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started decreasing at 6  h and remained at a low level for 
7 days after reperfusion. Plasma miR-192 level in patients 
with AKI increased at the time of ICU admission, was sta-
ble for 2 h and decreased after 24 h. AUC-ROC was 0.673 
(95% CI: 0.540–0.806, p = 0.014).
Conclusions  Plasma miR-192 expression was induced in a 
time-dependent manner after IRI in rats and patients with 
AKI after cardiac surgery, comparably to the kidney injury 
development and recovery process, and may be useful for 
the detection of AKI.

Keywords  miR-192 · Acute kidney injury · Cardiac 
surgery · microRNAs · Ischemia–reperfusion injury

Introduction

Acute kidney injury (AKI) is one of the most common 
complications in patients with prolonged hospital stays, 
increasing medical costs and poor outcomes [1]. Ischemia–
reperfusion injury (IRI) is a major cause of AKI [1, 2], 
characterized by acute tubular necrosis [3]. However, the 
mechanisms underlying AKI development are unclear and 
diagnostic biomarkers have not been established, leading to 
the lack of specific treatment [4]. Recent studies identified 
proteins, including KIM-1 [5], NGAL [6] and IL-18 [7], as 
potential biomarkers in ischemic AKI. However, none of 
them has been validated or is routinely used in the clinic. 
Thus, the discovery and validation of additional reliable 
biomarkers are strongly needed to detect AKI [8].

MicroRNAs (miRNAs) are short, endogenous non-
coding RNAs, 18–22 nt long, that regulate gene expres-
sion at the post-transcriptional level by targeting messen-
ger RNAs and inhibiting translation [9]. MiRNAs have 
important functions in numerous biological processes [9]. 

Abstract 
Purpose  Ischemia–reperfusion injury (IRI) is a major 
cause of acute kidney injury (AKI) with poor outcomes. 
While many important functions of microRNAs (miR-
NAs) have been identified in various diseases, few stud-
ies reported miRNAs in acute kidney IRI, especially the 
dynamic changes in their expression and their implications 
during disease progression.
Methods  The expression of miR-192, a specific kidney-
enriched miRNA, was assessed in both the plasma and kid-
ney of IRI rats at different time points after kidney injury 
and compared to renal function and kidney histological 
changes. The results were validated in the plasma of the 
selected patients with AKI after cardiac surgery compared 
with those matched patients without AKI. The performance 
characteristics of miR-192 were summarized using area 
under the receiver operator characteristic (ROC) curves 
(AUC-ROC).
Results  MiRNA profiling in plasma led to the identifi-
cation of 42 differentially expressed miRNAs in the IRI 
group compared to the sham group. MiR-192 was kid-
ney-enriched and chosen for further validation. Real-time 
PCR showed that miR-192 levels increased by fourfold in 
the plasma and decreased by about 40% in the kidney of 
IRI rats. Plasma miR-192 expression started increasing at 
3 h and peaked at 12 h, while kidney miR-192 expression 
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Owing to their stability in the blood, urine and other body 
fluids, miRNAs are considered novel biomarkers in various 
diseases [10–12], including acute and chronic kidney dis-
eases [13, 14]. Johan et al. determined that circulating miR-
210 levels significantly increased in critically ill patients 
with AKI and was an independent and powerful predic-
tor of 28-day survival [15]. A study on 120 adult patients 
undergoing cardiac surgery showed that miR-21 levels in 
the urine and plasma were upregulated in AKI patients and 
both were associated with AKI progression [16]. The areas 
under the curve (AUCs) for urine and plasma miR-21 asso-
ciated with established AKI were 0.68 (95% CI: 0.59–0.78) 
and 0.80 (95% CI: 0.73–0.88), respectively [16]. However, 
no study evaluated variations of these miRNAs over time. 
Levels of specific miRNAs might vary during disease pro-
gression, and early detection of AKI is important for inter-
vention. We postulated that dynamic changes in the levels 
of plasma miRNAs might be involved in the development 
of IRI and might be useful for the detection of AKI.

In the present study, we analyzed miR-192 expression 
levels in the plasma and kidney tissues from IRI rats after 
miRNA profiling and verified its changes in the plasma 
of patients after cardiac surgery at different time points to 
determine whether miR-192 can be used as a tool to detect 
IRI kidney injury.

Materials and methods

Ethics statement

All animal experiments were approved by the Animal Care 
and Use Committee of Ren Ji Hospital and carried out in 
accordance with the National Institutes of Health Guide 
for Use of Laboratory Animals. The human study was 
approved by the Ethical Committee of Ren Ji Hospital and 
in accordance with the principle of the Declaration of Hel-
sinki. In addition, all patients signed informed written con-
sent before cardiac surgery.

Animal model

Male Sprague–Dawley (SD) rats, weighing 150–200  g, 
were purchased from the SLAC Laboratory Animal Co. Ltd 
(Shanghai, China) and housed in animal cages with suita-
ble conditions in the Animal Department of Renji Hospital. 
Rats were randomly grouped into the sham or IRI group. In 
miRNA PCR array and miR-192 validation study, nine rats 
in each group were euthanized after 24 h of reperfusion. In 
the time-course study, six rats from each group were eutha-
nized 1, 3, 6, 12, 24 h, 3 or 7 days after surgery. The IRI 
procedures were performed as previously described [17]. 

Blood was collected from the abdominal aorta and placed 
into EDTA anti-coagulation tubes. Once harvested, one 
quarter of each kidney was placed into 10% formalin for 
histological examination, while the remaining was stored at 
−80 °C after being snap-frozen in liquid nitrogen for other 
studies.

Patients

Ninety-three patients aged 40–80  years, undergoing open 
cardiac surgeries in the Cardiac Surgery Division of Ren 
Ji Hospital from January 2014 to October 2014, were 
enrolled. All the patients with pre-existing end-stage renal 
disease requiring renal replacement therapy (RRT), cancer, 
diabetes, lupus nephritis, infection diseases, previous car-
diac interventional therapy or minimally invasive cardiac 
surgery were excluded. Among them, 35 (37.6%) patients 
developed AKI, including 26 (28.0%) of Stage 1, 5 (5.4%) 
of Stage 2 and 4 (4.3%) of Stage 3. Thirty-five patients who 
developed AKI during the follow-up and thirty-five con-
trols who also underwent open cardiac surgery, but did not 
develop AKI were matched at a 1:1 ratio based on age, sex, 
comorbidities and type of surgery in the subsequent study. 
The AKI diagnosis was defined by the Kidney Disease 
Improving Global Outcomes (KDIGO) criteria with a post-
operative increase in plasma creatinine ≥50% from base-
line or ≥0.3 mg/dL [18]. Patients who presented hemoly-
sis in the plasma samples at two or more time points were 
also excluded. Plasma samples were collected at different 
time points, including preoperation, 0, 2, 24 and 72 h after 
admission to the intensive care unit (ICU).

Total RNA extraction

Plasma was obtained within 1 h by two-step centrifugation 
at 3000g at 4 °C for 15 min, followed by that at 12,000g at 
4  °C for 15 min. The kidney homogenates were obtained 
by adding 400  μL of lysis buffer. RNA extraction was 
performed with TaqMan™ mirVana™ PARIS kit (Ther-
moFisher, Waltham, MA, USA) according to the manufac-
turer’s instructions.

MiRNA PCR array assay

MiRNAs were assessed by rodent TaqMan low-density 
array (TLDA) assay (ThermoFisher) according to the man-
ufacturer’s instructions. An equal amount of three randomly 
selected samples was used to generate the pooled sample. 
Six pooled samples were obtained, three from each group. 
RNA was extracted from the six pooled samples. Reverse 
transcription, preamplification and PCRs were performed 
following the manufacturers’ protocols.
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Quantitative real‑time PCR

Real-time PCR was performed to validate rat and human 
plasma miRNA using TaqMan® microRNA reverse transcrip-
tion kit (ThermoFisher), TaqMan® Universal Master Mix II, no 
UNG (ThermoFisher) and TaqMan® microRNA assay (Ther-
moFisher) according to the manufacturer’s instructions. The 
2(−ΔΔCt) value was calculated. Cel-mir-39 was used as a spike-
in control for plasma miRNA normalization, while U6 was 
used as the internal control for rat tissue miRNA normalization.

Biochemical tests

Plasma urea nitrogen (BUN) and creatinine were detected by 
enzymatic method, using an automatic biochemical analyzer.

Histological examination

Histological examination was performed as previously 
described [19]. Tubular damage was scored by calculating 
the percentage of tubules in the corticomedullary junction 
that displayed tubular epithelia cell degeneration, cell necro-
sis, loss of the brush border, formation of lumen casts and 
tubular dilatation, as follows: 0, none; 1, ≤10%; 2, 11–25%; 
3, 26–45%; 4, 46–75%; and 5, >75%. One blinded observer 
assessed the tubular damage. Ten high-power fields (magni-
fication, 200×) were examined for each rat.

Statistical analysis

All statistical analyses were performed with SPSS 16.0 
software (SPS, Chicago, IL, USA). Continuous data were 
presented as mean ± standard deviation and compared by 
using Student’s t test. Non-continuous data were presented 
as median (interquartile) and compared using Mann–Whit-
ney U test. To compare categorical variables, we performed 
the χ2 or Fisher’s exact test, as appropriate. Multiple com-
parisons of variables within and between two groups of 
patients were compared by two-way ANOVA followed by 
post hoc nonparametric statistics. The AUC was calculated 
from a standard receiver operating characteristic (ROC) 
curve of microRNA for predicting AKI. p < 0.05 was con-
sidered statistically significant.

Results

Bilateral kidney ischemia–reperfusion induced an 
increase in plasma BUN, creatinine and tubular 
damage in a rat model

To determine the miRNA expression profile related to tis-
sue injury and repair processes following AKI, we used a 

well-established model of bilateral renal IRI. After 45 min 
of ischemia and 24-h reperfusion, plasma BUN and cre-
atinine were significantly elevated in the IRI group. In the 
sham group, BUN and creatinine were 7.67 ± 1.73 mmol/L 
and 23.3 ±  7.02 μmol/L, respectively. In the IRI group, 
BUN and creatinine increased to 29.95 ±  15.31  mmol/L 
and 112.05 ± 75.22 μmol/L, respectively (Fig. 1a, b). The 
histological staining further supported kidney injury. Sig-
nificant tubular injury was observed in IRI rats presenting 
extensive tubular necrosis, loss of the brush border, cast 
formation and tubular dilatation in the corticomedullary 
junction (Fig. 1c, d).

Global microRNA profiling of IRI rats

Forty-two miRNAs differentially expressed were identified 
by rat plasma global miRNA PCR array, among which 22 
were aberrantly expressed with more than threefold change 
between groups (Fig. 2a). There were fifteen elevated miR-
NAs and seven downregulated miRNAs.

Validation of altered microRNAs in the plasma 
and kidney tissues of IRI rats

Among the identified miRNAs, miR-192 was preferen-
tially expressed in the kidney and showed more than a 
threefold change. Therefore, we chose miR-192 for further 
validation. As shown in Fig. 2b, the level of miR-192 in the 
plasma of IRI rats increased by about fourfold compared to 
that of the sham group. We further confirmed the expres-
sion of miR-192 in kidney tissues. In IRI rats, miR-192 
expression was decreased by about 40% in the whole kid-
ney, about 60% in the medulla and about 40% in the cortex, 
compared to the sham group (Fig. 2c).

Dynamic changes of plasma and kidney miR‑192 
expression in IRI rats

To investigate how early miR-192 was changed after renal 
IRI, we observed the dynamic expression of miR-192 in 
the plasma and kidney tissues of IRI rats. BUN was signifi-
cantly increased at 6 h after reperfusion, peaked at 12 h and 
returned to normal levels at 7 day of IRI (Fig. 3a). Plasma 
creatinine was significantly increased at 3 h after reperfu-
sion, continued to increase at 12 h, finally returned to base-
line at 3 day after IRI (Fig. 3b). H&E staining confirmed 
kidney injury (Fig. 3c). Levels of plasma and kidney miR-
192 were assayed at 1, 3, 6, 12, 24  h, 3 and 7  day after 
45 min of ischemia. Plasma miR-192 expression was ele-
vated at 3 h after reperfusion, peaked at 12 h and returned 
to baseline at 3  day after reperfusion (Fig.  3d). However, 
the time-course study showed significantly decreased lev-
els of miR-192 in kidney tissues of IRI rats, with an initial 
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decrease at 6 h and a continuous low level until 7 day after 
reperfusion (Fig. 3e).

Circulating levels of miR‑192 increased in patients 
after cardiac surgery

To investigate the relationship between miR-192 and AKI, 
we observed the dynamic changes of plasma miR-192 
levels in 70 patients who underwent cardiac surgery, 35 
patients with AKI and 35 patients without AKI. As shown 
in Fig.  4a and Table  1, plasma miR-192 levels increased 
rapidly at 0 h after admission to the ICU and were stable 
between 0 and 2 h after surgery in patients who developed 
AKI. MiR-192 level at 24 and 72 h was similar to that of 
preoperation. The expression pattern of miR-192 in the 
non-AKI group was similar to that of the patients with AKI, 
except that miR-192 levels decreased at 2 h, but was still 
higher than that before operation. MiR-192 levels at 2  h 
after ICU admission in the AKI group were significantly 
higher than those in the non-AKI group. ROC curve anal-
ysis showed that miR-192 could be used to diagnose AKI 
(Fig. 4b). The area under the ROC curve (AUC-ROC) was 
0.673 (95% CI: 0.540–0.806, p = 0.014) for plasma miR-
192 at 2 h after ICU admission, indicating that plasma miR-
192 can be an early marker for the detection of established 

AKI. When the cutoff value was 1.445, the sensitivity and 
specificity were 66.7 and 62.9%, respectively. 

Baseline characteristics of patients after cardiac 
surgery

Patient characteristics are shown in Table  2. Of the 
70 patients studied, 43 were males and 35 devel-
oped AKI after surgery. The mean patients’ age was 
64.31  ±  8.17  years, and the preoperative plasma creati-
nine was 74.97 ±  16.25 μmol/L. Other characteristics of 
patients with or without AKI are shown in Table 2. There 
was no significant difference in sex, age, plasma creatinine 
level and comorbidities, including chronic kidney disease 
(CKD), hypertension, anemia and use of contrast medium 
and angiotensin-converting enzyme inhibitors/angiotensin 
II receptor blocker (ACEI/ARB). The intraoperative vari-
ables, including the proportion of surgery type, operation 
time and cardiopulmonary bypass (CPB), were also similar. 
Coronary artery bypass graft (CABG) surgeries included 
on-pump CABG and off-pump CABG. Five patients under-
went off-pump CABG and 3 of them developed AKI. The 
postoperative variables, including hypotension, low blood 
volume symptom and congestive heart failure, were com-
parable between groups. Seven patients developed an 

Fig. 1   Ischemia–reperfusion-induced kidney functional and structural injury. Plasma BUN (a) and creatinine (b) levels, histological examina-
tion (c, magnification, ×200), tubular damage score (d) in IRI and sham rats. ***p < 0.001 versus the sham group



545Int Urol Nephrol (2017) 49:541–550	

1 3

infection during the follow-up; one developed an upper 
respiratory tract infection, while the others developed lung 
infections. One patient needed RRT after surgery, and the 
incidence of RRT was not statistically significant. All the 
three patients who died were in the AKI group.

Dynamic changes of plasma creatinine in patients

As shown in Table  3, the levels of plasma creatinine 
remained stable after cardiac surgery in the 35 non-AKI 
patients, except for a small increase at 24 h after admission 
to the ICU (about 1.15-fold). In the 35 AKI patients, the 
level of plasma creatinine at 24 and 72  h increased 1.84-
fold and 1.49-fold compared to the preoperation levels. 

Although similar to the preoperation levels, plasma creati-
nine at 0 and 2 h in AKI patients was a little higher than 
that in non-AKI patients. The level of creatinine at 24  h 
after ICU admission in AKI patients was significantly 
higher than that in non-AKI patients.

Discussion

In the present study, we screened miRNAs in the plasma of 
IRI rats and identified 42 miRNAs with altered expression, 
among which 15 miRNAs were upregulated. In the time-
course study, miR-192 expression in the plasma and kidney 
tissues of IRI rats varied in a time-dependent manner. In 

Fig. 2   Global profiling and validation of plasma miRNAs in IRI rats. 
Rat plasma miRNA profiling a showing 22 differentially expressed 
miRNAs (fold change > 3; p < 0.05) in IRI rats. b Plasma and c renal 

tissue miR-192 levels in the IRI and sham groups. WK, whole kidney, 
*p < 0.05, **p < 0.01, ***p < 0.001 versus the sham group
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the clinical study, plasma miR-192 at 2 h after ICU admis-
sion presented a modest predictive value for the diagnosis 
of AKI.

Our study showed dynamic changes of miR-192 expres-
sion in the plasma and kidney tissues of IRI rats. These 
dynamics correlated with histological findings of kidney 
injury and with increases in concentrations of known mark-
ers of renal dysfunction (BUN and creatinine). Thus, miR-
192 may reflect kidney IRI. A previous study indicated that 
plasma miR-192 was upregulated at 6 h after reperfusion in 
IRI rats [20]. Moreover, the expression pattern of plasma 
miR-192 was discordant with that of kidney miR-192. Sim-
ilarly, in a mouse study, Bellinger et  al. [21] determined 
that the expression of few miRNAs changed in a coordi-
nated manner, while that of most miRNAs in an uncoordi-
nated manner. Saikumar et al. [22] demonstrated that kid-
ney miR-21 and miR-155 were upregulated after IRI, while 
blood miR-21 and miR-155 were downregulated. Mecha-
nistic relationships between renal and circulating miRNAs 
are unclear, and whether the increased circulating miRNA 
levels are solely of renal origin remains unknown. Elevated 

levels of certain miRNAs in the plasma may be the result 
of renal cell death associated with leakage of cytoplasmic 
components or active secretion from the surviving cells, 
membrane microparticles, exosomes or in protein-bound 
forms [23]. In a study of atherosclerosis, the delivery of 
miR-126 by endothelial cell-derived apoptotic bodies was 
found to be able to induce CXCL-dependent vascular pro-
tection [24], indicating that upon injury, apoptosis was 
switched on and miRNAs could be secreted into extracel-
lular space or circulation in apoptotic bodies. Whether it 
was the same case in our study needed further study. The 
whole body is also thought to respond to a renal IRI, and 
circulating miRNAs might have originated from elsewhere 
besides the kidney. Circulating miRNAs could play an 
important role in interorgan communication rather than 
being mere bystanders of tissue injury [25]. Recent study 
found microvesicles carrying specific microRNAs released 
from endothelial progenitor cells exert a protective effect 
in experimental acute renal IRI [26]. Additional studies are 
needed to identify specific organ and cell types producing 
miRNAs.

Fig. 3   Time course of the IRI-induced dynamic kidney injury and 
changes of miR-192 in the plasma and kidney tissues of IRI rats. 
BUN (a) and plasma creatinine (b) levels in sham and IRI rats. His-
tological staining (c) showed gradually worsening kidney injury with 

prolonged reperfusion time. Magnification, ×200. Plasma (d) and 
renal tissue (e) miR-192 levels in the IRI and sham groups at differ-
ent time points. *p < 0.05; **p < 0.01; ***p < 0.001 versus the sham 
group
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There were several noteworthy points in our clinical study. 
Firstly, the plasma level of miR-192 in non-AKI patients at 
the time of admission to ICU (0  h) was also significantly 
higher than the preoperation level. This may be associated 
with cardiopulmonary bypass and cardiac IRI. Although 
miR-192 level in the heart tissue is much lower than that in 
the kidney, investigators showed that hypoxia induced miR-
192 expression and excretion in the sera of patients with post-
acute myocardial infarction (AMI) [27]. Moreover, miR-192 
expression pattern in humans and rats seems to be different. 
The level of plasma miR-192 in AKI patients was signifi-
cantly higher than that of non-AKI patients at 2 h after ICU 
admission. However, rat plasma miR-192 began to increase 
at 3 h after reperfusion. The fact that patients stayed in the 
anesthesia resuscitate room between cardiac blood flow resto-
ration and ICU admission for a 1- to 2-h period may explain 
this discrepancy. In addition, only one time point difference 
in the level of miR-192 was observed and the AUC was not 
very high. Small number of cases, mild clinical AKI and lim-
ited time points between 2 and 24  h after reperfusion may 
have reduced the diagnostic value of miR-192 in AKI. Future 
studies with large sample size and intensive time points are 
warranted. The last thing to be noted was that although the 
incidence of AKI in our clinical study was similar to other 
previous studies [28], the severity of AKI developed in this 
study was relatively mild. Only 4 out of 35 AKI patients were 
with AKI stage 3, and only one of them needed RRT. That 
might be due to some risk factors for AKI, such as diabetes, 
lupus nephritis, infection diseases and pre-existing cancer that 
were excluded in this study in case of all these confounding 
factors affected the analysis of miR-192 levels.

In this study, the molecular mechanisms underlying 
the deregulation of circulating and renal miRNAs could 
not be determined. Previous studies suggest that miR-192 
was linked to both G1 and G2/M cell cycle arrest in other 
contexts [29, 30] and was frequently downregulated in 
colorectal cancer, renal childhood neoplasms and multiple 
myeloma [31–33]. Roy et al. [34] recently found that tumor 
necrosis factor alpha (TNF-α) was an upstream regulator 
of miR-192 in acute liver injury and confirmed a protec-
tive effect of downregulation of miR-192 in hepatocytes 
through Zeb2. The exact pathophysiological effect of these 
changes needs to be further investigated.

The miRNA PCR array also showed that several miR-
NAs decreased after IRI, which have not yet investigated. 
The purpose of this study was to identify a miRNA with 
diagnostic implications for AKI after IRI. Owing to the 
low abundance of miRNAs in the blood, if miRNAs are 
further decreased under disease conditions, the level of 
these miRNAs may be beyond the range of detection of the 
existing techniques. The mechanism underlying the down-
regulation of these miRNAs is still not clear and should be 

Fig. 4   Plasma miR-192 expression of patients in the AKI group 
varied over time and could predict AKI incidence after cardiac sur-
gery. Data are expressed as the median (interquartile). a The miR-
192 expression of patients #p  <  0.05, ##p  <  0.01 versus prelevels; 
*p  <  0.05 versus the non-AKI group; @p  <  0.05 versus post 0  h. b 
The area under the ROC curve of post 2 h miR-192

Table 1   Plasma miR-192 levels of patients at different time points

AKI acute kidney injury

* p < 0.05 versus non-AKI patients
#  p < 0.05, ## p < 0.01, ### p < 0.001 versus prelevels

Non-AKI AKI p value (AKI vs. 
non-AKI)

Pre 0.79 (0.41, 1.16) 1.12 (0.47, 2.42) 0.092

0 h 1.65 (0.97, 2.36)### 1.93 (0.93, 3.24)## 0.277

2 h 1.21 (0.88, 1.77)## 1.80 (0.94, 5.10)## 0.014

24 h 0.39 (0.28, 0.67)## 0.47 (0.29, 1.83)*# 0.196

72 h 0.52 (0.22, 0.98) 0.68 (0.23, 1.73) 0.165
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investigated. In addition, we observed dynamic changes of 
plasma miR-192 levels in patients undergoing cardiac sur-
gery and provided a time window for clinical testing.

In summary, this study showed dynamic changes of 
plasma and kidney miR-192 levels in AKI and plasma miR-
192 might be a predictor for ischemic AKI. Larger cohort 

Table 2   Patient characteristics

AKI acute kidney injury, eGFR estimated glomerular filtration rate, NYHA New York Heart Association grade for heart failure, ACEI/ARB angi-
otensin-converting enzyme inhibitors/angiotensin II receptor blocker, CABG coronary artery bypass graft, CPB cardiopulmonary bypass, RRT 
renal replacement therapy

All (n = 70) Non-AKI (n = 35) AKI (n = 35) p value (AKI vs. non-AKI)

Preoperative variables

 Male n (%) 43 (61.4%) 21 (60.0%) 22 (62.9%) 0.806

 Age (years) 64.31 ± 8.17 62.66 ± 7.07 65.97 ± 8.93 0.090

 Plasma creatinine (μmol/L) 74.97 ± 16.25 72.62 ± 15.36 77.33 ± 16.98 0.259

 eGFR (ml/min/1.73 m2) 90.64 ± 18.32 93.22 ± 16.71 88.06 ± 19.71 0.242

 Body mass index 22.88 ± 3.42 22.81 ± 3.45 22.95 ± 3.43 0.867

 Chronic kidney disease n (%) 17 (48.5%) 8 (22.9%) 9 (25.7%) 0.780

 Hypertension n (%) 29 (41.4%) 13 (37.1%) 16 (45.7%) 0.467

 NYHA >II n (%) 16 (22.9%) 7 (20.0%) 9 (25.7%) 0.428

 Use of contrast medium n (%) 36 (51.4%) 18 (51.4%) 18 (51.4%) 1.000

 Use of ACEI/ARB n (%) 27 (38.6%) 14 (40.0%) 13 (37.1%) 0.806

Intraoperative variables

 Type of surgery

  Valve n (%) 31 (44.3%) 15 (42.9%) 16 (45.7%) 0.810

  CABG n (%) 24 (34.2%) 13 (37.2%) 11 (31.4%) 1.000

  CABG + valve n (%) 9 (12.9%) 4 (11.4%) 5 (14.3%) 1.000

  Other operations n (%) 6 (8.6%) 3 (8.6%) 3 (8.6%) 1.000

 Operation time (h) 5.36 ± 1.39 5.35 ± 1.19 5.38 ± 1.59 0.932

 CPB n (%) 52 (74.3%) 25 (71.4%) 27 (77.14%) 0.584

 CPB time (hours) 1.87 ± 0.85 1.78 ± 0.69 1.95 ± 0.99 0.487

 Postoperative variables

 Hypotension n (%) 8 (11.4%) 2 (5.7%) 6 (17.1%) 0.223

 Low blood volume n (%) 9 (12.9%) 2 (5.7%) 7 (20.0%) 0.127

 Congestive heart failure n (%) 3 (4.3%) 1 (2.9%) 2 (5.7%) 0.958

 Infection n (%) 7 (10.0%) 3 (8.6%) 4 (11.4%) 0.934

 RRT n (%) 1 (1.4%) 0 (0%) 1 (2.9%) 0.485

 Mortality n (%) 3 (4.3%) 0 (0.0%) 3 (8.6%) 0.217

Table 3   Plasma creatinine 
levels of patients at different 
time points

AKI acute kidney injury

* p < 0.05, ** p < 0.01, *** p < 0.001 versus non-AKI patients; ## p < 0.01, ### p < 0.001 versus prelevels
a  Fold change, versus prelevels

Non-AKI AKI

Plasma creatinine (μmol/L) Fold changea Plasma creatinine (μmol/L) Fold change

Pre 72.62 ± 15.36 / 77.33 ± 16.98 /

0 h 72.46 ± 23.54 1.00 100.09 ± 27.14*** 1.31

2 h 68.23 ± 21.26 0.93 96.40 ± 28.20*** 1.26

24 h 82.94 ± 18.40# 1.15 141.40 ± 55.92***### 1.84

72 h 70.88 ± 18.39 0.91 117.54 ± 70.43**## 1.49
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studies are needed to confirm these findings, and further 
studies are required to identify the underlying molecular 
pathophysiological mechanisms.
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