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Abstract
Accumulating evidences indicated that voltage-gated calcium channels (VDCC), including L-, T-, N-, and P/Q-type, are 
present in kidney and contribute to renal injury during various chronic diseases trough different mechanisms. As a voltage-
gated calcium channel, N-type calcium channel was firstly been founded predominately distributed on nerve endings which 
control neurotransmitter releases. Since sympathetic nerve is distributed along renal afferent and efferent arterioles, N-type 
calcium channel blockade on sympathetic nerve terminals would bring renal dynamic improvement by dilating both arteri-
oles and reducing glomerular pressure. In addition, large body of scientific research indicated that neurotransmitters, such 
as norepinephrine, releases by activating N-type calcium channel can trigger inflammatory and fibrotic signaling pathways 
in kidney. Interestingly, we recently demonstrated that N-type calcium channel is also expressed on podocytes and may 
directly contribute to podocyte injury in denervated animal models. In this paper, we will summarize our current knowledge 
regarding renal N-type calcium channels, and discuss how they might contribute to the river that terminates in renal injury.
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Introduction

Voltage-gated calcium channels can be classified into L-, 
P/Q-, N-, R-, and T-type subtypes according their pharmaco-
logical and electrophysiological characters. In the kidney, a 
number of calcium channels comprising various α1 subunits, 
including Ca2+

V2.1 (α1A), Ca2+
V1.2 (α1C), Ca2+

V1.3 (α1D), 
Ca2+

V3.1(α1G), and Ca2+
V3.2 (α1H), are expressed, and 

function as L-type (Ca2+
V1.2, Ca2+

V1.3), T-type (Ca2+
V3.1, 

Ca2+
V3.2), and P/Q-type (Ca2+

V2.1) calcium channels. Fur-
thermore, the kidney is supplied with numerous nerve end-
ings that contain N-type (α1B) Ca2+ channels [1]. Recently 

we indentified N-type calcium channel expression in podo-
cyte from both in vivo and in vitro experiments [2].

N‑type calcium channel in renal dynamic 
changes

Numerous studies have already reported that N-type volt-
age dependent calcium channels predominantly distributed 
in neuronal, especially sympathetic neuronal cells. These 
channels were intimately involved in sympathetic neuro-
transmission and regulated the release of norepineprine 
from sympathetic nerve endings [3–7]. This founding was 
clarified and supported by applying various N-type cal-
cium channel antagonists in both in vivo [8–11] and clini-
cal researches [12–14]. Underlying mechanisms could be 
simply summarized as follow: Calcium influx which mainly 
through voltage gated calcium channels in nerve endings 
will interact with soluble NSF attachment protein receptor 
(SNARE) proteins on synaptic vesicle and nerve terminal 
membranes. This interaction in turn causes exocytosis of 
neurotransmitters (e.g. NE) from the vesicles [15]. Although 
some neurons elicited resistant to N-type calcium channel 
antagonists suggested co-existence of other type calcium 
channels [16], N-type calcium channel still been believed 
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as the main channel in mediating calcium influx in sym-
pathetic nerves [3]. Abnormal activations of sympathetic 
nerve which innervated renal afferent and efferent arterioles 
have been indicated to play an important role in renal injury 
[17, 18]. Morphological studies clearly showed marked nar-
rowing of afferent and efferent glomerular arterioles in the 
kidney during renal sympathetic nerve stimulation [19]. The 
insufficient oxygen and nutrient supply which due to sig-
nificant reduced renal blood flow may underlie this renal 
dynamic injury. In contrast, renal denervation was verified 
by demonstrating a 50% decrease in renal norepinephrine 
spillover which resulted in a long-term reduction in arterial 
pressure[20]. Moreover, L-type calcium channel blockade 
causes predominant dilation of afferent arteriole. During 
hypertension, it will transmit systemic high blood pressure 
to kidney which potentially results in glomerular injury 
[21], whereas, N-type calcium channel inhibition decreases 
glomerular pressure by dilating both afferent and efferent 
arterioles [22].

Since excitation–contraction coupling in most resistance 
vessels is largely dependent on calcium influx through volt-
age-dependent calcium channels in rat kidney [23, 24], and 
local expressions of L- and T- type calcium channels already 
have been identified in smooth muscle cells which isolated 
from preglomerular vessels [25]. It is widely accepted that 
L- and T-type calcium channels are responsible for renal 
dynamic changes by controlling dilation or contraction of 
afferent and efferent arterioles. However, one issue raised 
since long time ago: L- and T-type VDCCs cannot fully 
account for calcium influx in renal vascular smooth muscle 
cells [26]. Hansen et.al. indicated the possible involvement 
of neuro-type calcium channel (e.g., P-/Q-type) in depo-
larization-mediated contraction in renal afferent arterioles 
[27]. Recently, both gene and protein expression of N-type 
calcium channel has been identified in dog basilar artery 
smooth muscle cells by Nikitina et al. [28], suggesting that, 
in addition to neural control, N-type calcium channel may 
also directly contribute to contraction of renal vessels by 
mediating calcium influx in vascular smooth muscle cells 
(Fig. 1). 

N‑type calcium channel in renal 
non‑dynamic changes

Besides renal vascular effects, N-type calcium channel has 
also been proved involve in non-dynamic changes during 
renal damage. An activated sympathetic nervous system 
was often characterized in chronic kidney disease, end-
stage renal disease as well as diabetic nephropathy [29–33]. 
Therefore, neurotransmitter, such as norepinephrine, has 
been indicated as a mediator of sympathoexcitation induced 
renal injury by triggering some fibrotic and inflammatory 

signaling pathways in kidney. Reno-protective effects of 
N-type calcium channel inhibition were considered, at least 
partially, depend on inhibiting norepinephrine releases and 
thereby interfere with the fibrotic and inflammatory signal-
ing pathways [9].

N‑type calcium channel and renal 
rennin‑angiotensin system (RAS)

Cilnidipine showed superior effect in preventing proteinuria 
in hypertensive patients when compared with amlodipine 
[34–36]. These evidences from clinical trials suggested the 
unique contribution of N-type calcium channel blockade to 
renal injury should be independent of blood pressure control. 
Thus people try to figure out how does N-type calcium chan-
nel inhibition contribute to renal protection and elucidate 
possible involved mechanisms. Renin-angiotensin system is 
one of the hottest pathways may underlie this process.

Recent years, local RAS has been demonstrated as major 
role in pathogenesis of renal injury rather than circulating 
RAS. In the kidney, all of the RAS components are pre-
sent and modulated by independent multiple mechanisms. 
For example, angiotensin II, the most powerful biologically 
active product of the RAS has been found be differently reg-
ulated in organs. In particular, the Ang II contents in renal 
tissues are much higher than can be explained on the basis 
of equilibration with the circulating concentrations [37–39]. 
This locally produced Ang II induces inflammation, cell 
growth, mitogenesis, apoptosis, migration, and differentia-
tion, regulates the gene expression of bioactive substances, 
and activates multiple intracellular signaling pathways, all 
of which might contribute to tissue injury [40].

Since direct measurements of the intrarenal RAS compo-
nents or micropuncture investigations in human subjects are 
not available, we may find our answers by applying in vivo 
studies. Cilnidipine treatment elicited significant stronger 
inhibition on albuminuria glomerular hypertrophy and inter-
stitial fibrosis in dahl rats. In contrast, L-type calcium chan-
nel blocker, amlodipine did not show any effect on these 
parameters. In addition, urinary norepinephrine excretion, 
renal expression of renin mRNA and renal tissue levels of 
angiotensin II were increased only in the amlodipine-treated 
group [41]. Cilnidipine has been demonstrated more effec-
tive than, L-type calcium channel blocker amlodipine for 
preventing kidney injury in dahl rats [21, 41, 42]. This 
effect cannot be only explained by the L-type calcium chan-
nel blocking action that lowered blood pressure, but can be 
partially explained by the N-type calcium channel block-
ing action that lead to suppression of the sympathetic nerve 
activity and renal renin-angiotensin system.

Consistent founding has been reported by Toba, H. 
Glomerulosclerosis and collagen deposition in the tubu-
lointerstitial area was significant attenuated by cilnidipine 
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administration in DOCA-salt hypertensive rats. Importantly, 
accompany with these reno-protections, the renal activity 
and expression of angiotensin-converting enzyme (ACE) 
and the aldosterone concentration were inhibited by cilnidi-
pine as well. However, these renal changes have not been 
observed in amlodipine treated group [43].

Activation of the renal renin-angiotensin system in 
diabetic patients always appears to contribute to diabetic 
nephropathy. Previously we investigated effects of cilnidi-
pine on type 2 diabetic nephropathy by using SHR/ND 
rats. Vehicle treated group showed markedly increased 
urinary protein compared with healthy controls. Signifi-
cant increased Ang II content and angiotensinogen mRNA 
expression were also detected in kidney. After 20 weeks 
treatment, cilnidipine significantly inhibited proteinuria, 
renal Ang II content and angiotensinogen mRNA expres-
sion. However, amlodipine did not elicit any effects on these 

parameters, despite anti-hypertensive effect [2]. Again, this 
founding suggested N-type calcium channel blockade may 
contribute to reno-protection by inhibiting the activated renal 
RAS in diabetic nephropathy. Moreover, renal AT1R has 
been reported to be significantly elevated in chronic patho-
genesis which was believed associated with excessive renal 
sympathetic nerve activity. Renal denervation decreased this 
renal AT1R overexpression [44]. The possible relation of 
renal sympathetic nerve and RAS was suggested in in vitro 
study as well; Wang et.al. demonstrated that exogenous nor-
epinephrine stimulates the expression of the AGT gene in 
the renal proximal tubule and which thereby increases the 
formation of local renal Ang II [45].

Taken together, renal RAS was inappropriately activated 
and play a critical role in renal injury during chronic renal 
diseases, hypertension and diabetic nephropathy. N-type 
calcium channel blockade may inhibit local RAS through, 

Fig. 1   Involvement of N-type calcium channel in renal dynamic 
changes (A). N-type calcium channel may be involved in renal 
dynamic modulation through two pathways: 1. Calcium influx which 
mainly through N-type calcium channels in nerve endings will causes 
exocytosis of neurotransmitters (e.g., NE) from the vesicles thereby 

induces contraction of both afferent an efferent arteries (B). 2. N-type 
calcium channels may also directly mediate contraction of afferent 
and efferent arteries by inducing calcium influx into vascular smooth 
muscle cells (C). NE: Norepinephrine
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at least partially through, its neural control in kidney. The 
possible underlie mechanism can be summarized as follow: 
During pathological conditions, N-type calcium channel on 
renal sympathetic nerves was activated for mediating cal-
cium influx which in turn triggered neurotransmitter release 
(e.g., norepinephrine). This elevated renal norepinephrine 
can induce upregulation of components of RAS in kidney 
lead to increase of angiotensin II, the major effective mol-
ecule of RAS which ultimately contribute to renal injury. 
N-type calcium channel inhibition can attenuate the inap-
propriate activation of RAS by preventing norepinephrine 
releases from sympathetic never in kidney.

However, local RAS activation cannot be fully explained 
by neural control. Our recent study suggested that N-type 
calcium channel blockade induced inhibition on renal RAS 
may independent of renal sympathetic nerve. In that study 
both renal norepinephrine and Ang II are significantly ele-
vated in innervated vehicle treated-SHR rats. However, we 
also clearly demonstrated that cilnidipine significantly inhib-
ited renal Ang II in renal denervated spontaneous hyper-
tensive rats (SHR). In contrast, amlodipine did not show 
any effect on renal Ang II. Moreover, renal denervation just 
slightly decreased renal Ang II level in vehicle treated SHR, 
suggested two things: (1) Cilnidipine induced inhibition on 
renal RAS should be attributed to its N-type calcium chan-
nel blocking action. (2) However, this inhibition could be 
independent of renal sympathetic nervous system. There 
should be some other pathways have also been involved in 
N-type calcium channel mediated activation of renal RAS. 
Recent in vitro studies have already demonstrated existence 
of local RAS which can be activated by high glucose or 
mechanical stretch in various renal cells including mesangial 
cells [46, 47], proximal tubular cells [48–51], especially in 
podocytes [52–54]. During past decades, as a critical role in 
development of proteinuria and glomerulosclerosis, podo-
cytes injury became a hot topic in research field of renal 
damage. We previously demonstrated that upregulation of 
N-type calcium channels in podocytes is company with sig-
nificant elevated renal Ang II in diabetic nephropathy and 
hypertensive animal models. As indicated by Nitschke R, 
Ang II significantly increased intracellular calcium activity 
in podocytes via AT1 receptor. However, L-type calcium 
channel blocker, nicardipine, failed to inhibit this intracel-
lular calcium activity, suggested that this AT1R mediated 
activation of intracellular calcium activity may be dependent 
on other calcium channels. In addition of identified N-type 
calcium channel on podocyte, we found exogenous Ang 
II induces significant increase of N-type calcium channel 
mRNA expression in cultured podocytes.

Nuclear factor κB (NFκB) has been suggested be acti-
vated and play a critical role in renal damage during hyper-
tension and diabetes in both in vivo and in vitro studies 
[55–59]. Augmented intracellular calcium concentration 

has been indicated for mediating activation of NFκB sign-
aling pathway in proximal tubular cells [60]. Moreover, as a 
transcriptional factor, NFκB has also been shown to modu-
late the rat and human AGT gene expression [61–63]. Since 
almost all components exist in podocyte [52], elevated AGT 
synthesis may finally lead to increase of Ang II production. 
Therefore, combined with our previous research, there may 
be a positive feedback between Ang II and N-type calcium 
channels. Activation of N-type calcium channel could be 
both consequence and cause of evoked renal RAS. Some 
factors, such as NFκB, maybe involved as parts or mediators 
of this vicious loop (Fig. 2).

N‑type calcium channel and renal oxidative stress

Among various factors involved in renal injury, oxidative 
stress, the imbalance of pro- and anti-free radical processes 
and the formation of excessive free radicals, also attracted 
enormous attention [64, 65].

Remarkable increase of renal reactive oxygen spices 
(ROS) production has been reported in different hyper-
tensive [66–69] and diabetic [70–73] animal models via 
a nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase-dependent manner [74]. Accumulating evidence 
from both in vivo and in vitro studies further elucidated 
specific contribution of ROS overproduction to renal injury 
by targeting different cell types: Oxidant-mediated injury 
to tubular cells was suggested to play a critical role in tubu-
lointerstitial fibrosis [75–78]. High glucose induces prolif-
eration and extracellular matrix (ECM) synthesis of mesan-
gial cells through activating NADPH oxidase which thereby 
cause ROS production [79–81]. In addition, mitochondrial 
dysfunction of mesangial cells also been reported could be 
induced by oxidative stress during high glucose condition 
[82]. Protein kinase C, mitogen-activated protein (MAP) 
kinase and NFκB have been implicated in the ROS overpro-
duction induced abnormalities of mesangial cells [81, 83, 
84]. In glomerular hypertension, where mechanical strain 
induced activation of extracellular signal-regulated pro-
tein kinases (ERK) was implicated in ECM deposition [85, 
86]. Yatabe et.al. demonstrated mechanical strain induces 
phosphorylation of extracellular signal-regulated protein 
kinases (ERK) which mediated by activating NADPH oxi-
dase in mesangial cells [87]. Continuous results also demon-
strated that mechanical strain induced martrix production in 
mesangial cells through activating RhoA requires NADPH 
oxidase-mediated ROS generation [88]. Podocyte injury 
has also been associated with overactivation of ROS. High 
glucose induced podocyte hypertrophy has been implicated 
through a ROS-dependent activation of ERK1/2 and Akt/
PKB [89]. Oxidative stress mediated podocyte apoptosis via 
activating p38 mitogen-activated protein kinase and caspase 
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3 has been suggested in cultured podoctyes and db/db mice 
by Susztak et al.[90]. Thus, numerous studies focused on 
renal antioxidant therapies for preventing renal damage dur-
ing past decades.

Since greater antiproteinuric effect of cilnidipine was 
reported by Fujita et.al. in CARTER study when compared 
with amlodipine [36], people try to elucidate possible 
mechanism which underlie how N-type calcium channel 
blockade contribute to renal protection. Late results from 
same group showed that cilnidipine elicited significantly 
higher antioxidant activity than amlodipine and this supe-
rior antioxidant activity of cilnidipine has been proposed, 
at least in part, for explaining greater antiproteinuric effect 
[91]. In previous study, we analyzed renal TBARS content 
and DHE staining as oxidative stress markers in cilnidi-
pine treated SHR/ND rats. Cilnidipine, but not amlodipine, 
significantly inhibited the increase in TBARS content and 
DHE staining. In addition, administration of cilnidipine sup-
pressed the increase in mRNA levels of both gp91phox and 
p22phox, whereas amlodipine had no effect on expression 
levels. Protein complex formation of p47phox or Rac-1 with 
p22phox of NADPH oxidase subunits, which are necessary 

for NADPH oxidase to produce superoxide [92], were sig-
nificantly increased in SHR/ND. Cilnidipine significantly 
suppressed the increases in complex formation of p47phox 
or Rac-1 with p22phox of NADPH oxidase. In contrast, 
amlodipine did not affect these parameters at all. These 
founds suggested again, N-type calcium channel played a 
critical role in renal ROS production which is dependent on 
NADPH oxidase. The precise mechanism about how does 
N-type calcium channel contribute to renal ROS production 
is still controversial.

Catecholamines, such as norepinephrine, can induce 
oxidative damage in myocardium through reactive inter-
mediates resulting from their auto-oxidation [93]. Renal 
sympathetic activation been proposed to induce oxidative 
stress and lead to oxidative injury in end-organs such as the 
kidney [94–96]. Recently we also proved that renal dener-
vation significantly suppressed aortic regurgitation induced 
glomerular reactive oxidative stress (ROS) [97]. Therefore, 
N-type calcium channel may activate oxidative stress by 
inducing norepinephrine releases from renal sympathetic 
nerve terminal.

Fig. 2   Relation between N-type calcium channel and renal RAS. 
Neuronal role of N-type calcium channel in renal RAS: Release of 
NE which was mediated by N-type calcium channel on renal sympa-
thetic nerve terminals induces AGT production from proximal tubu-
lar cells. Since all components of RAS exsist in kidney, increase of 
AGT will finally contribute to production of Ang II (A). Non-Neu-
ronal role of N-type calcium channel in renal RAS: N-type calcium 

channel mediated intracellular calcium increase triggers NFκB which 
may cause AGT synthesis and ultimately induce Ang II production. 
In addition, this elevated Ang II may further increase expression of 
N-type calcium channel on podocytes and formed vicious cycle (B). 
RSN: renal sympathetic nerve; AGT: angiotensinogen; Ang II: angio-
tensin II; AT1: angiotensin II type 1 receptor; N-CC: N-type calcium 
channel; NFκB: Nuclear factor κB
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A growing body of evidence from clinical and experi-
mental studies has indicated role of RAS in induction of 
oxidative stress in the kidney [98, 99]. Results from 66 type 
2 diabetic patients of nephropathy showed Treatment with 
an ARB for 8 weeks reduced the levels of urinary 8-epi-pros-
taglandin F2-α and 8-hydroxydeoxyguanosine, biochemi-
cal markers of oxidative stress [98]. Treatment of Wistar-
Kyoto rats (WKY) with subcutaneous Ang II infusions from 
osmotic minipumps induced oxidative stress in association 
with increased expression of the p22phox component of 
NADPH oxidase and decreased expression of extracellular 
superoxide dismutase in the renal cortex [99]. Upregula-
tion of protein and mRNA expressions of renal p47phox 
and iNOS were significantly attenuated by candesartan in 
type 2diabetic mice [100]. Thus N-type calcium blockade 
induced inhibition on renal oxidative stress may also be 
explained by reduction of local Ang II production.

Interestingly, our recent in vitro study showed exogenous 
Ang II increases DHE staining in cultured mice podocytes. 
This increase can be significantly attenuated by knock down 
N-type calcium channel [2], suggesting that besides parac-
rine action, N-type calcium channel also directly involved in 
intracellular signal transduction pathway in Ang II induced 
oxidative stress. Indeed, it has been proved that calcium 
influx can trigger activation of calcium-dependent protein 
phosphatase calcineurin and its substrate nuclear factor of 
activated T cells (NFAT) in podosytes [101]. Off note, EI 
Bekay et al. demonstrated Ang II induced intracellular signal 
for ROS synthesis is transduced, at least partially, through 
calcium-dependent signaling pathway [102]. Although some 
studies associated calcium influx in podocytes to transient 
receptor potential (TRP) channels, especially TRPC6, we 
could not exclude the possibility that other sources, such 

as VDCCs, also be responsible for increase of intracellular 
calcium. As indicated by Nijenhuis, knock down of TRPC6 
resulted in significant reduction of 1-oleoyl-2-acetylsn-glyc-
erolin (OAG)-stimulated calcium influx in cultured podo-
cyte. However, calcium influx was not completely inhibited, 
suggested involvements of other channels [101]. Actually, a 
secondary activation of L-type calcium channel was reported 
to be caused by Ang II induced TRPC3/C6 activation in 
cardiac myocytes [103]. Although L-type calcium channel 
has been suggested was not involved in Ang II stimulated 
calcium influx in rat podocyte since long time ago [104]. To 
our knowledge, there were still no studies identified L-type 
calcium channels in podocyte. The inefficient effect of 
L-type calcium channel blocker on preventing calcium influx 
probably due to nearly undetectable expression of L-type 
calcium channel in podocyte. In contrast, highly expressed 
N-type calcium channel was identified by our group in both 
in vitro and in vivo experiments [2]. Taken together, N-type 
calcium channel activation can trigger renal oxidative stress 
by inducing norepinephrine release and local Ang II syn-
thesis which ultimately contribute to renal damage. In addi-
tion, N-type calcium channel may also directly involve in 
intracellular signal transduction pathway of Ang II induced 
oxidative stress (Fig. 3).

Conclusion

Since been reported predominantly distributed in neuronal 
cells, especially sympathetic neuronal cells, the physiologi-
cal and pathological role of N-type calcium channel in kid-
ney were always tend to be mainly explained by its neural 
control during past decades. Indeed, N-type calcium channel 

Fig. 3   Relation between N-type 
calcium channel and oxida-
tive stress. N-type calcium 
channel mediated production 
of NE and Ang II will cause 
oxidative stress on renal cells. 
In addition, N-type calcium 
channel may also involve in 
intracellular oxidative signaling 
pathway by inducing calcium 
influx and subsequent activa-
tion of calcineurin (Fig. 3). 
NE: Norepinephrine; Ang II: 
angiotensin II; AT1: angioten-
sin II type 1 receptor; N-CC: 
N-type calcium channel; CaN: 
calcineurin; TRPC6: transient 
receptor potential channel 6.; 
OS: oxidative stress
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was involved in modulating renal vascular tone and trigger 
some inflammatory and fibrotic signaling pathways through 
mediating neurotransmitter, such as norepinephrine, releases 
from renal nerve terminals. However, accumulating evidence 
from denervated animal models and in vitro studies emerges 
that N-type calcium channel was also expressed on renal 
cells, especially podocytes, other than neuronal cells and 
make distinct contribution to renal damage. N-type calcium 
channel mediated calcium influx could be the critical factor 
for these intracellular signaling transduction pathways. Fur-
ther studies still are needed for clarifying precise mechanism 
for applying N-type calcium channel blockade as new clini-
cal strategy for preventing renal damage.
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