCI 1

3 F 55 8 SMD 3

4 M 68 8 MCI 4.3

5 F 83 18 SMD 2

6 M 78 8 MCI 1

7 M 77 13 MCI 3.7

5.1 Participants

The project experimentation was presented to 40 patients of the Cognitive Disorders
andDementia Center of the NeurologyOperatingUnit and Epilepsy Center of the Fed-
erico IIUniversityHospital (CDCD-Neurology). The diagnosis ofmild neurocognitive
disorder was performed according to the criteria of the fifth edition of the Diagnostic
and Statistical Manual of Mental Disorders (DSM-5): Evidence of modest decline
in one or more cognitive domains; Capacity for independence in daily activities is
maintained; Cognitive deficits do not occur exclusively in the context of a delirium;
Cognitive deficits not better explained by another mental disorder.

For the recruitment of patients, an assessment of their houses was necessary to ver-
ify their compliance with specific non-technological requirements mainly for robot
navigation. In detail, houses with stairs, high pile carpets, glass doors, and pets were
excluded. Moreover, houses with limited space for robot movements were excluded.
Specific technological requirements were not considered since the necessary hard-
ware/devices were directly provided to users.

The selected patients were clinically assessed with the Clinical Dementia Rating
Scale (CDR) (Morris 1993). They were diagnosed with subjective memory disorder
(SMD, corresponding to a CDR value of 0), mild cognitive impairment (MCI, corre-
sponding to a CDR value from 0.5 to 1), or Alzheimer’s disease (AD, corresponding
to a CDR value of 2).

We obtained a positive response to be enrolled in the experimentation in 14 cases
out of 40. Other patients were excluded or refused the trial: 10 patients had pets in the
house, 20 did not have valid family support necessary for the presence of the robot, 5
for the presence of stairs in the house or unsuitable space for the robot movements, 1
was illiterate to allow interaction with the robot. Hence, 10 patients were enrolled in
the study, including 2 AD patients, 4 MCI patients, and 4 SMD patients. The actual
study was possible with 7 patients because an AD worsened considerably, one SMD
changed his mind due to changes in the family situation, and one SMD was unable to
host the robot because additional carpets were put in the house preventing the robot
to move. Data of the 7 patients are reported in Table 6.
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All recruited subjects signed the informed consent in the presence of a parent or
caregiver. Moreover, they signed the consent to host the robot for the set period and
agreed to have the robot at their home for at least two consecutive weeks.

5.2 The smart home environment

The smart environment represents the adopted set of technological devices to be
deployed in the patient’s home to run the assistive robotic application.

The robot used for the experimentation is the Sanbot Elf (see Fig. 6) developed by
Qihan Technology. It is equipped with infrared sensors, omnidirectional locomotion,
two cameras (an RGB-D and a full-HD) and touch sensors, a microphone, speakers, a
subwoofer, and a full-HD touchscreen. The robot has amoving headwith a display that
can show different animations of the eyes resembling different emotional expressions.
Such expressions are used to differentiate the behaviors (microservices) of the robot
when executing a complex task. Moreover, both the head and the fins have light colors
that can be changed.

The applications server and the middleware layer run on an Intel NUC7i7-BNH
with Intel i7-7567U-3.50 GHz, 16GB DDR4 RAM, and 256 GB SSD communicating
with the other devices, including the robot, using a Wi-Fi router. The robot and the
Intel NUC represent the core of the assistive application and are sufficient to execute
all the planned activities.

The other provided devices are a Polar Android M-600 smartwatch that mounts an
accelerometer, gyroscope, optical heart rate measurement with six LEDs that can be
worn by the patient; two iBeacons, capable of transmitting a signal using Bluetooth

Fig. 6 Sanbot Elf robot and its hardware components
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Fig. 7 Monitoring and reminder activities in a real setting

Low Energy (BLE) technology (the strength of the RSSI—Receive Signal Strength
Indicator—was used to define proximity relations) that were used for room labeling
(e.g., the kitchen and the living room); an Android smartphone that can be used by a
caregiver to receive notifications from the robotic system for dangerous situations or
requests for intervention.

5.3 Experimental procedure

The experimentation, conducted in Italy, started in June 2019 and ended in January
2020. The robot was left in the participant’s house 24 hours per day and for at least 14
days (see Fig. 7). The patient and a family member were instructed on how to switch
the robot off and on and given a general description of the robot’s functionalities
and the provided assistive services. A researcher spent one or two hours with each
patient showing how the robot would work and when, how to interact with it using the
touchscreen, and answering all the questions asked by the patient. The researcher’s
contact details were left to the patient for being contacted in the case of any doubt.

The following assistive tasks were considered in the experimentation:

1. WakeUp Monitor
2. Entertainment Stimulation
3. Lunch Monitor
4. Remind Medicine
5. Dinner Monitor

The service Check Health State is invoked at the beginning of each assistive task
to verify that the health state of the user does not prevent its execution.

Several sets of data have been collected: cognitive and personality tests, inter-
views, daily questionnaires, and data automatically collected in log files during the
experimentation at home. It should be underlined, that for privacy reasons due to
the experimentation in not controlled environments such as private homes, no video
recording, as well as skeleton tracking, was included as means to collect additional
information. Since the proposed robotic application is centered on the patient’s needs
and personal characteristics, no data were collected regarding the perception or the
subjective evaluation of caregivers or family members.
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Table 7 Number of executed workflows for each patient

Number of days 14 11 11 17 25 25 15
Patient P 1 P 2 P 3 P 4 P 5 P 6 P 7

WakeUp monitoring 17 10 7 11 8 0 0

Lunch monitoring 9 11 16 18 14 0 9

Dinner monitoring 6 0 12 6 11 0 9

Remind medicines 4 16 18 18 23 103 2

Entertain. Stimulation 25 10 12 27 30 107 29

Total 61 37 58 69 78 210 49

6 Experimental results

The results gathered during the field experimentation to test the system reliability
concern data of the actual execution of the daily assistive plans for the whole experi-
mental phase. The ones regarding the system acceptability rely on questionnaires and
interviews submitted to the enrolled patients.

6.1 Results of the execution of the personalized daily assistive plan

The data concerning the execution of the daily assistive plan were collected in log
files to verify its adherence to the patient daily routine. Each daily assistive plan is
composed of a maximum of 8 assistive tasks delivered in a day. Since 5 different types
of assistive taskswere considered, someof themare executedmore thanonce according
to the patient’s needs, such as reminding medicine or suggesting entertainment tasks.
Each day, the last activity of the robot is the execution of the FindChargingStation
service to automatically find the charging station to recharge its battery during the
night. The different sets of data are analyzed to assess the daily operativity of the
robotic application and the correct functioning of the middleware responsible for its
management.

In Table 7, the types and the number of assistive tasks composing the daily assistive
plan together with the days of the experimentation for each patient are reported. The
columns reporting a 0 value refer to tasks not executed, while a value exceeding the
number of days for the experimentation means that the task is executed more than
once during the day. There are different reasons why an assistive task is not executed:

• The task was not included in the daily routine because not required by the patient
or her/his relatives since it was considered not necessary;

• The task corresponds to an activity that takes place in a room not available for the
robot to enter for infrastructural reasons (e.g., the presence of delicate furniture);

• Other tasks such as the RemindMedicine had to be executed more times during
the day following the pharmacological therapy of the patient, so other tasks with
less priority were dismissed to meet the requirement to execute a maximum of 8
assistive tasks per day;
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Table 8 Average duration for each workflow type and each patient

Workflow P1 P2 P3 P4 P5 P6 P7

WakeUp Mon. 0:32:52 0:47:10 0:37:08 0:48:23 0:28:44 0:00:00 0:00:00

Lunch Mon. 0:40:22 1:05:21 0:49:15 0:34:13 0:25:14 0:00:00 0:42:36

Dinner Mon. 0:37:10 0:00:00 0:56:03 0:52:05 0:22:06 0:00:00 0:34:03

Remind Med. 0:31:23 0:59:28 0:41:59 0:56:50 0:27:16 0:42:13 0:48:35

Entertain. Stim. 1:05:03 1:38:48 1:05:47 1:17:37 0:52:55 0:58:47 1:01:22

Fig. 8 Average execution time for the find user service

• Only one assistive task can be executed in a time interval, so if at lunchtime
the patient was to be reminded to take medicine, the task to monitor lunch was
dismissed.

In Table 8, the average duration of each type of assistive task for each patient
mediated on the number of days of the experimentation is reported. Results show that
even though the assistive tasks are composed of the same number of microservices,
their execution time differs because of the different execution times of the FindUser
microservice, as reported in Fig. 8. This is mainly due to the different environments
where the robot is located requiring different times to locate the user and the different
number of relatives living in the house that could be detected by the robot delaying
the time necessary to identify the patient.

The average duration of each workflow for each patient and the number of executed
workflows confirmed the adherence of the scheduled assistive tasks to the timing of
the daily routines of patients (see Table 8). The adoption of the validity time for each
task, when they are scheduled for execution, allowed to avoid time overlapping, and
hence failures, of the planned tasks. So, the validity time is crucial and whenever the
execution of an assistive task does not meet it, the Alert service is invoked.

The Entertainment Stimulation task reports the most variable execution times as
reported in Fig. 9. This is due to the different times required to play different types
of entertainment like videos, music, games, and documentaries. The data collected
on the played entertainments are also analyzed as feedback when users accepted and
played them, to check whether the preferences they expressed during the interviews
were valid during the experimentation, or if they were stimulated by the presence of
the robot to experience different entertainments.
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Fig. 9 Average execution time for the play video and play music service

Fig. 10 Average execution time for the CheckMedicine and RemindMedicine task

One of the most important assistive tasks to be executed with strict adherence
to the daily routine is RemindMedicine. The task consists of reminding the patient
to take a medication in the case the patient forgot to do it, i.e., if CheckMedicine
reports a “no” output. In such a case the assistive task is repeated until either the
CheckMedicine reports a “yes” output, or the validity time expires requiring an alert
to be sent to the caregiver for immediate action. For this reason, as reported in Fig. 10,
the CheckMedicine and the RemindMedicine microservices are executed a different
number of times for each user depending on their responses. The patients P2 andP3 and
P6 did not require a reminder, while P1, P4, P5, and P7 were to be reminded several
times before actually taking medicines. These differences are due to the different
cognitive statuses of the patients (the worse the memory impairment is, the higher the
number of reminders is), and the presence of caregivers or relatives that support them
when crucial tasks have to be undertaken.

6.2 Results on acceptance of the personalized daily assistive plan

During the experimentation, subjective information on how the interaction with the
robot was perceived was gathered through a very simple questionnaire. The patient
was asked to fill it every day by selecting one of the three emoticons representing
the satisfaction degree with the following metrics: Sad = 1, Neutral = 2, Happy = 3.
Results showed that out of 7 patients, 5 patients reported an average evaluation above 2
(neutral), while patients P4 and P7 were below 2 (see Table 9). In particular, P4 and P7
were the patients with a greater familiarity with technologies, and so with the higher
expectations about the robot’s behavior. To evaluate a possible correlation between the
familiarity with technology of the patients and the subjective satisfaction evaluation of
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Table 9 Average value of the
daily subjective evaluation for
each patient

Patient ID P1 P2 P3 P4 P5 P6 P7

Average evaluation 2.8 2.3 2.1 1.5 2.8 2.7 1

Table 10 Cronbach’s alpha
values after removing items

Construct α Construct α

ANX 1.0 PEOU 0.745

ATT 0.879 PS 0.816

FC – PU 0.889

ITU 0.977 SI 0.816

PAD 0.612 SP 0.876

PENJ 0.884 TRUST 0.998

the use of the robot, we calculate the Pearson correlation. A strong significant negative
correlation between the two variables was found with ρ = −0.84 and p = .018.
There is no significant Pearson correlation between subjective satisfaction and years
of education or age.

Moreover, to evaluate the user acceptance of the developed system, the UTAUT
questionnaire was used (Heerink et al. 2010). The questionnaire has been translated
into Italian. The translation was examined at a consensus meeting, back-translated,
and approved at a second consensus meeting. A comprehension test was carried out
on a subgroup of 15 individuals.

TheUTAUTquestionnaire aims at evaluating the user intentions to use new technol-
ogy and it consists of 41 items and explores 12 constructs: Anxiety (ANX), Attitude
(ATT), Facilitating Conditions (FC), Intention to Use (ITU), Perceived Adaptabil-
ity (PAD), Perceived Enjoyment (PENJ), Perceived Ease of Use (PEOU), Perceived
Sociability (PS), Perceived Usefulness (PU), Social Influence (SI), Social Presence
(SP) and Trust (TR). The Likert scale to score the items ranges from 1 to 5. The SPSS
software version 26 was used to analyze the data and calculate the statistics.

First of all, we calculated the Cronbach alpha (CA) coefficient to estimate the
internal consistency of each construct. For ATT, ITU, PENJ, PU, SI, and TR, we
had an α considering all the items above 0.8 that indicated a high level of internal
consistency. For ANX, PAD, PEOU, PS, and SP some items have been removed to
reach sufficient reliability. FC construct was removed because not reliable.

The descriptive statistics (mean, minimum, maximum, standard deviation) for the
12 constructs are reported in Table 11. For each construct, the result has been divided
with respect to the number of items for the construct. A positive perception of a
participant is assumed when the construct score is greater than 2.5, while a negative
perception is when the average score is lower than 2.5. On average, the participants
had a good acceptance of the robotic application showing good results in terms of
having low anxiety in using the robot (for ANX a high value indicates low anxiety),
good feelings toward it (ATT), and a well-perceived enjoyment (PENJ). The robot was
perceived as adaptable (PAD) and useful (PU). In addition, the system was evaluated
with a satisfactory Perceived Easy Of Use (PEOU) value. According to (Casey et al.
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Table 11 UTAUT results after the interaction with the robot

Construct Avg Std Min Max

ANX Anxiety 4.43 1.51 1.00 5.00

ATT Attitude 4.19 0.96 2.33 5.00

FC Facilitating conditions 3.43 0.79 2.50 4.50

ITU Intention to use 2.14 1.14 1.00 3.67

PAD Perceived adaptability 3.00 0.96 2.00 4.50

PENJ Perceived enjoyment 4.09 1.09 1.80 5.00

PEOU Perceived ease of use 2.64 1.14 1.00 4.00

PS Perceived sociability 3.00 1.20 1.00 4.33

PU Perceived usefulness 3.67 1.58 1.00 5.00

SI Social influence 4.14 1.11 2.00 5.00

SP Social presence 2.39 1.39 1.00 5.00

TR Trust 3.64 1.49 1.00 5.00

2016; Koh et al. 2021), this is evidence of the possible acceptance and usability of a
systemwith PwD due to their cognitive deficit. Moreover, the Perceived Utility (PU) is
another important factor to consider since a mismatch between the patients’ needs and
the offered technological solutions constitutes a barrier to acceptance and adoption
(Casey et al. 2016).

The only constructs we found below average are intention to use (ITU) and social
presence (SP). We believe that for intention to use the actual items of the construct
were not correctly interpreted by the patients and the item constructs were not suitable
to evaluate ITU in our experimentation. One of the statements to evaluate ITU was:
“I’m certain to use the robot during the next few days.” But the UTAUT questionnaire
was performed on the last day of the experimentation with the patients aware that
the experimentation was over and they were not going to use the robot again. So,
their answers were conditioned by this information and they could not reflect the
real intention to use the system again. Hence, the form of such a question should
be revised to be properly used. Moreover, while the robot was perceived as showing
sociable behaviors (PS), it was moderately perceived as a social entity.

The Shapiro–Wilk test on construct values showed that the data are normally dis-
tributed. Hence, to better understand relationships between constructs, we calculated
Pearson’s correlations for parametric values. Once significant correlations were found
between variables, the regression analysis was used to confirm the predictive role of
one factor (predictor variable) to another (dependent variable). Two-tailed correlation
results are reported in Table 12.

In detail, the perceived sociability (PS) of the robot was found to be a good predictor
of the perceived usefulness (PU) with an R2 = 0.828, β = .91, t = 4.907, and ρ <

0.05, meaning that the perception of the ability of the robot to express a social behavior
has an impact on its perceived utility. Moreover, social influence (SI) was found to be
a good predictor of attitude toward technology (ATT) with R2 = .980, β = .99, t =
15.532, and ρ < 0.001 possibly meaning that when having a low familiarity with
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Table 12 Significant Pearson correlations between UTAUT constructs

ANX ATT PENJ PS PU SI TR

ANX .781∗
ATT .851∗ .787∗ .990∗∗
PENJ .851∗ .890∗∗ .938∗∗ .869∗
PS .787∗ .890∗∗ .910∗∗ .814∗
PU .938∗∗ .910∗∗
SI .990∗∗ .869∗ .814∗
TR .781∗

* is for p < 0.05 and ** is for p < 0.001

technology, as for the majority of the considered subjects, there is a strong correlation
between possible influence of relatives and caregivers on the willingness/attitude to
use the robot. Finally, both PU and ATT resulted in being good predictors for the
perceived enjoyment (PENJ) with R2 = .875, for PU with β = .585, t = 2.409, and
for ATT with β = .432, t = 1.782.

6.3 Patients interviews

Here, qualitative data from interviews with the patients are reported. Indeed, a cru-
cial source of information was gathered through interactions between the researchers
responsible for the experimentation and the patients both via informative telephone
calls and visits at home taking place during the experimentation, and a friendly
exchange of opinions at the end of the experimentation period. It was difficult to
formalize the obtained information, but since this feedback was very important to
understand patients’ perceptions during the experimentation, we report here the main
collected results.

The robot was never turned off by the users, as also verified in the log files. Even
though the robot was not scheduled to move during the night to recharge its batteries,
one patient (P2) reported that he locked the door of the room where the robot was
located for the first two nights, until he was sure it was not moving during the night.

Only 2 patients, P4 and P7, reported negative feedback about the experience with
the robot complaining about the lack of vocal interaction. In addition, they expected
the robot could be instructed to perform tasks required by them through its display
monitor, or it could move when they wanted. One of the patients declared to have
skills in using the computer and hence to be able to program it. He/She was expecting
to be able to interact with it as with a vocal assistant like Alexa. Moreover, the homes
of these patients were quite small and not very suitable to allow the robot to move
easily, so they were disappointed by the few interactions due to the failures of some
assistive tasks.

The other 5 patients were all very enthusiastic about the experience with the robot,
and they all asked for it to stay for more time. At the end of the experimentation,
they declared that the robot became like a friend making their time at home more
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pleasant and making them feel more occupied than usual. They were very thrilled by
the fact that the robot recognized and interacted only with them, so making them feel
important to the robot. Above all, they appreciated the help they received in being
reminded of their medication therapy, and the possibility to have the entertainments
they preferred (music tracks they liked that reminded them of their past times, recipes
videos for those who like cooking, sports videos for who likes sport, and so on).

The patient with the worse cognitive impairment (CDR = 2) was very reluctant at
the beginning almost refusing to have the robot at the first sight. But when the robot
started interacting every day, the attitude of the patient changed completely, and the
robot was perceived as a family person.

The patients that had the robot for longer times (P5 and P6) were the most enthusi-
astic about it. This is an encouraging result since, even though supported by few data
for deriving conclusions, it may suggest that the more used the patient becomes to the
robot’s presence, the higher its acceptance could be. One patient wrote an apprecia-
tion letter to the researchers thanking them for the special experience at the end of
the experimentation. The other one developed a so close relationship with the robot
expressing even worries when the robot stopped working for a day because it was out
of charge (it was not recharged in time) and it did not move as in the previous days. The
patient perceived the robot as a real person not feeling well. This collected information
about the feelings of patients for the robot presence is in line with the UTAUT results
that reported for these two patients an high value for the social presence construct,
which is also higher compared to the other patients.

7 Discussion

Testing assistive robotics applications in real settings and without the supervision of
technicians remains a significant challenge despite the available technologies.

The adoption of a service-oriented approach allowed us to decouple the functioning
of the developed microservices from both the design and implementation of the com-
plete robotic application and the collection of user data. In such a way, it was possible
to perform in parallel the testing of the system in the controlled environment of the
University robotic laboratory, during the development phase of the project, while com-
pleting the implementation of all necessary functionalities. This was a fundamental
step to improve the reliability of the robotic application to be then deployed in home
environments.

In addition, the service-oriented approach proved to be a promising way in the
direction of developing plug-and-play assistive applications crucial for personalizing
home care in domains characterized by high rate progress in technological and ser-
vice development. In fact, with the service-oriented approach, platform dependence
concerns only the actual implementation of assistive actions. The implementation is
transparent to the system once they are registered in an application server according
to agreed interfaces for their invocation and interoperability.

Nevertheless, to have significant results from the interaction, it is necessary to
obtain a significant maturity and dependability of the developed services (Koh et al.
2021). This is even more crucial when dealing with robot navigation and interaction
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capabilities for home monitoring. Indeed, most efforts were devoted to guaranteeing
the functioning of the system in a not controlled and supervised environment without
relying on any remote control.

User localization is one of the more time-consuming services in real home environ-
ments when not supported by additional devices. The use of a low-cost social robot
for the experimentation allowed us to use a robot that could be safely deployed in a
home environment, but with a limited set of sensors for navigation. In our experimen-
tation, the robot was able to locate the user (if present) in seven minutes on average.
As the results showed, the time for accomplishing the scheduled workflows heavily
depends on the house configuration and the number of persons in the environment.
With more reliable sensors the robot could be able to improve performance by deploy-
ing localization andmapping mechanisms and by learning user-preferred locations for
their routines. However, in our domain the time spent by the robot in finding the user
was acceptable and so the benefit of having a low-cost robot overcomes the possible
cost of time spent in localizing the user. Moreover, in future development, the pres-
ence of beacons in the house could be exploited to speed up the robot navigation by
implementing algorithms that direct the user searching process toward known areas.

As highlighted in (Koh et al. 2021), the match between social robots’ functions
and users’ needs is evaluated as an enabler for the adoption of assistive social robot
technologies. However, when considering patients’ clinical needs (as reminders or
monitoring), these have to be balanced with additional functionalities that match also
with a subjective perception of enjoyment. In many cases, the users enjoyed the enter-
tainment activities provided by the robot. Indeed, the system was evaluated with a
high value of perceived usefulness (avg PU = 3.67) with the perceived sociability of
the robot being a good predictor for PU. The role of family members and caregivers in
supporting the acceptance of the technology by the patients is fundamental considering
that, in our results, social influence (SI) is a good predictor of attitude toward technol-
ogy (ATT), and both ATT and PU are predictors of Perceived Enjoyment (scoring in
the average PENJ = 4.09). Results are also in line with a very high average value of
the Anxiety item (average ANX = 4.43), meaning that there was no anxiety in using
the robot after the experimentation.

Also, we found that in the case of initial reluctance or skepticism (as showed by
patient P1), a positive perception was obtained at the end of the experimentation. A
positive perception was also found in patients experiencing longer interaction with
the robot. In this sense, daily verbal comments and observations provided additional
insights during the experimentation with respect to simple ratings of the acceptance.

7.1 Limitations and future perspective

In the current release of the system for the experimentation, the abstract workflows
representing the considered assistive tasks are predefined with the help of doctors and
psychologists to be fully compliant with the patient needs and manually designed in
sub-components by developers. They are included in configurationfiles to be processed
by the middleware. Additional assistive tasks can be added by including them in the
configuration files. Nevertheless, a different module not yet integrated into the systems
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is responsible for the automatic generation of abstract workflows (Di Napoli et al.
2018).

The adoption of long-term robotic applications requires continuous updates of the
user profile due to the rapid evolution of their cognitive impairment and consequently
their personality profile (D’Iorio et al. 2018). We relied on updates either manually
inserted by caregivers, or as a result of specific services ad hoc invoked. Moreover,
gathering correct information from patients for entertaining preferences may be diffi-
cult. So, the possibility of deploying recommender systems for learning entertainment
preferences is desirable.

The technological constraints impacting the experimentation were not only due to
cost and infrastructure limitations but also to privacy and security reasons. No net-
work connection from the house to the outside was allowed, as well as no personal
information from the camera was allowed to be stored. These ethical issues pose chal-
lenges for the evaluation of results regarding the perception of the received assistance
from the user, and the possibility of correctly evaluating the performance of some
developed services in the wild. For example, while activity recognition was tested on
laboratory data (Ercolano and Rossi 2021), no video recording, as well as skeleton
tracking, was included as means of validation during the experimentation. How to
properly evaluate these functionalities in an ecologically relevant environment is an
open issue. The same holds for the checkMedicine service, which is a very delicate
aspect of an assistive plan requiring sophisticated continuous monitoring to detect if
the patient really takes the medicine. We relied on a question asked by the robot to the
user and to a family member to check that the reply was reliable.

As emerged from the opinions collected from the patients’ interviews, the time the
robot is left at home may play a crucial role in the perception of its usefulness, and
in the change that may occur in the perception over time. Of course, a study on this
aspect was not undertaken since the times for the experimentation for each patient
were constrained by the project timing and patient availability. All collected data and
their analysis suffer, as pointed out, from the difficulty of finding patients with the
right conditions to be enrolled.

In addition, the negative relationship between the user’s familiarity with technology
and the satisfaction with the system needs to be further explored since there could be
different reasons for different users. For example, if they use technology frequently
they could expect a higher level of interface performance that the systemdid not deliver,
or they could feel their needs are already fulfilled by other devices and services already
in use in their everyday life.

Moreover, the results on the patient’s acceptability of the robot were influenced by
the lack of the natural language understanding not included in the robot’s functionality.
It requires the availability of an internet connection that, beyond security reasons, was
also not available at all for the recruited patients. So it would imply an additional
technological infrastructure and cost due to also the necessity of directional, noise-
canceling, microphones and the subscription to NLP cloud services. For future works,
we are working on feasible, cost-effective, approaches to handle natural language
processing (NLP) and dialogue. However, it has to be noted that the use of NLP in the
development of HRI application in the wild is particularly challenging, especially in
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the case of interaction with elderly persons that may have a problem with fluency or
may use dialects.

Finally, since the proposed robotic application was intended to be centered on
the patient’s needs and personal characteristics, no data were collected regarding the
perception or the subjective evaluation of caregivers or family members. Caregivers’
evaluations of robotic assistive care, as assessed in Ghafurian et al. (2021), would have
provided useful additional info.

8 Conclusions

Several projects have been funded for developing assistive robotics applications for
elderly carewith ageneral goodacceptanceof the assistive technology (Broadbent et al.
2016). However, many of them are still experimented within controlled environments
such as research laboratories, or retirement homes. There is an increasing need of
testing these technologies in the field to improve findings of people’s reactions when
using social robots in their private homes (Jung and Hinds 2018). Experimenting
with robotic applications in unsupervised environments requires addressing different
technical and ethical problems, so imposing trade-offs in the experimental evaluations.

The UPA4SAR project addressed these challenges by designing and developing a
robotic application for home care of the elderly affected by cognitive impairments to
be deployed and experimented with in home environments with patients. To provide a
robotic assistive application that can be personalized and adapted to each specific user,
it was designed and implemented according to a service-oriented approach in terms
of compositions of services. The concept of service is used to separately represent
the entities that may be personalized. They concern the resources/devices, which can
be different for each home patient, the functionalities they provide, which can be
different according to the patient’s assistive needs, and the provision modalities the
functionalities are delivered with that are different according to the user’ profile.

In addition, the choice to design a daily assistive plan as a composition of assistive
tasks, that are in turn a composition of services, allows for addressing different levels
of personalization and keeping them clearly separated. So each one can be managed
when necessary and when possible. A monolithic representation of an assistive plan
or even an assistive task would prevent the modular approach for personalization. For
example, personalization of interaction modalities concerns only specific services,
as well as the selection of a specific device providing it. Instead, personalization of
the repetition frequency or the timing concern the assistive task as a whole, while
personalization of the types and number of assistive tasks concerns the daily assistive
plan. The proposed modular approach allows assistive applications to be deployed for
every single user and different technological environments.

Personalization and adaptation of the robotic applications take into account the
available technology, the home environment structure, and more importantly the
patient’s personality traits, her/his cognitive state, and her/his needs and preferences.
According to the information collected about the daily routines of patients, it is possi-
ble to individuate the type of assistive tasks they need. The tasks are then personalized
at the execution time according to the specific user profile and adapted to the current
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situation. The robot can carry out these activities with full autonomy. The schedul-
ing and the actual execution of such activities are performed by the middleware layer
managing the functional and non-functional characteristics of the assistive application,
together with recovery mechanisms from possible failures.

The on-field experimentation was conducted with 7 patients at their homes for a
total time of 118 days. The patients’ enrolling and profiling were carried out during the
application design and development of the system. The reported results showed that
personalization and adaptation for both functional and non-functional characteristics
of an assistive application play a fundamental role in the acceptance of new and
unfamiliar technologies for a fragile class of users such as the elderly affected by
cognitive impairments.

The data collected from different sources allowed to derive several challenges and
opportunities to be considered when developing these types of applications. However,
in general, a positive outcome when using a robotic application in a not controlled
domestic environment resulted both in the system reliability and robustness, and the
system acceptability from users, unexpectedly even in the case of a low education
level. In addition, a promising result is that patients who experienced the robot for a
long time were the ones more satisfied with the robot’s presence. Of course, this result
needs to be supported by further experimentation with more patients and for a longer
time.
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