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Abstract
Pyroptosis, a form of programmed cell death distinct from apoptosis and necrosis, is thought to be closely associated with 
the pathogenesis of diseases. Recently, the association between pyroptosis and urinary diseases has attracted considerable 
attention, and a comprehensive review focusing on this issue is not available. In this study, we reviewed the role of pyropto-
sis in the development and progression of benign urinary diseases and urinary malignancies. Based on this, pyroptosis has 
been implicated in the development of urinary diseases. In summary, this review sheds light on future research directions 
and provides novel ideas for using pyroptosis as a powerful tool to fight urinary diseases.
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Abbreviations
ASC  Caspase-recruitment domain
ROS  Reactive oxygen species
IL-18  Interleukin-18
IL-1β  Interleukin-1β
LPS  Lipopolysaccharide
TAK1  TGF-β-activated kinase-1
GSDMA  Gasdermin A
GSDMB  Gasdermin B
GSDMC  Gasdermin C
GSDMD  Gasdermin D
GSDME  Gasdermin E
GZMB  Granzyme B
GZMA  Granzyme A
USF2  Upstream stimulatory factor 2
THBS1  Thrombospondin-1
NLRP1  NOD-like receptor 1
AIM2  Absent in melanoma 2
NLRP3  NOD-like receptor 3
HMGB1  High mobility group box 1
ERS  Endoplasmic reticulum stress
TLR2  Toll-like receptor 2

ROCK1  Rho-associated coiled-coil containing protein 
kinase-1

TXNIP  Thioredoxin–interacting protein
miR-93  MicroRNA-93
PRDX3  Peroxiredoxin 3
STAT3  Transcription 3
HK2  Hexokinase 2
LDHA  Lactate dehydrogenase A
ENO2  Enolase 2
USP24  Ubiquitin-specific peptidase 24
IGFBP3  Insulin-like growth factor-binding protein 3

Introduction

Pyroptosis is a newly discovered form of programmed cell 
death. Cell death is usually categorized as nonprogrammed 
cell death and programmed cell death (PCD) [1]. Pyroptosis 
is a type of inflammatory PCD [2]. The process of pyrop-
tosis was first described in 1992, but the term was coined 
in 2001 following the observation that bacterium-infected 
macrophages underwent rapid lytic cell death dependent on 
caspase-1 activity [3]. Recently, macrophages were shown to 
regulate pyroptosis and play an important role in the devel-
opment of acute kidney injury (AKI), diabetic nephropathy 
(DN) and renal fibrosis [4–6]. Pyroptosis is characterized 
by cell membrane pore formation, cell swelling, and the 
release of inflammatory intracellular contents [7, 8]. The 
inflammatory factors released during cell lysis, such as 
interleukin-1β (IL-1β) and interleukin-18 (IL-18), amplify 
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the inflammatory effects and activate immune responses [7, 
8].

The underlying mechanism was only uncovered upon 
the discovery of gasdermin D (GSDMD) protein. Shi et al. 
found that caspase-1/11/4/5 can induce pyroptosis by cleav-
ing GSDMD to release its N-terminal domain [9]. In addi-
tion to GSDMD, the gasdermin family also includes five 
other members. The human gasdermin family comprises 
GSDMA, GSDMB, GSDMC, GSDMD, GSDME/DFNA5, 
and PVJK/DFNB59. In mice, there are five gasdermin mem-
bers, namely, GSDMA, GSDMC, GSDMD, GSDME, and 
PJVK/DFNB59, but not GSDMB [2]. All gasdermins except 
DFNB59 have two conserved domains: an N-terminal effec-
tor domain and a C-terminal inhibitory domain [2].

Normally, moderate pyroptosis contributes to host 
defence against pathogen infection, but excessive pyropto-
sis leads to uncontrolled inflammatory responses, massive 
cell death, and serious tissue damage, causing inflammatory 
or autoimmune diseases [2]. As a proinflammatory type of 
cell death, pyroptosis provides a new opportunity for cancer 
elimination by activating the anti-tumour immune response 
[2]. An increasing number of studies have shown that pyrop-
tosis plays a crucial role in many cancers, such as breast 
cancer, gastric cancer, and lung cancer [10–12].

Here, we first describe the different signalling path-
ways of pyroptosis to gain an in-depth understanding of 
the molecular mechanism. Finally, the role of pyroptosis in 
urinary diseases is discussed, followed by suggestions for 
future research directions.

Overview of pyroptosis

Canonical pathway

The classical pyroptosis pathway is mediated by caspase-1 
[13]. Inflammasomes are formed by pattern-recognition 
receptors (PRRs, also known as inflammasome sensors), 
apoptosis-associated speck-like protein containing a cas-
pase-recruitment domain (ASC), and inactive pro-caspase-1 
[13–15]. PRRs can recognize pathogen-associated molecular 
patterns and danger-associated molecular patterns (PAMPs 
and DAMPs) [16, 17]. PRRs include nucleotide-binding 
oligomerization domain-like receptors (NLRs, includ-
ing NLRP1, NLRP3, and NLRC4), absent in melanoma 
2 (AIM2), and pyrin [18, 19]. NLRs usually consist of a 
leucine-rich repeat (LRR), a nucleotide-binding oligomeri-
zation domain (NACHT/NOD), and a caspase-recruitment 
domain (CARD) or pyrin domain (PYD) and are divided 
into NLRPs or NLRCs according to whether their N-termi-
nus contains a PYD or CARD [20]. A PYD is needed for 
interaction with ASC. The NOD participates in adenosine 
triphosphate (ATP)-dependent activation of the signal. The 

LRR is responsible for ligand recognition and autoinhibi-
tion. The CARD participates in pro-caspase-1 recruitment 
[2]. Upon receiving an activating signal, inflammasome 
sensors recruit pro-caspase-1 (which has a CARD) either 
directly through homotypic binding of CARD or indirectly 
through the PYD by means of ASC, which contains a PYD 
and a CARD [17]. Subsequently, caspase-1 activation 
occurs through self-cleavage. Activated caspase-1 not only 
cleaves inactive IL-1β and IL-18 precursors but also cleaves 
GSDMD to form GSDMD-NT and GSDMD-CT [21–24]. 
GSDMD-N forms pores in the plasma membrane, leading 
to cell swelling and pyroptosis [25, 26] (Fig. 1).

Non‑canonical pathway

Most gram-negative bacteria activate the non-canonical 
inflammasome pathway [2]. The nonclassical signalling 
pathway is mediated by caspase-4 and caspase-5 in humans 
and by caspase-11 in mice [27, 28]. These caspases can be 
activated by directly binding to lipopolysaccharide (LPS) 
[28]. Activated caspase-4/5/11 cleaves GSDMD to promote 
pyroptosis. However, caspase-4/5/11 cannot cleave pro-
IL-18/pro-IL-1β but can cleave GSDMD, which can cause 
 K+ efflux and NLRP3/caspase-1 pathway activation, eventu-
ally leading to the maturation and release of interleukin-18 
(IL-18) and interleukin-1β (IL-1β) [9, 14, 29] (Fig. 1).

Apoptotic caspase‑mediated pathway

In addition to inflammatory caspase-1/4/5/11, some apop-
totic caspases can also trigger pyroptosis. Chemotherapeu-
tic drugs can induce caspase-3 to cleave GSDME to form 
GSDME-N termini, which cause pyroptosis [30, 31]. In 
addition, pathogenic Yersinia has been shown to inhibit 
TGFβ-activated kinase-1 (TAK1) via the Yersinia effec-
tor protein YopJ and induce caspase-8-related cleavage of 
GSDMD to elicit pyroptosis [32, 33]. Interestingly, cas-
pase-8 induces GSDMC cleavage, thereby leading to a non-
canonical pyroptosis pathway in cancer cells [34] (Fig. 1).

Granzyme‑mediated pathway

Granzyme A (GzmA) is the most abundant serine protease 
of the granzyme family and has traditionally been recog-
nized as a mediator of cell death [2]. Zhou et al. found 
that GZMA derived from cytotoxic T lymphocytes cleaves 
GSDMB to induce pyroptosis [35]. In 2020, it was reported 
that CAR-T cells activated caspase-3 by releasing granzyme 
B (GzmB), subsequently leading to the activation of the cas-
pase-3/GSDME-mediated pyroptotic pathway, thus causing 
pyroptosis [36]. Additionally, Zhang et al. found that GzmB 
directly cleaved GSDME and induced pyroptosis, enhancing 
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anti-tumour immunity and inhibiting tumour growth [37] 
(Fig. 1).

Pyroptosis in benign urinary diseases

Pyroptosis in interstitial cystitis

Interstitial cystitis (IC), also known as bladder pain syn-
drome (BPS), is a chronic pain disorder that most commonly 
presents in the bladder, pelvis, or abdomen [38]. Pyroptosis 
plays an important role in the development of IC. A study 
showed that the NLRP3 inflammasome is a crucial player 
in the development of bladder disease [39]. Some results 
have demonstrated that the expression levels of NLRP3, cas-
pase-1, and GSDMD in patients with IC are elevated [40, 
41]. Wang et al. found that the NLRP3/GSDMD-N pathway 
was activated and played a role in the development of IC 

[42]. Wang et al. showed that aster tataricus extract (ATE) 
can be used as an inhibitor of NLRP3 in treating IC [43]. 
The discovery of NLRP3/caspase-1/GSDMD-N as a new 
pathway provides a new direction for IC research.

Pyroptosis in BPH

Benign prostatic hyperplasia (BPH) is characterized by the 
nonmalignant overgrowth of prostatic tissue surrounding the 
urethra, ultimately constricting the urethral opening and giv-
ing rise to associated lower urinary tract symptoms (LUTS) 
such as urgency, frequency, nocturia, incomplete bladder 
emptying, and a weak urine stream [44]. There is much 
evidence to suggest that inflammation plays an important 
role in BPH. It has been reported that the expression lev-
els of NLRP1 and caspase-1, IL-18 and IL-1β are elevated 
in BPH [45]. Therefore, the NLRP1/caspase-1 pathway 
is activated and participates in the development of BPH. 

Fig. 1  Molecular mechanisms of the canonical pathway, non-canon-
ical pathway, apoptotic caspase-mediated pathway and granzyme-
mediated pathway in pyroptosis. In the canonical pathway, patho-
gen-associated molecular patterns or damage-associated molecular 
patterns (such as ROS, ATP, viruses, bacteria, or toxins) stimulate 
inflammasomes, which then activate caspase-1. Activated cas-
pase-1 not only cleaves inactive IL-1β and IL-18 precursors but also 
cleaves GSDMD, which forms pores and induces pyroptosis. In the 
non-canonical pathway, LPS from Gram-negative bacteria activates 
caspase-4/5/11, and activated caspase-4/5/11 cleaves GSDMD to 

promote pyroptosis. In the apoptotic caspase-mediated pathway, cas-
pase-3/GSDME, caspase-8/GSDMD and caspase-8/GSDMC mecha-
nisms can promote pyroptosis. In the granzyme-mediated pathway, 
GZMA or GZMB derived from CAR-T cells cleaves GSDMB or 
GSDME, respectively, to induce pyroptosis. ASC caspase-recruit-
ment domain, ROS reactive oxygen species, IL-18 interleukin-18, 
IL-1β interleukin-1β, LPS lipopolysaccharide, TAKI TGF-β-activated 
kinase-1, GSDMD gasdermin D, GSDME gasdermin E, GSDMB gas-
dermin B, GZMB granzyme B, GZMA granzyme A
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Jiang et al. found that peroxiredoxin 3 (PRDX3) suppressed 
autophagy flux and activated pyroptosis to induce inflam-
matory responses and stimulate the overgrowth of prostate 
tissues [46]. Emerging results indicate that steady-state 
levels of AIM2 mRNA are higher in BPH tissue than in 
normal prostate tissue [47]. AIM2 recruits ASC and pro-
caspase-1 to assemble the AIM2 inflammasome, leading to 
cell swelling and pyroptosis. These studies have facilitated 
the identification of potential BPH treatment targets. The 
signalling pathways regulating pyroptosis in BPH are dis-
played in Fig. 3.

Pyroptosis in AKI

Acute kidney injury (AKI) is defined by a rapid increase 
in serum creatinine, a decrease in urine output, or both 
[48]. Recent advances have revealed a role for pyroptosis in 
AKI. Sun et al. found that thrombospondin-1 (THBS1) and 
upstream stimulatory factor 2 (USF2) were highly expressed 
in patients with sepsis-induced AKI and that USF2 upregu-
lated THBS1 expression to activate the TGF-β/Smad3/
NLRP3/caspase-1 signalling pathway and stimulate pyrop-
tosis, ultimately exacerbating sepsis-induced AKI [49]. Miao 
et al. found that the expression of GSDMD was significantly 
increased in both cisplatin-induced and ischaemia‒reper-
fusion (I/R) models [50]. The knockout of caspase-11 or 
GSDMD alleviated kidney damage in mice with cisplatin-
induced AKI. A study published in 2020 showed that the 
protein levels of high mobility group box 1 (HMGB1), 
IL-1β, IL-18, NLRP3, and GSDMD were elevated in an 
AKI model [6]. Therefore, we hypothesize that the HMGB1/
NLRP3/GSDMD signalling pathway plays a pivotal role in 
the pathogenesis of AKI. In addition, Li et al. demonstrated 
that the ROS/NLRP3/caspase-1/GSDMD pathway medi-
ated contrast-induced AKI (CI-AKI) via pyroptosis and 
that baicalin treatment alleviated the associated inflamma-
tion and oxidation levels [51]. Studies have also shown that 
macrophage-derived exosomal miRNAs play important roles 
in AKI [52, 53]. Xia et al. found that the levels of GSDME-
N and IL-1β were elevated in cisplatin-induced AKI [54]. 
The inhibition of caspase-3 blocked GSDME-N cleavage 
and attenuated cisplatin-induced pyroptosis and kidney dys-
function. Therefore, caspase-3/GSDME-triggered pyroptosis 
plays an important role in AKI. Juan et al. found that the 
exosomal miR-93/thioredoxin–interacting protein (TXNIP) 
signalling pathway plays a crucial role in the progression of 
sepsis-induced AKI and that M1 exosomes promote pyrop-
tosis and M2 exosomes inhibit pyroptosis [55]. It has been 
well established that Rho-associated coiled-coil containing 
protein kinase-1 (ROCK1) plays an important role in a series 
of pathological processes, including pyroptosis, inflamma-
tion, and endoplasmic reticulum stress (ERS) [56, 57]. Wang 
et al. found that ROCK1 regulates LPS-induced kidney cell 

pyroptosis via Toll-like receptor 2 (TLR2)-mediated ERS, 
thereby accelerating sepsis-induced AKI progression [58]. 
The signalling pathways regulating pyroptosis in AKI are 
displayed in Fig. 2.

Pyroptosis in DN

Diabetic nephropathy (DN), or diabetic kidney disease 
(DKD), is a frequent and severe long-term microvascular 
complication resulting from lesions in the renal glomeruli 
and tubules [59]. Growing evidence has demonstrated that 
chronic inflammation promotes the pathogenesis of DN 
[60]. The role of pyroptosis signalling pathways in DN 
progression has attracted the attention of researchers and 
clinicians. In 2020, it was reported that the TXNIP/NLRP3 
axis is an important pathway that regulates DN induced by 
pyroptosis [61]. Interestingly, Ke et al. found that the ERS-
related factor IRE1α upregulated TXNIP/NLRP3 inflamma-
some-induced pyroptosis in DN rats [62]. Li et al. found 
that NLRP3/caspase-1/GSDMD signalling was strikingly 
upregulated and the secretion of IL-1β and IL-18 dramati-
cally increased in DN mice [63]; in addition, they also con-
firmed that SYR inhibited the NLRP3/caspase-1/GSDMD 
pyroptosis pathway by upregulating NRF2 signalling in 
DN. Li et al. found that the expression of p-NF-κB, ASC, 
cleaved-IL-1β, NLRP3, cleaved-caspase-1, and GSDMD-N 
was elevated in a DN mouse model [64]; in addition, they 
confirmed that geniposide (GE) may inhibit the develop-
ment of DN via the APMK/SIRT1/NF-κB pathway [64]. 
The APMK/SIRT1/NF-κB axis may become a new signal-
ling pathway for the treatment of DN. In addition, NLRP3 
inflammasome activation is related to the pathogenesis of 
DN. Wang et al. revealed that the expression of NLRC4, 
IL-1β, and IL-18 was increased under high glucose condi-
tions, inducing pyroptosis in renal tubular epithelial cells 
[65]. Komada et al. demonstrated that the activation of the 
AIM2 inflammasome by DNA from necrotic cells drives 
pyroptosis, which contributes to chronic kidney injury [66]. 
Cheng et al. demonstrated that caspase-11/4- and GSDMD-
mediated pyroptosis was activated in a DN mouse model 
and involved in the development of DN [67]. In summary, 
these findings confirm that pyroptosis and inflammasomes 
play important roles in renal injury, ultimately affecting the 
pathogenesis of DN.

Pyroptosis in urinary malignancies

Pyroptosis in bladder cancer

Bladder cancer (BCa) is the most common malignancy of 
the urinary tract [68]. Recent advances have revealed an 
important role of pyroptosis in bladder cancer. He et al. 



1519International Urology and Nephrology (2024) 56:1515–1523 

1 3

found that GSDMB binds to signal transducer and activator 
of transcription 3 (STAT3) and increases the phosphoryla-
tion of STAT3, which increases the expression of hexoki-
nase 2 (HK2), lactate dehydrogenase A (LDHA), enolase 
2 (ENO2), and insulin-like growth factor-binding protein 3 
(IGFBP3) to enhance glycolysis in BCa cells and promote 

cancer cell proliferation [69]; in addition, they also demon-
strated that ubiquitin-specific peptidase 24 (USP24) inter-
acts with GSDMB and prevents GSDMB degradation in 
BCa cells [69]. Therefore, the USP24/GSDMB/STAT3 axis 
may become a new targetable signalling pathway for blad-
der cancer treatment. Chen et al. showed, based on K‒M 

Fig. 2  Signalling pathways regulating pyroptosis in AKI. THBS1 
is upregulated by USF2 and activates the TGF-β/Smad3/NLRP3/
caspase-1 signalling pathway, thus inducing pyroptosis. NLRP3 is 
upregulated by HMGB1 and activates the expression of GSDMD. 
ROS induce pyroptosis via the NLRP3/caspase-1/GSDMD signalling 
axis. Cisplatin induces pyroptosis via the caspase-3/GSDME signal 
axis. miR-93 targets TXN2P and thus induces pyroptosis. ROCK1 
regulates LPS-induced pyroptosis via TLR2-mediated ERS. USF2 

upstream stimulatory factor 2, ROS reactive oxygen species, THBS1 
thrombospondin-1, TGF-β transforming growth factor-β, NLRP3 
NOD-like receptor 3, HMGB1 high mobility group box  1, LPS 
lipopolysaccharide, ERS endoplasmic reticulum stress, TLR2 toll-
like receptor 2, ROCK1 Rho-associated coiled-coil containing pro-
tein kinase-1, TXNIP thioredoxin–interacting protein, miR-93 micro-
RNA-93, GSDMD gasdermin D, GSDME gasdermin E

Fig. 3  Signalling pathways 
regulating pyroptosis in BPH. 
NLRP1/caspase-1 induces 
pyroptosis to promote the 
development of BPH. PRDX3 
suppresses autophagy flux 
and activates pyroptosis to 
promote the development of 
BPH. AIM2/caspase-1 induces 
pyroptosis to promote the 
development of BPH. PRDX3 
peroxiredoxin 3, NLRP1 NOD-
like receptor 1, AIM2 absent 
in melanoma 2, BPH benign 
prostatic hyperplasia



1520 International Urology and Nephrology (2024) 56:1515–1523

1 3

curves, that GSDMB and CASP6 are associated with better 
prognoses for patients with BCa [70]; they also found that 
many tumours with high GSDMB and CASP6 expression 
were immune-inflamed tumours and that many tumours with 
low GSDMB and CASP6 expression were immune-desert 
tumours. Then, they demonstrated that GSDMB and CASP6 
play important roles in immune infiltration [70]. The results 
from El-Gamal et al. showed that the expression level of 
GSDMD in muscle-invasive bladder cancer (MIBC) was sig-
nificantly higher than that in non-muscle-invasive bladder 
cancer (NMIBC) and that the expression level in NMIBC 
was higher than that in the control group [71]. These results 
show that GSDMD is involved in the pathogenesis of BCa 
and muscle invasion. In addition, the expression of GSDMD 
in tissue can be used as a useful tool for predicting local 
tumour recurrence [71]. Peng et al. found that CD147 pro-
moted cell proliferation in BCa by upregulating the expres-
sion of GSDMD [72].

Pyroptosis in prostate cancer

Prostate cancer (PCa) is a major disease that affects men’s 
health worldwide. It is the second most common form of 
cancer in men, surpassed only by nonmelanoma skin cancers 
such as basal and squamous cell carcinomas [73]. Pyroptosis 
is also involved in PCa development. As a classical pyropto-
sis pathway, the caspase-1 pathway plays an important role 
in PCa. NLRP3 participates in physiological and pathologi-
cal processes, including tumour progression. In 2021, Xu 
et al. found that the expression of NLRP3 in PCa tissues 
and cell lines was elevated and was positively correlated 
with that of caspase-1 [74]. Their results revealed that the 
NLRP3 inflammasome exerted a tumour-promoting effect by 
activating caspase-1 in PCa [74]. Karan et al. reported that 
the expression of NLRP12 was significantly higher in PCa 
tissue than in adjacent benign tissue and that NLRP12 may 
play an important role in activating NF-κB and IL-1β signal-
ling and its association with the pathogenesis and progres-
sion of PCa [75]; they indicated that NLRP12 can upregu-
late caspase-1, IL-1 β, and IL-18 to promote the occurrence 
and progression of PCa. Many studies have shown that LPS 
participates in the proliferation, migration, and invasion of 
PCa cells [76–78]. It has been shown that LPS activates the 
caspase-4/5/11 pathway to induce pyroptosis [28]. However, 
LPS-mediated pyroptosis is still being investigated in PCa.

Pyroptosis in renal cell carcinoma

Renal cell carcinoma (RCC) accounts for 2–3% of all malig-
nant diseases in adults [79]. It is the seventh most com-
mon cancer in men and the ninth most common in women 
[79]. The most common RCC is clear cell RCC (ccRCC) 
(70–90%), followed by papillary RCC (10–15%) and 

chromophobe RCC (3–5%) [80]. In recent years, research-
ers have found that pyroptosis is inextricably linked to the 
development of RCC. Cui et al. found that GSDMB expres-
sion was significantly more upregulated in ccRCC tissues 
than in surrounding normal tissues [81]; in addition, they 
confirmed that the upregulation of GSDMB is significantly 
related to immune infiltrates and poor survival in ccRCC 
[81]. GSDMB has the potential to become a biomarker for 
poor prognosis and a potential target for immune therapy 
in ccRCC. Liver X receptors [LXRs; nuclear receptor 
subfamily 1, group H, member 2 (NR1H2, also known as 
LXRB) and nuclear receptor subfamily 1, group H, member 
3 (NR1H3, also known as LXRA)] belong to the nuclear 
receptor superfamily and are expressed in various cells [82]. 
Wang et al. found that the expression levels of NLRP3 in 
ccRCC tissue were significantly lower than those in normal 
kidney tissue and that LXRα promoted tumour metastasis 
by downregulating the NLRP3 inflammasome in ccRCC 
[83]. In addition, bromodomain-containing 4 (BRD4) inhi-
bition was shown to prevent cell proliferation and epithe-
lial–mesenchymal transition (EMT) and play an anti-tumour 
role in RCC by activating the NF-κB–NLRP3–caspase-1 
pyroptosis signalling pathway [84]. Zhang et al. found that 
the expression of most pyroptosis regulatory genes is posi-
tively correlated and plays an important prognostic role in 
ccRCC [85]. AIM2 plays a crucial role in the development 
of various tumours. Recent studies have shown that AIM2 is 
highly expressed in ccRCC and promotes tumour develop-
ment through immune activation pathways [86]. Tang et al. 
found that lncRNA FOXD2 adjacent opposite strand RNA 
1 (FOXD2-AS1) affects GSDMB and NLRP1 [87]; interest-
ingly, they also found that downregulating the expression 
of FOXD2-AS1 reduced the proliferation and migration of 
ccRCC cells [87]. This indicates that FOXD2-AS1 may pro-
vide a new direction for research on the treatment of RCC.

Conclusion

In conclusion, pyroptosis is a newly identified form of cell 
death mediated by gasdermin proteins, which are often 
activated by caspases. It plays a crucial role in the occur-
rence, development, and progression of urologic diseases. 
The molecular mechanism of pyroptosis is shown in Fig. 1. 
The signalling pathways regulating pyroptosis in AKI 
are shown in Fig. 2. The signalling pathways regulating 
pyroptosis in BPH are shown in Fig. 3. Future in-depth 
research on pyroptosis in urological diseases will help us 
better understand the diagnosis and treatment of urinary 
diseases. Future studies are urgently needed to develop 
more clinical trials to explore the potential application of 
pyroptosis in urinary diseases.
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