Skip to main content

Advertisement

Log in

Insulin: a novel agent in the pathogenesis of prostate cancer

  • Urology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Prostate cancer, the most frequent non-cutaneous malignancy in aging men, is a growing medical problem, representing the second leading cause of male cancer deaths. Despite its high morbidity, the etiology of prostate cancer remains largely unknown. Several studies have documented hormonal imbalance, such as alteration in androgens and estrogens, obesity, family history and growth factors, as risk factors in the pathogenesis of prostate cancer. Insulin is a growth-promoting hormone that is reported to be involved in the pathogenesis of various malignancies, such as breast and bladder cancers. Insulin is known to increase cancer risk through its effect on cell proliferation, differentiation and apoptosis. In the last decade, converging evidence from epidemiological and clinical studies suggests that the insulin is involved in the tumorigenesis and neoplastic growth of the prostate. Several mechanisms have been suggested to explain the possible causal relationship between insulin and prostate cancer, such as the sympathoexcitatory effect of insulin, alteration of sex hormone metabolism, insulin-like growth factor pathway, signal transduction mechanism and dyslipidemia. The present paper reviews relevant existing studies related to the role of insulin in the pathogenesis of prostate carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

IGF:

Insulin-like growth factor

IGFBP:

Insulin-like growth factor binding protein

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

AMP:

Adenosine monophosphate

References

  1. Underwood W, Jackson J, Wei JT (2005) Racial treatment trends in localized regional prostate carcinoma: 1992–1999. Cancer 103(3):538–545

    Article  PubMed  Google Scholar 

  2. Jemal A, Thomas A, Murray T et al (2002) Cancer statistics, 2002. CA Cancer J Clin 52(1):23–47

    Article  PubMed  Google Scholar 

  3. Black RJ, Bray F, Ferlay J (1990) Cancer incidence, mortality in the European Union: cancer registry data, estimates of national incidence for 1990. Eur J Cancer 33(7):1075–1107

    Article  Google Scholar 

  4. Sharma S, Nath P, Srivastava AN, Singh KM (1994) Tumors of the male urogenital tract: a clinicopathologic study. J Indian Med Assoc 92(11):357–360, 372

    Google Scholar 

  5. Nagpal BL, Prabhakar BR, Kataria SP, Kapoor K, Bal MS (1992) Male genital tract tumors in Punjab, India. J Environ Pathol Toxicol Oncol 11(5–6):331–334

    PubMed  CAS  Google Scholar 

  6. Steinberg GD, Carter BS, Beaty TH (1990) Family history and the risk of prostate Cancer. Prostate 17(4):337–347

    Article  PubMed  CAS  Google Scholar 

  7. Baquet CR, Horm JW, Gibbs T (1991) Socioeconomic factors and cancer incidence among blacks and whites. J Natl Cancer Inst 83(8):551–557

    Article  PubMed  CAS  Google Scholar 

  8. Hsing AW, Chokkalingam AP (2006) Prostate cancer epidemiology. Front Biosci 11:1388–1413

    Article  PubMed  CAS  Google Scholar 

  9. Elghany NA, Schumacher MC, Slattery ML (1990) Occupation, cadmium exposure and prostate cancer. Epidemiology 1(2):107–115

    Article  PubMed  CAS  Google Scholar 

  10. Ornskov D, Nexo E, Sorensen BS (2006) Insulin-induced proliferation of bladder cancer cells is mediated through activation of the epidermal growth factor system. FEBS J 273(23):5479–5486

    Article  PubMed  CAS  Google Scholar 

  11. Kamide K, Hori MT, Zhu JH, Takagawa Y, Barrett JD, Eggena P (2000) Insulin and insulin-like growth factor-I promotes angiotensinogen production and growth in vascular smooth muscle cells. J Hypertens 18(8):1051–1058

    Article  PubMed  CAS  Google Scholar 

  12. Zylberberg R, Pepper M (2001) Continuous insulin infusion: promoting growth in low birth weight infants. Neonatal Netw 20(1):17–24

    PubMed  CAS  Google Scholar 

  13. Igarashi M, Yamaguchi H, Hirata A, Daimon M, Tominaga M, Kato T (2000) Insulin activates p38 mitogen-activated protein (MAP) kinase via a MAP kinase kinase (MKK) 3/MKK 6 pathway in vascular smooth muscle cells. Eur J Clin Invest 30(8):668–677

    Article  PubMed  CAS  Google Scholar 

  14. Laron Z (2004) IGF-1 and insulin as growth hormones. Novartis Found Symp 262:56–77

    Article  PubMed  CAS  Google Scholar 

  15. Suba Z, Ujpal M (2006) Correlations of insulin resistance and neoplasms. Magy Onkol 50(2):127–135

    PubMed  Google Scholar 

  16. Okumura M, Yamamoto M, Sakuma H et al (2002) Leptin and high glucose stimulate cell proliferation in MCF–7 human breast cancer cells: reciprocal involvement of PKC-alpha and PPAR expression. Biochim Biophys Acta 1592(2):107–116

    PubMed  CAS  Google Scholar 

  17. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Natl Rev Cancer 3(4):276–285

    Article  CAS  Google Scholar 

  18. Salahudeen AK, Kanjil V, Reckelhoff JF, Schmidt AM (1997) Pathogenesis of diabetic nephropathy: a radical approach. Nephrol Dial Transplant 12:664–668

    Article  PubMed  CAS  Google Scholar 

  19. Nandeesha H (2008) Benign prostatic hyperplasia: dietary and metabolic risk factors. Int Urol Nephrol. doi:10.1007/s11255-008-9333-z

    Google Scholar 

  20. Nandeesha H, Koner BC, Dorairajan LN (2008) Altered insulin sensitivity, insulin secretion and lipid profile in non-diabetic prostate carcinoma. Acta Physiol Hungarica 95(1):97–105

    Article  CAS  Google Scholar 

  21. Hammarsten J, Hogstedt B (2005) Hyperinsulinemia: a prospective risk factor for lethal clinical prostate cancer. Eur J Cancer 41(18):2887–2895

    Article  PubMed  CAS  Google Scholar 

  22. Hubbard JS, Rohrmann S, Landis PK et al (2004) Association of prostate cancer risk with insulin, glucose and anthropometry in the Baltimore longitudinal study of aging. Urology 63(2):253–258

    Article  PubMed  Google Scholar 

  23. Carmena MJ, Fernandez–Moreno MD, Prieto JC (1986) Characterization of insulin receptors in isolated epithelial cells of rat ventral prostate. Effect of fasting. Cell Biochem Fun 4:19–24

    Article  CAS  Google Scholar 

  24. Mckeehan WL, Adams PS, Rosser MP (1984) Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin but not androgen on normal rat prostate epithelial cells in, serum- free primary cell culture. Cancer Res 44:1998–2010

    PubMed  CAS  Google Scholar 

  25. Landsberg L (1986) Diet, obesity and hypertension: an hypothesis involving insulin, the sympathetic nervous system and adaptive thermogenesis. Q J Med 236:1081–1090

    Google Scholar 

  26. Morgan DA, Balon TW, Ginsberg BH, Mark AL (1993) Nonuniform regional sympathetic nerve responses to hyperinsulinemia in rats. Am J Physiol 264:R423–R427

    PubMed  CAS  Google Scholar 

  27. Hammarsten Jan, Hogstedt B (2001) Hyperinsulinemia as a risk factor for developing benign prostatic hyperplasia. Eur Urol 39:151–158

    Article  PubMed  CAS  Google Scholar 

  28. Haffner SM (2000) Sex hormones, obesity, fat distribution, type 2 diabetes and insulin resistance:epidemiological and clinical correlation. Int J Obes Relat Metab Disord 24(2):S56–S58

    Article  PubMed  CAS  Google Scholar 

  29. Kelley KM, Oh Y, Gargosky SE et al (1996) Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics. Int J Biochem Cell Biol 28:619–637

    Article  PubMed  CAS  Google Scholar 

  30. Vettor R, De Pergola G, Pagano C et al (1997) Gender differences in serum leptin in obese people: relationships with testosterone, body fat distribution and insulin sensitivity. Eur J Clin Invest 27:1016–1024

    Article  PubMed  CAS  Google Scholar 

  31. Haffner SM, Katz MS, Dunn JF (1990) The relationship of insulin sensitivity and metabolic clearance of insulin to adiposity and sex hormone binding globulin. Endocr Res 16:361–376

    PubMed  CAS  Google Scholar 

  32. Hautanen A (2000) Synthesis and regulation of sex hormone-binding globulin in obesity. Int J Obes Relat Metab Disord 24:S64

    Article  PubMed  CAS  Google Scholar 

  33. Gennigens C, Menetrier-Caux C, Droz JP (2006) Insulin-like growth factor (IGF) family and prostate cancer. Crit Rev Oncol Hematol 58(2):124–145

    Article  PubMed  CAS  Google Scholar 

  34. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34

    PubMed  CAS  Google Scholar 

  35. Meinbach DS, Lokeshwar BL (2006) Insulin like growth factors and their binding proteins in prostate cancer: cause or consequence? Urol Oncol 24(4):294–306

    PubMed  CAS  Google Scholar 

  36. Monti S, Proietti-Pannunzi L, Sciarra A et al (2007) The IGF axis in prostate cancer. Curr Pharm Des 13(7):719–727

    Article  PubMed  CAS  Google Scholar 

  37. Peehl DM, Cohen P, Rosenfeld RG (1996) The role of insulin-like growth factors in prostate biology. J Androl 17:2–4

    PubMed  CAS  Google Scholar 

  38. Barnard RJ, Aronson WJ, Tymchuk CN, Ngo TH (2002) Prostate cancer: another aspect of the insulin-resistance syndrome? Obes Rev 3(4):303–308

    Article  PubMed  CAS  Google Scholar 

  39. Claeys I, Simonet G, Poels J et al (2002) Insulin-related peptides and their conserved signal transduction pathway. Peptides 23(4):807–816

    Article  PubMed  CAS  Google Scholar 

  40. Shpakov AO, Plesneva SA, Kuznetsova LA, Pertseva MN (2002) Study of the functional organization of a novel adenylate cyclase signaling mechanism of insulin action. Biochemistry (Mosc) 67:335–342

    Article  CAS  Google Scholar 

  41. Pertseva MN, Shpakov AO, Plesneva SA, Kuznetsova LA (2003) A novel view on the mechanisms of action of insulin and other insulin superfamily peptides: involvement of adenylyl cyclase signaling system. Comp Biochem Physiol B Biochem Mol Biol 134:11–36

    Article  PubMed  CAS  Google Scholar 

  42. Lee E, Park MS, Shin C (1997) A high-risk group for prostatism: a population-based epidemiological study in Korea. Br J Urol 79:736–741

    PubMed  CAS  Google Scholar 

  43. Jeppesen J, Hein HO, Suadicani P, Gyntelberg F (1997) Relation of high TG-low HDL-cholesterol and LDL-cholesterol to the incidence of ischemic heart disease an 8 year follow-up in the Copenhagen male study. Arterioscler Thromb Vasc Biol 17(6):1114–1120

    PubMed  CAS  Google Scholar 

  44. Bagatell CJ, Knopp RH, Vale WW, Rivier JE, Bremner WJ (1992) Physiologic testosterone levels in normal men suppress HDL–cholesterol levels. Ann Intern Med 116:967–973

    PubMed  CAS  Google Scholar 

  45. Ginsberg HN, Ngai C, Wang XJ, Ramakrishnan R (1993) Increased production rates of LDL are common in individuals with low plasma levels of HDL cholesterol independent of plasma triglyceride concentrations. Arterioscler Thromb 13:842–851

    PubMed  CAS  Google Scholar 

  46. Kondo A, Li J, Manabe M, Saito K, Kanno T, Maekawa M (2003) Relationship between high-density lipoprotein-cholesterol and malondialdehyde-modified low-density lipoprotein concentrations. J Atheroscler Thromb 10:72–78

    PubMed  CAS  Google Scholar 

  47. Biwa T, Sakai M, Shichiri M, Horiuchi S (2000) Granulocyte/macrophage colony-stimulating factor plays an essential role in oxidized low density lipoprotein-induced macrophage proliferation. J Atheroscler Thromb 7:14–20

    PubMed  CAS  Google Scholar 

  48. Pai R, Kirschenbaum MA, Kamanna VS (1995) Low-density lipoprotein stimulates the expression of macrophage colony-stimulating factor in glomerular mesangial cells. Kidney Int 48:1254–1262

    Article  PubMed  CAS  Google Scholar 

  49. Mollers C, Drobnik W, Resnik T, Schmitz G (1995) High-density lipoprotein and low-density lipoprotein mediated signal transduction in cultured human skin fibroblasts. Cell Signal 7(7):695–707

    Article  PubMed  CAS  Google Scholar 

  50. Sakai M, Kobori S, Miyazaki A, Horiuchi S (2000) Macrophage proliferation in atherosclerosis. Curr Opin Lipidol 11(5):503–509

    Article  PubMed  CAS  Google Scholar 

  51. Dennis LK, Lynch CF, Torner JC (2002) Epidemiologic association between prostatitis and prostate cancer. Urology 60:78–83

    Article  PubMed  Google Scholar 

  52. Festa A, D’Agostino R Jr, Howard G, Mykkanen L, Tracy RP, Haffner SM (2000) Chronic subclinical unflammation as part of the insulin resistance syndrome: the insulin resistance atherosclerosis study (IRAS). Circulation 102:42–47

    PubMed  CAS  Google Scholar 

  53. Sugar LM (2006) Inflammation and prostate cancer. Can J Urol 13(1):46–47

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanumanthappa Nandeesha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandeesha, H. Insulin: a novel agent in the pathogenesis of prostate cancer. Int Urol Nephrol 41, 267–272 (2009). https://doi.org/10.1007/s11255-008-9440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-008-9440-x

Keywords

Navigation