
Vol.:(0123456789)1 3

International Urology and Nephrology (2022) 54:2929–2937 
https://doi.org/10.1007/s11255-022-03210-8

NEPHROLOGY - ORIGINAL PAPER

CKD prevalence based on real‑world data: continuous age‑dependent 
lower reference limits of eGFR with CKD–EPI, FAS and EKFC algorithms

Jakob Adler1,2 · Elina Taneva1 · Thomas Ansorge1 · Peter R. Mertens2 

Received: 1 November 2021 / Accepted: 9 April 2022 / Published online: 28 April 2022 
© The Author(s) 2022

Abstract
Purpose Several recent articles discuss the need for a definition of chronic kidney disease (CKD) that embarks age-depend-
ency and its impact on the prevalence of CKD. The relevance is derived from the common knowledge that renal function 
declines with age. The aim of this study was to calculate age-dependent eGFR lower reference limits and to consider their 
impact on the prevalence of CKD.
Methods A real-world data set from patients with inconspicuous urinalysis was used to establish two quantile regression 
models which were used to calculate continuous age-dependent lower reference limits of CKD–EPI, FAS and EKFC–eGFR 
based on either single eGFR determinations or eGFR values that are stable over a period of at least 3 months (± 10% eGFR). 
The derived lower reference limits were used to calculate the prevalence of CKD in a validation data set. Prevalence calcula-
tion was done once without and once with application of the chronicity criterion.
Results Both models yielded age-dependent lower reference limits of eGFR that are comparable to previously published data. 
The model using patients with stable eGFR resulted in higher eGFR reference limits. By applying the chronicity criterion, 
a lower prevalence of CKD was calculated when compared to one-time eGFR measurements (CKD–EPI: 9.8% vs. 8.3%, 
FAS: 8.0% vs. 7.2%, EKFC: 9.0% vs. 7.1%).
Conclusion The application of age-dependent lower reference intervals of eGFR together with the chronicity criterion result 
in a lower prevalence of CKD which supports the estimates of recently published work and the idea of introducing age-
dependency into the definition of CKD.

Keywords eGFR · CKD · Chronicity criterion · Age-dependent lower reference limits · Prevalence of CKD

Introduction

In recent years, ongoing discussions on the need for an age-
dependent definition of chronic kidney disease (CKD) have 
been ignited [1]. It is consensus that renal function declines 
with age, yet it has not been delineated whether age-related 
deterioration in renal function is a phenomenon predominantly 

linked with cell senescence and loss of nephron number 
versus occurrence due to underlying diseases that are more 
prevalent with advanced age [2]. Yet, the CKD definition in 
Kidney Disease—Improving Global Outcomes (KDIGO) 
guideline lacks an age-dependency hitherto [3]. To address 
this issue, Delanaye et al. proposed an age-dependent three-
stage model in which “normal range cut-offs” for estimated 
glomerular filtration rates (eGFR) are defined to separate 
impaired renal function in dependency of age (75 ml/min/1.73 
 m2 (< 40 years), 60 ml/min/1.73  m2 (40–65 years), 45 ml/
min/1.73  m2 (> 65 years) [4]. This three-stage model is a sim-
plification of their continuous model, which uses the 3rd per-
centile as a lower limit [4–6]. It is important to point out that 
reference intervals and clinical decision limits are mostly not 
congruent. While a reference interval is a statistically deter-
mined range between the 2.5th and the 97.5th percentiles of 
the measured values of a biomarker in an “apparently healthy” 
reference cohort, consisting of a lower and upper reference 
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limit, clinical decision limits are determined from clinical stud-
ies dealing with specific diseases [7]. The current definition 
of CKD is based on clinical decision limits. Since it is known 
that eGFR decreases steadily beyond the age of about 40 years 
even in healthy individuals [4], the application of a definition 
that assumes CKD at an eGFR below 60 ml/min even in the 
absence of renal pathology, such as proteinuria or pathologic 
imaging, is likely to result in an over-diagnosis of CKD, as 
discussed by Glassock et al. [1]. In addition, excess mortality 
of people older than 65 years with an eGFR ranging from 45 
to 59 ml/min does not appear to be significantly higher than 
that of people of the same age with an eGFR ranging between 
75 and 89 ml/min [4, 8]. These data indicate that the definition 
of CKD should be age-dependent to avoid over-diagnosis of 
CKD [1].

With age-dependent definition of CKD, the lower refer-
ence limits of eGFR not only have an impact on the diag-
nosis of impaired kidney function for each individual, but it 
also furthermore skews the overall prevalence rates of CKD. 
Another important influence on CKD prevalence is the pres-
ence or absence of chronicity of renal impairment. Many stud-
ies relied on one-time eGFR measurements and failed to meet 
the chronicity criterion put forward by the KDIGO definition 
of CKD with respect to impaired renal function and/or per-
sistence of proteinuria [9]. The derived estimates conclude 
that the prevalence of CKD ranges between 10 and 16% [9]. 
However, recent studies suggest that the prevalence of CKD 
is lower following strict adherence to KDIGO criteria together 
with applying age-dependent eGFR thresholds and calculates 
numbers around 6% [9, 10, 16].

In this study, we establish two models for age-dependent 
lower reference limits of Chronic Kidney Disease Epidemiol-
ogy Collaboration (CKD–EPI)–eGFR [11], Full Age Spectrum 
(FAS)-eGFR [12] and European Kidney Function Consortium 
(EKFC)-eGFR [13], that are based on one-time eGFR deter-
minations and eGFR values that are stable over a period of at 
least 3 months, respectively. The data are derived from a real-
world data set as outlined in the data collection and modeling 
section. The two models are used to predict continuous age-
dependent lower reference limits of eGFR for all three eGFR 
formulas. The resulting lower reference limits are applied to 
calculate the prevalence of CKD in a validation data set, once 
without and once with appliance of the chronicity criterion, to 
obtain insights into the impact of the chronicity criterion for 
the calculated prevalence rates of CKD.

Data collection and modeling

For a better understanding, the workflow for creating the 
data sets and calculating the models and the prevalence of 
CKD is visualized in Fig. 1. The characteristics of the data 
sets and models are provided in Table 1. 

In this study, we used a retrospective approach. All data 
were determined and collected at a regional privately organ-
ized laboratory specialized in providing blood testing for 
private practitioners (approximately 800 private practices 
and 8 hospitals) in an urban setting of a medium-sized city 
in central Germany (~ 250 k inhabitants).

Model data sets

The basic model data set was created by a data query from 
the laboratory information system (data query period: August 
2017–December 2020) from patients aged 30–85 years with 
a enzymatic quantification of creatinine (“Creatinine plus 
ver.2” (CREP2), Roche Diagnostics GmbH, Mannheim, 
Germany) as well as proteinuria < 10.0 mg/dl, blood impu-
rities of urine < 0.015 mg/dl, < 25 leukocytes per µl of urine 
and < 20.0 mg/dl of glucose in the urine (measured using the 
iChemVELOCITY automated urinalysis chemistry instru-
ment by Beckman Coulter GmbH, Krefeld, Germany). Blood 
and urine samples have been sent together to the laboratory 
and analyzed the same day. For each enzymatic creatinine 
measurement, the CKD–EPI, FAS and EKFC–eGFR was 
calculated. Submissions from hospitals, nephrology prac-
tices and dialysis centers were excluded. With this source 
data, the following data sets were created:

Data set for model 1 Only the first submission of each 
patient into the query period was extracted, resulting in a 
data set of 8916 singular creatinine measurements with their 
corresponding eGFR calculations. This data set was used to 
calculate model 1 for CKD–EPI, FAS and EKFC–eGFR. 
The characteristics of the data set are provided in Table 1.

Data sets for model 2 Only patients with stable kidney 
function were included to exclude patients with acute kid-
ney injury despite unremarkable urinalysis. According to the 
definition of CKD, which requires impaired kidney function 
for at least 3 months, stable kidney function was defined as 
an eGFR difference of less than ± 10% over a period of at 
least 3 months. Among the basic model data set, all patients 
with two or more submissions of specimens into the query 
period were selected. The first and the last measured value 
of each of these patients were extracted. Of these, only those 
were selected that showed a minimum time interval of 3 
months between both measurements and a maximum change 
in eGFR of ± 10%. Based on the calculation of eGFR using 
three different formulas, three data sets result, each contain-
ing the patients with stable kidney function for each eGFR 
formula. The characteristics of these three data sets are sum-
marized in Table 1.

Modeling

As outlined, the lower reference limit of a reference interval 
is defined as the 2.5th percentile [7]. To calculate continuous 
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age-dependent lower reference limits of eGFR based on the 
2.5th percentile, first, the age of the patients was rounded 
down. For the data set for model 2, the age of the patient at 
the time of the later eGFR measurement was selected to sep-
arate the patients into annual age groups from 30 to 85 years. 
In the following, a quantile regression model was calculated 
from the data set for model 1 for each eGFR formula and for 
all three data sets for model 2 for each eGFR formula (the 
later eGFR measurement was selected), resulting in six mod-
els. Other variables such as gender were not adjusted in the 
models. The same meta-parameters were used for all mod-
els. The regression was based on the 2.5th percentile. Cubic 
splines were used to smooth the curve. Due to the known 
physiological decrease of kidney function from an age of 
approximately 40 years [4], a knot was inserted at 40 years 
of age. After the models were created, the CKD–EPI, FAS 
and EKFC–eGFR age-dependent continuous lower reference 
limits were predicted. An excerpt of these results is shown 
in Table 2.

Validation data sets

To estimate the prevalence of CKD based on the created 
models, we used a second basic data set. For the creation of 

this basic validation data set, all creatinine measurements 
submitted to the laboratory from 01.01.2020 to 31.12.2020 
were queried, resulting in a data set of 443,548 creatinine 
measurements.

Validation data set 1 To build a validation data set 
without appliance of the chronicity criterion, we extracted 
only the first value of each patient, resulting in a data set 
of 197,550 creatinine measurements. For each creatinine 
measurement, the CKD–EPI, FAS and EKFC–eGFR were 
calculated. The characteristics of these validation data sets 
are summarized in Table 1.

Validation data set 2 To build a validation data set with 
appliance of the chronicity criterion, we extracted only 
patients from whom two measurements were available. Like 
model 2, only those were selected that showed a minimum 
time interval of 3 months between both measurements and 
a maximum change in CKD–EPI, FAS, or EKFC–eGFR 
of ± 10%. Based on the calculation of eGFR using three 
different formulas, three versions of validation data set 2 
results, each containing the patients with stable kidney func-
tion for each eGFR formula. The characteristics of these 
three validation data sets are provided in Table 1.

To calculate the CKD prevalence, the numbers of all 
patients who were below the calculated lower reference 

Fig. 1  Overview of workflow for creating the data sets and calculating the models
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Table 1  Characteristics of the data sets and models

Criterion Model data sets Validation data sets

Data set Data set for 
model 1

Data set for 
model 2—
CKD–EPI–
eGFR

Data set for 
model 2—
FAS-eGFR

Data set for 
model 2—
EKFC-eGFR

Validation 
data set 1

Validation 
data set 2—
CKD–EPI–
eGFR

Validation 
data set 2—
FAS-eGFR

Validation data 
set 2—EKFC-
eGFR

n (included 
patients)

8,916 760 737 788 197,550 16,750 17,007 17,582

Age (range; 
years)

30.0–85.0 30.0–85.0

Age (mean 
(SD); years)

57.4 (14.1) 58.5 (15.6) 58.4 (15.8) 58.5 (15.6) 63.0 (13.9) 65.5 (12.7) 65.9 (12.6) 65.5 (12.7)

CKD–EPI–
eGFR 
(range; ml/
min)

11.6–148.4 20.7–119.7 – – 2.1–174.5 8.5–149.2 – –

CKD–EPI–
eGFR (mean 
(SD); ml/
min)

82.5 (17.6) 83.3 (17.4) – – 75.0 (21.2) 74.4 (20.1) – –

FAS–eGFR 
(range; ml/
min)

14.1–204.4 – 22.0–152.6 – 3.3–477.8 – 9.8–259.1 –

FAS–eGFR 
(mean (SD); 
ml/min)

79.2 (20.0) – 77.4 (19.5) – 71.0 (22.6) – 66.8 (20.2) –

EKFC–eGFR 
(range; ml/
min)

12.0–132.0 – – 20.4–113.1 2.4–167.6 – – 7.4–135.2

EKFC–eGFR 
(mean (SD); 
ml/min)

78.8 (17.7) – – 79.1 (17.4) 70.9 (20.6) – – 69.8 (19.4)

Kidney func-
tion stable 
for at least 
3 months 
(eGFR devi-
ation maxi-
mum ± 10%)

No Yes Yes Yes No Yes Yes Yes

Time dif-
ference 
between 
measure-
ments 
(range; 
years)

– 0.3–3.0 0.3–3.0 0.3–3.0 - 0.25–0.98 0.25–0.98 0.25–0.98

Time dif-
ference 
between 
measure-
ments (mean 
(SD); years)

– 1.49 (0.71) 1.49 (0.71) 1.50 (0.71) - 0.49 (0.15) 0.49 (0.15) 0.49 (0.15)

eGFR dif-
ference 
between 
measure-
ments 
(range; %)

– – 9.99 to 9.96 − 9.9 to 9.97 − 9.98 to 9.95 – − 9.99 to 9.99 − 10.0 to 10.0 − 9.99 to 10.0
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Table 1  (continued)

Criterion Model data sets Validation data sets

Data set Data set for 
model 1

Data set for 
model 2—
CKD–EPI–
eGFR

Data set for 
model 2—
FAS-eGFR

Data set for 
model 2—
EKFC-eGFR

Validation 
data set 1

Validation 
data set 2—
CKD–EPI–
eGFR

Validation 
data set 2—
FAS-eGFR

Validation data 
set 2—EKFC-
eGFR

eGFR dif-
ference 
between 
measure-
ments (mean 
(SD); %)

– 0.62 (5.17) 0.79 (5.26) 0.75 (5.01) – 1.13 (5.18) 1.21 (5.36) 1.20 (5.08)

Leukocyturia 
excluded

Yes No

Glucosuria 
excluded

Yes No

Erythrocyturia 
excluded

Yes No

Proteinuria 
excluded

Yes No

Patients from 
Nephrology 
practices 
and Dialysis 
centers 
included

No Yes

Regression 
method for 
continuous 
lower refer-
ence limits

2.5th percentile quantile regression with cubic splines and one 
knot at 40 years

Only for validation

Comparison of the different data sets for the modeling and the validation as well as the methodology for calculating the models

Table 2  Sample extract of the predicted eGFR lower reference limits (2.5th percentile) at 5-year intervals from 30 to 85 years

Model 1: quantile regression model without application of the chronicity criterion (2.5th percentile); Model 2: quantile regression model with 
application of the chronicity criterion (2.5th percentile); Delanaye´s continuous model (2.5th percentile) calculated from [4]
a In Delanaye’s conitnuous model, there is no factor for the age-dependent lowering of the lower reference limit for patients under 40 years of age

Age (years) Model 1
CKD–EPI–eGFR 
(ml/min)

Model 1
FAS-eGFR 
(ml/min)

Model 1
EKFC-eGFR 
(ml/min)

Delanaye
model [4] FAS-
eGFR (ml/min)

Model 2
CKD–EPI–eGFR 
(ml/min)

Model 2
FAS-eGFR 
(ml/min)

Model 2
EKFC-
eGFR (ml/
min)

30 76 74 72 81a 84 84 82
35 72 75 71 81a 74 78 75
40 69 73 69 81 71 74 71
45 66 69 66 76 69 70 68
50 63 64 63 72 65 65 64
55 59 59 58 67 61 59 60
60 54 54 53 63 57 53 55
65 49 47 47 60 52 47 51
70 43 41 41 56 47 42 45
75 36 35 34 53 42 37 40
80 29 28 28 50 37 33 35
85 22 22 21 47 32 30 30
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limits in their age group were summed up and divided by 
the total number of patients in the respective validation data 
set as outlined in Fig. 1.

Statistical software

Statistical analysis was performed using R statistic program-
ming language (R Core Team (2021. R: A language and 
environment for statistical computing. R Foundation for Sta-
tistical Computing, Vienna, Austria, URL: https:// www.R- 
proje ct. org/.). For calculation of quantile regression models, 
the additional software packages “quantreg” and “splines” 
were used [14, 15]. Calculation of confidence intervals was 
done using the normal approximation.

Approval of the local Ethics Committee

The local ethics committee of the Land Saxony-Anhalt ruled 
that a consent from the patients from whom the specimens 
originated were not required, due to the retrospective and 
fully anonymized setting of data evaluation (approval No. 
17/21).

Results

This study reveals two main findings:

(i) Using eGFR estimates originating from patients 
with stable renal function (eGFR difference at most ± 10% 
within a period of at least 3 months), higher continuous 
age-dependent reference limits are obtained than with one-
time eGFR estimates entered into modeling. An extract 
of the predicted continuous age-dependent lower refer-
ence limits of eGFR in 5-year increments is provided in 
Table 2. In model 1 (2.5th percentile, inconspicuous uri-
nalysis, one-time eGFR measurements), CKD–EPI–eGFR 
decreased from 76 to 22 ml/min, FAS–eGFR from 74 to 
22 ml/min and EKFC–eGFR from 72 to 21 ml/min as a 
function of age. In model 2 (2.5th percentile, inconspicu-
ous urinalysis, stable kidney function), CKD–EPI–eGFR 
decreased from 84 to 32 ml/min, FAS–eGFR from 84 to 
30 ml/min and EKFC–eGFR from 82 to 30 ml/min as a 
function of age. For both models, these results also show 
the comparability of the three different eGFR estimates. 
The visualization of the two models for each eGFR for-
mula together with the validation data sets is provided in 
Fig. 2.

(ii) Applying the chronicity criterion results in a lower 
prevalence of CKD, as previous work has already indicated 
[9, 10]. Using model 1 (2.5th percentile, inconspicuous uri-
nalysis, single eGFR measurements) the CKD prevalence 
decreased from 6.4% (95%-CI 6.3–6.5) to 4.8% (95%-CI 
4.5–5.1) for CKD–EPI–eGFR, from 6.3% (95%-CI 6.2–6.4) 
to 5.4% (95%-CI 5.1–5.7) for FAS–eGFR and from 7.3% 

Fig. 2  Visualization of the two models projected onto the valida-
tion data sets. Representation of the two models with lower reference 
limits indicated in the scatterplot of the validation data set. Model 1 

(without chronicity criterion) is shown as blue line and model 2 (with 
chronicity criterion) is shown as red line

https://www.R-project.org/
https://www.R-project.org/


2935International Urology and Nephrology (2022) 54:2929–2937 

1 3

(95%-CI 7.2–7.4) to 5.4% (95%-CI 5.1—5.7) for EKFC-
eGFR when the chronicity criterion is applied.

Using model 2 (2.5th percentile, inconspicuous uri-
nalysis, stable kidney function) higher prevalence rates 
were estimated but the effect of a lower prevalence was 
maintained when the chronicity criterion was applied. 
The prevalence of CKD decreases from 9.8% (95%-CI 
9.7–9.9) to 8.3% (95%-CI 7.9–8.7) for CKD–EPI–eGFR, 
from 8.0% (95%-CI 7.9–8.1) to 7.2% (95%-CI 6.8–7.6) 
for FAS–eGFR and from 9.0% (95%-CI 8.9–9.1) to 7.1% 
(95%-CI 6.7–7.5) for EKFC–eGFR. Calculated preva-
lence rates independent of age are summarized in Table 3. 

Prevalence rates depending on age groups according to 
the three-stage model of Delanaye et  al. (< 40  years, 
40–65 years, > 60 years) [4] are shown in Table 4.

The prevalence rates from model 2 with appliance of the 
chronicity criterion for the validation data sets are in the 
range of published prevalence rates when the chronicity 
criterion together with age-dependent lower reference lim-
its of eGFR are applied to the study cohort (8.3/7.2/7.1% 
vs. 6%, [9, 10] and 8.3/7.2/7.1% vs. 5.1%, [16]) and lower 
than the estimated prevalence rates with one-time eGFR 
estimations without age-dependency in the definition of 
CKD (8.3/7.2/7.1% vs. 10–16% [9]).

Table 3  Comparison of calculated prevalence rates between the two models, one without and one with appliance of the chronicity criterion

Model 1: quantile regression model without application of the chronicity criterion (2.5th percentile); Model 2: quantile regression model with 
application of the chronicity criterion (2.5th percentile)

eGFR formula Model Validation data set 1 without chronicity criterion, 
CKD prevalence in % (95%-CI)

Validation data set 2 with chronicity cri-
terion, CKD prevalence in % (95%-CI)

CKD–EPI Model 1 6.4 (6.3–6.5) 4.8 (4.5–5.1)
Model 2 9.8 (9.7–9.9) 8.3 (7.9–8.7)

FAS Model 1 6.3 (6.2–6.4) 5.4 (5.1–5.7)
Model 2 8.0 (7.9–8.1) 7.2 (6.8–7.6)

EKFC Model 1 7.3 (7.2–7.4) 5.4 (5.1–5.7)
Model 2 9.0 (8.9–9.1) 7.1 (6.7–7.5)

Table 4  Prevalence of CKD depending on the age group and the selected model and validation data set

The age groups were chosen according to the three-stage model of Delanaye et al. [4]

eGFR formula Model Age 
group in 
years

n in Valida-
tion data 
set 1

Validation data set 1 without chronic-
ity criterion, CKD prevalence in % 
(95%-CI)

n in Valida-
tion data 
set 2

Validation data set 2 with chronic-
ity criterion, CKD prevalence in % 
(95%-CI)

CKD–EPI Model 1 30–40 17,802 4.7 (4.4–5.0) 3295 1.1 (0.8–1.4)
41–65 90,104 6.2 (6.0–6.4) 7475 4.6 (4.1–5.1)
66–85 89,644 7.0 (6.8–7.2) 5980 7.1 (6.4–7.8)

Model 2 30–40 17,802 7.6 (7.2–8.0) 3295 1.6 (1.2–2.0)
41–65 90,104 8.0 (7.8–8.2) 7475 6.3 (5.7–6.9)
66–85 89,644 12.0 (11.8–12.2) 5980 14.4 (13.5–15.3)

FAS Model 1 30–40 17,802 4.7 (4.4–5.0) 3344 1.3 (0.8–1.6)
41–65 90,104 6.1 (5.9–6.3) 7600 5.3 (4.8–5.8)
66–85 89,644 6.9 (6.7–7.1) 6063 7.8 (7.1–8.5)

Model 2 30–40 17,802 7.8 (7.4–8.2) 3344 2.0 (1.5–2.5)
41–65 90,104 6.3 (6.1–6.5) 7600 5.4 (4.9–5.9)
66–85 89,644 9.7 (9.5–9.9) 6063 12.3 (11.5–13.1)

EKFC Model 1 30–40 17,802 7.2 (6.8–7.6) 3454 1.7 (1.3–2.1)
41–65 90,104 7.1 (6.9–7.3) 7850 5.4 (4.9–5.9)
66–85 89,644 7.5 (7.3–7.7) 6278 7.6 (6.9–8.3)

Model 2 30–40 17,802 11.5 (11.0–12.0) 3454 2.7 (2.2–3.2)
41–65 90,104 7.4 (7.2–7.6) 7850 5.7 (5.2–6.2)
66–85 89,644 10.1 (9.9–10.3) 6278 11.3 (10.5–12.1)
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Discussion

Our findings confirm two important observations sug-
gested by previous studies. First, the age-dependency of 
eGFR is remarkable with all three eGFR formulas. Sec-
ond, using continuous age-dependent reference limits of 
eGFR together with the application of the chronicity cri-
terion results in a remarkably lower CKD prevalence rate. 
Nevertheless, the results have to be discussed critically 
due to the retrospective study design.

Lower reference limits: When comparing the predicted 
lower reference limits from model 1 and model 2, higher 
reference limits in all three eGFR formulas are calculated 
with model 2. The underlying reason for this could be a 
share of patients with flares of acute kidney injury (e.g., 
deteriorations in fluid homeostasis with exsiccosis due to 
diuretics intake, impaired thirst, impaired renal function 
without proteinuria, leukocyturia, erythrocyturia and/or 
glucosuria, variable or impaired heart function) in the data 
sets for model 1, all of which may have an influence on the 
eGFR thresholds. By comparing the predicted lower refer-
ence limits to the ones from Delanaye’s work, as shown in 
Table 2, it becomes obvious that the reference limits from 
model 2 are still lower than the ones described by Dela-
naye and Pottel [4–6]. This may be explained by the meth-
odology underlying the data collection. Although the 2.5th 
percentile was used as the lower limit in all three models 
(model 1, model 2 and Delanaye`s model), the collectives 
studied are likely to differ. A major limitation of the data 
underlying this study is that no further information on 
patients' health status was available due to retrospective 
analysis of data. Thus, information on comorbidities, such 
as hypertension or diabetes (no glucosuria at the time of 
measurement) or medication, that may affect renal func-
tion (e.g., RAS inhibitors, diuretics, or SGLT2 inhibitors) 
is missing and patients with stable but impaired eGFR may 
also be present in the data set despite inconspicuous uri-
nalysis. This may result in a lower calculated 2.5th percen-
tile than in the general population affecting the CKD prev-
alence calculated in this study. Another limitation may be 
that especially patients with advanced age may have been 
increasingly under medical surveillance due to a “reduced” 
kidney function and therefore healthy older individuals 
may be less likely to be entered into the data sets, which 
could lead to a higher prevalence of CKD in the cohort 
studied. Lastly, it should be remembered that patients with 
CKD but unstable renal function (e.g., additional AKI) 
were removed from the data set with the chosen study 
design. Thus, it must be concluded that the underlying data 
set is confounded by specific patient cohort analyzed by 
this laboratory and therefore is not fully representative of 
the general population. In addition, there are some minor 

overlaps of patients analyzed within the modeling and 
validation cohorts [e.g., for model 1 5662 patients from 
the modeling cohort were also included in the validation 
cohort (2.9% of the validation cohort)]. This overlap arises 
from the two data queries, which also overlapped in time 
to ensure a sufficiently high number of patients for reli-
able calculation of the models. The influence of this small 
proportion on the results of this study may be considered 
small, however has to be taken into account.

CKD prevalence It has been assumed that the CKD preva-
lence rate is higher when entering a one-time eGFR estimate 
compared to predictions with appliance of the KDIGO chro-
nicity criterion [6, 9, 10]. Our results confirm this assump-
tion (prevalence estimated from validation data set 1 vs. vali-
dation data set 2 as shown in Table 3 and 4). As a limitation, 
it must be noted that within the validation data sets, only the 
patients´ eGFR values were used to define CKD. Informa-
tion about possible co-existing proteinuria was not available.

Furthermore, it could be shown that age-dependent lower 
reference limits based on a cohort with stable renal func-
tion lead to a higher CKD prevalence (prevalence estimated 
from model 1 vs. model 2 as shown in Table 3 and 4). This 
effect is most likely due to the higher 2.5th percentiles in 
model 2, since patients with stable kidney function were 
enrolled here, whereas patients with acute kidney injury 
were excluded from the data set.

Looking at the age-dependent prevalence rates, this study 
confirms that the prevalence of CKD increases with age. 
When results from Tables 3 and 4 are compared it is notice-
able that for the age group 66–85 years a reversed pattern 
is present for the prevalence rates determined for validation 
data sets 1 and 2. While the age-independent prevalences 
were lower when using validation data set 2, higher preva-
lence rates were calculated in the 66–85 age group when 
using validation data set 2. Looking at the visualization of 
the models in Fig. 2, it is noticeable that for all three eGFR 
formulas, a lower eGFR drop-off is seen in model 2. This 
largely explains the discrepancy outlined above.

The strengths of this study are the size of the data sets, the 
measurement of creatinine as the basis for the eGFR calcu-
lation in the same laboratory and with the same methodol-
ogy, the standardized and automated reading of the urine 
test strips for urinalysis, and the application of the chronicity 
criterion for estimation of the CKD prevalence rate. In addi-
tion, when using the 2.5th percentile as the definition of the 
lower limit of eGFR overdiagnosis of CKD in older patients 
is prevent. Furthermore, underdiagnosis of CKD in younger 
patients with an eGFR above 60 ml/min/1.73  m2 but below 
the age-specific 2.5th percentile of eGFR is precluded, as 
similarly shown in the work of Beghanem Gharbi et al. and 
Delanaye et al. [6, 16].

In summary, the findings set the basis for “real-life” 
prevalence rates of CKD when continuous age-dependent 
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lower reference intervals of eGFR together with the chronic-
ity criterion are applied. Further research should verify the 
established lower reference limits of model 2 in a carefully 
selected cohort in which the eGFR and other pathological 
conditions such as proteinuria are tested at the same time.
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