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Abstract
Purpose To evaluate the feasibility of using mpMRI image features predicted by AI algorithms in the prediction of clinically 
significant prostate cancer (csPCa).
Materials and methods This study analyzed patients who underwent prostate mpMRI and radical prostatectomy (RP) at 
the Affiliated Hospital of Jiaxing University between November 2017 and December 2022. The clinical data collected 
included age, serum prostate-specific antigen (PSA), and biopsy pathology. The reference standard was the prostatectomy 
pathology, and a Gleason Score (GS) of 3 + 3 = 6 was considered non-clinically significant prostate cancer (non-csPCa), 
while a GS ≥ 3 + 4 was considered csPCa. A pre-trained AI algorithm was used to extract the lesion on mpMRI, and the 
image features of the lesion and the prostate gland were analyzed. Two logistic regression models were developed to predict 
csPCa: an MR model and a combined model. The MR model used age, PSA, PSA density (PSAD), and the AI-predicted 
MR image features as predictor variables. The combined model used biopsy pathology and the aforementioned variables as 
predictor variables. The model’s effectiveness was evaluated by comparing it to biopsy pathology using the area under the 
curve (AUC) of receiver operation characteristic (ROC) analysis.
Results A total of 315 eligible patients were enrolled with an average age of 70.8 ± 5.9. Based on RP pathology, 18 had non-
csPCa, and 297 had csPCa. PSA, PSAD, biopsy pathology, and ADC value of the prostate outside the lesion  (ADCprostate) 
varied significantly across different ISUP grade groups of RP pathology (P < 0.001). Other clinical variables and image 
features did not vary significantly across different ISUP grade groups (P > 0.05). The MR model included PSAD, the ratio 
of ADC value between the lesion and the prostate outside the lesion  (ADClesion/prostate), the signal intensity ratio of DWI 
between the lesion and the prostate outside the lesion  (DWIlesion/prostate), and the ratio of  DWIlesion/prostate to  ADClesion/prostate. The 
combined model included biopsy pathology,  ADClesion/prostate, mean signal intensity of the lesion on DWI  (DWIlesion), DWI 
signal intensity of the prostate outside the lesion  (DWIprostate), and signal intensity ratio of DWI between the lesion and the 
prostate outside the lesion  (DWIlesion/prostate). The AUC of the MR model (0.830, 95% CI 0.743, 0.916) was not significantly 
different from that of biopsy pathology (0.820, 95% CI 0.728, 0.912, P = 0.884). The AUC of the combined model (0.915, 
95% CI 0.849, 0.980) was higher than that of the biopsy pathology (P = 0.042) and MR model (P = 0.031).
Conclusion The aggressiveness of prostate cancer can be effectively predicted using AI-extracted image features from mpMRI 
images, similar to biopsy pathology. The prediction accuracy was improved by combining the AI-extracted mpMRI image 
features with biopsy pathology, surpassing the performance of biopsy pathology alone.

Keywords Gleason score · Prostate cancer · Multiparametric magnetic resonance imaging · Deep learning · International 
Society of Urological Pathology grade group

Background

Prostate cancer (PCa) is the most common malignant tumor 
among men in Europe and America, and the second leading 
cause of cancer-related deaths. Early detection of PCa is cru-
cial for proper diagnosis and treatment. The 2017 European 
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Association of Urology Prostate Cancer Guidelines [1] rec-
ommend radical therapy as a definitive treatment for inter-
mediate- and high-risk patients with clinically significant 
prostate cancer (csPCa), defined as having an International 
Society of Urological Pathology Gleason grade group (ISUP 
GGG) of 2 or higher. Patients with very low- or low-risk dis-
ease are classified as having clinically insignificant prostate 
cancer (non-csPCa), defined as having a GGG of 1 or some 
moderately favorable risk (GGG 2), and are recommended 
to undergo active surveillance without any definitive treat-
ment. Therefore, accurate identification of csPCa versus 
non-csPCa is critical when determining treatment options.

Currently, prostate cancer is typically diagnosed by con-
ducting a biopsy on men who have elevated levels of serum 
prostate-specific antigen (PSA) and/or exhibit abnormal 
digital rectal examination (DRE) results. The biopsy result 
is then used to determine the aggressiveness of csPCa by 
measuring the ISUP grading group. However, due to the 
multifocal and heterogeneous nature of prostate cancer and 
random undersampling of the entire prostate, conventional 
12-core systematic biopsy can produce a false negative rate 
of up to 30%. To improve the detection of csPCa, a technique 
called image fusion-guided biopsy is used, which combines 
mpMRI and ultrasound images to guide needle placement for 
prostate biopsy. This technique has been shown to improve 
the detection of csPCa compared to conventional systematic 
biopsy. However, it is still possible to underestimate csPCa, 
even when using mpMRI guidance during biopsy.

Over the past few decades, the use of mpMRI in the 
detection and staging of prostate cancer has become increas-
ingly common. It can help to determine which men with 
elevated PSA levels should undergo biopsy, which can 
reduce unnecessary biopsies and increase the sensitivity of 
detecting csPCa [2]. Additionally, mpMRI has shown poten-
tial for predicting the Gleason score with moderate to high 
accuracy, particularly for csPCa with a Gleason score of 
3 + 4 or higher [3]. Therefore, it is reasonable to assume that 
incorporating mpMRI can improve the accuracy of detect-
ing csPCa in patients initially diagnosed with non-csPCa 
based on biopsy results. However, interpreting mpMRI for 
the detection and characterization of PCa requires special-
ized training and expertise in radiology and prostate cancer.

Using artificial intelligence (AI) methods, such as deep 
learning (DL), can improve the detection and classification of 
PCa on mpMRI images [4]. Previous studies have shown that 
AI can improve the accuracy and efficiency of PCa detection 
on mpMRI images by automatically detecting and segment-
ing suspicious areas for further evaluation by a radiologist 
[5]. Several recent studies have indicated the potential of AI 
in predicting tumor invasiveness of biopsy pathology [6–8]. 
Some researchers have also proposed the use of handcrafted 
or deep radiomics image features for predicting tumor inva-
siveness [9, 10]. However, there are a limited number of 

studies that have specifically evaluated tumor invasiveness in 
the post-biopsy assessment, taking into account both biopsy 
pathology results and mpMRI findings. Thus, in this study, 
we explored the feasibility of using mpMRI image features 
predicted by AI algorithms in the prediction of csPCa in com-
parison and in combination with biopsy pathology.

Materials and methods

Data enrollment

This retrospective study was approved by the institutional 
review board (IRB number: 2022-LY-361), which waived 
written patient informed consent. The data were retrospec-
tively gathered from our hospital.

Patients who received prostate mpMRI and subsequent 
RP between November 2017 and December 2022 were 
included. The mpMRI images and clinical information, 
including age, PSA, GS of the biopsy pathology, and GS 
of the RP, were obtained from the picture archiving and 
communication system (PACS) and the electronic medi-
cal record (EMR) system. The exclusion criteria were (1) 
prior endocrine therapy, (2) benign prostate hyperplasia on 
RP pathology, (3) missing PSA data, (4) incomplete biopsy 
pathology records, (5) incomplete MR images, (6) obvious 
image artifacts, and (7) prostate cancer volume < 0.5  cm3 
on MR images.

Reference standard

All patients underwent biopsy and RP with available pathol-
ogy samples. The pathology was reviewed and reported by 
experienced pathologists according to the ISUP group. The 
reference standard was established based on the RP pathol-
ogy results, with GS 3 + 3 = 6 considered non-csPCa and 
GS ≥ 3 + 4 considered csPCa. The data enrollment process 
is illustrated in Fig. 1.

MR scanning protocols

The mpMRI images were obtained from three MR scanners, 
with 176 cases (55.9%) acquired from a 1.5 T scanner, 135 
cases (42.9%) acquired from a 3.0T scanner, and 4 cases 
(1.2%) acquired from a 1.436T scanner. The transmit coils 
were body coils, and the receiver coils were phased array 
coils. No endorectal coil was used. Table 1 provides details 
on the MR scanners and imaging parameters.

Lesion segmentation by AI algorithms

The MR images were anonymized using self-developed 
software written in C +  + . The patient information in the 
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DICOM file header was replaced with anonymous informa-
tion using predefined rules. The software read the DICOM 
data, made the necessary modifications, and updated the 
original file to achieve complete anonymization.

After anonymization, the DICOM files were converted to 
the NIFTI format using the dicom2nii.py tool implemented 
in Python 3.5 and then input into our in-house deep learning-
based AI model for the segmentation of suspicious PCa foci 
[4]. The functionalities of the AI model include automated 
selection of DWI and ADC images, segmentation of the 
prostate gland within the images, and further segmentation 
of suspicious prostate cancer regions. The segmented areas, 
identified as potentially cancerous by the AI model, were 
subsequently utilized for extracting image features in the 
next step. Notably, none of the cases in this study were pre-
viously used for training the AI model. Thus, in this study, 
the AI model was externally validated.

Extraction of image features

First, within the suspicious lesion regions segmented by the 
AI, the largest lesion is identified and defined as the index 
lesion. Subsequently, the following image features were 
calculated from the index lesion and used in the prediction 
model: (1) lesion volume, (2) mean apparent diffusion coef-
ficient (ADC) value of the lesion  (ADClesion), (3) ADC value 
of the prostate outside the lesion  (ADCprostate), (4) ratio of 
ADC value between the lesion and the prostate outside the 
lesion  (ADClesion/prostate), (5) mean signal intensity of the 
lesion on diffusion-weighted imaging (DWI)  (DWIlesion), 
(6) DWI signal intensity of the prostate outside the lesion 
 (DWIprostate), (7) signal intensity ratio of DWI between the 
lesion and the prostate outside the lesion  (DWIlesion/prostate), 
(8) signal intensity ratio of the lesion between DWI and 
ADC  (DWIlesion/ADClesion), (9) the ratio of  DWIlesion/prostate to 

Fig. 1  Data enrollment and 
research process. The study 
involved the collection of cases 
with comprehensive clinical and 
mpMRI images. A pre-trained 
AI model was employed to 
identify the regions of interest 
(ROI) corresponding to the 
suspected lesion areas. Subse-
quently, image features were 
extracted from the ROIs based 
on specific criteria. Finally, 
two prediction models, the MR 
model and the combined model, 
were trained using logistic 
regression
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Table 1  MR scanning protocols

Sequence Parameters MR scanner

Aera (1.5T, n = 176) DISCOVERY MR750 
(3.0T, n = 135)

uMR 586 (1.436T, n = 4)

DWI/ADC b value (*10^6 s/mm2) 1000 [1000, 1000] 600 [500, 1000] 455 [405, 505]
Repetition time (ms) 3000 [3000, 3230] 2080 [2080, 2100] 3520 [3520, 3520]
Echo time (ms) 70.0 [70.0, 70.0] 59.7 [59.7, 59.8] 91.0 [91.0, 91.0]
Echo train length 55.0 [55.0, 55.0] 1.00 [1.00, 1.00] 61.0 [61.0, 61.0]
Pixel bandwidth (MHz) 1540 [1540, 1540] 1950 [1950, 1950] 1540 [1540, 1540]
Reconstruction diameter (mm) 200 [200, 200] 340 [340, 340] 210 [210, 210]
Slice thickness (mm) 3.50 [3.50, 3.50] 3.00 [3.00, 3.00] 4.00 [4.00, 4.00]
Slice spacing (mm) 3.50 [3.50, 3.50] 4.00 [4.00, 4.00] 4.40 [4.40, 4.40]
Pixel spacing (mm) 1.79 [1.79, 1.79] 1.33 [1.33, 1.33] 1.02 [1.02, 1.02]

T2WI Repetition time (ms) 5540 [5540, 6000] 3470 [3370, 3760] 2200 [2200, 2200]
Echo time (ms) 112 [112, 112] 105 [105, 107] 93.0 [93.0, 93.0]
Echo train length 24.0 [24.0, 24.0] 16.0 [16.0, 16.0] 21.0 [21.0, 21.0]
Pixel bandwidth (MHz) 200 [200, 200] 163 [163, 163] 180 [180, 180]
Reconstruction diameter (mm) 200 [200, 200] 200 [200, 200] 200 [200, 200]
Slice thickness (mm) 3.50 [3.50, 3.50] 3.00 [3.00, 3.00] 4.00 [4.00, 4.00]
Slice spacing (mm) 3.50 [3.50, 3.50] 4.00 [4.00, 4.00] 4.40 [4.40, 4.40]
Pixel spacing (mm) 0.625 [0.625, 0.625] 0.391 [0.391, 0.391] 0.439 [0.439, 0.439]

Fig. 2  An example of AI segmented lesions and extraction of image 
features on mpMRI. A 74-year-old man with a serum PSA level of 
7.93  ng/ml had mpMRI images showing multiple lesions on DWI 
(a) and ADC map (b). The DWI and ADC maps were automatically 
selected by the AI model, followed by segmentation of the prostate 
gland (blue area in (c) and (d)). Subsequently, the AI model seg-
mented suspicious csPCa lesions on the DWI and ADC maps, as 
indicated by the green areas in (e) and (f). The largest lesion iden-

tified was designated the index lesion, represented by the red area 
in (g) and (h). Image features were then extracted specifically from 
the index lesion, which was classified as PI-RADS 4. Following a 
biopsy, pathology revealed non-csPCa with a Gleason score of 3 + 3. 
Subsequent pathology of the radical prostatectomy specimen showed 
csPCa, with a left lobe Gleason score of 4 + 4 = 8, accounting for 
approximately 10% of the gland, and a right lobe Gleason score of 
4 + 3 = 7, accounting for approximately 7%
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 ADClesion/prostate, and (10) the volume of the prostate gland. 
Moreover, the volume of the prostate gland was used to 
calculate the prostate-specific antigen density (PSAD), as 
shown in Fig. 2.

Prediction model development

Two logistic regression models were established to forecast 
csPCa after RP: an MR model and a combined model. The 

Table 2  Clinical characteristics of the enrolled patients

*ADClesion mean ADC value of the lesion, ADCprostate ADC value of the prostate outside the lesion, ADClesion/prostate ratio of ADC value between 
the lesion and the prostate outside the lesion, DWIlesion mean signal intensity of the lesion on DWI, DWIprostate DWI signal intensity of the pros-
tate outside the lesion, DWIlesion/prostate signal intensity ratio of DWI between the lesion and the prostate outside the lesion, DWIlesion/ADClesion 
signal intensity ratio of the lesion between DWI and ADC, DWIlesion/prostate/ADClesion/prostate the ratio of  DWIlesion/prostate to  ADClesion/prostate

Overall ISUP 1 ISUP 2 ISUP 3 ISUP 4 ISUP 5 P value
(N = 315) (N = 18) (N = 90) (N = 87) (N = 46) (N = 74)

Age (years)
 Median [Q1, Q3] 71.0 [67.0, 75.0] 72.5 [66.3, 75.8] 69.5 [67.0, 75.0] 71.0 [67.0, 76.0] 71.5 [68.0, 75.8] 72.0 [67.0, 74.8] 0.621

PSA (ng/mL)
 Median [Q1, Q3] 12.1 [8.25, 20.4] 11.3 [9.78, 14.7] 10.7 [7.59, 17.0] 12.2 [7.83, 20.1] 11.1 [9.72, 17.6] 17.0 [11.1, 30.1]  < 0.001

PSAD (ng/mL/cm3)
 Median [Q1, Q3] 3.26 [2.05, 5.06] 2.47 [1.53, 3.40] 2.68 [1.83, 4.03] 3.05 [1.99, 4.73] 3.15 [2.10, 5.92] 4.66 [3.03, 7.19]  < 0.001

PI-RADS
 1 3 (1.0%) 0 (0%) 1 (1.1%) 1 (1.1%) 1 (2.2%) 0 (0%) 0.185
 2 16 (5.1%) 3 (16.7%) 5 (5.6%) 5 (5.7%) 0 (0%) 3 (4.1%)
 3 120 (38.1%) 8 (44.4%) 41 (45.6%) 31 (35.6%) 12 (26.1%) 28 (37.8%)
 4 72 (22.9%) 0 (0%) 20 (22.2%) 20 (23.0%) 15 (32.6%) 17 (23.0%)
 5 104 (33.0%) 7 (38.9%) 23 (25.6%) 30 (34.5%) 18 (39.1%) 26 (35.1%)

Biopsy pathology
 1 59 (18.7%) 13 (72.2%) 23 (25.6%) 20 (23.0%) 2 (4.3%) 1 (1.4%)  < 0.001
 2 52 (16.5%) 2 (11.1%) 32 (35.6%) 14 (16.1%) 4 (8.7%) 0 (0%)
 3 71 (22.5%) 2 (11.1%) 25 (27.8%) 23 (26.4%) 10 (21.7%) 11 (14.9%)
 4 88 (27.9%) 1 (5.6%) 9 (10.0%) 26 (29.9%) 24 (52.2%) 28 (37.8%)
 5 45 (14.3%) 0 (0%) 1 (1.1%) 4 (4.6%) 6 (13.0%) 34 (45.9%)

Lesion location
 PZ 59 (18.7%) 7 (38.9%) 18 (20.0%) 14 (16.1%) 11 (23.9%) 9 (12.2%) 0.131
 TZ 76 (24.1%) 7 (38.9%) 24 (26.7%) 25 (28.7%) 6 (13.0%) 17 (23.0%)
 PZ + TZ 180 (57.1%) 4 (22.2%) 48 (53.3%) 48 (55.2%) 29 (63.0%) 48 (64.9%)

Prostate volume  (cm3)
 Median [Q1, Q3] 37.7 [29.5, 48.1] 43.7 [33.4, 66.3] 40.0 [31.3, 46.5] 41.1 [30.3, 52.3] 35.9 [29.1, 43.7] 34.4 [28.3, 44.8] 0.058

Lesion volume  (cm3)
 Median [Q1, Q3] 2.05 [1.04, 4.48] 2.14 [0.998, 4.82] 1.82 [0.976, 4.12] 1.98 [1.02, 3.63] 2.02 [1.06, 4.76] 2.35 [1.21, 5.49] 0.606

ADClesion

 Mean (SD) 0.857 (0.142) 0.903 (0.175) 0.879 (0.130) 0.856 (0.145) 0.860 (0.142) 0.818 (0.140) 0.093
ADCprostate

 Mean (SD) 1.34 (0.141) 1.31 (0.0884) 1.35 (0.136) 1.36 (0.135) 1.35 (0.150) 1.29 (0.147) 0.017
ADClesion/prostate

 Mean (SD) 0.640 (0.0864) 0.685 (0.116) 0.652 (0.0843) 0.628 (0.0908) 0.634 (0.0714) 0.634 (0.0812) 0.123
DWIlesion

 Median [Q1, Q3] 0.779 [0.580, 2.54] 0.683 [0.492, 1.93] 0.719 [0.565, 2.58] 0.875 [0.623, 2.62] 1.44 [0.636, 2.52] 0.746 [0.480, 1.97] 0.102
DWIprostate

 Median [Q1, Q3] 0.489 [0.364, 1.45] 0.429 [0.279, 
0.779]

0.474 [0.336, 1.57] 0.518 [0.410, 1.53] 0.784 [0.430, 1.35] 0.458 [0.262, 1.09] 0.112

DWIlesion/prostate

 Median [Q1, Q3] 1.65 [1.52, 1.86] 1.68 [1.53, 1.90] 1.60 [1.51, 1.80] 1.65 [1.51, 1.89] 1.71 [1.57, 1.93] 1.68 [1.50, 1.84] 0.194
DWIlesion/ADClesion

 Median [Q1, Q3] 108 [69.5, 266] 70.2 [53.8, 230] 92.7 [68.4, 270] 138 [76.2, 280] 134 [84.9, 268] 104 [55.6, 208] 0.053
DWIlesion/prostate/ADClesion/prostate

 Median [Q1, Q3] 2.60 [2.27, 3.06] 2.37 [2.18, 2.97] 2.55 [2.23, 2.89] 2.59 [2.30, 3.29] 2.75 [2.41, 3.18] 2.67 [2.19, 2.97] 0.134
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MR model consisted of the predictor variables such as age, 
PSA, PSAD, and the ten types of MR image features. The 
combined model included biopsy pathology outcomes and 
the variables mentioned earlier. Univariate analysis was 
performed initially, followed by a forward and backward 
stepwise algorithm, which employed the Akaike informa-
tion criterion (AIC) to select the variables for the final mul-
tivariable model.

Model evaluation

The study evaluated the performance of three methods for 
predicting csPCa: biopsy pathology, MR model, and com-
bined model. The evaluation was conducted using receiver 
operating characteristic (ROC) analysis, which calculates the 
area under the ROC curve (AUC). Decision curve analysis 
(DCA) compared each method’s clinical effects. Finally, a 
nomogram was created to visually display the performance 
of the prediction model.

Statistical analysis

The statistical analysis was performed using R 4.1.3 soft-
ware. Descriptive statistics were used to summarize the data, 
with mean (standard deviation) reported for continuous vari-
ables that followed a normal distribution and median [Q1, 
Q3] for continuous variables that did not follow a normal 
distribution. Categorical variables were reported as frequen-
cies (percentage %).

The Shapiro‒Wilk test was employed to assess the nor-
mality of continuous variables. If the continuous variables 
followed a normal distribution, additional testing was con-
ducted to examine the homogeneity of variances using an F 
test. If the variances were found to be homogeneous, the t 
test was utilized to compare features between the non-csPCa 
and csPCa groups, while one-way ANOVA was used to 
compare features among the ISUP groups of post-operation 
pathology.  ADClesion was found to be applicable in this par-
ticular scenario. On the other hand, if the variances were not 
homogeneous, the corrected t test was applied to compare 
the features between the non-csPCa and csPCa groups, and 
the Kruskal‒Wallis test was used to compare the features 
among the ISUP groups of post-operation pathology. In this 
case,  ADCprostate and  ADCprostate/lesion were deemed appli-
cable. For continuous variables that did not conform to a 
normal distribution, the Mann‒Whitney test was employed 
to compare the features between the non-csPCa and csPCa 
groups, and the Kruskal‒Wallis test was utilized to com-
pare the features among the ISUP groups of post-operation 
pathology. The following variables in this study fell into this 
category: age, PSA, PSAD, prostate volume, lesion volume, 
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 DWIlesion,  DWIprostate,  DWIlesion/prostate,  DWIlesion/ADClesion, 
and  DWIlesion/prostate/ADClesion/prostate.

The Nagelkerke test was used to obtain the coefficient of 
determination (R2) values of the multivariable regression 
models. The DeLong test was used to compare the AUCs of 
the biopsy pathology, MR model, and combined model. A P 
value less than 0.05 was considered statistically significant.

Results

Clinical characteristics

A total of 315 patients were enrolled in this study. The aver-
age age of the patients was 70.8 ± 5.9. Among them, 42 
(13.3%) patients underwent MRI examination after biopsy, 
with a median interval of 15 [3, 17] days. On the other hand, 
273 (86.7%) patients underwent MRI examination before 
biopsy, with a median interval of 6 [4, 9] days. Of the 315 
patients, 59 (18.7%) were diagnosed with non-csPCa by 
biopsy pathology, and 256 (81.3%) were diagnosed with 
csPCa. However, based on RP pathology, only 18 (5.7%) 

patients were diagnosed with non-csPCa, while 297 (94.3%) 
were diagnosed with csPCa.

Table 2 provides a summary of the patient characteris-
tics stratified by biopsy pathology and RP pathology. The 
median PSA level was 8.5 [5.7, 14.2] ng/mL, and the median 
PSAD was 0.2 [0.1, 0.3] ng/mL/cm3. The median volume 
of the prostate gland was 35.6 [29.3, 42.3]  cm3. In terms of 
biopsy pathology, the median number of biopsy cores was 
12 [10, 14], and the median percentage of biopsy cores posi-
tive for cancer was 30% [10%, 60%]. Among the 256 patients 
diagnosed with csPCa by biopsy pathology, the majority had 
a Gleason score of 7 (n = 173, 67.6%), followed by Glea-
son score 6 (n = 75, 29.3%) and Gleason score 8–10 (n = 8, 
3.1%).

Statistically significant differences were observed among 
the five RP ISUP groups (Table 2) in terms of PSA, PSAD, 
biopsy pathology, and  ADCprostate (all P < 0.05). However, 
no significant differences were observed in the other clinical 
and image features (all P > 0.05). In the comparison between 
the csPCa and non-csPCa groups (Table 3), significant dif-
ferences were observed in terms of PSAD, PI-RADS score, 
biopsy pathology, and  ADClesion/prostate (all P < 0.05). There 
were no significant differences observed in the other clinical 

Fig. 3  Visualization of the regression models. This plot represents 
the response curve of the logistic regression model, providing a vis-
ual representation of the results obtained from the generalized linear 
models of the MR model (a) and the combined model (b). The x-axis 
represents the logit transformation of the response variable (Y). The 
y-axis represents the predicted probability, showing the estimated 
probability of the response variable (Y) falling into the “success” cat-
egory (such as csPCa or non-csPCa) based on the predictor variables 

used in the generalized linear model. This plot aids in visualizing the 
relationship between the predictor variables and the probability of the 
response, enabling a better understanding of the model’s behavior and 
its predictions. A Nagelkerke test was conducted, resulting in an MR 
model with an R2 of 0.219, indicating that it explains 21.9% of the 
variability in the outcome. On the other hand, the combined model 
had an R2 of 0.411, indicating that it explains 41.1% of the variability 
in the outcome
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and imaging features between the csPCa and non-csPCa 
groups (all P > 0.05).

Model development metrics

Table 3 summarizes the results of univariable and multi-
variable logistic regression analyses to identify the vari-
ables associated with csPCa. The predictor variables that 
were independently associated with csPCa and included 
in the MR model were PSAD,  ADClesion/prostate,  DWIlesion/
ADClesion, and  DWIlesion/prostate/ADClesion/prostate. In the 
combined model, biopsy pathology,  ADClesion/prostate, 
 DWIlesion,  DWIprostate, and  DWIlesion/prostate were included.

Figure 3 represents the response curve of the logistic 
regression model. The MR model had an R2 of 0.219, 
indicating that it explains 21.9% of the variability in the 
outcome. On the other hand, the combined model had 
an R2 of 0.411, indicating that it explains 41.1% of the 
variability in the outcome. These results suggest that both 
the MR model and the combined model can be useful in 
predicting csPCa. The combined model, which includes 
biopsy pathology and imaging features, had a higher R2 
value and, thus, may provide more accurate predictions.

Model evaluation

The predictive performance of the biopsy pathology, 
MR model, and combined model were evaluated using 
ROC analysis, and the results are displayed in Fig. 4. To 
compare the classification ability of the same method for 
csPCa in different regions, we conducted separate analyses 
for the lesions located in the peripheral zone (PZ, n = 59), 
the transitional zone (TZ, n = 76), and lesions located 
across both the TZ and PZ (n = 180), in addition to the 
analysis of the entire cohort (n = 315). The evaluation 
metrics, including AUC, accuracy, sensitivity, specificity, 
positive predictive value, and negative predictive value, 
are presented in Table 4.

Within each method, we observed that there were no 
statistically significant differences in the AUC values when 
comparing the lesions located in the PZ (AUC pz), TZ (AUC 
tz), and PZ + TZ (AUC pz+tz) groups (all P < 0.05). The spe-
cific comparison of AUC values can be found in Table 5.

In terms of overall performance, the AUC of the biopsy 
pathology was 0.820 (95% CI 0.728, 0.912), and the MR 
model had an AUC of 0.830 (95% CI 0.743, 0.916), with 
no significant difference observed between the two meth-
ods (P = 0.884). However, the AUC of the combined model 
(0.915, 95% CI 0.849, 0.980) was significantly higher than 
that of the biopsy ISUP (P = 0.042) and the MR model 
(P = 0.031). The results of DCA, presented in Fig. 5, indi-
cated that the combined model was superior to the biopsy 
pathology and MR model for all risk thresholds from 0.5 
to 1. To further illustrate the predictive efficacy of the best 
model, a nomogram was created and is shown in Fig. 6.

Discussion

The risk of PCa is stratified based on the ISUP grade group 
from pathology. Preoperative pathology is typically obtained 
through biopsy. However, discrepancies between biopsy 
pathology and post-operative pathology can result in under- 
or overestimation of prostate cancer risk levels [11]. In this 
study, we proposed that mpMRI can aid in the identification 
of csPCa in patients initially diagnosed with non-csPCa by 
biopsy. An MR model and a combined model were devel-
oped using mpMRI image features to predict the presence 
of csPCa in post-operation pathology. The efficacy of both 
models was compared to biopsy pathology alone. The results 
demonstrated that the combined model had a significantly 
higher AUC than both biopsy pathology and the MR model.

Currently, a biopsy is considered the gold standard for 
diagnosing prostate cancer. The EAU guidelines on pros-
tate cancer recommend combining targeted biopsy (TB) with 
systematic biopsy (SB) as the first-line biopsy method in 
patients diagnosed with PCa with an abnormal MRI [12]. 

Fig. 4  ROC curves of the models. This plot illustrates the ROC 
curves of various methods, with the red curve representing biopsy 
pathology, the blue curve representing the MR model, and the green 
curve representing the combined model. The AUC of the biopsy 
pathology was 0.820 (95% CI 0.728, 0.912), and the MR model had 
an AUC of 0.830 (95% CI 0.743, 0.916), with no significant differ-
ence observed between the two methods (P = 0.884). However, the 
AUC of the combined model (0.915, 95% CI 0.849, 0.980) was sig-
nificantly higher than that of the biopsy ISUP (P = 0.042) and the MR 
model (P = 0.031)
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Prostate MRI utilizes the PI-RADS scoring system to cat-
egorize patients who are candidates for biopsy on a 1-to-5 
risk scale for csPCa. The main objective of PI-RADS is to 
establish a standardized and consistent approach for evalu-
ating prostate mpMRI scans in the detection of csPCa. As 
research on PI-RADS has advanced, it has become evident 
that higher PI-RADS scores correspond to an increased 
likelihood of csPCa. Nonetheless, there is a lack of suffi-
cient research dedicated to reassessing PI-RADS scores in 
conjunction with pathological findings after biopsy. Further 
investigation is required in this area to ascertain the effec-
tiveness of PI-RADS scoring in assessing csPCa in patients 
after biopsy.

Prostate MRI and related MRI-directed biopsies have 
been shown to be at least as diagnostically effective as sys-
tematic biopsies alone in diagnosing significant cancers. 
Studies have proven that the concordance between biopsy 
and prostatectomy grading was highest in combined biopsy 
(CB) but still with misdiagnosis of csPCa in 25% of men 
[13]. Thus, we suggest that mpMRI should be re-evaluated 
after biopsy to compensate for the limitations of biopsy 

pathology. In this study, we propose two models that might 
have potential for three applications in the future. The 
first application is in the initial biopsy for prostate can-
cer, where the MR model can determine whether another 
biopsy is necessary if the biopsy results are negative. If 
the MR model predicts a low likelihood of csPCa, obser-
vation may be an option, but if the MR model predicts a 
high likelihood of csPCa, another biopsy is recommended. 
The second application is in cases where the biopsy result 
is non-csPCa, where the combined model results can be 
used as a reference. If the combined model predicts a low 
likelihood of csPCa, conservative treatment may be appro-
priate, but if it predicts a high likelihood, more aggres-
sive treatment is recommended. The third application is 
in active surveillance of PCa patients, where measures can 
be taken to monitor patients according to the results of the 
MR model or the combined model.

In the PI-RADS system, DWI and ADC image features 
are utilized for the detection of csPCa, including the typical 
observations of significantly high DWI signal and signifi-
cantly low ADC values. In this study, we transformed these 

Table 4  Evaluation metrics of the different methods

*AUC  area under the receiver characteristics curve, ACC  accuracy, SEN sensitivity, SPE specificity, PPV positive predictive value, NPV negative 
predictive value

Cohort Evaluation 
metrics

Method

Biopsy pathology MR model Combined model

Overall (N = 315) AUC 0.820 (0.728, 0.912) 0.830 (0.743, 0.916) 0.915 (0.849, 0.980)
ACC 0.740 (0.738, 0.741) 0.838 (0.837, 0.839) 0.854 (0.853, 0.855)
SEN 0.734 (0.684, 0.784) 0.845 (0.804, 0.886) 0.852 (0.811, 0.892)
SPE 0.833 (0.661, 1.000) 0.722 (0.515, 0.929) 0.889 (0.744, 1.000)
PPV 0.986 (0.971, 1.002) 0.980 (0.964, 0.997) 0.992 (0.981, 1.003)
NPV 0.160 (0.086, 0.234) 0.220 (0.115, 0.326) 0.267 (0.155, 0.379)

Lesion in PZ (N = 59) AUC 0.852 (0.718, 0.985) 0.863 (0.756, 0.969) 0.945 (0.881, 1.000)
ACC 0.661 (0.654, 0.668) 0.780 (0.774, 0.785) 0.864 (0.861, 0.868)
SEN 0.615 (0.483, 0.748) 0.769 (0.655, 0.884) 0.846 (0.748, 0.944)
SPE 1.000 (1.000, 1.000) 0.857 (0.598, 1.000) 1.000 (1.000, 1.000)
PPV 1.000 (1.000, 1.000) 0.976 (0.928, 1.023) 1.000 (1.000, 1.000)
NPV 0.259 (0.094, 0.425) 0.333 (0.116, 0.551) 0.467 (0.214, 0.719)

Lesion in TZ (N = 76) AUC 0.722 (0.415, 1.000) 0.889 (0.841, 0.937) 0.965 (0.915, 1.000)
ACC 0.803 (0.799, 0.807) 0.789 (0.785, 0.794) 0.908 (0.906, 0.910)
SEN 0.806 (0.714, 0.897) 0.778 (0.682, 0.874) 0.903 (0.834, 0.971)
SPE 0.750 (0.326, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
PPV 0.983 (0.950, 1.016) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
NPV 0.176 (− 0.005, 0.358) 0.200 (0.025, 0.375) 0.364 (0.079, 0.648)

Lesion in PZ and TZ (N = 180) AUC 0.835 (0.733, 0.936) 0.772 (0.586, 0.958) 0.856 (0.710, 1.000)
ACC 0.806 (0.804, 0.807) 0.861 (0.860, 0.862) 0.772 (0.770, 0.774)
SEN 0.803 (0.744, 0.863) 0.873 (0.823, 0.922) 0.769 (0.706, 0.832)
SPE 0.857 (0.598, 1.000) 0.571 (0.205, 0.938) 0.857 (0.598, 1.000)
PPV 0.993 (0.979, 1.007) 0.981 (0.959, 1.002) 0.993 (0.978, 1.007)
NPV 0.150 (0.039, 0.261) 0.154 (0.015, 0.293) 0.130 (0.033, 0.228)
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descriptive features into computed image feature values. For 
example, a higher DWI signal intensity  (DWIlesion) and a 
higher contrast ratio between the DWI signal intensity of the 
lesion and the background signal intensity  (DWIlesion/prostate) 
indicate a more prominent display of the lesion on the DWI 
image. Similarly, a lower ADC value  (ADClesion) and a lower 
contrast ratio between the ADC value of the lesion and the 

background ADC value  (ADClesion/prostate) result in a more 
distinct display of the lesion on the ADC map. These types 
of image features have been widely used in previous studies 
and have demonstrated their value in indicating tumor inva-
siveness. Previous studies have found that there is a negative 
correlation between DWI signal intensities, ADC values and 
Gleason score, indicating that higher DWI signal intensities 
and lower ADC values are associated with higher Gleason 
scores and more aggressive prostate cancer [14–16]. The 
researchers suggest that ADC values can be used as a non-
invasive biomarker to aid in the diagnosis and management 
of prostate cancer.

However, manually calculated ADC values can vary due 
to several factors, such as differences in the region of inter-
est (ROI) placement, differences in the b-values used for 
calculation, and differences in the software used for calcula-
tion [17]. Furthermore, there is no agreed ADC tumor cutoff 
value that could be reliably used to determine abnormally 
low ADC within a lesion [14, 15]. Therefore, the potential 
of DWI and ADC for evaluating the aggressiveness of PCa 
is limited to theoretical use and not practical application in 
clinical settings. Our study confirms the relationship between 
features in ADC and DWI images and the aggressiveness of 
PCa, which is similar to previous research. However, we have 
three additional advantages. First, we employed an AI model 
to automatically segment the suspected areas of PCa, which 
eliminates human intervention. This reduces the burden on 
doctors and guarantees the consistency of feature extraction 
[18]. Second, unlike in previous studies where AI models 
were mainly used for pre-biopsy diagnosis, the AI model in 
this study was utilized for post-biopsy re-evaluation. Third, 
we developed an objective prediction model based on a nomo-
gram that outputs the probability of csPCa, which provides 
doctors with an intuitive reference. This model has the poten-
tial to be a valuable tool for urologists’ decision making once 
it has been fully validated [19].

Our study has some limitations. The first limitation of 
this study is that the data were collected from a single insti-
tution and were not obtained prospectively. This limits the 
generalizability of the study findings to other settings and 
populations, and the retrospective nature of the data col-
lection can introduce bias and confounding factors. Thus, 
caution should be exercised when interpreting the results 
of this study, and further studies are needed to validate the 
findings in larger and more diverse populations. The second 
limitation of this study is that only patients who underwent 
radical prostatectomy were enrolled, as RP pathology was 
required for the analysis. However, in the broader clinical 
context, many patients may not be candidates for RP due 
to various reasons, such as advanced prostate cancer with 
no chance for curative surgery. Therefore, the generalizabil-
ity of the study’s conclusions should be further assessed in 
patient populations that do not undergo RP. Future studies 

Fig. 5  DCA curves of the models. This plot depicts the decision 
curve analysis of biopsy pathology (red), the MR model (blue), and 
the combined model (green), aiming to assess the clinical utility of 
these methods by analyzing the net benefit obtained from their use 
across various threshold probabilities. The “all” curve in the plot 
corresponds to the scenario where all patients are classified as posi-
tive (csPCa), irrespective of their actual diagnosis. Conversely, the 
“none” curve represents the scenario where no patients are classified 
as csPCa. The x-axis represents the threshold probability, which indi-
cates the probability at which the methods are willing to act upon a 
positive prediction. The y-axis represents the net benefit gained from 
employing the models. By examining the decision curve plot, it can 
be concluded that the combined model outperformed both the biopsy 
pathology and MR model for all risk thresholds ranging from 0.5 to 
1, indicating its superior clinical utility

Table 5  Comparison of the AUCs in PZ, TZ, and PZ&TZ lesions in 
different methods

*AUC pz AUC for evaluating csPCa lesions located in the peripheral 
zone, AUC tz AUC for evaluating csPCa lesions located in the tran-
sitional zone, AUC pz+tz AUC for evaluating csPCa lesions located 
across both the peripheral zone and the transitional zone

Method AUC pz vs. AUC tz AUC pz vs. 
AUC pz+tz

AUC tz vs. 
AUC pz+tz

Biopsy pathology 0.661 0.409 0.236
MR model 0.451 0.845 0.497
Combined model 0.628 0.278 0.170
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could include patients who undergo alternative treatments 
or active surveillance to assess the performance of the AI 
model in these populations. The study has a limitation in that 
only a limited number of clinical variables were included, 
which were age, PSA, and mpMRI. Other important clinical 
and imaging data, such as digital rectal examination, ultra-
sound, PET-CT, and prostate health index (PHI), were not 
taken into account. Therefore, incorporating a broader range 
of relevant data in future studies is necessary to enhance the 
precision and dependability of the prediction model.

In summary, AI-extracted image features from mpMRI 
images can accurately predict the aggressiveness of prostate 
cancer, similar to biopsy pathology. The accuracy of this pre-
diction can be further improved by combining the AI-extracted 
mpMRI image features with biopsy pathology, which outper-
forms biopsy pathology alone. After further evaluation, this 
prediction model can be used for the re-evaluation of biopsy 
pathology and active surveillance of prostate cancer.
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Fig. 6  Nomogram of the combined model. This plot provides a vis-
ual representation of the combined model, which serves as a graphi-
cal tool for predicting the probability of csPCa based on the predic-
tor variables. It allows for the estimation of an individual’s csPCa 
probability by assigning numerical values to each predictor vari-
able and summing up the total points. This nomogram utilizes the 
uppermost line as a reference for scoring points ranging from 0 to 

100, corresponding to each predictor. Predictor variables, including 
biopsy pathology and AI-extracted image features  (DWIlesion/prostate, 
 ADClesion/prostate,  DWIlesion,  DWIprostate), are displayed below with bars 
indicating their relative weight. The sum of points can be checked on 
the “Points” line, and the corresponding probability of csPCa can be 
ascertained from the lowermost line
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