Skip to main content

Advertisement

Log in

Gut microbiota and acute kidney injury: immunological crosstalk link

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

The gut microbiota, often called the "forgotten organ," plays a crucial role in bidirectional communication with the host for optimal physiological function. This communication helps regulate the host’s immunity and metabolism positively and negatively. Many factors influence microbiota homeostasis and subsequently lead to an immune system imbalance. The correlation between an unbalanced immune system and acute diseases such as acute kidney injury is not fully understood, and the role of gut microbiota in disease pathogenesis is still yet uncovered. This review summarizes our understanding of gut microbiota, focusing on the interactions between the host’s immune system and the microbiome and their impact on acute kidney injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu C, Zhu H, Qiu P (2019) Aging progression of human gut microbiota. BMC Microbiol 19(1):1

    Article  Google Scholar 

  2. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Curr Opin Gastroenterol 31(1):69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Griffin NW, Ahern PP, Cheng J, Heath AC, Ilkayeva O, Newgard CB, Fontana L, Gordon JI (2017) Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions. Cell Host Microbe 21(1):84–96

    Article  CAS  PubMed  Google Scholar 

  5. Lewis JD, Chen EZ, Baldassano RN, Otley AR, Griffiths AM, Lee D, Bittinger K, Bailey A, Friedman ES, Hoffmann C, Albenberg L (2015) Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe 18(4):489–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, Picu A, Petcu L, Chifiriuc MC (2018) Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol 15(9):1830

    Article  Google Scholar 

  8. Scheppach W (1994) Effects of short chain fatty acids on gut morphology and function. Gut 35(1):S35–S38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heerdt BG, Houston MA, Augenlicht LH (1997) Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function. Cell Growth Diff-Publ Am Assoc Cancer Res. 8(5):523–532

    CAS  Google Scholar 

  10. Gérard P (2014) Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 3(1):14–24

    Article  Google Scholar 

  11. Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474(11):1823–1836

    Article  CAS  PubMed  Google Scholar 

  12. Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterol 136(1):65–80

    Article  ADS  Google Scholar 

  13. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920

    Article  PubMed  ADS  Google Scholar 

  14. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533

    Article  PubMed  PubMed Central  Google Scholar 

  16. Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS ONE 9(4):e93827

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  17. Mizrahi-Man O, Davenport ER, Gilad Y (2013) Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS ONE 8(1):e53608

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Hugon P, Dufour JC, Colson P, Fournier PE, Sallah K, Raoult D (2015) A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect Dis 15(10):1211–1219

    Article  PubMed  Google Scholar 

  19. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32(8):834–841

    Article  CAS  PubMed  Google Scholar 

  20. Moya A, Ferrer M (2016) Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol 24(5):402–413

    Article  CAS  PubMed  Google Scholar 

  21. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J (2014) The placenta harbors a unique microbiome. Sci Trans Med. 6(237):237–265

    Article  Google Scholar 

  22. Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26(1):26050

    PubMed  Google Scholar 

  23. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci 108(1):4578–4585

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, Björkstén B, Engstrand L, Andersson AF (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63(4):559–566

    Article  CAS  PubMed  Google Scholar 

  25. Salminen S, Gibson GR, McCartney AL, Isolauri E (2004) Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 53(9):1388–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Avershina E, Storrø O, Øien T, Johnsen R, Pope P, Rudi K (2014) Major faecal microbiota shifts in composition and diversity with age in a geographically restricted cohort of mothers and their children. FEMS Microbiol Ecol 87(1):280–290

    Article  CAS  PubMed  Google Scholar 

  27. Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C, Raza S, Rosenbaum S, Van den Veyver I, Milosavljevic A, Gevers D (2012) A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE 7(6):e36466

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Bäckhed F (2011) Programming of host metabolism by the gut microbiota. Ann Nutr Metab 58(2):44–52

    Article  PubMed  Google Scholar 

  29. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5(7):e177

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci 108(1):4554–4561

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci 108(1):4586–4591

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Xiao X, Wu ZC, Chou KC (2011) A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PLoS ONE 6(6):e20592

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Woodmansey EJ, McMurdo ME, Macfarlane GT, Macfarlane S (2004) Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol 70(10):6113–6122

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P (2013) Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69(1):11–20

    Article  PubMed  Google Scholar 

  35. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, Ross MC, Lloyd RE, Doddapaneni H, Metcalf GA, Muzny D (2018) Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562(7728):583–588

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Laursen MF, Bahl MI, Michaelsen KF, Licht TR (2017) First foods and gut microbes. Front Microbiol 6(8):356

    Google Scholar 

  38. Macpherson AJ, McCoy KD (2013) Stratification and compartmentalisation of immunoglobulin responses to commensal intestinal microbes. Sem Immunolo 25:358–363

    Article  CAS  Google Scholar 

  39. Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14(1):20–32

    Article  CAS  PubMed  Google Scholar 

  40. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  41. Lavelle A, Lennon G, O’sullivan O, Docherty N, Balfe A, Maguire A, Mulcahy HE, Doherty G, Odonoghue D, Hyland J, Ross RP (2015) Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut 64(10):1553–1561

    Article  CAS  PubMed  Google Scholar 

  42. Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O, De Weirdt R, Kerckhof FM, Van de Wiele T (2013) Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J 7(5):949–961

    Article  PubMed  Google Scholar 

  43. Ding T, Schloss PD (2014) Dynamics and associations of microbial community types across the human body. Nature 509(7500):357–360

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D, Tito RY (2016) Population-level analysis of gut microbiome variation. Science 352(6285):560–564

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jeffery IB, Claesson MJ, Otoole PW, Shanahan F (2012) Categorization of the gut microbiota: enterotypes or gradients? Nat Rev Microbiol 10(9):591–592

    Article  CAS  PubMed  Google Scholar 

  47. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8(6):e1002358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. D’Argenio V, Salvatore F (2015) The role of the gut microbiome in the healthy adult status. Clin Chim Acta 7(451):97–102

    Article  Google Scholar 

  49. Korem T, Zeevi D, Suez J, Weinberger A, Avnit-Sagi T, Pompan-Lotan M, Matot E, Jona G, Harmelin A, Cohen N, Sirota-Madi A (2015) Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 349(6252):1101–1106

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Zeevi D, Korem T, Godneva A, Bar N, Kurilshikov A, Lotan-Pompan M, Weinberger A, Fu J, Wijmenga C, Zhernakova A, Segal E (2019) Structural variation in the gut microbiome associates with host health. Nature 568(7750):43–48

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207

    Article  ADS  Google Scholar 

  52. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N, Shilo S (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555(7695):210–215

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9(10):577–589

    Article  CAS  PubMed  Google Scholar 

  54. Shafquat A, Joice R, Simmons SL, Huttenhower C (2014) Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol 22(5):261–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Severance EG, Yolken RH, Eaton WW (2016) Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr Res 176(1):23–35

    Article  PubMed  Google Scholar 

  56. Schnabl B, Brenner DA (2014) Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146(6):1513–1524

    Article  CAS  PubMed  Google Scholar 

  57. Clarke SF, Murphy EF, Nilaweera K, Ross PR, Shanahan F, O’Toole PW, Cotter PD (2012) The gut microbiota and its relationship to diet and obesity: new insights. Gut microbes 3(3):186–202

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cox AJ, West NP, Cripps AW (2015) Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 3(3):207–215

    Article  CAS  PubMed  Google Scholar 

  59. Fetissov SO (2017) Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol 13(1):11–25

    Article  CAS  PubMed  Google Scholar 

  60. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12(10):661–672

    Article  CAS  PubMed  Google Scholar 

  61. Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA (2016) Regulation of immune cell function by short-chain fatty acids. Clin Translat Immunol 5(4):e73

    Article  Google Scholar 

  62. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6):1332–1345

    Article  CAS  PubMed  Google Scholar 

  63. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7(3):189–200

    Article  PubMed  PubMed Central  Google Scholar 

  64. Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphila gen nov, sp nov, a human intestinal mucin-degrading bacterium. Int J syst Evolut Microbiol. 54(5):1469–1476

    Article  CAS  Google Scholar 

  65. Guarner F, Casellas F, Borruel N, Antolìn M, Videla S, Vilaseca J (2003) Malagelada Jr Gut flora in health and disease. Lancet 361:512–519

    Article  PubMed  Google Scholar 

  66. Lin L, Zhang J (2017) Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 18(1):1–25

    Article  MathSciNet  Google Scholar 

  67. Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ (2012) The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 48(4):612–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chambers ES, Morrison DJ, Frost G (2015) Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proce Nut Soc 74(3):328–336

    Article  CAS  Google Scholar 

  69. Nagai M, Obata Y, Takahashi D, Hase K (2016) Fine-tuning of the mucosal barrier and metabolic systems using the diet-microbial metabolite axis. Int Immunopharmacol 1(37):79–86

    Article  Google Scholar 

  70. LeBlanc JG, Milani C, De Giori GS, Sesma F, Van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24(2):160–168

    Article  CAS  PubMed  Google Scholar 

  71. Martens JH, Barg H, Warren MA, Jahn D (2002) Microbial production of vitamin B 12. Appl Microbiol Biotechnol 58(3):275–285

    Article  CAS  PubMed  Google Scholar 

  72. Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M (2007) Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol 73(1):179–185

    Article  CAS  PubMed  ADS  Google Scholar 

  73. Palau-Rodriguez M, Tulipani S, Isabel Queipo-Ortuño M, Urpi-Sarda M, Tinahones FJ, Andres-Lacueva C (2015) Metabolomic insights into the intricate gut microbial–host interaction in the development of obesity and type 2 diabetes. Front Microbiol 27(6):1151

    Google Scholar 

  74. Smith K, McCoy KD, Macpherson AJ (2007) Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Sem Immunol 19:59–69

    Article  CAS  Google Scholar 

  75. Swanson PA, Kumar A, Samarin S, Vijay-Kumar M, Kundu K, Murthy N, Hansen J, Nusrat A, Neish AS (2011) Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proc Natl Acad Sci 108(21):8803–8808

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. Reunanen J, Kainulainen V, Huuskonen L, Ottman N, Belzer C, Huhtinen H, de Vos WM, Satokari R (2015) Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl Environ Microbiol 81(11):3655–3662

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  77. Chen HQ, Yang J, Zhang M, Zhou YK, Shen TY, Chu ZX, Zhang M, Hang XM, Jiang YQ, Qin HL (2010) Lactobacillus plantarum ameliorates colonic epithelial barrier dysfunction by modulating the apical junctional complex and PepT1 in IL-10 knockout mice. Am J Physiol-Gastroint Liver Physiol. 299(6):G1287–G1297

    Article  CAS  Google Scholar 

  78. Petersson J, Schreiber O, Hansson GC, Gendler SJ, Velcich A, Lundberg JO, Roos S, Holm L, Phillipson M (2011) Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am J Physiol-Gastroint Liver Physiol. 300(2):G327–G333

    Article  CAS  Google Scholar 

  79. Wrzosek L, Miquel S, Noordine ML, Bouet S, Chevalier-Curt MJ, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, Langella P (2013) Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 11(1):1–3

    Article  Google Scholar 

  80. Graziani F, Pujol A, Nicoletti C, Dou S, Maresca M, Giardina T, Fons M, Perrier J (2016) Ruminococcus gnavus E1 modulates mucin expression and intestinal glycosylation. J Appl Microbiol 120(5):1403–1417

    Article  CAS  PubMed  Google Scholar 

  81. Varyukhina S, Freitas M, Bardin S, Robillard E, Tavan E, Sapin C, Grill JP, Trugnan G (2012) Glycan-modifying bacteria-derived soluble factors from Bacteroides thetaiotaomicron and Lactobacillus casei inhibit rotavirus infection in human intestinal cells. Microbes Infect 14(3):273–278

    Article  CAS  PubMed  Google Scholar 

  82. Freitas M, Cayuela C, Antoine JM, Piller F, Sapin C, Trugnan G (2001) A heat labile soluble factor from Bacteroides thetaiotaomicron VPI-5482 specifically increases the galactosylation pattern of HT29-MTX cells. Cell Microbiol 3(5):289–300

    Article  CAS  PubMed  Google Scholar 

  83. Konrad A, Cong Y, Duck W, Borlaza R, Elson CO (2006) Tight mucosal compartmentation of the murine immune response to antigens of the enteric microbiota. Gastroenterology 130(7):2050–2059

    Article  CAS  PubMed  Google Scholar 

  84. Belkaid Y, Naik S (2013) Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol 14(7):646–653

    Article  CAS  PubMed  Google Scholar 

  85. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K, He B, Cassis L, Bigas A, Cols M, Comerma L (2013) Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342(6157):447–453

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. Peterson DA, McNulty NP, Guruge JL, Gordon JI (2007) IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2(5):328–339

    Article  CAS  PubMed  Google Scholar 

  87. Bansal T, Alaniz RC, Wood TK, Jayaraman A (2010) The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci 107(1):228–233

    Article  CAS  PubMed  ADS  Google Scholar 

  88. Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9(5):356–368

    Article  CAS  PubMed  Google Scholar 

  89. Ehmann D, Wendler J, Koeninger L, Larsen IS, Klag T, Berger J, Marette A, Schaller M, Stange EF, Malek NP, Jensen BA (2019) Paneth cell α-defensins HD-5 and HD-6 display differential degradation into active antimicrobial fragments. Proc Natl Acad Sci 116(9):3746–3751

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118(2):229–241

    Article  CAS  PubMed  Google Scholar 

  91. Price AE, Shamardani K, Lugo KA, Deguine J, Roberts AW, Lee BL, Barton GM (2018) A map of toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns. Immunity 49(3):560–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Carvalho FA, Koren O, Goodrich JK, Johansson ME, Nalbantoglu I, Aitken JD, Su Y, Chassaing B, Walters WA, González A, Clemente JC (2012) Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 12(2):139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328(5975):228–231

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  94. Ubeda C, Lipuma L, Gobourne A, Viale A, Leiner I, Equinda M, Khanin R, Pamer EG (2012) Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J Exp Med 209(8):1445–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455(7216):1109–1113

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  96. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453(7195):620–625

    Article  CAS  PubMed  ADS  Google Scholar 

  97. Lee YK, Mehrabian P, Boyajian S, Wu WL, Selicha J, Vonderfecht S, Mazmanian SK (2018) The protective role of Bacteroides fragilis in a murine model of colitis-associated colorectal cancer. MSphere 3(6):e00587-e618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ramakrishna C, Kujawski M, Chu H, Li L, Mazmanian SK, Cantin EM (2019) Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat Commun 10(1):1–3

    Article  CAS  Google Scholar 

  99. Erturk-Hasdemir D, Oh SF, Okan NA, Stefanetti G, Gazzaniga FS, Seeberger PH, Plevy SE, Kasper DL (2019) Symbionts exploit complex signaling to educate the immune system. Proc Natl Acad Sci 116(52):26157–26166

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  100. Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6(1):33–43

    Article  CAS  PubMed  Google Scholar 

  101. Tang CE, Kamiya T, Liu Y, Kadoki M, Kakuta S, Oshima K, Hattori M, Takeshita K, Kanai T, Saijo S, Ohno N (2015) Inhibition of dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe 18(2):183–197

    Article  CAS  PubMed  Google Scholar 

  102. Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca IG, Eberl G (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456(7221):507–510

    Article  CAS  PubMed  ADS  Google Scholar 

  103. Ramanan D, San Tang M, Bowcutt R, Cadwell K (2014) Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus. Immunity 41(2):311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nigro G, Rossi R, Commere PH, Jay P, Sansonetti PJ (2014) The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration. Cell Host Microbe 15(6):792–798

    Article  CAS  PubMed  Google Scholar 

  105. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20(1):197–216

    Article  CAS  PubMed  Google Scholar 

  106. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland EK, Hooper LV (2011) The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334(6053):255–258

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  107. Wang S, Charbonnier LM, Rivas MN, Georgiev P, Li N, Gerber G, Bry L, Chatila TA (2015) MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity 43(2):289–303

    Article  PubMed  PubMed Central  Google Scholar 

  108. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407–420

    Article  CAS  PubMed  Google Scholar 

  109. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145(5):745–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Levy M, Thaiss CA, Zeevi D, Dohnalová L, Zilberman-Schapira G, Mahdi JA, David E, Savidor A, Korem T, Herzig Y, Pevsner-Fischer M (2015) Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163(6):1428–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang JP, Brown EM, Frankel G, Levy M, Katz MN, Philbrick WM, Elinav E (2014) NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156(5):1045–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Birchenough GM, Nyström EE, Johansson ME, Hansson GC (2016) A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352(6293):1535–1542

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  113. Wang P, Zhu S, Yang L, Cui S, Pan W, Jackson R, Zheng Y, Rongvaux A, Sun Q, Yang G, Gao S (2015) Nlrp6 regulates intestinal antiviral innate immunity. Science 350(6262):826–830

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  114. Gálvez EJ, Iljazovic A, Gronow A, Flavell R, Strowig T (2017) Shaping of intestinal microbiota in Nlrp6-and Rag2-deficient mice depends on community structure. Cell Rep 21(13):3914–3926

    Article  PubMed  Google Scholar 

  115. Castro-Dopico T, Dennison TW, Ferdinand JR, Mathews RJ, Fleming A, Clift D, Stewart BJ, Jing C, Strongili K, Labzin LI, Monk EJ (2019) Anti-commensal IgG drives intestinal inflammation and type 17 immunity in ulcerative colitis. Immunity 50(4):1099–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Seo SU, Kamada N, Muñoz-Planillo R, Kim YG, Kim D, Koizumi Y, Hasegawa M, Himpsl SD, Browne HP, Lawley TD, Mobley HL (2015) Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 42(4):744–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ratsimandresy RA, Indramohan M, Dorfleutner A, Stehlik C (2017) AIM2 inflammasome is a central regulator of intestinal homeostasis through the IL-18/IL-22/STAT3 pathway. Cell Mol Immunol 14(1):127–142

    Article  CAS  PubMed  Google Scholar 

  118. Saha S, Jing X, Park SY, Wang S, Li X, Gupta D, Dziarski R (2010) Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-γ. Cell Host Microbe 8(2):147–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jing X, Zulfiqar F, Park SY, Núñez G, Dziarski R, Gupta D (2014) Peptidoglycan Recognition Protein 3 and Nod2 Synergistically Protect Mice from Dextran Sodium Sulfate-Induced Colitis. J Immunol 193(6):3055–3069

    Article  CAS  PubMed  Google Scholar 

  120. Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Özören N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A, Grant EP (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat Immunol 7(6):576–582

    Article  CAS  PubMed  Google Scholar 

  121. Zhu H, Xu WY, Hu Z, Zhang H, Shen Y, Lu S, Wei C, Wang ZG (2017) RNA virus receptor Rig-I monitors gut microbiota and inhibits colitis-associated colorectal cancer. J Exp Clin Cancer Res 36(1):1–1

    Article  Google Scholar 

  122. Hornung V, Hartmann R, Ablasser A, Hopfner KP (2014) OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat Rev Immunol 14(8):521–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chudnovskiy A, Mortha A, Kana V, Kennard A, Ramirez JD, Rahman A, Remark R, Mogno I, Ng R, Gnjatic S, Amir EA (2016) Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell 167(2):444–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Danne C, Ryzhakov G, Martínez-López M, Ilott NE, Franchini F, Cuskin F, Lowe EC, Bullers SJ, Arthur JS, Powrie F (2017) A large polysaccharide produced by Helicobacter hepaticus induces an anti-inflammatory gene signature in macrophages. Cell Host Microbe 22(6):733–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, Chomka A, Ilott NE, Johnston DG, Pires E, McCullagh J (2019) The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50(2):432–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu K, Yuan Y, Yu H, Dai X, Wang S, Sun Z, Wang F, Fei H, Lin Q, Jiang H, Chen T (2020) The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood 136(4):501–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Constantinides MG, McDonald BD, Verhoef PA, Bendelac A (2014) A committed precursor to innate lymphoid cells. Nature 508(7496):397–401

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  129. Gury-BenAri M, Thaiss CA, Serafini N, Winter DR, Giladi A, Lara-Astiaso D, Levy M, Salame TM, Weiner A, David E, Shapiro H (2016) The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166(5):1231–1246

    Article  CAS  PubMed  Google Scholar 

  130. Sonnenberg GF, Hepworth MR (2019) Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol 19(10):599–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. McDonald BD, Jabri B, Bendelac A (2018) Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat Rev Immunol 18(8):514–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chun E, Lavoie S, Fonseca-Pereira D, Bae S, Michaud M, Hoveyda HR, Fraser GL, Comeau CA, Glickman JN, Fuller MH, Layden BT (2019) Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity. Immunity 51(5):871–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bostick JW, Wang Y, Shen Z, Ge Y, Brown J, Zong-ming EC, Mohamadzadeh M, Fox JG, Zhou L (2019) Dichotomous regulation of group 3 innate lymphoid cells by nongastric Helicobacter species. Proc Natl Acad Sci 116(49):24760–24769

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  134. Guo X, Liang Y, Zhang Y, Lasorella A, Kee BL, Fu YX (2015) Innate lymphoid cells control early colonization resistance against intestinal pathogens through ID2-dependent regulation of the microbiota. Immunity 42(4):731–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rankin LC, Girard-Madoux MJ, Seillet C, Mielke LA, Kerdiles Y, Fenis A, Wieduwild E, Putoczki T, Mondot S, Lantz O, Demon D (2016) Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat Immunol 17(2):179–186

    Article  CAS  PubMed  Google Scholar 

  136. Chua HH, Chou HC, Tung YL, Chiang BL, Liao CC, Liu HH, Ni YH (2018) Intestinal dysbiosis featuring abundance of Ruminococcus gnavus associates with allergic diseases in infants. Gastroenterology 154(1):154–167

    Article  PubMed  Google Scholar 

  137. Sterlin D, Fadlallah J, Adams O, Fieschi C, Parizot C, Dorgham K, Rajkumar A, Autaa G, El-Kafsi H, Charuel JL, Juste C (2020) Human IgA binds a diverse array of commensal bacteria. J Exper Med. 217(3):223

    Google Scholar 

  138. Sutherland DB, Suzuki K, Fagarasan S (2016) Fostering of advanced mutualism with gut microbiota by Immunoglobulin A. Immunol Rev 270(1):20–31

    Article  CAS  PubMed  Google Scholar 

  139. Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y, Tsutsui Y, Qin H, Honda K, Okada T, Hattori M (2014) Foxp3+ T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41(1):152–165

    Article  CAS  PubMed  Google Scholar 

  140. Palm NW, De Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, Degnan PH, Hu J, Peter I, Zhang W, Ruggiero E (2014) Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158(5):1000–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shulzhenko N, Morgun A, Hsiao W, Battle M, Yao M, Gavrilova O, Orandle M, Mayer L, Macpherson AJ, McCoy KD, Fraser-Liggett C (2011) Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med 17(12):1585–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nagashima K, Sawa S, Nitta T, Tsutsumi M, Okamura T, Penninger JM, Nakashima T, Takayanagi H (2017) Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nat Immunol 18(6):675–682

    Article  CAS  PubMed  Google Scholar 

  143. Arpaia N, Campbell C, Fan X, Dikiy S, Van Der Veeken J, Deroos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  144. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015):337–341

    Article  CAS  PubMed  ADS  Google Scholar 

  145. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-y M, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573

    Article  CAS  PubMed  ADS  Google Scholar 

  146. Hegazy AN, West NR, Stubbington MJ, Wendt E, Suijker KI, Datsi A, This S, Danne C, Campion S, Duncan SH, Owens BM (2017) Circulating and tissue-resident CD4+ T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology 153(5):1320–1337

    Article  CAS  PubMed  Google Scholar 

  147. Miossec P, Kolls JK (2012) Targeting IL-17 and TH 17 cells in chronic inflammation. Nat Rev Drug Discovery 11(10):763–776

    Article  CAS  PubMed  Google Scholar 

  148. Omenetti S, Bussi C, Metidji A, Iseppon A, Lee S, Tolaini M, Li Y, Kelly G, Chakravarty P, Shoaie S, Gutierrez MG (2019) The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity 51(1):77–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S, Suda W, Imaoka A, Setoyama H, Nagamori T, Ishikawa E (2015) Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163(2):367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, Spencer S (2012) Compartmentalized control of skin immunity by resident commensals. Science 337(6098):1115–1119

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  151. Dutzan N, Abusleme L, Bridgeman H, Greenwell-Wild T, Zangerle-Murray T, Fife ME, Bouladoux N, Linley H, Brenchley L, Wemyss K, Calderon G (2017) On-going mechanical damage from mastication drives homeostatic Th17 cell responses at the oral barrier. Immunity 46(1):133–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bedoui S, Heath WR, Mueller SN (2016) CD 4+ T-cell help amplifies innate signals for primary CD 8+ T-cell immunity. Immunol Rev 272(1):52–64

    Article  CAS  PubMed  Google Scholar 

  153. Bachem A, Makhlouf C, Binger KJ, de Souza DP, Tull D, Hochheiser K, Whitney PG, Fernandez-Ruiz D, Dähling S, Kastenmüller W, Jönsson J (2019) Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51(2):285–297

    Article  CAS  PubMed  Google Scholar 

  154. Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, Geva-Zatorsky N, Jupp R, Mathis D, Benoist C, Kasper DL (2020) Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577(7790):410–415

    Article  CAS  PubMed  Google Scholar 

  155. Crotty S (2014) T follicular helper cell differentiation, function, and roles in disease. Immunity 41(4):529–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kawamoto S, Tran TH, Maruya M, Suzuki K, Doi Y, Tsutsui Y, Kato LM, Fagarasan S (2012) The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336(6080):485–489

    Article  CAS  PubMed  ADS  Google Scholar 

  157. Proietti M, Cornacchione V, Jost TR, Romagnani A, Faliti CE, Perruzza L, Rigoni R, Radaelli E, Caprioli F, Preziuso S, Brannetti B (2014) ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer’s patches to promote host-microbiota mutualism. Immunity 41(5):789–801

    Article  CAS  PubMed  Google Scholar 

  158. Kubinak JL, Petersen C, Stephens WZ, Soto R, Bake E, O’Connell RM, Round JL (2015) MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 17(2):153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Teng F, Klinger CN, Felix KM, Bradley CP, Wu E, Tran NL, Umesaki Y, Wu HJ (2016) Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity 44(4):875–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rescigno M, Rotta G, Valzasina B, Ricciardi-Castagnoli P (2001) Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 204(5):572–581

    Article  CAS  PubMed  Google Scholar 

  161. Martínez-López M, Iborra S, Conde-Garrosa R, Mastrangelo A, Danne C, Mann ER, Reid DM, Gaboriau-Routhiau V, Chaparro M, Lorenzo MP, Minnerup L (2019) Microbiota sensing by Mincle-Syk axis in dendritic cells regulates interleukin-17 and-22 production and promotes intestinal barrier integrity. Immunity 50(2):446–461

    Article  PubMed  PubMed Central  Google Scholar 

  162. Jie Z, Yang JY, Gu M, Wang H, Xie X, Li Y, Liu T, Zhu L, Shi J, Zhang L, Zhou X (2018) NIK signaling axis regulates dendritic cell function in intestinal immunity and homeostasis. Nat Immunol 19(11):1224–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wingender G, Hiss M, Engel I, Peukert K, Ley K, Haller H, Kronenberg M, von Vietinghoff S (2012) Neutrophilic granulocytes modulate invariant NKT cell function in mice and humans. J Immunol 188(7):3000–3008

    Article  CAS  PubMed  Google Scholar 

  164. An D, Oh SF, Olszak T, Neves JF, Avci FY, Erturk-Hasdemir D, Lu X, Zeissig S, Blumberg RS, Kasper DL (2014) Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156(1–2):123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yoo JY, Groer M, Dutra SV, Sarkar A, McSkimming DI (2020) Gut microbiota and immune system interactions. Microorganisms 8(10):1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tlaskalova-Hogenova H, Tuckova L, Mestecky J, Kolinska J, Rossmann P, Stepankova R, Kozakova H, Hudcovic T, Hrncir T, Frolova L, Kverka M (2005) Interaction of mucosal microbiota with the innate immune system. Scand J Immunol 62:106–113

    Article  CAS  PubMed  Google Scholar 

  167. Riazi-Rad F, Behrouzi A, Mazaheri H, Katebi A, Ajdary S (2021) Impact of gut microbiota on immune system. Acta Microbiol Immunol Hung 68(3):135–144

    CAS  Google Scholar 

  168. Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489(7415):231–241

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  169. Abraham C, Medzhitov R (2011) Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 140(6):1729–1737

    Article  CAS  PubMed  Google Scholar 

  170. Sugihara K, Kamada N (2021) Diet–microbiota interactions in inflammatory bowel disease. Nutrients 13(5):1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. McCoy KD, Burkhard R, Geuking MB (2019) The microbiome and immune memory formation. Immunol Cell Biol 97(7):625–635

    Article  CAS  PubMed  Google Scholar 

  172. Kogut MH, Lee A, Santin E (2020) Microbiome and pathogen interaction with the immune system. Poult Sci 99(4):1906–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cosola C, Rocchetti MT, Gesualdo L (2021) Gut microbiota, the immune system, and cytotoxic T lymphocytes. Cytotoxic T-Cells: Meth Prot. 1:229–241

    Article  Google Scholar 

  174. Wang L, Zhu L, Qin S (2019) Gut microbiota modulation on intestinal mucosal adaptive immunity. J Immunol Res 1:19

    Google Scholar 

  175. Hayase E, Jenq RR (2021) Role of the intestinal microbiome and microbial-derived metabolites in immune checkpoint blockade immunotherapy of cancer. Genome Med 13(1):107

    Article  PubMed  PubMed Central  Google Scholar 

  176. Caruso R, Lo BC, Núñez G (2020) Host–microbiota interactions in inflammatory bowel disease. Nat Rev Immunol 20(7):411–426

    Article  CAS  PubMed  Google Scholar 

  177. Ronco C, Bellomo R, Kellum JA (2019) Acute kidney injury. Lancet 394(10212):1949–1964

    Article  CAS  PubMed  Google Scholar 

  178. Khwaja A (2012) KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120(4):c179–c184

    Article  PubMed  Google Scholar 

  179. Li X, Yuan F, Zhou L (2022) Organ crosstalk in acute kidney injury: evidence and mechanisms. J Clin Med 11(22):6637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Radi ZA (2018) Immunopathogenesis of acute kidney injury. Toxicol Pathol 46(8):930–943

    Article  CAS  PubMed  Google Scholar 

  181. Lee SA, Noel S, Sadasivam M, Hamad AR, Rabb H (2017) Role of immune cells in acute kidney injury and repair. Nephron 137(4):282–286

    Article  CAS  PubMed  Google Scholar 

  182. Vallés PG, Lorenzo AG, Bocanegra V, Vallés R (2014) Acute kidney injury: what part do toll-like receptors play? Int J Nephrol Renov Dis 19:241–251

    Article  Google Scholar 

  183. Habib R (2021) Multifaceted roles of Toll-like receptors in acute kidney injury. Heliyon 7(3):e06441

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  184. Andrade-Oliveira V, Amano MT, Correa-Costa M, Castoldi A, Felizardo RJ, de Almeida DC, Bassi EJ, Moraes-Vieira PM, Hiyane MI, Rodas AC, Peron JP (2015) Gut bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol 26(8):1877–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Al-Harbi NO, Nadeem A, Ahmad SF, Alotaibi MR, Alasmari AF, Alanazi WA, Al-Harbi MM, El-Sherbeeny AM, Ibrahim KE (2018) Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells. Int Immunopharmacol 1(58):24–31

    Article  Google Scholar 

  186. Lobel L, Cao YG, Fenn K, Glickman JN, Garrett WS (2020) Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function. Science 369(6510):1518–1524

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection was performed by Asmaa Ali and Wu Liang. The first draft of the manuscript was written by Asmaa Ali. Asmaa Ali, Wu Liang and Sameh Samir Ali wrote the second draft, all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Asmaa Ali or Liang Wu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Wu, L. & Ali, S.S. Gut microbiota and acute kidney injury: immunological crosstalk link. Int Urol Nephrol 56, 1345–1358 (2024). https://doi.org/10.1007/s11255-023-03760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03760-5

Keyword

Navigation