Skip to main content

Advertisement

Log in

Multi-omics analysis reveals critical metabolic regulators in bladder cancer

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

The crosstalk between genomic alterations and metabolic dysregulation in bladder cancer is largely unknown. A deep understanding of the interactions between cancer drivers and cancer metabolic changes will provide novel opportunities for targeted therapeutic strategies.

Methods

Three primary bladder cancer specimens with paired normal tissues or blood samples were subjected to whole-exome sequencing, DNA methylation array and whole-transcriptome sequencing by next-generation sequencing technology. We applied the methods to multi-omics data combining the Cancer Genome Atlas (TCGA) bladder cancer samples, including somatic mutation, DNA copy number, DNA methylation and gene expression profile for validation.

Results

We identified 34 mutated cancer driver genes in bladder cancer. KDM6A was the most significantly mutated cancer driver gene. Metabolic pathways were enriched in both differentially methylated regions (DMRs) and differentially expressed genes. Twenty-nine DMRs in the TSS200 region were highly correlated with the upregulation of gene expression, and 24 DMRs in the genome were highly correlated with the downregulation of gene expression. A total of 201 genes had highly correlated DNA methylation and expression. Thirty-four genes, including the known metabolic genes CXXC5, PRR5, ABCB8 and BAHD1, were further validated in the TCGA cohort. Multi-omics alterations identified two new candidate driver genes, WIPI2 and GFM2, that warrant future studies.

Conclusions

This study provides a comprehensive and systematic analysis, focusing on identifying key regulatory factors that may lead to cancer metabolic heterogeneity. Further understanding and verification of the cancer genes driving metabolic reprogramming and their role in the progression of bladder cancer will help to identify new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The data and materials used in this study are available upon request from the corresponding author. Access to the data and materials will be granted after a review of the request to ensure that the request is consistent with the ethical guidelines of the study and that the privacy and confidentiality of the participants are protected.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Chinese guidelines for diagnosis and treatment of urothelial carcinoma of bladder 2018 (English version) (2019). Chin J Cancer Res 31(1):49–66. https://doi.org/10.21147/j.issn.1000-9604.2019.01.03

  3. Richters A, Aben KKH, Kiemeney L (2020) The global burden of urinary bladder cancer: an update. World J Urol 38(8):1895–1904. https://doi.org/10.1007/s00345-019-02984-4

    Article  PubMed  Google Scholar 

  4. Martinez Rodriguez RH, Buisan Rueda O, Ibarz L (2017) Bladder cancer: present and future. Med Clin (Barc) 149(10):449–455. https://doi.org/10.1016/j.medcli.2017.06.009

    Article  PubMed  Google Scholar 

  5. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, Hinoue T, Laird PW, Hoadley KA, Akbani R, Castro MAA, Gibb EA, Kanchi RS, Gordenin DA, Shukla SA, Sanchez-Vega F, Hansel DE, Czerniak BA, Reuter VE, Su X, de Sa CB, Chagas VS, Mungall KL, Sadeghi S, Pedamallu CS, Lu Y, Klimczak LJ, Zhang J, Choo C, Ojesina AI, Bullman S, Leraas KM, Lichtenberg TM, Wu CJ, Schultz N, Getz G, Meyerson M, Mills GB, McConkey DJ, Weinstein JN, Kwiatkowski DJ, Lerner SP (2017) Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171(3):540-556.e525. https://doi.org/10.1016/j.cell.2017.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. The Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of urothelial bladder carcinoma (2014). Nature 507(7492):315–322. https://doi.org/10.1038/nature12965

  7. Cooley LF, McLaughlin KA, Meeks JJ (2020) Genomic and therapeutic landscape of non-muscle-invasive bladder cancer. Urol Clin North Am 47(1):35–46. https://doi.org/10.1016/j.ucl.2019.09.006

    Article  PubMed  Google Scholar 

  8. Glaser AP, Fantini D, Shilatifard A, Schaeffer EM, Meeks JJ (2017) The evolving genomic landscape of urothelial carcinoma. Nat Rev Urol 14(4):215–229. https://doi.org/10.1038/nrurol.2017.11

    Article  CAS  PubMed  Google Scholar 

  9. Minoli M, Kiener M, Thalmann GN, Kruithof-de Julio M, Seiler R (2020) Evolution of urothelial bladder cancer in the context of molecular classifications. Int J Mol Sci. https://doi.org/10.3390/ijms21165670

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hurst CD, Alder O, Platt FM, Droop A, Stead LF, Burns JE, Burghel GJ, Jain S, Klimczak LJ, Lindsay H, Roulson JA, Taylor CF, Thygesen H, Cameron AJ, Ridley AJ, Mott HR, Gordenin DA, Knowles MA (2017) Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency. Cancer Cell 32(5):701-715.e707. https://doi.org/10.1016/j.ccell.2017.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, Mularoni L, Pich O, Bonet J, Kranas H, Gonzalez-Perez A, Lopez-Bigas N (2020) A compendium of mutational cancer driver genes. Nat Rev Cancer 20(10):555–572. https://doi.org/10.1038/s41568-020-0290-x

    Article  CAS  PubMed  Google Scholar 

  12. Sinkala M, Mulder N, Patrick Martin D (2019) Metabolic gene alterations impact the clinical aggressiveness and drug responses of 32 human cancers. Commun Biol 2:414. https://doi.org/10.1038/s42003-019-0666-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Massari F, Ciccarese C, Santoni M, Iacovelli R, Mazzucchelli R, Piva F, Scarpelli M, Berardi R, Tortora G, Lopez-Beltran A, Cheng L, Montironi R (2016) Metabolic phenotype of bladder cancer. Cancer Treat Rev 45:46–57. https://doi.org/10.1016/j.ctrv.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  14. Woolbright BL, Ayres M, Taylor JA 3rd (2018) Metabolic changes in bladder cancer. Urol Oncol 36(7):327–337. https://doi.org/10.1016/j.urolonc.2018.04.010

    Article  CAS  PubMed  Google Scholar 

  15. Rosario SR, Long MD, Affronti HC, Rowsam AM, Eng KH, Smiraglia DJ (2018) Pan-cancer analysis of transcriptional metabolic dysregulation using The Cancer Genome Atlas. Nat Commun 9(1):5330. https://doi.org/10.1038/s41467-018-07232-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. World Medical Association (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects (2013). Jama 310(20):2191–2194. https://doi.org/10.1001/jama.2013.281053

  17. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES, Getz G (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31(3):213–219. https://doi.org/10.1038/nbt.2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164. https://doi.org/10.1093/nar/gkq603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucl Acids Res 29(1):308–311. https://doi.org/10.1093/nar/29.1.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291. https://doi.org/10.1038/nature19057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amarasinghe KC, Li J, Hunter SM, Ryland GL, Cowin PA, Campbell IG, Halgamuge SK (2014) Inferring copy number and genotype in tumour exome data. BMC Genom 15(1):732. https://doi.org/10.1186/1471-2164-15-732

    Article  Google Scholar 

  22. Shen R, Seshan VE (2016) FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucl Acids Res 44(16):e131. https://doi.org/10.1093/nar/gkw520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alexandrov LB, Serena NZ, Wedge DC, Aparicio SAJR, Sam B, Biankin AV, Bignell GR, Niccolò B, Ake B, Anne-Lise BRD (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu YL, Jiang T, Huang W, Wu XY, Zhang PJ, Tian YP (2022) Genome-wide methylation profiling of early colorectal cancer using an Illumina Infinium Methylation EPIC BeadChip. World J Gastrointest Oncol 14(4):935–946. https://doi.org/10.4251/wjgo.v14.i4.935

    Article  PubMed  PubMed Central  Google Scholar 

  25. Patananan AN, Sercel AJ, Wu TH, Ahsan FM, Torres A Jr, Kennedy SAL, Vandiver A, Collier AJ, Mehrabi A, Van Lew J, Zakin L, Rodriguez N, Sixto M, Tadros W, Lazar A, Sieling PA, Nguyen TL, Dawson ER, Braas D, Golovato J, Cisneros L, Vaske C, Plath K, Rabizadeh S, Niazi KR, Chiou PY, Teitell MA (2020) Pressure-driven mitochondrial transfer pipeline generates mammalian cells of desired genetic combinations and fates. Cell Rep 33(13):108562. https://doi.org/10.1016/j.celrep.2020.108562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ghazi AR, Sucipto K, Rahnavard A, Franzosa EA, McIver LJ, Lloyd-Price J, Schwager E, Weingart G, Moon YS, Morgan XC, Waldron L, Huttenhower C (2022) High-sensitivity pattern discovery in large, paired multiomic datasets. Bioinformatics 38(Suppl 1):i378–i385. https://doi.org/10.1093/bioinformatics/btac232

    Article  PubMed  PubMed Central  Google Scholar 

  27. Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, Wadi L, Meyer M, Wong J, Xu C, Merico D, Bader GD (2019) Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc 14(2):482–517. https://doi.org/10.1038/s41596-018-0103-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blokzijl F, Janssen R, van Boxtel R, Cuppen E (2018) MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med 10(1):33. https://doi.org/10.1186/s13073-018-0539-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan J, Xiang J, Lin Y, Ma J, Zhang J, Zhang H, Sun J, Danial NN, Liu J, Lin A (2013) Inactivation of BAD by IKK inhibits TNFα-induced apoptosis independently of NF-κB activation. Cell 152(1–2):304–315. https://doi.org/10.1016/j.cell.2012.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Foryst-Ludwig A, Kintscher U (2010) Metabolic impact of estrogen signalling through ERalpha and ERbeta. J Steroid Biochem Mol Biol 122(1–3):74–81. https://doi.org/10.1016/j.jsbmb.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  31. Kato Y, Maeda T, Suzuki A, Baba Y (2018) Cancer metabolism: New insights into classic characteristics. Jpn Dent Sci Rev 54(1):8–21. https://doi.org/10.1016/j.jdsr.2017.08.003

    Article  PubMed  Google Scholar 

  32. Jiang N, Liao Y, Wang M, Wang Y, Wang K, Guo J, Wu P, Zhong B, Guo T, Wu C (2021) BUB1 drives the occurrence and development of bladder cancer by mediating the STAT3 signaling pathway. J Exp Clin Cancer Res 40(1):378. https://doi.org/10.1186/s13046-021-02179-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roy S, Pradhan D, Ernst WL, Mercurio S, Najjar Y, Parikh R, Parwani AV, Pai RK, Dhir R, Nikiforova MN (2017) Next-generation sequencing-based molecular characterization of primary urinary bladder adenocarcinoma. Mod Pathol 30(8):1133–1143. https://doi.org/10.1038/modpathol.2017.33

    Article  CAS  PubMed  Google Scholar 

  34. Reid MA, Dai Z, Locasale JW (2017) The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol 19(11):1298–1306. https://doi.org/10.1038/ncb3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morgan MAJ, Shilatifard A (2020) Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat Genet 52(12):1271–1281. https://doi.org/10.1038/s41588-020-00736-4

    Article  CAS  PubMed  Google Scholar 

  36. Xu Z, Peng B, Kang F, Zhang W, Xiao M, Li J, Hong Q, Cai Y, Liu W, Yan Y, Peng J (2022) The roles of drug metabolism-related ADH1B in immune regulation and therapeutic response of ovarian cancer. Front Cell Dev Biol 10:877254. https://doi.org/10.3389/fcell.2022.877254

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mathieu R, Lucca I, Rouprêt M, Briganti A, Shariat SF (2016) The prognostic role of lymphovascular invasion in urothelial carcinoma of the bladder. Nat Rev Urol 13(8):471–479. https://doi.org/10.1038/nrurol.2016.126

    Article  CAS  PubMed  Google Scholar 

  38. Claps F, van de Kamp MW, Mayr R, Bostrom PJ, Boormans JL, Eckstein M, Mertens LS, Boevé ER, Neuzillet Y, Burger M, Pouessel D, Trombetta C, Wullich B, van der Kwast TH, Hartmann A, Allory Y, Lotan Y, Shariat SF, Zuiverloon TCM, Mir MC, van Rhijn BWG (2021) Risk factors associated with positive surgical margins’ location at radical cystectomy and their impact on bladder cancer survival. World J Urol 39(12):4363–4371. https://doi.org/10.1007/s00345-021-03776-5

    Article  PubMed  Google Scholar 

  39. Mertens LS, Claps F, Mayr R, Bostrom PJ, Shariat SF, Zwarthoff EC, Boormans JL, Abas C, van Leenders G, Götz S, Hippe K, Bertz S, Neuzillet Y, Sanders J, Broeks A, Peters D, van der Heijden MS, Jewett MAS, Stöhr R, Zlotta AR, Eckstein M, Soorojebally Y, van der Schoot DKE, Wullich B, Burger M, Otto W, Radvanyi F, Sirab N, Pouessel D, van der Kwast TH, Hartmann A, Lotan Y, Allory Y, Zuiverloon TCM, van Rhijn BWG (2022) Prognostic markers in invasive bladder cancer: FGFR3 mutation status versus P53 and KI-67 expression: a multi-center, multi-laboratory analysis in 1058 radical cystectomy patients. Urol Oncol 40(3):110.e111-110.e119. https://doi.org/10.1016/j.urolonc.2021.10.010

    Article  CAS  Google Scholar 

  40. Mir MC, Campi R, Loriot Y, Puente J, Giannarini G, Necchi A, Rouprêt M (2022) Adjuvant systemic therapy for high-risk muscle-invasive bladder cancer after radical cystectomy: current options and future opportunities. Eur Urol Oncol 5(6):726–731. https://doi.org/10.1016/j.euo.2021.04.004

    Article  PubMed  Google Scholar 

  41. Claps F, Rai S, Mir MC, van Rhijn BWG, Mazzon G, Davis LE, Valadon CL, Silvestri T, Rizzo M, Ankem M, Liguori G, Celia A, Trombetta C, Pavan N (2021) Prognostic value of preoperative albumin-to-fibrinogen ratio (AFR) in patients with bladder cancer treated with radical cystectomy. Urol Oncol 39(12):835.e839-835.e817. https://doi.org/10.1016/j.urolonc.2021.04.026

    Article  CAS  Google Scholar 

  42. Mori K, Janisch F, Mostafaei H, Lysenko I, Kimura S, Egawa S, Shariat SF (2020) Prognostic value of preoperative blood-based biomarkers in upper tract urothelial carcinoma treated with nephroureterectomy: a systematic review and meta-analysis. Urol Oncol 38(5):315–333. https://doi.org/10.1016/j.urolonc.2020.01.015

    Article  CAS  PubMed  Google Scholar 

  43. Gupta D, Lis CG (2010) Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature. Nutr J 9:69. https://doi.org/10.1186/1475-2891-9-69

    Article  PubMed  PubMed Central  Google Scholar 

  44. de Almeida BP, Apolónio JD, Binnie A, Castelo-Branco P (2019) Roadmap of DNA methylation in breast cancer identifies novel prognostic biomarkers. BMC Cancer 19(1):219. https://doi.org/10.1186/s12885-019-5403-0

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fan S, Tang J, Li N, Zhao Y, Ai R, Zhang K, Wang M, Du W, Wang W (2019) Integrative analysis with expanded DNA methylation data reveals common key regulators and pathways in cancers. NPJ Genom Med 4:2. https://doi.org/10.1038/s41525-019-0077-8

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xiong X, Tu S, Wang J, Luo S, Yan X (2019) CXXC5: a novel regulator and coordinator of TGF-β, BMP and Wnt signaling. J Cell Mol Med 23(2):740–749. https://doi.org/10.1111/jcmm.14046

    Article  CAS  PubMed  Google Scholar 

  47. Woo SY, Kim DH, Jun CB, Kim YM, Haar EV, Lee SI, Hegg JW, Bandhakavi S, Griffin TJ, Kim DH (2007) PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling. J Biol Chem 282(35):25604–25612. https://doi.org/10.1074/jbc.M704343200

    Article  CAS  PubMed  Google Scholar 

  48. Meredith AM, Dass CR (2016) Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J Pharm Pharmacol 68(6):729–741. https://doi.org/10.1111/jphp.12539

    Article  CAS  PubMed  Google Scholar 

  49. Lakisic G, Lebreton A, Pourpre R, Wendling O, Libertini E, Radford EJ, Le Guillou M, Champy MF, Wattenhofer-Donzé M, Soubigou G, Ait-Si-Ali S, Feunteun J, Sorg T, Coppée JY, Ferguson-Smith AC, Cossart P, Bierne H (2016) Role of the BAHD1 chromatin-repressive complex in placental development and regulation of steroid metabolism. PLoS Genet 12(3):e1005898. https://doi.org/10.1371/journal.pgen.1005898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA (2014) WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell 55(2):238–252. https://doi.org/10.1016/j.molcel.2014.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lahiri V, Hawkins WD, Klionsky DJ (2019) Watch what you (self-) eat: autophagic mechanisms that modulate metabolism. Cell Metab 29(4):803–826. https://doi.org/10.1016/j.cmet.2019.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Peixoto P, Grandvallet C, Feugeas JP, Guittaut M, Hervouet E (2019) Epigenetic control of autophagy in cancer cells: a key process for cancer-related phenotypes. Cells. https://doi.org/10.3390/cells8121656

    Article  PubMed  PubMed Central  Google Scholar 

  53. Missiroli S, Perrone M, Genovese I, Pinton P, Giorgi C (2020) Cancer metabolism and mitochondria: finding novel mechanisms to fight tumours. EBioMedicine 59:102943. https://doi.org/10.1016/j.ebiom.2020.102943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dixon-Salazar TJ, Silhavy JL, Udpa N, Schroth J, Bielas S, Schaffer AE, Olvera J, Bafna V, Zaki MS, Abdel-Salam GH, Mansour LA, Selim L, Abdel-Hadi S, Marzouki N, Ben-Omran T, Al-Saana NA, Sonmez FM, Celep F, Azam M, Hill KJ, Collazo A, Fenstermaker AG, Novarino G, Akizu N, Garimella KV, Sougnez C, Russ C, Gabriel SB, Gleeson JG (2012) Exome sequencing can improve diagnosis and alter patient management. Sci Transl Med 4(138):138ra178. https://doi.org/10.1126/scitranslmed.3003544

    Article  Google Scholar 

  55. Hammarsund M, Wilson W, Corcoran M, Merup M, Einhorn S, Grandér D, Sangfelt O (2001) Identification and characterization of two novel human mitochondrial elongation factor genes, hEFG2 and hEFG1, phylogenetically conserved through evolution. Hum Genet 109(5):542–550. https://doi.org/10.1007/s00439-001-0610-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Acquisition of data, CW; conception and design of the research, ZC; analysis and interpretation of data, CD; statistical analysis, YH; obtaining funding, TH; drafting the manuscript, MW; revision of manuscript for important intellectual content, LW; revised the manuscript, RD.

Corresponding authors

Correspondence to Teng Hou or Zhaohui Chen.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to participate

Informed consent was obtained from all participants prior to their participation in the study. The consent form explained the purpose of the study, the procedures involved, and the risks and benefits of participation. Participants were also informed that their participation was voluntary and that they could withdraw at any time without penalty.

Consent to publish

All the participants were informed that the results of the study may be published in academic journals or presented at academic conferences. They were also informed that their identities would be kept confidential and that their personal information would not be disclosed in any publication or presentation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1564 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Deng, C., Dong, R. et al. Multi-omics analysis reveals critical metabolic regulators in bladder cancer. Int Urol Nephrol 56, 923–934 (2024). https://doi.org/10.1007/s11255-023-03841-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03841-5

Keywords

Navigation