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Abstract
Trees are key elements of urban green infrastructure and provide multiple ecosystem services that are essential for the quality 
of life of people in urban environments. Grey infrastructure is made up of buildings or built-up area, generally characterized 
by imperviousness of the surface. The complexity of urban green and grey infrastructure and their interactions co-define the 
quality of urban life and the ecological value of urban areas. Using conventional dichotomies by separation into “urban” and 
“rural” contexts does hardly allow to comprehensively assess the situation in rapidly urbanizing environments of the Global 
South. We present an unsupervised remote sensing-based approach that integrates 3D information to objectively categorize 
the complexity of green and grey infrastructure. Using the rural–urban interface of Bengaluru, India, as a case example, we 
distinguished five categories that describe the composition and configuration of green and grey infrastructure, where three 
variables served as indicators for categorization into five clusters. We argue that such integrated 3D assessment of green and 
grey infrastructure is particularly useful for understanding and classifying “rurban” environments, where a distinction between 
urban and rural is often no longer possible. Our final map allows to quantitatively characterize such rurban configurations.
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Introduction

The Earth´s land surface is undergoing rapid and manifold 
changes. Among the most drastic land use changes is the 
sealing of land surface by infrastructure or building con-
structions, generating so-called impervious surfaces (Seto 
et al. 2011). Such areas are core elements of built-up areas, 
settlements, villages, and urban areas. Estimated at about 
0.45% of the habitable land area in 2010 (Liu et al. 2014), 
the global total of settlement and urban area is relatively 
small in comparison to agricultural land cover (about 50%) 
and forests (about 35%), but urban areas are constantly and 

rapidly expanding. A well-defined and unambiguous defini-
tion of urban areas is therefore a must when reliable land 
use maps shall be produced, also due to their multiple and 
substantial sustainability impacts (Elmqvist et al. 2021). 
There is a multitude of possible definitions for the degree of 
urbanization: the Statistical Office of the European Union 
(Eurostat) uses, for example, a criterion of geographical con-
tiguity in combination with a minimum population threshold 
within 1km2 square grid cells (European Commission 2021). 
For remote sensing image interpretation, however, one needs 
in the first place to resort to observable biophysical features, 
since social and economic variables cannot be identified 
directly from the imagery. The most typical biophysical 
feature of settlements and urban areas is the presence of 
built-up elements, including houses, industrial areas, roads, 
and parking lots. In a hierarchical classification framework, 
it appears straightfoward to start out with an identification 
of impervious surfaces and proceed with a classification 
into classes characterizing the degree of urbanity, either in 
categories (such as “urban”, “transition”, “rural”) or on a 
continuous scale of, for example, percent of “urbanity” on 
the second level.
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Research on quantification of urban impervious surface 
and its spatial pattern is commonly based on remote sens-
ing analysis (Elvidge et al. 2007; Ma 2016). Yet mapping 
the class “urban” is the central element in urban studies, 
and research has considered various spatial resolutions as 
well as different sensors and classification methods (Weng 
2012). High-resolution satellite imagery such as IKONOS, 
QuickBird or WorldView are the premier data source for 
detailed thematic mapping of urbanity (Goetz et al. 2003; 
Hu and Weng 2011; Cablk and Minor 2003). Impervious 
surface is used as proxy variable as the class “urban” cannot 
be directly classified from remote sensing.

Within the assessment of urbanization, urban green 
spaces play an important role. Urban green spaces, also 
referred to as green infrastructure (Hansen et al. 2019), are 
composed of parks, gardens, roadside trees or alleys, and 
other “green” landscape elements and have a crucial impor-
tance for regulating air temperature (Herath et al. 2018) 
and air quality (Nowak et al. 2006) and also for providing 
habitats to animals and plants (Lepczyk et al. 2017). Vari-
ous studies have shown that the occurrence of green spaces 
in the neighbourhood has a positive effect on health and 
well-being (Groenewegen 2006; Maas et al. 2009; Troy and 
Grove 2008), in particular where trees form the main ele-
ment of green infrastructure.

Conventional methods for assessing and analysing urbani-
zation and its complexity are usually based on gradient anal-
ysis or on the use of concentric circles but may fail to assess 
a new type of environment, which is found around many of 
the rapidly urbanising megacities of the Global South. Such 
environments are characterised by both urban and rural fea-
tures, thus showing “rurban” characteristics. For example, 
despite intensive development of traffic and settlement infra-
structure, they are often characterised by a high presence of 
green spaces that may either have a long historical continu-
ity or be newly created. The megacity of Bengaluru in the 
South of India is one example of such new environment, 
with e.g. old-growth tree structures overrun by urbanization, 
so that historic green spaces or remnants of agricultural use 
are frequently found next to new and very dense settlements 
(Nagendra and Gopal 2011). An enormous complexity of 
grey and green infrastructure emerges here, both in terms of 
(two-dimensional) area and the (three-dimensional) space-
filling built-up volume.

High-resolution satellite imagery allows assessing and 
categorizing the complex pattern of grey and green infra-
structure at the rural–urban interface through quantita-
tive analyses. Previous studies have commonly used data 
derived in a two-dimensional domain in combination with 
hard thresholding, frequently ignoring the important fact that 
urbanization takes also place in a three-dimensional space. 
Therefore, it is time to integrate the third dimension when 
doing a classification of urbanity. The aim of this study is to 

fill this gap by developing a novel, transparent, and unam-
biguous approach to extract quantitative and comparable 
2D/3D information on the degree of urbanity and as basis 
for a categorization of grey and green infrastructure. The 
approach we propose here uses a small set of biophysical 
variables, extracted from high-resolution remote sensing 
imagery as indicators.

Materials and methods

Study area

Bengaluru is the capital of the Indian State of Karnataka, 
located at 12°58'N, 77°35'E. It is situated on Southern India's 
Deccan plateau at an altitude of about 920 m above MSL 
(Sudhira and Nagendra 2013). The topography is relatively 
flat in Bengaluru North, which is one of four urban districts, 
while Bengaluru South is slightly undulating, with a central 
ridge running in North-East and South-West direction. The 
city is nowadays a centre of IT, biotechnology, aerospace 
technology, and other advanced knowledge-based indus-
tries and research centers (Hiremath et al. 2013). Bengaluru 
used to be known as the “garden city” of India owing to its 
widespread parks, green spaces, and many alleys with old 
and huge trees. Even though many of these natural areas and 
elements have been lost due to infrastructure development, 
trees and green spaces remain abundant as compared to other 
megacities (Nagendra 2016).

Our analysis uses data from a 50 km x 5 km rectangular 
research transect (Fig. 1) in the Northern part of Bengaluru 
that has been defined in the framework of an Indian-German 
collaborative research project (Hoffmann et al. 2017). This 
transect covers a wide range from densely built-up urban 
environments to areas that have a purely rural character. The 
unusually complex pattern of green and grey infrastructure is 
what makes Bengaluru an interesting and challenging study 
site for developing the approach presented here.

Remote sensing imagery

Our Bengaluru image dataset covers the transect area of 
250 km2 and was acquired on 2016–11-16 by WorldView-3 
(Digital Globe®) under cloud-free conditions. WorldView-3 
has eight bands including coastal (400–450  nm), blue 
(450–510 nm), green (510–580 nm), yellow (585–625 nm), 
red (630–690  nm), red edge (705–745  nm), NIR1 
(770–895 nm) and NIR2 (860–1040 nm) with a spatial reso-
lution of 1.2 m and a panchromatic band (450–800 nm) with 
a resolution of 0.3 m. We performed a data-fusion to rise the 
resolution of the multi-spectral bands to 0.3 m, based on a 
pan-sharpening method implemented in Geomatica Banff by 
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PCI Geomatics (PCI Geomatics, Richmond Hill, Ontario, 
Canada).

Terminology and definition

For any classification of land cover and land use, clear defi-
nitions are crucial. A meaningful interpretation of the results 
can only be warranted when a comprehensive, transparent, 
and unambiguous definition of all elements is available and 
consistently used in the classification process. In our context, 
we use a hierarchical “three-level framework” of definitions 
of classes and terminology, where the first level is assigned 
to individual pixels and further levels include an evaluation 
of the neighborhood inside a defined reference area:

•	 1st level—“Impervious”: Impervious is a characteristic 
of the land surface and describes mainly artificial struc-
tures which are usually water-impermeable. Impervious-
ness can be determined at each (dimensionless) point; 
from bird's eye view either a point falls on an impervious 
surface or not. In order to make an accurate mapping 
from remote sensing, very high-resolution imagery is 
required if one wishes to follow this definitional ele-

ment. In our case, this is the WorldView-3 imagery with 
a nominal ground resolution of about 0.3 m. The iden-
tification of “Impervious” from high-resolution remote 
sensing imagery is quite straightforward in many cases.

•	 2nd level—“Urban”: Determining the status of “urban” 
or “rural” is more complex, since the classification is 
based on a mix of biophysical and socio-economic char-
acteristics. In this study, we consider percent impervi-
ous surface (PIC), a two-dimensional biophysical char-
acteristic exclusively. When assigning the mean PIC 
to a location (or to a single pixel), the definition of a 
“reference area” of different sizes around that point is 
required. The relevance of the definition of a reference 
area when dealing with percent cover has been addressed 
early by Kleinn (2001), and in the remote sensing context 
by Magdon et al. (2014).

•	 3rd level—“Green and grey infrastructure complexity”: 
While in level 2 the grey infrastructure is represented 
by the mean PIC in the 2D space, in the third level, the 
complexity is extended to the 3D space to jointly cat-
egorize the configuration and complexity of green and 
grey infrastructure, derived from biophysical character-
istics of remote sensing imagery. The biophysical vari-

Fig. 1   Location of the study 
area, a transect of 50 km x 
5 km in the Northern part of 
Bengaluru, India. The transect is 
enlarged here as a WorldView-3 
false colour composite
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ables include building volume, tree- or green vegetation 
volume, and the mean impervious cover percent in the 
surrounding area from the 2nd level.

For the 1st and 2nd level, the class is assigned to indi-
vidual pixels. For “impervious surface” (level 1) this deci-
sion is made exclusively from information of the pixel itself: 
the pixel is on impervious surface or not. Given the very 
high spatial resolution, mixed pixels can be ignored as they 
occur in a relatively small proportion only. For “degree of 
urbanity” (level 2) a support area needs to be evaluated in 
the immediate surroundings of the target pixel to derive the 
relative proportion of impervious surface. It is then a matter 
of definition how large this support area shall be and which 
shape it should have. The 3rd level is assigned to a refer-
ence area of one hectare, a common size in urban studies 
(Schoepfer et al. 2005).

U‑Net classification (1st level)

The land cover classification system had three classes and 
is detailed in Table 1.

A deep learning multi-class classification approach 
was performed to classify the WorldView-3 image cover-
ing the 5 × 50 km transect. We used a convolutional neu-
ral network called U-Net (Ronneberger et al. 2015) with 
a network structure very similar to the one implemented 
by Iglovikov et al. (2017), along with the published joint 
loss function. The network receives images with a size of 
112 × 112 pixels as input and produces a probability map 
of 72 × 72 pixels as output. The implementation was done 
using the Keras (Chollet 2017) framework with TensorFlow 
as backend (Abadi et al., 2005). Training and validation 
were performed on random subsets of the 330 tiles covering 
the 1 ha sample plots. The split into training and test data 
was 70% to 30%. Training was done for 100 epochs, where 
in each epoch 135 batches of 16 images were presented 
to the network. The total image area fed to the network in 
each epoch was equal to half of the image area of the train-
ing set. Four (blue, green, red, near-infrared) of the eight 
WorldView-3 bands were used, as it proved to be enough 
for this classification task. The study was conducted within 
the same study area by Freudenberg et al. (2019). In order 

to prevent over-fitting, the input images were augmented by 
random flipping and 90° rotations.

Mean impervious cover % (2nd level)

To produce a continuous map of the degree of urbanity, a 
moving window approach with pixelwise step size (a con-
tinuous sliding window with overlap) was used. For every 
single pixel in the image the relative proportion of impervi-
ous surface (Percent Impervious Cover = PIC) was calcu-
lated for three varying window sizes of 100 m x 100 m, 
400 m x 400 m and 800 m x 800 m. The window sizes were 
adjusted to describe the neighborhood on different spatial 
scales, from neighboring houses to ward or village level. The 
workflow was automated and implemented in Python 3.8 
using the NumPy library. The classified map of impervious 
surface from the 1st level was used as the input. The PIC 
was assigned to the central pixel of the moving window. The 
output is a multi-layer image with three bands, one for each 
window size. To reduce the multi-layer image to a single-
band product with 0.3 m spatial resolution we averaged the 
three bands with equal weights (Eq. (1)):

The derived weighted average image was normalized to 
scale of 0 to 1 to retrieve the degree of urbanity. A high value 
corresponds to high urbanization which is characterized by 
a high percent impervious cover for the three window sizes 
and a low value describes less urbanization. The map allows 
classifying any point within the study area into a level of 
urbanity based on its environment using the 2D metric alone.

Green and grey infrastructure complexity (3rd level)

The third level combines 2D information with 3D infor-
mation on buildings and tree or green volumes. The first 
step was to extract an accurate digital surface model 
(DSM) from WorldView-3 satellite stereo pairs. For this 
purpose, we used the OrthoEngineSE from Geomatica 
Banff (PCI Geomatics, Richmond Hill, Ontario, Canada). 
A non-overlapping sliding window of 100 m × 100 m was 

(1)Weighted average =
PIC

100
+ PIC

400
+ PIC

800

3

Table 1   Land cover 
classification scheme

Land cover class

ID Name Description

1 Impervious surface In addition to the class “Built-up”, long surfaced vehicle tracks, mostly
asphalt coated, including narrow streets and all railroad systems

2 Built-up Building structures with walls and roof, including residential buildings 
and industrial buildings

3 Tree cover Patches of leaf-on trees within the landscape
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applied over the DSM to extract the lowest 1% quantile 
representing the ground elevation within each square. 
A normalized height model (NHM) for each square was 
derived by subtracting the ground elevation value from 
the DSM. The space filling volume of buildings was esti-
mated from the average of the NHM per building polygon, 
where the building polygon was extracted from the clas-
sified built-up area map. The volume of buildings was 
then calculated from the building polygon and its mean 
height. The tree volume was estimated accordingly and 
corresponds to that of a pillar above the crown projection 
area with tree height.

From the three indicator variables “mean impervious 
cover %”, “building volume per ha” and “tree volume per 
ha” we identified clusters with similar overall variable pro-
files regardless of their absolute magnitudes; this is a com-
mon grouping approach taken from gene expression data 
analysis. First, we computed the correlation-based distance 
using the function get_dist() [in factoextra R package], 
which uses the Pearson correlation to quantify the simi-
larity of value profiles over the three ordered indicator 

variables. Second, a hierarchical clustering was applied 
from hclust() with k = 5 clusters which was the optimal 
number of clusters identified using the gap statistics 
method fviz_nbclust() function [in factoextra R package].

Results

Impervious surface, built‑up, and tree cover mapping

The results of the classification for the three classes “tree 
cover”, “built-up”, and “impervious surface” are shown 
in Fig. 2 for a subset of 1 km × 1 km. The image shows a 
good match with the underlayed WorldView-3 imagery. 
The overall accuracy (OA) is 89% for tree cover, 92% for 
impervious surface, and 87% for built-up respectively. 
We used an independent validation dataset of size n = 200 
points that have been classified based on visual interpreta-
tion. Although the classification outcomes were convinc-
ing, it is also visible in Fig. 2 that the network partly failed 
to separate single buildings from each other.

Fig. 2   1000 m x 1000 m subset in urban Bengaluru shows the result of U-Net segmentation for three classes of tree cover, built-up and impervi-
ous surface where built-up area is a sub-group of imperviousness
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Categorization of green and grey infrastructure

Figure 3 shows the averaged variable profiles of the sepa-
rated five clusters. The variable Mean PIC, which contains 
the spatial aggregation over moving windows of different 
sizes, identified four separable clusters where each rep-
resents a different degree of urbanization. Cluster #1 and 
#2 are very close to each other and, in view of the profile, 
describe unsealed areas with vegetation or arable/ fallow 
land, etc.. Table 2 gives a more detailed description of the 
cluster characteristics.

Mapping green and grey infrastructure complexity

Our map of the complete study area (Fig. 4a) shows the spa-
tial distribution of the five clusters from correlation-based 
distance clustering on a continuous scale. The red coloured 
area comprises built-up area, other types of impervious 
surfaces, and a few green spaces. It also becomes clear that  
there is all but a linear urban–rural gradient within the 
research transect. Instead, the spatial distribution of the 
individual clusters shows that, although there is a clumping  
of cluster #4 in the area close to the city center, this cluster  
is also found in more distant areas that may have similar 
characteristics with respect to the input variables.

Figure 4b shows the spatial distribution of the villages in 
the Northern transect and their assignment to the respective 
clusters. On a small scale there are two regions in which 
cluster #1 to #4 occur together. Fifty percent of the villages 
were classified into cluster 2, while 20% fell into clusters 3 

and 4 respectively. Only 10% of the villages were attributed 
to cluster 1 (Fig. 5).

Discussion

Considering an expected number of five billion people liv-
ing in urban environments by 2030 (Venugopal et al. 2010), 
keeping urbanization within sustainable limits, and harness-
ing green infrastructure such as urban trees, are grand future 
challenges (Elmqvist and Maddox 2018). Decision processes 
in urban planning should be based on meaningful informa-
tion, most notably regarding the future distribution of green 
infrastructures (Haaland and van den Bosch 2015).

With the aim of contributing to satisfying these informa-
tion needs, the present study provides a data-driven approach 
that characterizes rural–urban gradients in terms of urban-
ity and grey/green infrastructure complexity. The produced 
map combines the percent impervious surface on a 2D scale 
together with the presence of trees and buildings and their 
corresponding volumes on a 3D scale as indicators to quan-
tify the degree of urbanity, with implications for urban qual-
ity. Considering the space filling 3D volume of buildings 
and trees is a new approach that helps to uncover important 
characteristics of urban quality that might be overseen by a 
purely two-dimensional view. Such a classification might 
also provide a closer linkage to social-ecological complex-
ity and helps to identify social-ecological systems (SESs) as 
described in Pacheco-Romero et al. (2021).

Fig. 3   Different profile curves of the five clusters of the three variables: Mean PIC [2D], Building volume [3D] and Tree volume [3D]
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Table 2   Characterization of each cluster and a corresponding 4 ha WorldView-3 image subset for illustration. The cluster values were calculated 
separately per hectare (red square = 1 ha)

Cluster description Illustrative image

Cluster #1 is characterized by a very low percentage of impervious surface and a very low volume of 
buildings and trees. It describes a sparsely populated area with farmland or fallow land close to denser 
populated areas

Cluster #2 shows the largest amount of tree volume together with a low mean impervious cover % in the 
surroundings. Combined with the non-existent- building volume, this cluster includes plantations, green 
spaces such as parks, and agricultural land

Cluster #3 is characterized by a high mean impervious cover in the surroundings and a high amount of 
building volume which indicate multi-floor buildings together with moderate tree volume sourced from 
roadside or sparsely distributed single trees

Cluster #4 shows the highest mean impervious cover in the surroundings and a moderate built-up volume 
per hectare. The tree volume for this type of area is quite low, thus, this cluster can be categorized as a 
highly-dense urban area

Cluster #5 is compromised by a moderate mean impervious cover in the surroundings, less built-up vol-
ume but compared to the previous cluster, cluster #5 shows a higher tree volume
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Fig. 4   Wall-to-wall mapping 
of the five clusters a, and clas-
sification of the 98 villages 
showing a mix of clusters even 
far outside of the city centre b 
in the Northern transect
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In our analysis we discriminated five clusters of simi-
lar characteristics; each of these five clusters characterizes 
urban quality of life in specific ways, and these contributions 
can be either positive or negative. The clustering used here is 
based on the similarity of variable profiles of three metrics 
that are informative if considered all together. Compared to 
a classification based on hard thresholds of single- or mul-
tiple variables, this clustering approach is less influenced 
by the magnitude of absolute values that might vary over 
the study area. Clustering approaches used in other stud-
ies (e.g. Pacheco-Romero et al. 2021) often use the normed 
differences of several indicators in a weighted distance met-
ric (e.g. Euclidean or Mahatten distance). Contrary to such 
approaches, our approach of pattern recognition is based 
on the similarity of variable profiles (Q-correlation), which 
makes it a more general metric that is applicable in different 
environments. In our analysis we limited the number of clus-
ters to k = 5 based on their statistical “separability”, which 
turned out to be well in line with the number of classes that 
can be clearly distinguished by visual interpretations. A 
larger number of clusters would lead to lower separability 
and ambiguous classification results.

Cluster #4 is characterized by a high coverage of impervi-
ous surface and only minor tree volume, and is the dominant 
type in urban Bengaluru. Relatively few trees with low green 
volume occurring in combination with a high coverage of 
impervious surface coverage may have negative effects on 
the quality of life and a healthy urban community. In terms of 
air quality, McPherson et al. (1994) mentioned that particu-
larly the large trees, like those huge alley trees in Bengaluru, 
remove up to 70 times more air pollution than small trees. 

Street trees play a key role for quality of life (Turner-Skoff 
and Cavender 2019) and therefore, there should be minimum 
criteria for the amount of tree cover available. For exam-
ple, Konijnendijk van den Bosch (2021) recently proposed a 
3-30-300 m rule, according to which one should be able to 
see three trees from each house, the neighbourhood canopy 
coverage should be at least 30% to provide environmental, 
economic or social benefits (Mullaney et al. 2015), and lastly 
there should be a green space at 300 m distance.

Regions where neighbouring villages are categorized dif-
ferently in terms of the green and grey infrastructure com-
plexity may be an indicator for an ongoing transformation 
towards a more urban environment. The presented cluster 
approach provides a first indication for new type of environ-
ment that could be named “rurban”. Rurban environments 
do not necessarily represent an intermediate state along a 
linear transition from urban to rural, but often lead to highly 
dynamic, complex, and novel land cover constellations due 
to multiple development processes and tensions.

Tree cover (and tree volume) is a very broad and general 
land cover class. Cluster #2 in particular includes mango 
plantations as well as urban parks - although these different 
types of tree cover provide very different ecosystem services 
and thus also contribute to the quality of life in very different 
ways (one point is the question of public access, which is not 
necessarily guaranteed in the case of plantations, for exam-
ple). As a future extension, we plan to implement a more 
detailed classification scheme which may provide more link-
ages to the different ecosystem services and to quality of life.

The three indicators used in the clustering process 
may have some shortcomings, such as misclassification. 

Fig. 5   Frequency distribution of a villages and b the 100 m × 100 m grid points within the transect for the five clusters
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Although the classification is based on very high-resolution 
imagery, mainly pure pixels per land cover class and a state-
of-the-art classifier, it cannot be avoided that some objects 
or land cover types have been incorrectly classified. This 
in turn may have only a minor impact due to the coarser 
grid resolution but will nonetheless misallocate some clus-
ters. The grid resolution of the presented continuous map 
of 100 m x 100 m is in line with Schoepfer et al. (2005) 
who created a 100 m grid after an exchange with city plan-
ners. In comparison, the resolution of the maps used for the 
analysis is very high with 0.3 m. The reference areas (sizes 
of overlapping moving windows) we used to derive the mean 
PIC per pixel were adjusted to the expected size and spatial 
scale of relevant objects or structures, like single houses 
or properties, wards and small villages. For other applica-
tions different spatial scales of neighborhoods might be more 
appropriate. However, for an area of 250 km2, the analysis 
is computationally intensive. Down sampling to 1 ha during 
cluster analysis is a compromise of computational require-
ments, preservation of spatial variability, and interpretability 
of the map. The down sampling also offers the possibility 
to upscale this approach by integrating Sentinel-2 satellite 
imagery and monitor changes in categorization over time.

Conclusion

Rapid urbanization creates new and complex configurations 
of land that are not captured by conventional dichotomies 
of “urban “ and “rural “ – in particular in the Global South. 
At the same time there is evidence of the important role 
of green infrastructure in mitigating the negative impacts 
of urbanization on sustainability. We make use of 3D ste-
reo satellite imagery and develop a data-driven approach 
to characterize a rural–urban interface regarding its green 
and grey infrastructure complexity. The approach is novel in 
terms of the method following an unsupervised and objec-
tive approach and the integration of 3D information.

Our analysis shows that the three-step procedure of 1) 
classifying “imperviousness” at the pixel level, 2) determin-
ing “urbanity” based on a relative proportion of impervious 
surface in a defined reference area in the 2D space, and 3) 
adding information on complexity by considering the 3D 
volume of green and grey infrastructure helps distinguishing 
different clusters representing different intensities of urbani-
zation. Adding a third dimension of build-up and green vol-
ume, however, requires high resolution stereo imagery or 
other 3D data sources (e.g. airborne LiDAR data) that can 
be used as basis to derive a digital surface model (DSM).

The presented method could be considered in urban plan-
ning and in particular in green infrastructure development as 
it provides spatial information and a categorization of green 
infrastructure. For further development of the approach, an 

assessment of ecosystem services from green infrastructure 
would complement the information basis for decision mak-
ing. Our study contributes to the existing recommendations 
from Hansen et al. (2019) for planning green infrastructure 
in cities and allows planning and site development by using 
a wall-to-wall map of green infrastructure categories. Our 
clustering approach may also advance integration of green 
infrastructure into ongoing efforts to identify and map land 
system archetypes, which are a hot topic in landscape and 
sustainability science (Pacheco-Romero et al. 2021). Using 
clustering approaches to identify land system archetypes 
facilitates the understanding of social-ecological complex-
ity and context by categorizing systems with similar vari-
able profiles that can be correlated or enriched by socio-
economic and ecological data (Rocha et al. 2020).

Author contributions  All authors contributed to the study conception 
and design. Material preparation, data collection and analysis were 
performed by Nils Nölke. The first draft of the manuscript was written 
by Nils Nölke and all authors commented on previous versions of the 
manuscript. All authors read and approved the final manuscript.

Funding  Open Access funding enabled and organized by Projekt 
DEAL. The authors gratefully acknowledge the financial support pro-
vided by the German Research Foundation, DFG, through grant num-
ber 279374797 (Research Unit FOR2432/2).

Availability of data and material  Not applicable.

Code availability  Not applicable.

Declarations 

Competing interests  The authors have no relevant financial or non-
financial interests to disclose.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, 
Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga 
R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, 
Warden P, Wicke M, Yu Y, Zheng X (2005) TensorFlow: a sys-
tem for large-scale machine learning. In Papers presented at the 
2005 workshop on Wireless traffic measurements and modeling. 
12th {USENIX} Symposium on Operating Systems Design and 

http://creativecommons.org/licenses/by/4.0/


171Urban Ecosystems (2023) 26:161–172	

1 3

Implementation ({OSDI} 16). USENIX Association, Berkeley, 
CA, pp. 265–283

Cablk ME, Minor TB (2003) Detecting and discriminating impervious 
cover with high-resolution IKONOS data using principal com-
ponent analysis and morphological operators. Int J Remote Sens 
24:4627–4645. https://​doi.​org/​10.​1080/​01431​16031​00010​2539

Chollet F (2017) Deep Learning with Python. Simon and Schuster
Elmqvist T, Andersson E, McPhearson T, Bai X, Bettencourt L, 

Brondizio E, Colding J, Daily G, Folke C, Grimm N, Haase D, 
Ospina D, Parnell S, Polasky S, Seto KC, van der Leeuw S (2021) 
Urbanization in and for the Anthropocene. npj Urban Sustain. 
https://​doi.​org/​10.​1038/​s42949-​021-​00018-w

Elmqvist T, Maddox D (2018) Urban planet: Knowledge towards sus-
tainable cities. Cambridge University Press, Cambridge, p 482

Elvidge CD, Tuttle BT, Sutton PS, Baugh KE, Howard AT, Milesi C, 
Bhaduri BL, Nemani R (2007) Global distribution and density of 
constructed impervious surfaces. SENSORS 7:1962–1979

European Commission. Statistical Office of the European Union (2021) 
Applying the degree of urbanisation: a methodological manual to 
define cities, towns and rural areas for international comparisons :  
2021 edition. Publications Office, LU

Freudenberg M, Nölke N, Agostini A, Urban K, Wörgötter F, Kleinn 
C (2019) Large scale palm tree detection in high resolution satel-
lite images using U-Net. Remote Sens 11:312. https://​doi.​org/​10.​
3390/​rs110​30312

Goetz SJ, Wright RK, Smith AJ, Zinecker E, Schaub E (2003) IKONOS 
imagery for resource management: Tree cover, impervious sur-
faces, and riparian buffer analyses in the mid-Atlantic region. 
Remote Sens Environ 88:195–208. https://​doi.​org/​10.​1016/j.​rse.​
2003.​07.​010

Groenewegen PP (2006) Vitamin G: effects of green space on health, 
well-being, and social safety. BMC Public Health 6:1–9. https://​
doi.​org/​10.​1186/​1471-​2458-6-​149

Haaland C, van den Bosch CK (2015) Challenges and strategies for 
urban green-space planning in cities undergoing densification: A 
review. Urban For Urban Green 14:760–771. https://​doi.​org/​10.​
1016/j.​ufug.​2015.​07.​009

Hansen R, Olafsson AS, van der Jagt AP, Rall E, Pauleit S (2019) 
Planning multifunctional green infrastructure for compact cities: 
What is the state of practice? Ecol Ind 96:99–110. https://​doi.​org/​
10.​1016/j.​ecoli​nd.​2017.​09.​042

Herath HMPIK, Halwatura RU, Jayasinghe GY (2018) Evaluation of 
green infrastructure effects on tropical Sri Lankan urban context 
as an urban heat island adaptation strategy. In: Urban Forestry 
& Urban Greening 29:212–222. https://​doi.​org/​10.​1016/j.​ufug.​
2017.​11.​013

Hiremath S, Prabhura DK, Lakshmikantha BP, Chakraborty SD (2013) 
Land use/land cover change analysis of bangalore urban district 
and its impact on land surface temperature

Hoffmann E, Jose M, Nölke N, Möckel T (2017) Construction and use 
of a simple index of urbanisation in the rural-urban interface of 
Bangalore, India. Sustainability 9:2146. https://​doi.​org/​10.​3390/​
su911​2146

Hu X, Weng Q (2011) Impervious surface area extraction from 
IKONOS imagery using an object-based fuzzy method. Geocarto 
Int 26:3–20. https://​doi.​org/​10.​1080/​10106​049.​2010.​535616

Iglovikov V, Mushinskiy S, Osin V (2017) Satellite imagery feature 
detection using deep convolutional neural network: A kaggle com-
petition. http://​arxiv.​org/​pdf/​1706.​06169​v1

Kleinn C (2001) A cautionary note on the minimum crown cover crite-
rion in forest definitions. Can J For Res Rev 31:350–356

Lepczyk CA, Aronson MFJ, Evans KL, Goddard MA, Lerman SB, 
MacIvor JS (2017) Biodiversity in the city: fundamental ques-
tions for understanding the ecology of urban green spaces for 
biodiversity conservation. Bioscience 67:799–807. https://​doi.​org/​
10.​1093/​biosci/​bix079

Liu Z, He C, Zhou Y, Wu J (2014) How much of the world’s land has 
been urbanized, really? A hierarchical framework for avoiding 
confusion. Landscape Ecol 29:763–771. https://​doi.​org/​10.​1007/​
s10980-​014-​0034-y

Ma Q (2016) A hierarchical analysis of the relationship between urban 
impervious surfaces and land surface temperatures: spatial scale 
dependence, temporal variations, and bioclimatic modulation. Land-
scape Ecol 1–15. https://​doi.​org/​10.​1007/​s10980-​016-​0356-z

Maas J, Spreeuwenberg P, van Winsum-Westra M, Verheij RA, de 
Vries S, Groenewegen PP (2009) Is green space in the living 
environment associated with people’s feelings of social safety? 
Environ Plann A 41:1763–1777. https://​doi.​org/​10.​1068/​a4196

Magdon P, Fischer C, Fuchs H, Kleinn C (2014) Translating criteria of 
international forest definitions into remote sensing image analysis. 
Remote Sens Environ 149:252–262. https://​doi.​org/​10.​1016/j.​rse.​
2014.​03.​033

McPherson EG, Nowak DJ, Rowntree RA (1994) Chicago's urban 
forest ecosystem. Results of the Chicago Urban Forest Climate 
Project. Radnor, Pa: U.S. Dept. of Agriculture Forest Service 
Northeastern Forest Experiment Station (General technical report, 
NE-186)

Mullaney J, Lucke T, Trueman SJ (2015) A review of benefits and 
challenges in growing street trees in paved urban environments. 
Landsc Urban Plan 134:157–166. https://​doi.​org/​10.​1016/j.​
landu​rbplan.​2014.​10.​013

Nagendra H (2016) Nature in the city: Bengaluru in the past, present, 
and future. Univ Press, Oxford, p 224

Nagendra H, Gopal D (2011) Tree diversity, distribution, history and 
change in urban parks: studies in Bangalore, India. Urban Ecosys-
tems 14:211–223

Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by 
urban trees and shrubs in the United States. Urban For Urban 
Green 4:115–123. https://​doi.​org/​10.​1016/j.​ufug.​2006.​01.​007

Pacheco-Romero M, Kuemmerle T, Levers C, Alcaraz-Segura D, 
Cabello J (2021) Integrating inductive and deductive analysis to 
identify and characterize archetypical social-ecological systems 
and their changes. Landsc Urban Plan 215:104199. https://​doi.​org/​
10.​1016/j.​landu​rbplan.​2021.​104199

Rocha J, Malmborg K, Gordon L, Brauman K, DeClerck F (2020) 
Mapping social-ecological systems archetypes. Environ Res Lett. 
https://​doi.​org/​10.​1088/​1748-​9326/​ab666e

Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional Net-
works for Biomedical Image Segmentation, in: Medical image 
computing and computer-assisted intervention - MICCAI 2015: 
18th international conference, Munich, Germany, October 5–9, 
2015: proceedings, part III, Cham. 2015. Springer, Cham, Hei-
delberg, New York, Dordrecht, London, pp. 234–241

Schoepfer E, Lang S, Blaschke T (2005) A “green index ” incorporat-
ing remote sensing and citizen ’ s perception of green space

Seto KC, Fragkias M, Güneralp B, Reilly MK (2011) A meta-analysis 
of global urban land expansion. PLoS ONE 6:e23777. https://​doi.​
org/​10.​1371/​journ​al.​pone.​00237​77

Sudhira HS, Nagendra H (2013) Local assessment of bangalore: 
Graying and greening in Bangalore – impacts of urbanization on 
ecosystems, ecosystem services and biodiversity. In: Elmqvist T, 
Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald 
RI, Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C 
(eds) Urbanization, Biodiversity and Ecosystem Services: Chal-
lenges and Opportunities. Springer, Netherlands, pp 75–91

Troy A, Grove JM (2008) Property values, parks, and crime: A hedonic 
analysis in Baltimore, MD. Landsc Urban Plan 87:233–245. 
https://​doi.​org/​10.​1016/j.​landu​rbplan.​2008.​06.​005

Turner-Skoff JB, Cavender N (2019) The benefits of trees for livable 
and sustainable communities. Plants People Planet 1:323–335. 
https://​doi.​org/​10.​1002/​ppp3.​39

https://doi.org/10.1080/0143116031000102539
https://doi.org/10.1038/s42949-021-00018-w
https://doi.org/10.3390/rs11030312
https://doi.org/10.3390/rs11030312
https://doi.org/10.1016/j.rse.2003.07.010
https://doi.org/10.1016/j.rse.2003.07.010
https://doi.org/10.1186/1471-2458-6-149
https://doi.org/10.1186/1471-2458-6-149
https://doi.org/10.1016/j.ufug.2015.07.009
https://doi.org/10.1016/j.ufug.2015.07.009
https://doi.org/10.1016/j.ecolind.2017.09.042
https://doi.org/10.1016/j.ecolind.2017.09.042
https://doi.org/10.1016/j.ufug.2017.11.013
https://doi.org/10.1016/j.ufug.2017.11.013
https://doi.org/10.3390/su9112146
https://doi.org/10.3390/su9112146
https://doi.org/10.1080/10106049.2010.535616
http://arxiv.org/pdf/1706.06169v1
https://doi.org/10.1093/biosci/bix079
https://doi.org/10.1093/biosci/bix079
https://doi.org/10.1007/s10980-014-0034-y
https://doi.org/10.1007/s10980-014-0034-y
https://doi.org/10.1007/s10980-016-0356-z
https://doi.org/10.1068/a4196
https://doi.org/10.1016/j.rse.2014.03.033
https://doi.org/10.1016/j.rse.2014.03.033
https://doi.org/10.1016/j.landurbplan.2014.10.013
https://doi.org/10.1016/j.landurbplan.2014.10.013
https://doi.org/10.1016/j.ufug.2006.01.007
https://doi.org/10.1016/j.landurbplan.2021.104199
https://doi.org/10.1016/j.landurbplan.2021.104199
https://doi.org/10.1088/1748-9326/ab666e
https://doi.org/10.1371/journal.pone.0023777
https://doi.org/10.1371/journal.pone.0023777
https://doi.org/10.1016/j.landurbplan.2008.06.005
https://doi.org/10.1002/ppp3.39


172	 Urban Ecosystems (2023) 26:161–172

1 3

van den Bosch CK (2021) Promoting health and wellbeing through 
urban forests – Introducing the 3–30–300 rule | LinkedIn. https://​
www.​linke​din.​com/​pulse/​promo​ting-​health-​wellb​eing-​throu​gh-​
urban-​fores​ts-​rule-​cecil/?​track​ingId= (Accessed 16 Jul 2021)

Venugopal RK, Ramesh B, Bhavani SVL, Kamini J (2010) Urban and 
regional planning. In Roy, P.S., Dwivedi, R.S., Vijayan, D. (Eds.), 
Remote sensing applications. Hyderabad

Weng Q (2012) Remote sensing of impervious surfaces in the urban 
areas: Requirements, methods, and trends. Remote Sens Urban 
Environ 117:34–49. https://​doi.​org/​10.​1016/j.​rse.​2011.​02.​030

https://www.linkedin.com/pulse/promoting-health-wellbeing-through-urban-forests-rule-cecil/?trackingId=
https://www.linkedin.com/pulse/promoting-health-wellbeing-through-urban-forests-rule-cecil/?trackingId=
https://www.linkedin.com/pulse/promoting-health-wellbeing-through-urban-forests-rule-cecil/?trackingId=
https://doi.org/10.1016/j.rse.2011.02.030

	Categorization of green and grey infrastructure complexity in the rural–urban interface of Bengaluru, India: an unsupervised volumetric approach with relevance for urban quality
	Abstract
	Introduction
	Materials and methods
	Study area
	Remote sensing imagery
	Terminology and definition
	U-Net classification (1st level)
	Mean impervious cover % (2nd level)
	Green and grey infrastructure complexity (3rd level)

	Results
	Impervious surface, built-up, and tree cover mapping
	Categorization of green and grey infrastructure
	Mapping green and grey infrastructure complexity

	Discussion
	Conclusion
	References


