Skip to main content
Log in

Long-term visit-to-visit variability in low-density lipoprotein cholesterol is associated with poor cardiovascular and kidney outcomes in patients with primary nephrotic syndrome

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

It is unclear whether long-term variability in low-density lipoprotein cholesterol (LDL-C) is associated with clinical outcomes in patients with nephrotic syndrome (NS).

Methods

A large cohort of 1100 patients with primary NS underwent treatment and regular follow-up. Long-term variability in LDL-C was assessed by calculating its weighted standard deviation (w-SD). The primary endpoints of this study were the occurrence of arteriosclerotic cardiovascular disease (ASCVD) or kidney dysfunction. Factors associated with the w-SD of LDL-C were evaluated by linear regression. Associations of the w-SD of LDL-C with clinical outcomes were evaluated by Cox proportional hazards regression.

Results

Over a median follow-up of 44.8 (interquartile range, 26.8, 70.1) months, 198 patients developed ASCVD (45.9 cases per 1,000 patient-years), and 84 patients developed kidney dysfunction (17.6 cases per 1,000 patient-years). The incidence rates of the primary outcomes increased across the quartiles of the w-SD of LDL-C (log-rank, P < 0.001). Multivariate Cox regression analysis showed that higher LDL-C variability was associated with an increased risk of ASCVD [hazard ratio (HR), 2.236; 95% confidence interval (CI), 1.684–2.969, P < 0.001] and an increased risk of kidney dysfunction (HR, 3.047; 95% CI 2.240–4.144, P < 0.001). The results were similar after adjusting the w-SD of LDL-C by its related parameters (baseline and mean LDL-C as well as mean total cholesterol), although the mean LDL-C was also an independent risk factor for ASCVD and kidney dysfunction.

Conclusion

Long-term variability in LDL-C was independently associated with the risk of ASCVD and kidney dysfunction in NS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data underlying this article are available in the article and in its online supplementary material.

References

  1. Wanner C, Tonelli M, Kidney Disease: Improving Global Outcomes Lipid Guideline Development Work Group Members (2014) KDIGO clinical practice guideline for lipid management in CKD: summary of recommendation statements and clinical approach to the patient. Kidney Int 85(6):1303–1309. https://doi.org/10.1038/ki.2014.31

    Article  CAS  PubMed  Google Scholar 

  2. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group (2021) KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int 100(4S):S1–S276. https://doi.org/10.1016/j.kint.2021.05.021

    Article  Google Scholar 

  3. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group (2013) KDIGO clinical practice guideline for lipid management in chronic kidney disease. Kidney Int Suppl 3(3):259–305. https://doi.org/10.1038/kisup.2013.27

    Article  Google Scholar 

  4. Ferro CJ, Mark PB, Kanbay M, Sarafidis P, Heine GH, Rossignol P, Massy ZA, Mallamaci F, Valdivielso JM, Malyszko J, Verhaar MC, Ekart R, Vanholder R, London G, Ortiz A, Zoccali C (2018) Lipid management in patients with chronic kidney disease. Nat Rev Nephrol 14(12):727–749

    Article  CAS  PubMed  Google Scholar 

  5. Nickolas TL, Radhakrishnan J, Appel GB (2003) Hyperlipidemia and thrombotic complications in patients with membranous nephropathy. Semin Nephrol 23(4):406–411. https://doi.org/10.1016/s0270-9295(03)00058-5

    Article  PubMed  Google Scholar 

  6. Goldstein JL, Brown MS (2015) A Century of cholesterol and coronaries: from plaques to genes to statins. Cell 161(1):161–172. https://doi.org/10.1016/j.cell.2015.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reiss AB, Voloshyna I, De Leon J, Miyawaki N, Mattana J (2015) Cholesterol metabolism in CKD. Am J Kidney Dis 66(6):1071–1082. https://doi.org/10.1053/j.ajkd.2015.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C et al (2011) The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377(9784):2181–2192. https://doi.org/10.1016/S0140-6736(11)60739-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim MK, Han K, Kim HS, Park YM, Kwon HS, Yoon KH, Lee SH (2017) Cholesterol variability and the risk of mortality, myocardial infarction, and stroke: a nationwide population-based study. Eur Heart J 38(48):3560–3566. https://doi.org/10.1093/eurheartj/ehx585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim MK, Han K, Park YM, Kwon HS, Kang G, Yoon KH, Lee SH (2018) Associations of variability in blood pressure, glucose and cholesterol concentrations, and body mass index with mortality and cardiovascular outcomes in the general population. Circulation 138(23):2627–2637. https://doi.org/10.1161/CIRCULATIONAHA.118.034978

    Article  CAS  PubMed  Google Scholar 

  11. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, Goldberg R, Heidenreich PA, Hlatky MA, Jones DW, Lloyd-Jones D, Lopez-Pajares N, Ndumele CE, Orringer CE, Peralta CA, Saseen JJ, Smith SC Jr, Sperling L, Virani SS, Yeboah J (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. J Am Coll Cardiol 73(24):e285–e350. https://doi.org/10.1016/j.jacc.2018.11.003

    Article  PubMed  Google Scholar 

  12. Wang Q, Wang Y, Wang J, Zhang L, Zhao MH; C-STRIDE (Chinese Cohort Study of Chronic Kidney Disease) (2020) Short-term systolic blood pressure variability and kidney disease progression in patients with chronic kidney disease: results from C-STRIDE. J Am Heart Assoc 9(12):e15359. https://doi.org/10.1161/JAHA.120.015359

    Article  Google Scholar 

  13. Stevens LA, Claybon MA, Schmid CH, Chen J, Horio M, Imai E, Nelson RG, Van Deventer M, Wang HY, Zuo L, Zhang YL, Levey AS (2011) Evaluation of the chronic kidney disease epidemiology collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int 79(5):555–562. https://doi.org/10.1038/ki.2010.462

    Article  PubMed  Google Scholar 

  14. Agrawal S, Zaritsky JJ, Fornoni A, Smoyer WE (2018) Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol 14(1):57–70. https://doi.org/10.1038/nrneph.2017.155

    Article  CAS  PubMed  Google Scholar 

  15. Collaboration ERF, Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, Wood AM, Lewington S, Sattar N, Packard CJ, Collins R, Thompson SG, Danesh J (2009) Major lipids, apolip oproteins, and risk of vascular disease. JAMA 302(18):1993–2000. https://doi.org/10.1001/jama.2009.1619

    Article  Google Scholar 

  16. Thobani A, Jacobson TA (2021) Dyslipidemia in patients with kidney disease. Cardiol Clin 39(3):353–363. https://doi.org/10.1016/j.ccl.2021.04.008

    Article  PubMed  Google Scholar 

  17. Bowe B, Xie Y, Xian H, Balasubramanian S, Al-Aly Z (2016) Low levels of high-density lipoprotein cholesterol increase the risk of incident kidney disease and its progression. Kidney Int 89(4):886–896. https://doi.org/10.1016/j.kint.2015.12.034

    Article  CAS  PubMed  Google Scholar 

  18. Liang X, Ye M, Tao M, Zheng D, Cai R, Zhu Y, Jin J, He Q (2020) The Association between dyslipidemia and the incidence of chronic kidney disease in the general zhejiang population: a retrospective study. BMC Nephrol 21(1):252. https://doi.org/10.1186/s12882-020-01907-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rahman M, Yang W, Akkina S, Alper A, Anderson AH, Appel LJ, He J, Raj DS, Schelling J, Strauss L, Teal V, Rader DJ, CRIC Study Investigators (2014) Relation of Serum lipids and lipoproteins with progression of Ckd: the CRIC study. Clin J Am Soc Nephrol 9(7):1190–1198. https://doi.org/10.2215/CJN.09320913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muntner P, Coresh J, Smith JC, Eckfeldt J, Klag MJ (2000) Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study. Kidney Int 58(1):293–301. https://doi.org/10.1046/j.1523-1755.2000.00165.x

    Article  CAS  PubMed  Google Scholar 

  21. Bangalore S, Breazna A, Demicco DA, Wun CC, Messerli FH, TNT steering committee and investigators (2015) Visit-to-visit low-density lipoprotein cholesterol variability and risk of cardiovascular outcomes: insights from the TNT trial. J Am Coll Cardiol 65(15):1539–1548. https://doi.org/10.1016/j.jacc.2015.02.017

    Article  CAS  PubMed  Google Scholar 

  22. Bangalore S, Fayyad R, Messerli FH, Laskey R, DeMicco DA, Kastelein JJ, Waters DD (2017) Relation of variability of low-density lipoprotein cholesterol and blood pressure to events in patients with previous myocardial infarction from the IDEAL trial. Am J Cardiol 119(3):379–387. https://doi.org/10.1016/j.amjcard.2016.10.037

    Article  CAS  PubMed  Google Scholar 

  23. Lin YH, Huang JC, Wu PY, Chen SC, Chiu YW, Chang JM, Chen HC (2017) Greater low-density lipoprotein cholesterol variability is associated with increased progression to dialysis in patients with chronic kidney disease stage. Oncotarget 9(3):3242–3253. https://doi.org/10.18632/oncotarget.23228

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ceriello A, De Cosmo S, Rossi MC, Lucisano G, Genovese S, Pontremoli R, Fioretto P, Giorda C, Pacilli A, Viazzi F, Russo G, Nicolucci A, AMD-Annals Study Group (2017) Variability in HbA1c, blood pressure, lipid parameters and serum uric acid, and risk of development of chronic kidney disease in type 2 diabetes. Diabetes Obes Metab 19(11):1570–1578. https://doi.org/10.1111/dom.12976

    Article  CAS  PubMed  Google Scholar 

  25. Kim MK, Han K, Koh ES, Kim HS, Kwon HS, Park YM, Yoon KH, Lee SH (2017) Variability in total cholesterol is associated with the risk of end-stage renal disease: a nationwide population-based study. Arterioscler Thromb Vasc Biol 37(10):1963–1970. https://doi.org/10.1161/ATVBAHA.117.309803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Messerli FH, Hofstetter L, Rimoldi SF, Rexhaj E, Bangalore S (2019) Risk factor variability and cardiovascular outcome: JACC review topic of the week. J Am Coll Cardiol 73(20):2596–2603. https://doi.org/10.1016/j.jacc.2019.02.063

    Article  PubMed  Google Scholar 

  27. Marti-Soler H, Gubelmann C, Aeschbacher S, Alves L, Bobak M, Bongard V et al (2014) Seasonality of cardiovascular risk factors: an analysis including over 230000 participants in 15 countries. Heart 100(19):1517–1523. https://doi.org/10.1136/heartjnl-2014-305623

    Article  CAS  PubMed  Google Scholar 

  28. Mann DM, Glazer NL, Winter M, Paasche-Orlow MK, Muntner P, Shimbo D, Adams WG, Kressin NR, Zhang Y, Choi H, Cabral H (2013) A pilot study identifying statin nonadherence with visit-to-visit variability of low-density lipoprotein cholesterol. Am J Cardiol 111(10):1437–1442. https://doi.org/10.1016/j.amjcard.2013.01.297

    Article  PubMed  PubMed Central  Google Scholar 

  29. Takenouchi A, Tsuboi A, Kitaoka K, Minato S, Kurata M, Fukuo K, Kazumi T (2017) Visit-to-visit low-density lipoprotein cholesterol variability is an independent determinant of carotid intima-media thickness in patients with Type 2 diabetes. J Clin Med Res 9(4):310–316. https://doi.org/10.14740/jocmr2871w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smit RAJ, Jukema JW, Postmus I, Ford I, Slagboom PE, Heijmans BT, Le Cessie S, Trompet S (2018) Visit-to-visit lipid variability: clinical significance, effects of lipid-lowering treatment, and (Pharmaco) genetics. J Clin Lipidol 12(2):266–276. https://doi.org/10.1016/j.jacl.2018.01.001

    Article  PubMed  Google Scholar 

  31. Vaziri ND (2016) Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Kidney Int 90(1):41–52. https://doi.org/10.1016/j.kint.2016.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vaziri ND (2016) HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nat Rev Nephrol 12(1):37–47. https://doi.org/10.1038/nrneph.2015.180

    Article  CAS  PubMed  Google Scholar 

  33. Haas ME, Levenson AE, Sun X, Liao WH, Rutkowski JM, de Ferranti SD, Schumacher VA, Scherer PE, Salant DJ, Biddinger SB (2016) The role of proprotein convertase subtilisin/kexin type 9 in nephrotic syndrome-associated hypercholesterolemia. Circulation 134(1):61–72. https://doi.org/10.1161/CIRCULATIONAHA.115.020912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Macfarlane DP, Forbes S, Walker BR (2008) Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J Endocrinol 197(2):189–204. https://doi.org/10.1677/JOE-08-0054

    Article  CAS  PubMed  Google Scholar 

  35. Vincenti F, Jensik SC, Filo RS, Miller J, Pirsch J (2002) A Long-Term comparison of tacrolimus (fk506) and cyclosporine in kidney transplantation: evidence for improved allograft survival at five years. Transplantation 73(5):775–782. https://doi.org/10.1097/00007890-200203150-00021

    Article  CAS  PubMed  Google Scholar 

  36. Perticone F, Maio R, Perticone M, Sciacqua A, Shehaj E, Naccarato P, Sesti G (2010) Endothelial dysfunction and subsequent decline in glomerular filtration rate in hypertensive patients. Circulation 122(4):379–384. https://doi.org/10.1161/CIRCULATIONAHA.110.940932

    Article  CAS  PubMed  Google Scholar 

  37. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340(2):115–126. https://doi.org/10.1056/NEJM199901143400207

    Article  CAS  PubMed  Google Scholar 

  38. Alfonso F, Rivero F, Sánchez-Madrid F (2018) Variability in atherogenic lipoproteins and coronary artery disease progression. Eur Heart J 39(27):2559–2561. https://doi.org/10.1093/eurheartj/ehy348

    Article  PubMed  Google Scholar 

  39. Eom M, Hudkins KL, Alpers CE (2015) Foam cells and the pathogenesis of kidney disease. Curr Opin Nephrol Hypertens 24(3):245–251. https://doi.org/10.1097/MNH.0000000000000112

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jin-ying Wang for providing technical support.

Funding

This work was supported by grants from the Natural Science Foundation of China (81870486, 82070732, and 82090021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Cui.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures involving human participants were approved by the Ethics Committee of Peking University First Hospital and complied with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, X., Cui, Z., Zhang, H. et al. Long-term visit-to-visit variability in low-density lipoprotein cholesterol is associated with poor cardiovascular and kidney outcomes in patients with primary nephrotic syndrome. Int Urol Nephrol 55, 1565–1574 (2023). https://doi.org/10.1007/s11255-023-03467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03467-7

Keywords

Navigation