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Abstract
Oxidative stress (OS) has been recognized as a pathophysiologic mechanism underlying the development and progression 
of chronic kidney disease (CKD). OS, which results from the disturbance of balance among pro-oxidants and antioxidants 
favoring the pro-oxidants, is present even in early CKD and increases progressively along with deterioration of kidney func-
tion to end-stage kidney disease (ESKD). In ESKD, OS is further exacerbated mainly due to dialysis procedures per se and 
predisposes to increased cardiovascular morbidity and mortality. Therefore, since OS plays a pivotal role in the pathogenesis 
and progression of atherosclerosis in uremic patients, several strategies aiming to ameliorate OS in these patients have been 
proposed. Among those, N-acetylcysteine (NAC), a thiol-containing antioxidant agent, has attracted special attention due to 
its pleiotropic functions and beneficial effect in various OS-related entities including paracetamol overdose and prevention 
of contrast-induced nephropathy. In this review, we present the currently available literature on the antioxidant and anti-
inflammatory properties of NAC in CKD, including hemodialysis and peritoneal dialysis.

Keywords  Oxidative stress · Antioxidants · Chronic kidney disease · End-stage renal disease · Inflammation · 
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Introduction

Oxidative stress (OS) results from the disruption of bal-
ance between pro-oxidants (substances gaining electrons) 
and antioxidants (substances donating electrons) weighing 
in favor of the former. This balance is essential for main-
taining homeostasis, and when disrupted, may lead to 
multiple pathological conditions, including cancer and ath-
erosclerosis. Free radicals, including hydroxyl, superoxide 
anion, hydrogen peroxide, oxygen singlet, nitric oxide and 
peroxynitrite are independent molecular species that con-
tain unpaired electrons in an atomic orbital. Due to their 

molecular structure missing electrons, free radicals are 
unstable and highly reactive. In an attempt to gain stability, 
free radicals interact and “steal” one electron from macro-
molecules such as nucleic acids, proteins, lipids and carbo-
hydrates, resulting in their structural oxidative modification 
and dysfunction [1–4]. Antioxidants, on the other hand, are 
stable molecules that donate electrons and neutralize free 
radicals minimizing cellular damage. Naturally occurring 
antioxidant defense mechanisms might be either enzymatic 
(dismutase superoxide, catalase, and glutathione peroxidase) 
or non-enzymatic (uric acid, ascorbic acid, bilirubin, albu-
min, flavonoids, α-tocopherol, ubiquinol and carotenoids) [2, 
4, 5]. Although we tend to refer to OS as a harmful condi-
tion, when maintained at low levels, free radicals are essen-
tial for human health and thus, low-level OS is crucial for 
maintaining homeostasis and plays a pivotal role in redox 
signaling, cell metabolism, immune defense, neural activity 
and cell reproduction.

The leading cause of mortality in chronic kidney dis-
ease (CKD) patients remains cardiovascular (CV) dis-
ease [6], which is partially attributed to OS. Compared 
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to healthy individuals, OS along with inflammation are 
highly prevalent even at early stages of CKD and are 
gradually increased parallelly to deterioration of kidney 
function, as disease progresses towards end-stage renal 
disease (ESRD) [2, 7]. In the uremic environment, ele-
vated OS leads to reduced bioavailability of nitric oxide 
(NO) resulting in decreased vascular relaxation, vascular 
damage, lipid peroxidation and subsequently endothelial 
dysfunction, the hallmark of atherosclerosis [7, 8]. The 
increase of OS in CKD is also attributed to the limited 
activity or reduced levels of antioxidants, most com-
monly resulting from nutritional restrictions regarding 
fruits and vegetables [9–11]. Compared to non-dialysis 
ESRD, those undergoing maintenance hemodialysis (HD) 
present significantly increased OS status. This is due to 
several factors. The HD procedure per se aggravates OS 
status; during a dialysis session, reactive oxygen species 
(ROS) accumulation begins immediately, peaking at 3 h 
to a 14-fold increase and decreases to pre-dialysis levels 
shortly after the end of the session [12]. The generated 
free radicals interact with multiple biomolecules altering 
their structural and functional integrity [11]. In addition, 
the protein-binding properties of multiple uremic toxins 
limit their removal via HD, promoting endothelial damage, 
further inflammation and OS generation [6]. Other factors 
promoting free radicals formation during a HD session are 
arteriovenous fistulae dysfunction, use of central venous 
catheters, contamination of the dialysate and intravenous 
administration of iron and heparin [13]. Anti-oxidant 
defense systems are also reduced in HD patients and con-
tribute to the increased levels of OS [14].

Although peritoneal dialysis (PD) is considered a more 
compatible dialysis technique compared to HD, OS is still 
present in this dialysis modality and is associated with clin-
ical adverse endpoints [13]. In PD, the mechanisms trig-
gering OS differ significantly from HD [3, 15, 16] and are 
mainly attributed to the composition of low pH, lactate-buff-
ered, hyper-osmolar and hyperglycemic PD solutions. The 
process of PD fluids’ heat sterilization leads to the forma-
tion of glucose degeneration products (GDP) which promote 
generation of advanced glycation end-products (AGEs) and 
pro-oxidants [17–20]. Chronic exposure of the peritoneal 
membrane to AGEs and ROS leads to progressive increase 
of peritoneal vascular permeability and cellular apoptosis 
[19]. These molecular and structural alterations eventually 
result to the occurrence of adverse clinical endpoints, includ-
ing loss of residual renal function, inflammation, peritonitis, 
technique failure, endothelial dysfunction, atherosclerosis, 
CV disease and mortality [16, 21–23]. Since the main cul-
prit for OS in PD is PD solutions, the strategies to reduce 
OS in these patients include the use of more biocompatible 
fluids with neutral pH, low glucose generation products with 
bicarbonate as buffer. In addition, volume management and 

strict glycemic control might also help using solutions with 
lower glucose concentrations [19, 24–28].

In ESRD patients undergoing either HD or PD, OS is 
increased and associated with adverse events, including 
development and progression of atherosclerosis, CV dis-
ease and mortality [29–48]. Therefore, there is a need for 
new strategies to ameliorate OS in these patients and pos-
sible protect them from CV disease. During the past decade, 
N-acetylcysteine (NAC) has emerged as a novel and quite 
powerful antioxidant agent [49]. Here, we aim to review the 
existing data regarding the possible antioxidant and anti-
inflammatory properties of NAC in CKD and ESRD.

NAC: molecular structure and properties

NAC was first used in the early 1960s as a mucolytic agent 
in patients with cystic fibrosis. The acetylation of the N-ter-
minal of cysteine provides adequate stability to the sulfur-
containing molecule of cysteine to deliver a thiol group 
(reduced sulfhydryl moiety) and allows it to function as a 
mucolytic agent by disrupting the disulfide bridges within 
the glycoprotein matrix of mucus without being deactivated 
by metabolism and rapid oxidation in the solution [50]. NAC 
has been also used as an effective antidote in paracetamol 
overdose acting as a precursor of the substrate (l-cysteine) 
in synthesis of hepatic glutathione (GSH) which might be 
depleted due to conjugation with paracetamol. GSH is the 
most important intracellular, endogenous antioxidant com-
prising of glutamic acid (E), glycine (G), and cysteine (C). 
The rate of GSH synthesis depends on the activity of gluta-
mate-cysteine ligase. GSH has multiple functions including 
protein thiolation, drug detoxification and antioxidative pro-
tection of cellular components. The antioxidative properties 
of GSH derive from the free sulfhydryl group that directly 
interacts with free radicals as well as its role as a substrate 
of co-factor for various enzymes including glutathione 
reductase, glutaredoxin, glyoxalases 1 and 2, glutathione 
transferase, and membrane-associated proteins with diver-
gent functions in Eicosanoid and Glutathione metabolism 
(MAPEG) [51, 52]. The anti-inflammatory and antioxidant 
molecular mechanisms of NAC are shown in Fig. 1.

During the past decade, research has focused on the pos-
sible beneficial antioxidant effects of NAC in multiple con-
ditions where OS is involved [50]. NAC is believed to act 
as an antioxidant by several mechanisms: first, it is a direct 
sulfhydryl donor for the neutralization of ROS; second, it 
modulates extracellular glutamate and intracellular GSH lev-
els, third, it acts as a reducing agent for protein disulfides 
and finally it restores thiol pools, which in turn regulate the 
redox state [7, 53–56]. In addition to antioxidant properties, 
NAC inhibits the function of pro-inflammatory transcrip-
tion factors such as AP-1 (activator protein 1) and NF-κB 
(nuclear factor kappa-light-chain-enhancer of activated 
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B cells), well-known pre-cursors of OS [57, 58]. In addi-
tion, NAC is believed to exert cardioprotective properties 
through increasing endothelial nitric oxide synthase expres-
sion, improving nitric oxide bioavailability and suppressing 
angiotensin-converting enzyme activity, thus leading to vas-
orelaxation [7, 59–64]. Furthermore, NAC acts as a methyl 
donor in the conversion of homocysteine to methionine and 
also contributes to the displacement of homocysteine from 
serum albumin binding sites, a property that can be utilized 
during dialysis sessions to increase levels of unbound homo-
cysteine available for plasma clearance [65–70].

NAC for the prevention of contrasted‑induced 
nephropathy

Besides its use as a mucolytic agent, NAC has been widely 
used for the prevention of contrast-induced nephropathy 
(CIN) as various evidence suggest the involvement of OS 
in the pathophysiology of this condition [2, 71, 72]. The 
use of NAC as a preventive measure for the development of 
CIN relies on its antioxidant and vasorelaxant properties; 
NAC reduces ROS and tissue damage in the kidneys, mini-
mizes vasoconstriction and stabilizes renal hemodynam-
ics [71, 73]. To investigate the beneficial effect of NAC on 
CIN prevention, Guo et al. [74] conducted a meta-analysis 
including seven randomized clinical trials and 1710 ST seg-
ment elevation myocardial infarction patients undergoing 
primary percutaneous coronary intervention and demon-
strated a 49% and 63% reduced risk of CIN and all-cause in-
hospital mortality, respectively. In a subgroup analysis, the 
preventive effect of NAC appeared greater in patients with 
pre-existing impaired renal function and in those receiv-
ing higher dosages of NAC. Similarly, other meta-analyses 
coherently reported a 22–33% beneficial effect of NAC on 
preventing CIN [73, 75, 76], which was more pronounced 

in patients with pre-existing CKD [71]. However, the larg-
est RCT until to date, the PRESERVE trail, failed to show 
any therapeutic effect of NAC regarding CIN prevention 
[77] and other meta-analyses providing conflicting results 
12/27/2022 4:41:00 P.M. Based on the contradictory results 
of the existing trials and meta-analyses, current guidelines 
do not longer recommend NAC for CIN prevention. Since 
the alternatives for CIN prevention are very limited, future 
trials are needed examining different dosages and timing 
of NAC administration, combined with saline hydration in 
order to draw definite conclusions regarding the reno-pro-
tective effects of NAC.

NAC as an antioxidant in CKD

Accumulating preclinical data support the use of NAC in 
uremia and CKD. In animal models, NAC prevented GSH 
depletion in vascular cells exposed to uremic serum and thus 
diminished systemic OS that promotes CKD progression 
[78]. In addition, in a model of uremia-enhanced athero-
sclerosis, NAC reduced the progression of atheroma also by 
reducing OS [79]. In other in vivo studies, NAC appeared to 
have a protective effect on cyclosporin induced nephrotox-
icity, through amelioration of local and systemic OS [80]. 
Experimental studies also suggested another molecular path-
way through which NAC combats OS; in uremic animals, 
NAC administration directly attacked and neutralized AGEs 
that are released due to the uremic environment [81].

The clinical data regarding the effect of NAC in CKD 
populations are limited and have failed to show any reno-
protective effect. Short-term oral NAC administration in 
CKD patients stage 3 showed no difference in renal function 
compared to placebo [82–84]. Similarly, NAC administra-
tion failed to show any therapeutic effect on the proteinu-
ria levels of CKD patients with [85] and without diabetes 

Fig. 1   Anti-inflammatory and 
antioxidant molecular mecha-
nisms of NAC
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[53]. However, in a cohort of CKD patients (stages 3–4) 
that received intravenous iron infusion for anemia correc-
tion, NAC resulted in a significant reduction of OS [86]. In 
kidney transplant recipients, the data are extremely limited; 
only a double-blinded, placebo-controlled randomized con-
trolled trial (RCT) has been performed until to date [9]. This 
study showed a significant reno-protective effect in the NAC 
group, assessed by improvement in immediate graft function 
(28% increase over placebo) and first week eGFR (14 ml/
min higher than placebo). Interestingly, this reno-protective 
effect of NAC was not attributed to its’ antioxidant prop-
erties, since there was no difference on malondialdehyde 
(MDA) levels between the groups. The authors hypothesized 
that other NAC properties, such as anti-inflammatory and 
vasodilatory might be responsible for their findings. To 
investigate the possible clinical benefits of NAC supple-
mentation, Ye et al., performed a recent meta-analysis [87] 
including 768 CKD patients and 20 studies and found that 
NAC was safe without any severe adverse events. Moreover, 
NAC suppressed the levels of inflammatory cytokines and 
homocysteine, protected kidney function and was associated 
with reduced CV events (relative risk = 0.60, number needed 
to treat = 5.29). However, the authors recognized as limita-
tions of their study the heterogeneity and low quality of the 
included studies and the fact that the majority of the pooled 
data included only few trials.

Therefore, the majority of data supporting the antioxidant 
effects of NAC in CKD are derived from experimental stud-
ies. The clinical studies are very scarce and have failed to 
show a clear-cut clinical benefit of NAC supplementation in 
pre-dialysis CKD.

NAC as an antioxidant in HD

Advanced oxidation protein products (AOPPs) in uremic 
plasma are indicators of oxidative damage to proteins and 
act as inflammation mediators resulting in monocyte and 
polymorphonuclear (PMN) activation. Release of AOPPs 
promotes monocyte respiratory burst and tumor necrosis 
factor-a (TNF-a) synthesis while PMNs produce free radi-
cals by the molecular pathway of nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase and myeloper-
oxidase (MPO). NAC inhibits AOPP-induced oxidation of 
both monocytes and PMNs in a receptor-dependent way; 
therefore, it is suggested that in HD, NAC’s antioxidant 
activity might be selective and dependent on intracel-
lular signaling rather than nonspecific oxidant scaveng-
ing [88–90]. A clinical trial in 24 chronic HD patients 
evaluated the circulating levels of MDA (a lipid peroxi-
dation marker formed in the tissues by exposure to free 
radicals) pre- and post-dialysis after NAC administration 
(600 mg per os twice daily for 4 weeks) demonstrating that 
NAC significantly reduced the levels of MDA compared 

to placebo. Of note, HD alone was not able to diminish 
elevated MDA levels in chronic HD patients suggesting 
that glutathione repletion by NAC might be an additional 
mechanism contributing to the antioxidant properties of 
NAC [91]. Besides attacking directly and neutralizing 
free radicals, a double-blind, placebo-controlled RCT 
supported that NAC administration might reduce OS in 
chronic HD patients also by restoring the antioxidant 
defense mechanisms, assessed by total antioxidant capac-
ity (TAC) [2].

In HD patients, intravenous iron administration is frequent 
and associated with increased OS. A randomized, cross-over 
clinical trial divided 40 HD patients in four cross-over treat-
ment groups of 10 patients each according to iron sucrose 
administration dose (50 or 100 mg) and NAC supplementa-
tion (NAC or no NAC). NAC administration resulted in sig-
nificant increase in TAC, whereas MDA serum levels were 
only reduced in the low iron dose group [92]. Swarnalatha 
et al. conducted a prospective, double-blinded, randomized 
controlled, cross-over study with 14 HD patients treated 
with intravenous iron receiving either NAC or placebo. NAC 
reduced MDA levels that were released after administration 
of intravenous iron therapy [5]. Likewise, another single-
arm clinical trial reported decrease in MDA and asymmetric 
dimethylarginine (ADMA) levels post-intervention (NAC 
administration 600 mg per os before meals for 6 months) 
[93]. Since ADMA has been repeatedly associated with mor-
tality and CV events in HD patients, another double-blind 
placebo-controlled clinical trial used it as a therapeutic tar-
get and showed that intravenous administration of high dose 
NAC (5 g) during HD resulted in significant reduction of 
serum ADMA levels post-dialysis compared with HD alone 
[94]. Since HD is a state of increased OS and inflamma-
tion, several studies aimed to investigate whether NAC sup-
plementation might also ameliorate inflammation in these 
patients. A prospective, non-randomized, non-controlled 
clinical trial in a cohort of HD patients suggested a decrease 
in inflammatory and OS biomarkers after NAC administra-
tion, including high-sensitivity C-reactive protein (hs-CRP) 
and interleukin 6 (IL-6) [95], which have been repeatedly 
reported to be indicators of CV disease in CKD. IL-6 might 
act as a marker of atherosclerosis as well as a pro-ather-
ogenic cytokine affecting multiple metabolic, endothelial, 
and coagulant pathways. In addition, CRP activates multiple 
inflammatory processes underlying the development of ath-
erosclerosis [96–99]. Since CV morbidity and mortality in 
CKD has been associated with OS and inflammation [100], 
it was hypothesized that NAC might also exert cardiopro-
tective effects in HD patients. A prospective, randomized, 
placebo-controlled trial in 134 maintenance HD patients, 
showed that daily, oral administration of NAC (600 mg/day) 
for a median of 14.5 months, was accompanied by a 40% 
reduction in the occurrence of CV events [101].
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Another beneficial effect of NAC in HD patients is 
improvement of anemia. Red blood cell (RBC) reductase 
activity and TAC increased with NAC administration, 
while plasma levels of 8-isoprostane and oxidized low-den-
sity lipoprotein (ox-LDL) decreased, thus suggesting that 
positive outcomes of uremic anemia might be linked with 
improvement of OS status [55]. The presence of residual 
renal function (RRF) is an important predictor of survival 
in chronic dialysis patients [102–104]. In a non-randomized, 
non-blinded study, oral NAC significantly improved RRF in 
a small cohort of HD patients [105]. This was also confirmed 
in a randomized, multi-center, parallel-group, open-label 
study demonstrating that oral daily supplementation with 
NAC at a high dose of 1200 mg significantly improved RRF, 
urine volume and Kt/V [10].

Another novel risk factor for CV morbidity and mor-
tality in CKD is hyperhomocysteinaemia [106]. Increased 
levels of homocysteine (Hcy) in plasma are indicators of 
increased OS, and contribute to endothelial dysfunction 
[8, 31]. Bostom et al., reported a non-significant reduction 
of homocysteine in a cohort of 11 HD patients receiving 
a single dose of oral NAC; however, the sample was very 
small and administration timing was not closely monitored 
to achieve optimal pharmacokinetics of NAC [107]. From 
this old study and there, several other investigators exam-
ined the effect of NAC on Hcy levels in ESRD patients. In a 
randomized, placebo-controlled cross-over study of 20 HD 
patients, Scholze et al., found that iv NAC administration 
during HD enhanced plasma Hcy clearance and ameliorated 
endothelial function [68]. Another study showed that addi-
tion of NAC to HD with high-flux membranes was accom-
panied with a significant reduction of circulating TNF-α, 
interleukin 10 (IL-10), hs-CRP and plasma Hcy, which was 
more pronounced in patients with RRF [108]. Thaha et al. 
performed a randomized, placebo-controlled trial and found 
a reduction in plasma Hcy and pulse pressure after dialysis 
with NAC supplementation [106]. Similarly, in a parallel, 
multi-center intervention study, Perna et al., showed that 
combined therapy of intravenous supplementation with NAC 
at a high dose of 5 g with 15 mg folates (5-methyltetrahy-
drofolate, MTHF) for 10 HD sessions, effectively reduced 
plasma Hcy levels in chronic HD patients [66]. The thera-
peutic effect of NAC in reducing plasma Hcy is reported to 
be about 11% higher than placebo [109].

In HD, NAC might improve OS, inflammation and ane-
mia status; however, the existing evidence is derived from 
studies with various limitations, including short duration 
of treatment, small sample size and heterogeneity in the 
design. Moreover, the data regarding the clinical effect of 
NAC in hard endpoints, such as mortality and CV events are 
extremely limited, and therefore, currently, the administra-
tion of NAC in HD patients cannot be recommended. To 
elucidate whether NAC might be beneficial for CKD/ESKD 

patients and draw more definite conclusions, future, larger, 
well-designed RCTs are needed.

NAC as an antioxidant in PD

Since the culprit for triggering OS in PD is PD solutions, it 
was interesting to hypothesize that addition of antioxidants, 
such as NAC, to the dialysate might improve OS status. Sev-
eral experimental studies suggested the clinical stability of 
NAC in PD solutions [52, 110]. In vitro, generation of for-
maldehyde (which is toxic for the peritoneal membrane) in 
heat-sterilized PD solutions was reduced by the administra-
tion of reduced thiol compounds [111]. Administration of 
NAC in the high-glucose compartment of neutral-pH-type 
PD solutions prevented GDP-mediated peritoneal membrane 
failure in PD patients [52]. In addition, NAC appeared to 
reduce the generation of AGEs [112] and diminished mito-
chondrial oxidative injury induced by conventional peri-
toneal solution in human peritoneal mesothelial cells by 
preserving the levels of reduced glutathione [113, 114]. In 
uremic rat models undergoing PD treatment, NAC prevented 
the OS-induced structural and functional alterations of the 
peritoneal membrane [115], decreased inflammation and 
vascular injury and, therefore, preserved the integrity of the 
peritoneal membrane [116].

After the exciting results reported in experimental stud-
ies, several researchers designed clinical trials to explore if 
the beneficial effect of NAC in preclinical trials could be 
replicated in human subjects as well. A placebo-controlled 
study in PD patients found that oral intake of 600 mg of 
NAC twice daily for 8 weeks resulted in decreased plasma 
levels of IL-6 compared to controls [117]. Similarly, the 
administration of oral NAC significantly decreased hs-
CRP levels in PD patients; this anti-inflammatory effect 
was more pronounced in patients with increased inflamma-
tory status at baseline (CRP levels between 5 and 15 mg/L) 
[118]. Another placebo-controlled trial also examined the 
effect of NAC on inflammation status of chronic ambulatory 
PD subjects demonstrating that oral NAC administration 
(600 mg of NAC twice daily for 8 weeks) reduced the levels 
of several inflammatory biomarkers; interleukin 1 (IL-1), 
IL-6, hs-CRP, procalcitonin, complement C3, TNF-a and 
soluble intercellular adhesion molecule-1 (SICAM-1) [6]. 
Regarding clinical endpoints, Feldman et al. found in a small 
cohort of PD patients, that oral NAC (1200 mg twice daily 
for 4 weeks) significantly improved residual RRF [119]. 
Table 1 shows a summary of clinical trials investigating the 
use of NAC in CKD, HD and PD assessing its antioxidant 
and anti- inflammatory properties.

The antioxidant and anti-inflammatory effects of NAC in 
PD are currently supported mainly by experimental studies 
and, therefore, no recommendations regarding NAC admin-
istration can be supported in PD patients.
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Conclusions

In CKD, OS has emerged as a novel disease-related risk 
factor for CV disease, mortality, and progression to ESRD. 
In HD and PD, OS is further exacerbated and strongly asso-
ciated with adverse clinical endpoints. NAC, a thiol com-
pound, mostly known for its potential to reduce incidence of 
contrast-induced nephropathy has generated a lot of interest 
as an antioxidant agent and a potential candidate to com-
bat OS-induced damage. Accumulated data suggest that in 
CKD, HD and PD patients, NAC neutralizes pro-oxidant 
molecules, increases antioxidant defenses, decreases Hcy, 
and suppresses inflammation, and thus might be beneficial 
for these patients. Moreover, limited data suggest that NAC 
might have beneficial impact on clinical hard endpoints in 
these populations, including protection of kidney function 
and prevention of endothelial dysfunction and CV disease. 
Of note, NAC is a safe agent without severe side effects, 
simple and of low cost. However, the data regarding the 
association of NAC with clinical hard points remain limited 
and derived from small studies with heterogenous popula-
tions. Well-designed RCTs with large sample size and hard 
endpoints are needed to draw definite conclusions regarding 
the beneficial effects of NAC in uremic populations.
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