Skip to main content

Advertisement

Log in

Verapamil inhibited the development of ureteral stricture by blocking CaMK II-mediated STAT3 and Smad3/JunD pathways

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Ureteral stricture (US) is a fibrotic process that leads to urinary tract obstruction and even kidney damage, with the characteristic of reduced extracellular matrix (ECM) degradation and increased collagen synthesis. Verapamil, as a calcium channel blocker, was reported to prevent scar formation. Our work aimed to investigate the biological effects and mechanism of verapamil in US.

Methods

Fibroblasts were subjected to transforming growth factor-beta 1 (TGF-β1) to stimulate collagen synthesis, and the messenger ribonucleic acid (mRNA) and protein expressions in fibroblasts were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The location of phosphorylation-signal transducer and activator of transcription 3 (p-STAT3) and Jund proto-oncogene subunit (JunD) in fibroblasts were determined by immunofluorescence (IF). The binding relationship between signal transducer and activator of transcription 3 (STAT3) and collagen type I alpha1 (COL1A1)/collagen type III alpha 1 chain (COL3A1) and the binding relationship between JunD and tissue inhibitor of metalloproteinases-1 (TIMP-1) were verified by dual luciferase reporter gene and chromatin Immunoprecipitation (ChIP) assays.

Results

Herein, we found that verapamil could inhibit TGF-β1/Ca2 + ⁄calmodulin-dependent protein kinase II (CaMK II)-mediated STAT3 activation in fibroblasts, and STAT3 inhibition repressed collagen production. In addition, verapamil could inhibit TGF-β1/CaMK II-mediated Mothers against DPP homolog 3 (Smad3)/JunD pathway activation in fibroblasts, and JunD silencing inhibited TIMP1 (a matrix metalloproteinase inhibitor) expression. Our subsequent experiments revealed that STAT3 bound with COL1A1 promoter and COL3A1 promoter and activated their transcription, and JunD bound with TIMP1 promoter and activated its transcription. Moreover, as expected, STAT3 activation could eliminate the inhibitory effect of verapamil treatment on TGF-β1-induced collagen production in fibroblasts, and JunD overexpression reversed the inhibitory effect of verapamil treatment on TGF-β1-induced TIMP1 expression in fibroblasts.

Conclusion

Verapamil inhibited collagen production and TIMP-1 expression in US by blocking CaMK II-mediated STAT3 and Smad3/JunD pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

US:

Ureteral stricture

mRNA:

Messenger ribonucleic acid

ECM:

Extracellular matrix

TGF-β1:

Transforming growth factor-beta 1

CaMK II:

Ca2+⁄calmodulin-dependent protein kinase II

p-STAT3:

Phosphorylation-signal transducer and activator of transcription 3

STAT:

Signal transducers and activators of transcription

JunD:

Jund proto-oncogene subunit

Smad3:

Mothers against DPP homolog 3

COL1A1:

Collagen type I alpha1

COL3A1:

Collagen type III alpha 1 chain

TIMP-1:

Tissue inhibitor of metalloproteinases-1

MMP1:

Matrix metallopeptidase 1

Ang II:

Angiotensin II

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

ATCC:

American type culture collection

IF:

Immunofluorescence

PVDF:

Polyvinylidene fluoride

BCA:

Bicinchoninic acid

ChIP:

Chromatin immunoprecipitation

DAPI:

4′,6-Diamidino-2-phenylindole

DMSO:

Dimethyl sulfoxide

cDNA:

Complementary DNA

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

qRT-PCR:

Quantitative real-time polymerase chain reaction

RIPA:

Radioimmunoprecipitation assay buffer

SD:

Standard deviation

ANOVA:

Analysis of variance

References

  1. Emiliani E, Breda A (2015) Laser endoureterotomy and endopyelotomy: an update. World J Urol 33(4):583–587. https://doi.org/10.1007/s00345-014-1405-3

    Article  PubMed  Google Scholar 

  2. Hernández Garcia E, Ruiz Fuentes MC, Gracia Guindo MC, Lopez Gonzalez Gila JD, Ruiz Fuentes N, Osuna Ortega A (2020) Development of ureteral stenosis/obstruction in kidney transplant. Transpl Proc 52(2):527–529. https://doi.org/10.1016/j.transproceed.2019.11.047

    Article  Google Scholar 

  3. Ueshima E, Fujimori M, Kodama H, Felsen D, Chen J, Durack JC, Solomon SB, Coleman JA, Srimathveeravalli G (2019) Macrophage-secreted TGF-β(1) contributes to fibroblast activation and ureteral stricture after ablation injury. Am J Physiol Renal Physiol 317(7):F52-f64. https://doi.org/10.1152/ajprenal.00260.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tyritzis SI, Wiklund NP (2015) Ureteral strictures revisited…trying to see the light at the end of the tunnel: a comprehensive review. J Endourol 29(2):124–136. https://doi.org/10.1089/end.2014.0522

    Article  PubMed  Google Scholar 

  5. Richter F, Irwin RJ, Watson RA, Lang EK (2000) Endourologic management of benign ureteral strictures with and without compromised vascular supply. Urology 55(5):652–657. https://doi.org/10.1016/s0090-4295(00)00484-2

    Article  CAS  PubMed  Google Scholar 

  6. Wolf JS Jr, Elashry OM, Clayman RV (1997) Long-term results of endoureterotomy for benign ureteral and ureteroenteric strictures. J Urol 158(3 Pt 1):759–764. https://doi.org/10.1097/00005392-199709000-00016

    Article  PubMed  Google Scholar 

  7. Cavalcanti AG, Costa WS, Baskin LS, McAninch JA, Sampaio FJ (2007) A morphometric analysis of bulbar urethral strictures. BJU Int 100(2):397–402. https://doi.org/10.1111/j.1464-410X.2007.06904.x

    Article  PubMed  Google Scholar 

  8. Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND, Zhao YY (2018) New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact 292:76–83. https://doi.org/10.1016/j.cbi.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  9. Ho DR, Su SH, Chang PJ, Lin WY, Huang YC, Lin JH, Huang KT, Chan WN, Chen CS (2021) Biodegradable stent with mTOR inhibitor-eluting reduces progression of ureteral stricture. Int J Mol Sci. https://doi.org/10.3390/ijms22115664

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chuang YH, Chuang WL, Chen SS, Huang CH (2000) Expression of transforming growth factor-beta1 and its receptors related to the ureteric fibrosis in a rat model of obstructive uropathy. J Urol 163(4):1298–1303

    Article  CAS  Google Scholar 

  11. Yang Y, Zhou X, Gao H, Ji SJ, Wang C (2003) The expression of epidermal growth factor and transforming growth factor-beta1 in the stenotic tissue of congenital pelvi-ureteric junction obstruction in children. J Pediatr Surg 38(11):1656–1660. https://doi.org/10.1016/s0022-3468(03)00577-3

    Article  PubMed  Google Scholar 

  12. Liu H, Wang L, Dai L, Feng F, Xiao Y (2021) CaMK II/Ca2+ dependent endoplasmic reticulum stress mediates apoptosis of hepatic stellate cells stimulated by transforming growth factor beta 1. Int J Biol Macromol 172:321–329. https://doi.org/10.1016/j.ijbiomac.2021.01.071

    Article  CAS  PubMed  Google Scholar 

  13. Zeng MQ, Xiao W, Yang K, Gao ZY, Wang JS, Lu Q, Guo X, Li YW, Yuan WX (2021) Verapamil inhibits ureteral scar formation by regulating CaMK II-mediated Smad pathway. Chem Biol Interact 346:109570. https://doi.org/10.1016/j.cbi.2021.109570

    Article  CAS  PubMed  Google Scholar 

  14. Leonard WJ, Lin JX (2000) Cytokine receptor signaling pathways. J Allergy Clin Immunol 105(5):877–888. https://doi.org/10.1067/mai.2000.106899

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Sai B, Wang F, Wang L, Wang Y, Zheng L, Li G, Tang J, Xiang J (2019) Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer 18(1):40. https://doi.org/10.1186/s12943-019-0959-5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zheng C, Huang L, Luo W, Yu W, Hu X, Guan X, Cai Y, Zou C, Yin H, Xu Z, Liang G, Wang Y (2019) Inhibition of STAT3 in tubular epithelial cells prevents kidney fibrosis and nephropathy in STZ-induced diabetic mice. Cell Death Dis 10(11):848. https://doi.org/10.1038/s41419-019-2085-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Celada LJ, Kropski JA, Herazo-Maya JD, Luo W, Creecy A, Abad AT, Chioma OS, Lee G, Hassell NE, Shaginurova GI, Wang Y, Johnson JE, Kerrigan A, Mason WR, Baughman RP, Ayers GD, Bernard GR, Culver DA, Montgomery CG, Maher TM, Molyneaux PL, Noth I, Mutsaers SE, Prele CM, Peebles RS Jr, Newcomb DC, Kaminski N, Blackwell TS, Van Kaer L, Drake WP (2018) PD-1 up-regulation on CD4(+) T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aar8356

    Article  PubMed  PubMed Central  Google Scholar 

  18. Meng M, Tan J, Chen W, Du Q, Xie B, Wang N, Zhu H, Wang K (2019) The fibrosis and immunological features of hypochlorous acid induced mouse model of systemic sclerosis. Front Immunol 10:1861. https://doi.org/10.3389/fimmu.2019.01861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsai CT, Lai LP, Kuo KT, Hwang JJ, Hsieh CS, Hsu KL, Tseng CD, Tseng YZ, Chiang FT, Lin JL (2008) Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts: implication for the therapeutic effect of statin in atrial structural remodeling. Circulation 117(3):344–355. https://doi.org/10.1161/circulationaha.107.695346

    Article  CAS  PubMed  Google Scholar 

  20. Zhao L, Cheng G, Jin R, Afzal MR, Samanta A, Xuan YT, Girgis M, Elias HK, Zhu Y, Davani A, Yang Y, Chen X, Ye S, Wang OL, Chen L, Hauptman J, Vincent RJ, Dawn B (2016) Deletion of Interleukin-6 attenuates pressure overload-induced left ventricular hypertrophy and dysfunction. Circ Res 118(12):1918–1929. https://doi.org/10.1161/circresaha.116.308688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang X, Li G, Su F, Cai Y, Shi L, Meng Y, Liu Z, Sun J, Wang M, Qian M, Wang Z, Xu X, Cheng YX, Zhu WG, Liu B (2020) HDAC8 cooperates with SMAD3/4 complex to suppress SIRT7 and promote cell survival and migration. Nucleic Acids Res 48(6):2912–2923. https://doi.org/10.1093/nar/gkaa039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu BH, Sheng J, You YK, Huang XR, Ma RCW, Wang Q, Lan HY (2020) Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy. Metab Clin Exp. https://doi.org/10.1016/j.metabol.2019.154013

    Article  PubMed  Google Scholar 

  23. Liberati NT, Datto MB, Frederick JP, Shen X, Wong C, Rougier-Chapman EM, Wang XF (1999) Smads bind directly to the Jun family of AP-1 transcription factors. Proc Natl Acad Sci USA 96(9):4844–4849. https://doi.org/10.1073/pnas.96.9.4844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Palumbo K, Zerr P, Tomcik M, Vollath S, Dees C, Akhmetshina A, Avouac J, Yaniv M, Distler O, Schett G, Distler JH (2011) The transcription factor JunD mediates transforming growth factor {beta}-induced fibroblast activation and fibrosis in systemic sclerosis. Ann Rheum Dis 70(7):1320–1326. https://doi.org/10.1136/ard.2010.148296

    Article  CAS  PubMed  Google Scholar 

  25. Smart DE, Vincent KJ, Arthur MJ, Eickelberg O, Castellazzi M, Mann J, Mann DA (2001) JunD regulates transcription of the tissue inhibitor of metalloproteinases-1 and interleukin-6 genes in activated hepatic stellate cells. J Biol Chem 276(26):24414–24421. https://doi.org/10.1074/jbc.M101840200

    Article  CAS  PubMed  Google Scholar 

  26. Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML (2020) The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. https://doi.org/10.3390/ijms21249739

    Article  PubMed  PubMed Central  Google Scholar 

  27. Choi JB, Lee J, Kang M, Kim B, Ju Y, Do HS, Yoo HW, Lee BH, Han YM (2021) Dysregulated ECM remodeling proteins lead to aberrant osteogenesis of Costello syndrome iPSCs. Stem Cell Rep 16(8):1985–1998. https://doi.org/10.1016/j.stemcr.2021.06.007

    Article  CAS  Google Scholar 

  28. Driessen HE, Fontes MS, van Stuijvenberg L, Brans MA, Goumans MJ, Vos MA, van Veen TA (2020) A combined CaMKII inhibition and mineralocorticoid receptor antagonism via eplerenone inhibits functional deterioration in chronic pressure overloaded mice. J Cell Mol Med 24(15):8417–8429. https://doi.org/10.1111/jcmm.15355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Margaret Shanthi FX, Ernest K, Dhanraj P (2008) Comparison of intralesional verapamil with intralesional triamcinolone in the treatment of hypertrophic scars and keloids. Indian J Dermatol Venereol Leprol 74(4):343–348. https://doi.org/10.4103/0378-6323.42899

    Article  CAS  PubMed  Google Scholar 

  30. Jiang Z, Hu P, Liu J, Wang D, Jin L, Hong C (2014) Effect of verapamil and nitroglycerin on transplanted lung function in canines. Zhong nan da xue xue bao Yi xue ban J Cent South Univ Med Sci 39(8):802–806. https://doi.org/10.3969/j.issn.1672-7347.2014.08.008

    Article  CAS  Google Scholar 

  31. Zeng M, Chen J, Huang L, Xue R, Xiang X, Zeng F, Wang G, Tang Z (2016) Effect of calcium channel blockers on primary cultured human urethra scar fibroblasts. Zhong nan da xue xue bao Yi xue ban J Cent South Univ Med Sci 41(12):1317–1322. https://doi.org/10.11817/j.issn.1672-7347.2016.12.011

    Article  Google Scholar 

  32. Viera MH, Amini S, Valins W, Berman B (2010) Innovative therapies in the treatment of keloids and hypertrophic scars. J Clin Aesthet Dermatol 3(5):20–26

    PubMed  PubMed Central  Google Scholar 

  33. Zhang M, Zhou L, Xu Y, Yang M, Xu Y, Komaniecki GP, Kosciuk T, Chen X, Lu X, Zou X, Linder ME, Lin H (2020) A STAT3 palmitoylation cycle promotes T(H)17 differentiation and colitis. Nature 586(7829):434–439. https://doi.org/10.1038/s41586-020-2799-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yao ST, Gouraud SS, Qiu J, Cunningham JT, Paton JF, Murphy D (2012) Selective up-regulation of JunD transcript and protein expression in vasopressinergic supraoptic nucleus neurones in water-deprived rats. J Neuroendocrinol 24(12):1542–1552. https://doi.org/10.1111/j.1365-2826.2012.02362.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khattab FM, Nasr M, Khashaba SA, Bessar H (2020) Combination of pulsed dye laser and verapamil in comparison with verapamil alone in the treatment of keloid. J Dermatolog Treat 31(2):186–190. https://doi.org/10.1080/09546634.2019.1610550

    Article  CAS  PubMed  Google Scholar 

  36. Berman B, Maderal A, Raphael B (2017) Keloids and hypertrophic scars: pathophysiology, classification, and treatment. Dermatol Surg 43(Suppl 1):S3-s18. https://doi.org/10.1097/dss.0000000000000819

    Article  CAS  PubMed  Google Scholar 

  37. Del Toro D, Dedhia R, Tollefson TT (2016) Advances in scar management: prevention and management of hypertrophic scars and keloids. Curr Opin Otolaryngol Head Neck Surg 24(4):322–329. https://doi.org/10.1097/moo.0000000000000268

    Article  PubMed  Google Scholar 

  38. Mukherjee S, Kolb MR, Duan F, Janssen LJ (2012) Transforming growth factor-β evokes Ca2+ waves and enhances gene expression in human pulmonary fibroblasts. Am J Respir Cell Mol Biol 46(6):757–764. https://doi.org/10.1165/rcmb.2011-0223OC

    Article  CAS  PubMed  Google Scholar 

  39. Mukherjee S, Sheng W, Sun R, Janssen LJ (2017) Ca(2+)/calmodulin-dependent protein kinase IIβ and IIδ mediate TGFβ-induced transduction of fibronectin and collagen in human pulmonary fibroblasts. Am J Physiol Lung Cell Mol Physiol 312(4):L510-l519. https://doi.org/10.1152/ajplung.00084.2016

    Article  PubMed  Google Scholar 

  40. Kasembeli MM, Bharadwaj U, Robinson P, Tweardy DJ (2018) Contribution of STAT3 to inflammatory and fibrotic diseases and prospects for its targeting for treatment. Int J Mol Sci. https://doi.org/10.3390/ijms19082299

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhao J, Qi YF, Yu YR (2021) STAT3: a key regulator in liver fibrosis. Ann Hepatol 21:100224. https://doi.org/10.1016/j.aohep.2020.06.010

    Article  CAS  PubMed  Google Scholar 

  42. Madaro L, Passafaro M, Sala D, Etxaniz U, Lugarini F, Proietti D, Alfonsi MV, Nicoletti C, Gatto S, De Bardi M, Rojas-García R, Giordani L, Marinelli S, Pagliarini V, Sette C, Sacco A, Puri PL (2018) Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nat Cell Biol 20(8):917–927. https://doi.org/10.1038/s41556-018-0151-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ogata H, Chinen T, Yoshida T, Kinjyo I, Takaesu G, Shiraishi H, Iida M, Kobayashi T, Yoshimura A (2006) Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-beta1 production. Oncogene 25(17):2520–2530. https://doi.org/10.1038/sj.onc.1209281

    Article  CAS  PubMed  Google Scholar 

  44. Chen W, Yuan H, Cao W, Wang T, Chen W, Yu H, Fu Y, Jiang B, Zhou H, Guo H, Zhao X (2019) Blocking interleukin-6 trans-signaling protects against renal fibrosis by suppressing STAT3 activation. Theranostics 9(14):3980–3991. https://doi.org/10.7150/thno.32352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lan HY (2011) Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci 7(7):1056–1067. https://doi.org/10.7150/ijbs.7.1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeng Z, Wang Q, Yang X, Ren Y, Jiao S, Zhu Q, Guo D, Xia K, Wang Y, Li C, Wang W (2019) Qishen granule attenuates cardiac fibrosis by regulating TGF-β /Smad3 and GSK-3β pathway. Phytomedicine 62:152949. https://doi.org/10.1016/j.phymed.2019.152949

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Funding

This work was supported by Doctoral Fund Project of Hunan Provincial People’s Hospital (BSJJ202114), and the Research Project from Hunan Provincial Health Commission (202104051787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqiang Zeng.

Ethics declarations

Conflicts of interest

All authors agree with the presented findings, have contributed to the work, and declare no conflict of interest.

Ethics approval and consent to participate

This study was passed the review of Ethics Committee of Hunan Provincial People’s Hospital, and all participants signed informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qing, Z., Yuan, W., Wang, J. et al. Verapamil inhibited the development of ureteral stricture by blocking CaMK II-mediated STAT3 and Smad3/JunD pathways. Int Urol Nephrol 54, 2855–2866 (2022). https://doi.org/10.1007/s11255-022-03284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-022-03284-4

Keywords

Navigation