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Abstract
This article concerns the synergy between science learning, understanding complexity, and 
computational thinking (CT), and their impact on near and far learning transfer. The poten-
tial relationship between computer-based model construction and knowledge transfer has 
yet to be explored. We studied middle school students who modeled systemic phenomena 
using the Much.Matter.in.Motion (MMM) platform. A distinct innovation of this work is 
the complexity-based visual epistemic structure underpinning the Much.Matter.in.Motion 
(MMM) platform, which guided students’ modeling of complex systems. This epistemic 
structure suggests that a complex system can be described and modeled by defining entities 
and assigning them (1) properties, (2) actions, and (3) interactions with each other and with 
their environment. In this study, we investigated students’ conceptual understanding of 
science, systems understanding, and CT. We also explored whether the complexity-based 
structure is transferable across different domains. The study employs a quasi-experimental, 
pretest-intervention-posttest-control comparison-group design, with 26 seventh-grade stu-
dents in an experimental group, and 24 in a comparison group. Findings reveal that stu-
dents who constructed computational models significantly improved their science concep-
tual knowledge, systems understanding, and CT. They also showed relatively high degrees 
of transfer—both near and far—with a medium effect size for the far transfer of learning. 
For the far-transfer items, their explanations included entities’ properties and interactions 
at the micro level. Finally, we found that learning CT and learning how to think complexly 
contribute independently to learning transfer, and that conceptual understanding in science 
impacts transfer only through the micro-level behaviors of entities in the system. A cen-
tral theoretical contribution of this work is to offer a method for promoting far transfer. 
This method suggests using visual epistemic scaffolds of the general thinking processes we 
would like to support, as shown in the complexity-based structure on the MMM interface, 
and incorporating these visual structures into the core problem-solving activities.
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Introduction

In educational settings, one challenging task for educators is how to better design class-
room learning activities that encourage students to transfer their learning across domains. 
Bransford et al., (2000) defined learning transfer as the ability to use the knowledge learned 
in one context within a new context. The literature has distinguished between two types of 
transfer: near transfer, which occurs between two similar contexts, and far transfer, which 
occurs between two superficially dissimilar but abstractly related contexts (Barnett & Ceci, 
2002; Day & Goldstone, 2012; Gentner, 1983; Hummel & Holyoak, 2003; Klahr & Chen, 
2011). Despite the centrality of transfer as a goal, the difficulties in achieving it have been 
documented by education researchers for many years (Perkins & Salomon, 1992; Salomon 
& Perkins, 1989; Thorndike, 1906).

One explanation for these difficulties is that learning transfer requires a deep under-
standing of the source problem before transferring to the target domain, which in educa-
tional settings does not usually happen within short durations because the source domain 
has just been learned (Chi & VanLehn, 2012; Lobato, 2006; Marton, 2006). One practice 
that has shown increasing promise in promoting such deep conceptual understanding is 
engaging students in the active construction of models (Dickes et al., 2016; Gravemeijer 
et al., 2000; Lehrer & Schauble, 2006). In this study, we explore the potential of this prac-
tice to promote transfer by means of the Much.Matter.in.Motion (MMM) platform (Levy, 
Saba, & Hel-Or, 2019)—a block-based modeling platform that enables middle-school stu-
dents to learn about systems in chemistry and physics by constructing a wide range of com-
putational models in these domains. We compare the learning outcomes of two groups of 
seventh grade students who learned about the topic of gases—one via the regular chemistry 
curriculum, and the other by using the MMM platform to construct models. In addition to 
conceptual learning, the platform is also designed to promote systems understanding, and 
the development of computational thinking (CT) competences.

“Systems and system models” have been defined by the Next Generation Science Stand-
ards (NGSS, Lead States, 2013) as a key, cross-cutting concept in STEM education. Com-
plex systems are composed of many elements, which are self-organized in coherent, global 
patterns, interacting dynamically both among themselves and with their environment (Bar-
Yam, 2003; Epstein & Axtell, 1996; Holland, 1998). “Systems understanding” therefore 
entails an understanding of how the system’s elements interact at the micro-level (micro-
level understanding), how its phenomena can be understood at the macro-level (macro-
level understanding), and how a higher-order or collective behavior may emerge from these 
interactions, linking micro and macro level understandings.

CT has also been identified as a core practice by the NGSS (2013). It encompasses the 
ability to solve problems, design systems, and understand human behavior in ways that are 
related to the ideas behind computation. It includes decomposing difficult problems into 
smaller and easier ones that can be solved, the use of recursive thinking, pattern finding, 
and abstraction (Wing, 2006). Several studies in educational STEM emphasize the fact that 
CT can be practiced across content-domains in STEM. These studies address the impact 
of integrating CT into a learning process that focuses on enhancing both CT and concep-
tual understanding through computational modeling of complex systems (Basu et al., 2014; 
Blikstein & Wilensky, 2009; diSessa, 2000; Guzdial, 1995; Hambrusch et al., 2009; Kaput, 
1994; Wilensky & Resnick, 1999; Zhang & Biswas, 2019).

Similar to other block-based modeling platforms (such as CTSiM and EvoBuild), MMM 
is based on the Agent-Based modeling (ABM) approach to complex systems, which focuses 
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on identifying a system’s entities and defining their behaviors and interactions (Bar-Yam, 
2003). One important innovation of the platform’s design is that the visual representation 
of its coding interface is shaped by the “complexity-based structure” conceptual framework 
which is based on the ABM approach (Fig. 1). The complexity-based structure framework 
suggests that a complex system can be described and modeled by defining the entities in 
a given system and assigning them (a) properties, (b) actions, and (c) interactions with 
each other and with their environment. For example, a gas inside a container can be mod-
eled by defining the entities of the system, namely gas particles, assigning them properties 
(randomly set headings, initial speed), actions (moving in straight lines), and interactions 
(when particles meet with another particle they collide with each other, changing their 
heading and speed, or when particles meet with the boundary of the container they bounce, 
changing only their heading). Upon running the simulation, one can then observe several 
macro-level phenomena emerging from these micro-level interactions, such as how pres-
sure changes when particles are added, or how their speeds are changed.

The study described in this paper was designed to address several distinct but interre-
lated goals. The first goal was to determine the impact of using the MMM modeling plat-
form upon students’ conceptual knowledge, systems understanding, CT and—most particu-
larly—knowledge transfer. The contribution of ABM to conceptual knowledge and systems 
understanding has already been shown in various studies (Samon & Levy, 2017; Brady, 
Holbert, Soylu, Novak, & Wilensky, 2015; Dickes, et al., 2016), and the contribution of 
this particular platform to these two factors has already been explored in-depth by us, in 
a previous paper (Saba, Hel-Or & Levy, 2021). However, this platform’s contributions to 
the development of CT, and the potential relationship between computer-based model con-
struction and knowledge transfer, have yet to be explored. (It is important to mention that 
the learning design in this study did not aim to “teach for transfer”.) We therefore con-
ducted a pre and post analysis of students’ responses to a series of dedicated questionnaires 
on conceptual knowledge, systems understanding, CT and, knowledge transfer, and com-
pared the scores of an experimental and comparison groups that studied with the normative 
instruction.

Our next goal was to look more closely at the potential contribution of the MMM plat-
form’s complexity-based structure to the possibility of knowledge transfer. To achieve this, 
we conducted a qualitative analysis of the students’ responses to questions designed to 

Fig. 1   The Much.Matter.in.Motion (MMM) interface, Levy, Saba & Hel-Or (2019). Right (green shape): 
“Complexity-based structure”
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assess both near and far transfer, to see whether the MMM platform’s use of the complex-
ity-based structure as its visual scaffolding was reflected in the form and content of the 
students’ explanations. Visual scaffolding refers to representation of conceptual objects in 
a visual format (Rha, 2007). In our study, the visual scaffolding uses the complexity-based 
structure to model the components and behaviors of complex systems. The third and final 
goal of the study was to trace the ways in which the three factors—conceptual knowledge, 
systems understanding and CT—may affect one another, and whether each of these three 
directly or indirectly impacts knowledge transfer. This goal was addressed by means of a 
“path analysis” (Ahn, 2002) of the students’ scores to determine the mutual relationships 
and influences of these four factors.

Literature review

Constructing models as a means of learning about complex systems

Constructing models is a core activity in this study. Researchers that focus on modeling in 
science education have defined models as representations of a phenomenon initially cre-
ated for a specific purpose (Gilbert et al., 2000; Houseal, 2016). Model construction sim-
plifies the phenomenon of interest based on the future use or the goal of the model, and it 
can serve as an explanatory tool (Gobert & Buckley, 2000). Constructing computational 
models allows students to conduct several changes iteratively and to progressively refine 
their model in order to explore the phenomena under investigation.

Studies have addressed the significant advantages of learning via the construction of 
computational models of complex systems to the improvement of students’ conceptual 
learning and systems understanding (Saba, Hel-Or & Levy, 2021; Wilkerson-Jerde et al., 
2015). Furthermore, studies such as Wagh and Wilensky (2018) have addressed the sig-
nificant affordance of engaging in constructing computational models, using the EvoBuild 
modeling tool, over exploring prebuilt models. They found that students who constructed 
computational models expressed greater learning of evolutionary mechanisms than did stu-
dents who explored prebuilt models.

Several approaches for modeling complex systems in science education have been intro-
duced in the literature, including the Structure, Behaviors, and Function (SBF) approach 
(Assaraf et al., 2013; Eilam & Poyas, 2010; Goel et al., 2009; Liu & Hmelo-Silver, 2009; 
Simon, 1969), the System Dynamics (SD) approach (Forrester, 1968), and Agent-Based 
Modeling (ABM; Bar-Yam, 2003). In this study, we adopted the latter approach, namely 
the ABM of complex systems. The ABM approach represents systems through their partic-
ipating entities (i.e., agents), assigning them behaviors and interactions. Running the simu-
lation shows how these entities act and interact, a process that results with an emergent 
collective pattern in a bottom-up way.

We selected this approach because of its generativity in science as well as its ability to 
help students relate micro and macro levels (Levy & Wilensky, 2009; Wilensky & Resnick, 
1999). For example, an ant convoy is an emergent phenomenon that results from micro-
level interactions between single ants, food sources, and pheromones. When an ant finds 
food, it releases pheromones that evaporate. Other ants look for pheromones, heading for 
the strongest scent. The actions of many individual ants at the micro level can reach a criti-
cal mass at the macro-level, resulting in a path of pooled scent, which causes the emergent 
phenomenon of an ant convoy marching.
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Several studies have demonstrated the significant advantage of the ABM approach to 
complex systems in promoting students’ systems understanding and conceptual learning 
(Samon & Levy, 2017; Brady, Holbert, Soylu, Novak, & Wilensky, 2015; Dickes, Sen-
gupta, Farris, & Basu, 2016; Holbert & Wilensky, 2014; Sengupta & Wilensky, 2009; van 
Mil, Boerwinkel, & Waarlo, 2013). The potential contribution of using computer-based 
simulations to knowledge transfer has also been addressed in a variety of studies (Falloon, 
2020; Goldstone & Sakamoto, 2003; Goldstone & Wilensky, 2008; Hustad et al., 2019). 
Using computer simulations allows students to interact with the simulation and interpret 
objects and their interactions. Especially when these interpretations are idealized, the set 
of relations in one setting can be used in dissimilar situations, thus promoting the transfer 
of systems understanding (e.g. micro-level, macro-level, emergence etc.) across domains 
(Goldstone & Sakamoto, 2003; Goldstone & Wilensky, 2008). However, some of these 
studies, such as Falloon (2020) and Hustad et al. (2019), do not rely on a complex systems 
approach, which is fundamental in this study. Other studies (Goldstone & Sakamoto, 2003; 
Goldstone & Wilensky, 2008), use the complex systems approach, but rely on exploring 
pre-built computational models and do not enable students to construct these models them-
selves, which is also a core element in this study.

The synergy between CT and STEM through model construction

Recent studies, which have explored the advantages of using computational modeling tools 
in the teaching of complex systems, have also highlighted the synergy between CT and 
STEM (e.g., CTSiM: Basu et al., 2014; DeltaTick: Wilkerson-Jerde et al., 2015; EvoBuild: 
Wagh et al., 2018).

Studies have shown that applying CT in STEM domains through modeling enhances 
students’ learning (Basu et  al., 2016; García-Peñalvo, Reimann, Tuul, Rees, & Jorma-
nainen, 2016; Gadanidis et al., 2016; Jaipal-Jamani & Angeli, 2017; Pei et al., 2018; Zhang 
& Biswas, 2019). These studies show that programming for computational modeling can 
serve as an effective vehicle for learning challenging science and math concepts. For exam-
ple, CT2STEM (Hutchins et al., 2020) is a collaborative, computational learning environ-
ment. It combines visual model construction with a domain-specific modeling language 
to scaffold learning of high school physics using a computational modeling approach. The 
result of the study indicated that students who worked with C2STEM developed a bet-
ter understanding of concepts and practices in physics and CT than students who learned 
through a traditional curriculum.

One main benefit of embedding CT into STEM classrooms is developing a mutual rela-
tionship between math, science, and CT, in a way that aligns with recent scientific practice 
(Weintrop et al., 2016). It is particularly beneficial when the learning of STEM is based 
on the complex systems approach. Berland and Wilensky (2015) found that programming 
many robots in a single environment develops both understanding of complex systems and 
CT. They explained that these types of understanding are mutually reinforcing because of 
the agent and aggregate perspectives the students adopt. Another advantage of integrating 
CT into STEM is that it allows students to intuitively formalize scientific phenomena based 
on computational mechanisms and principles, rather than using abstract mathematical prin-
ciples (Redish &Wilson, 1993; Sengupta & Wilensky, 2011; Wilensky & Reisman, 2006).

Having established the idea that CT can be a useful tool for learning STEM, how-
ever, we must then ask—how should we help our students acquire CT? The conventional 
view today is that basic concepts in computer science and programming are an essential 
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component of CT, and that these concepts should be introduced to students from a young 
age (Brennan & Resnick, 2012; Cooper et  al., 2000; Grover & Pea, 2013; Weintrop & 
Wilensky, 2015; Werner, Denner, Campe, & Kawamoto, 2012). Accordingly, teaching CT 
is often based on having students learn programming skills. For example, Scratch (Resnick 
et al., 2009) and Alice (Cooper et al., 2000) are popular programming languages that ena-
ble students to learn CT competencies through the construction of games and simulations.

Concerns have been raised, however, that direct teaching of CT through programming 
alone might reduce students’ interest in learning it (Mooney et al., 2014). In addition, the 
National Research Council (2011) recommended that CT and programming be integrated 
within the K–12 science curricula in more significant ways. This integration requires a 
shift from teaching CT, programming, and modeling as separate topics to designing sci-
ence domain learning environments that focus on interweaving these competences in learn-
ing (Sengupta, et al., 2013). The MMM (Levy, Saba & Hel-Or, 2019) platform used in this 
study is designed with such an integration in mind—interweaving CT development with 
the teaching of STEM content through the construction of computational models.

The transfer of learning: definitions and methods to increase transfer

Within educational systems, educators usually strive to effect positive changes not only to 
the specific topic of learning but also beyond it. Underlying this effort is an assumption 
that different kinds of knowledge may share common structures. Thus, educators aim to 
design learning experiences that enable students to use such common structures of knowl-
edge across courses, school years and in their workplaces (Bransford & Schwartz, 1999). 
These learning experiences may rely on educating students broadly rather than training 
them to execute certain tasks (Broudy, 1977). In addition, assessing learning transfer can 
help educators to measure the quality of students’ learning experiences. This is because, 
when assessing both learning and transfer some kinds of learning experiences might pro-
duce effective memory but poor transfer; however, others may achieve effective memory 
and positive transfer (Bransford et al., 2000).

The failure to transfer learning from one context to another is a well-known problem in 
education research. This is particularly true when learning must be transferred between dif-
ferent contexts that have similar deep structure yet are dissimilar superficially, namely (far 
transfer). Some researchers have gone so far as to deny the existence of far transfer alto-
gether (Barnett & Ceci, 2002; Denning, 2017). Other researchers have found a very limited 
degree of far transfer, such as Sala and Gobet (2017), who studied the topic in the domains 
of chess instruction and music education. Chi and VanLehn (2012) named this problem as 
the “failure-to-transfer phenomenon.”

Classically, transfer of learning is described by Lave (1988) as two processes in a “two 
problem transfer paradigm,” namely the first process of initial learning followed by the 
second process of applying the learned knowledge. One of the basic distinctions is between 
surface and structural similarity as a basis for learning transfer. A problem’s “surface fea-
ture” refers to the perceived concepts, or entities, that have an explicit description in that 
problem, so that transfer by surface similarity is based on reminding cues and knowledge 
application. “Deep structure,” on the other hand, indicates the procedures for solving a 
problem that often cannot be directly recognized. Transfer, researchers have noted, often 
fails when the two problems have dissimilar surface features but a similar deep structure 
(Chi &VanLehn, 2012; Gick & Holyoak, 1983).
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Much work has been done on the structural similarity between contexts and on the pro-
cess by which far transfer could take place. Transfer by structural similarity takes place 
by mapping between the source and target situations (Day & Goldstone, 2012; Gentner 
& Hoyos, 2017; Hummel & Holyoak, 2003): by matching between the relations within 
systems in two dissimilar contexts, which involve different objects and features (Day & 
Goldstone, 2012; Gentner, 1983; Hummel & Holyoak, 2003; Klahr & Chen, 2011; Mal-
kiewich & Chase, 2019). Malkiewich and Chase (2019) go one step further and empha-
size two constructs related to transfer by structural similarity. One construct, which aligns 
with most previous studies (e.g. Chi &VanLehn, 2012; Day & Goldstone, 2012), is notic-
ing deep structure as an important factor for learning transfer. It is defined by recogniz-
ing and interpreting certain information in the problem. The second construct is focusing, 
which is defined as “choosing to engage with noticed information over time and determin-
ing whether it is important for task success” (Malkiewich & Chase, 2019, p, 1477). These 
researchers found that students who had the ability to focus on deep structure when engag-
ing in engineering tasks succeeded in transferring science concepts to non-engineering 
problems.

In our study, we build upon Malkiewich and Chase’s (2019) work. The MMM modeling 
tool, we hypothesize, assists students in noticing the deep structure of complex systems 
through the explicit visualization of the complexity-based structure reflected in the MMM 
interface. This visual scaffolding, we suggest, also encourages students to focus on the core 
aspects of a phenomenon when solving a transfer problem, in the case of chemical and 
physical systems modeled with MMM, the micro-level interactions. It does this by allow-
ing students to draw the macro-level objects in the system, select and place the micro-level 
entities in the model, and then code the rules for their behavior.

Barnett and Ceci (2002) present a framework for far transfer by offering a taxonomy 
that is characterized by two main categories: the content—“what is transferred” and the 
context—“when and where it is transferred from and to”. In the category of context, five 
dimensions are presented: knowledge domain, physical context, temporal context, func-
tional context, social context, and modality (see also Fig.  1, P. 621, in: Barnett & Ceci, 
2002). Each dimension can be rated along five gradations ranging from near to far trans-
fer. In our study, we follow the taxonomy presented by Barnett and Ceci (2002) to more 
finely examine the conditions for learning transfer, which will be discussed in more detail 
in Sect.  “Data collection instruments”. We used two key dimensions of the taxonomy—
“Knowledge domain” (which can refer to broad definitions like “science” and “art”, and 
to their sub-categories, such as “biology,” “botany,” “chemistry”), and “Modality” (which 
refers to the problem’s format, e.g., written, multiple choice, oral etc.)—to characterize 
which tasks could serve for testing near transfer and which task could be considered for 
testing far transfer.

Methods to increase transfer are based on the above distinction between the process of 
learning the source problem and the process of applying it to the target problem. One principle 
requires deep initial learning of the source problem to enable successful transfer to the target 
problem (Chi & VanLehn, 2012; Lobato, 2006; Marton, 2006;). One method based on this 
principle of deepening the initial learning is to involve students in identifying the deep prin-
ciples at each stage of solving the problem (Goldstone & Sakamoto, 2003; VanLehn & Chi, 
2012). Another method, which highlights the second process, involves ways by which instruc-
tion could explicitly highlight how these principles can be applied in other domains (Fuchs 
et  al., 2003; Rosholm et  al., 2017; Salomon & Perkins, 1989; Terwel et  al., 2009;). Fuchs 
et  al. (2003) found that instruction that combined explicit teaching for transfer with direct 
problem-solving instruction was the most effective for both near and far transfer. Catrambone 
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and Holyoak (1989) showed that providing students explicit hints that relate how the previ-
ously learned situation contributes to understanding the new situation can help promote learn-
ing transfer. However, caution is needed, as a balance between providing enough guidance to 
enhance learning efficacy and affording too much guidance that interrupts knowledge con-
struction needs to be established (Margulieux & Catrambone, 2019).

Goals, hypotheses and research questions

This study was designed to address several, interrelated goals. First, it sought to examine the 
impact of using a computer-based tool, namely the MMM platform, to construct computa-
tional models of complex systems, not only upon students’ conceptual knowledge and sys-
tems understanding, but also upon two additional significant factors—their CT and knowledge 
transfer. Its first research question was therefore:

RQ1:	 To what extent does constructing models of complex systems on the topic of gases 
with MMM contribute to students’ conceptual learning, systems understanding, CT, and 
(near and far) knowledge transfer, compared with normative instruction of the subject?

	   Our next goal was to determine, if we found that using the MMM did in factcontribute 
to knowledge transfer, how the visual scaffolding of the modelingtool’s complexity-
based structure may have played a part in facilitating thattransfer. We therefore asked:

RQ2:	 Which elements of the complexity-based structure (namely, Properties, Actions, 
and Interactions and their related variables, such as size, speed, heading etc.) do the 
students in the experimental group use when answering a question that requires near 
transfer, compared with the comparison group? Which elements do they use when 
answering a question that requires far transfer?

	   The third and final goal of the study was to determine the relationships between the 
four factors addressed in RQ1, and particularly whether each of the first three factors 
directly or indirectly influences knowledge transfer. We therefore asked:

RQ3:	 What are the contributions of conceptual learning, systems understanding, and 
computational thinking to knowledge transfer when engaging in learning by modeling 
with the MMM platform?

In this context, we constructed a path diagram of the four variables, which is shown in 
Fig. 2. It reflects the following hypotheses: (1) conceptual knowledge, systems understanding, 
and CT each affect students’ transfer of learning; (2) the three variables, conceptual knowl-
edge, systems understanding, and CT are related in the path analysis: conceptual knowledge 

Conceptual 
knowledge

Computational 
thinking 

Transfer of 
learning 

Systems 
understanding 

Fig. 2   A hypothesis path model. CT Computational thinking
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and systems understanding each contribute to cultivating CT; conceptual knowledge and CT 
each contribute to enhancing systems understanding; CT and systems understanding each con-
tribute to cultivating conceptual knowledge.

The MMM platform

The block-based MMM platform (Levy, Saba & Hel-Or, 2019) is a universal block-based 
modeling tool for complex systems in chemistry and physics (Fig.  3). It was developed 
based on a previous NetLogo version of MMM (Levy, Saba & Hel-Or, 2018) and is 
described in depth in Saba, Hel-Or & Levy (2021). MMM enables students to construct a 
wide range of computational models of chemical and physical systems based on a complex 
systems approach and using the visual scaffolding of the complexity-based visual structure 
in the MMM interface.

The left part in Fig. 3 shows one component of the environment, a model created with 
NetLogo (Levy, Saba & Hel-Or, 2018; Wilensky, 1999) the right side shows the block-
based coding component, which was made with the Blockly open-source library (https://​
devel​opers.​google.​com/​block​ly). Block-based coding provides easy access to programming 
which, combined with the visual scaffolding in the modeling interface, allows students to 
construct models with minimal guidance.

The visual representation of the models is displayed in the central window (shown as 
a black window in Fig. 3) and includes micro-level entities visualized as balls and macro-
level boundaries represented as lines and environmental fields represented as arrows.

Figure 3 illustrates a model that was constructed to represent the process of inflating 
a bicycle tire. The construction of a new model is divided into three steps, which can be 
iteratively revised and improved:

(1)	 Walls within the model (in this case the bicycle tire, which is represented by a blue 
circle) are painted in by hand using the buttons on the left side of the interface. Using 
a paintbrush, students can draw shapes to represent containers, electric wires, slopes, 
and more.

Fig. 3   The Much.Matter.in.Motion (MMM) interface, Levy, Saba & Hel- Or (2019). Left: NetLogo MMM; 
right: block-based coding

https://developers.google.com/blockly
https://developers.google.com/blockly
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(2)	 The right part of the interface is the construction area. It includes a green shape, the 
complexity-based structure, which has three cavities into which blocks can be dropped. 
The students drag and drop blocks from a bank with three categories, each in a dif-
ferent color—Properties, Actions, Interactions—into their accorded place inside the 
green shape. At this stage, the student defines the model’s entities at the micro-level 
(such as particles, molecules, electrons, planets) and assigns them properties, such as 
size, speed, and mass (this is done by dragging and dropping “Properties” blocks). 
All the entities in MMM are represented as balls; in Fig. 3, the red balls represent gas 
particles inside the bicycle tire. When there is more than one type of entity, each type 
is considered a group. Each group has its own computational structure, such as two 
different types of gas, or atoms and electrons in a conductor.

The entities have independent and dependent actions. Independent actions are not 
affected by the environment. For example, gas particles move in a straight line. However, 
dependent actions, namely interactions with the environment and other entities, can pro-
duce changes in the entities’ behavior a, such as changing speed and direction through col-
liding with another entity, or bouncing off a wall. Dependent and independent actions are 
assigned by dragging and dropping “Actions” and “Interactions” blocks respectively.

(C)	 After completing the micro-level construction, balls are mouse-clicked into place (e.g., 
the red balls are inserted inside the blue cycle), using the control buttons (Fig. 3, acti-
vating the “place-balls” button) on the left side of MMM.

Pressing the “Play” button allows students to dynamically observe the phenomena under 
investigation; following this observation, it is easy to iteratively manipulate the constructed 
model.

Over the past ten years, multiple studies have used a variety of modeling tools as a 
means of enhancing both CT and conceptual understanding of science through the lens of 
complex systems. MMM, however, differs from these in four key ways: (a) MMM is not 
restricted to a specific science-content, but enables the construction of wide range of phe-
nomena in chemistry and physics; (b) it affords engagement in scientific modelling through 
a combination of drawing and model construction; (c) it employs minimal mathematical 
representations, such as graphs, to support students’ careful observation of the intricacies 
of the visual model of the complex system itself, rather than its mathematical representa-
tions; (d) the core affordance, which is the focus of this study, is the general complexity-
based structure that underlies the MMM interface (Saba, Hel-Or & Levy, 2021), which can 
be transferred across topics and even domains.

Method

Research approach and design

The study was conducted with a quasi-experimental pretest-intervention-posttest and a 
comparison-group design. It used a mixed-methods approach, combining quantitative and 
qualitative data analysis (Creswell, 2012). Quantitative analysis was used to compare the 
experimental and comparison group students’ conceptual learning, CT, systems under-
standing, and learning transfer. In addition, it was used to explore how promoting students’ 
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conceptual learning, systems understanding, and CT competences may affect the transfer 
of the complexity-based structure across domains. Qualitative analysis was used to delve 
into the ways by which the step-by-step processes of learning through constructing models 
is accompanied by changes in CT practices. In addition, it was used to compare students’ 
responses to near- and far-transfer items.

Participants

The participants included 79 seventh-grade students (33 girls, 46 boys) from a middle-
to-high-socioeconomic-status urban school in Israel. Participants were recruited as four 
organic, intact classes. Two classes served as the experimental group (n = 38). Two addi-
tional classes formed the comparison group (n = 32). Some students did not complete one 
of the two questionnaires, specifically the posttest, which was conducted during the 2020 
COVID-19 pandemic shutdown, reducing the sample to 50 students (24 girls, 26 boys), 
with 26 pre- and postquestionnaires from the experimental group and 24 from the compari-
son group. Students from both groups had not learned the topic of gases before participat-
ing in the study.

One expert researcher (the first author of this paper), who has experience in teaching, 
taught the experimental group. The comparison group learned with their science teacher, 
who holds an undergraduate degree in science education and had been teaching for 
18 years.

Research procedure

The learning unit for both the experimental and comparison groups was planned to include 
six sessions of 1.5  h each, as part of their seventh-grade science class. Because of the 
COVID-19 pandemic and school shutdown, it included only four sessions of 1.5 h each, 
without the topic of diffusion. Both groups learned for the same amount of time, and both 
focused on the topic of gases, including kinetic molecular theory, gas pressure, temperature 
and the Gas Laws. The experimental group learned the topic of gases using the “Mod-
eling gas behavior with MMM” learning unit. The comparison group learned this topic 
using a normative approach based on lectures, experiments, discussions, and the use of 
textbooks. One week before the learning unit and one week after ending it, the students 
of both groups completed a 25-min questionnaire on conceptual understanding of gases 
and a 20-min questionnaire on CT. In the posttest, an additional 15-min transfer question-
naire was included. It is important to mention that the learning design of both groups did 
not “teach for transfer” in the sense described by several researchers as mindful transfer 
(Salomon & Perkins, 1989), by introducing challenges and examples for extensions of the 
knowledge beyond the specific topics learned.

The “Modeling gas behavior with MMM” learning unit

In our previous study (Saba, Hel-Or & Levy, 2021), we introduced the “Modeling gas 
behavior with MMM” learning unit. It is based on the “Gases in Motion” unit designed by 
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Samon and Levy (2017), which is based on chapter 1 of the Connected Chemistry (CC1)1 
learning unit (Levy & Wilensky, 2009). Our unit differs from these in the form by which 
students were engaged with computer models in the learning environment. The main dif-
ference is the practice of constructing models using MMM, rather than exploring pre-built 
models.

In this study we employed an improved version of the learning unit, based on our previ-
ous results and teachers’ feedback (Saba, Hel-Or & Levy, 2021). It included four (1.5 h) 
lessons in which students used the block-based MMM to construct computational models. 
Table 1 describes the activities in the learning unit.

The instructional sequence consists of three main stages: (1) experience with a physi-
cal phenomenon through labs and demonstrations, which were guided by the teacher; (2) 
students work in pairs to construct models and explore them (i.e., observe the system’s 
behavior, refine the models based on this observation, posit explanations for the behavior). 
It is important to note that due to the easy access to programming with MMM and the 
visual scaffolding of the complexity-based structure in the MMM interface, the teacher’s 
contribution at this stage is minimal, and mainly focused on helping students with techni-
cal problems; (3) classroom discussion and lesson conclusion, guided by the teacher, in 
which students consolidate their knowledge, present their respective models and explana-
tions, compare them with the physical phenomenon explored in the first stage; after which, 
students provided their own conclusions, guided by the teacher.

Normative science curriculum

The normative approach to chemistry education mainly relies on the teacher presenting 
the particulate model as a given theory, demonstrating experiments or involving stu-
dents in conducting experiments, and exploring phenomena explained by the particulate 
model. Examples of science experiments include the compression of gas in a syringe 
and inserting one balloon into a bowl with cold water and another balloon into a bowl 
with hot water. This approach to learning deals mainly with exploring systems at the 
macro-level, followed by focusing only on explaining phenomena at the micro-level. 
Few explanations are based on bridging the macro- and micro-levels of the phenomena, 
especially in an emergent way that comprises probabilistic aspects and equilibration of 
the system.

Each lesson is usually divided into the following stages: (1) Introduction and defini-
tions, in which the teachers stands in front of the students, presents the existing theory and 
basic concepts related to gases and writes them on the classroom board; (2) Teacher lead 
demonstrations of physical experiments, or inviting students to conduct experiments; (3) 
Classroom discussion, in which the teacher asks students to explain the results based on 
the particulate model, either orally or in their notebooks; and (4) Lesson conclusion, which 
involves the teacher writing lesson conclusions on the classroom board. In our study, the 
textbook Material Science (Ben Horin, Orad & Welger, 2013), the most common textbook 
in Israeli schools at the time of this study, was used in the normative lessons (Appendix D 
includes an example of one lesson).

1  CC1 is a learning environment constructed using NetLogo on the topic of gases in chemistry. (The unit 
can be download here: http://​ccl.​north​weste​rn.​edu/​curri​culum/​Conne​ctedC​hemis​try/​CCGas​LawsS​tudent.​
pdf).

http://ccl.northwestern.edu/curriculum/ConnectedChemistry/CCGasLawsStudent.pdf
http://ccl.northwestern.edu/curriculum/ConnectedChemistry/CCGasLawsStudent.pdf
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Data collection instruments

In addition to the “Modeling gas behavior with MMM” learning unit that was developed 
for this research, we used two identical pre- and posttest questionnaires (Gases question-
naire, CT questionnaire), and two posttest questionnaires (Near-transfer and Far-transfer 
questionnaires):

a.	 Gases questionnaire (Appendix A). The questionnaire tests for conceptual learning 
and systems understanding regarding science phenomena targeted in the activities. It 
includes 18 multiple-choice items. These questions have been tested and used in previ-
ous research (Levy & Wilensky, 2009; Samon & Levy, 2017). The items involve kinetic 
molecular theory, and the following concepts related to gas: pressure, temperature, and 
density. In addition, each item tests for one component of systems understanding: micro 
level, macro level, and bridging between the two levels of the phenomenon (Appendix 
A notes, for each item, the system component it tests: micro, macro, micro/macro). For 
the Gases questionnaire, we used Kuder-Richardson’s Formula 20 to test for internal 
consistency reliability, KR20 = 0.86, which indicates for high reliability. The Gases 
questionnaire was reviewed by two middle school science teachers to ensure clarity 
and coverage of the concepts and principles taught with the standard learning materi-

Table 1   Activities included in the unit, their duration, and whether the activity involves computational 
modeling

gniledomlanoitatupmoCytivitcA)ruoh5.1(snosseL

1 (45 minutes) Introduction to the world of Gases: Laboratory demonstrations, 
investigations, and discussion 

- 

1(45 minutes), 2  A: KMT: Construction of a simple kinetic molecular theory 
(KMT) model: 

)1( Demonstration of inflating a bicycle tire  - 

)2( -noissucsiddnaTMK

)3( Construction of computational model  Guided  
)4( -yrammusdnanoissucsiD

)5( Open KMT construction activity  Open-ended 

3 B: Gas laws:  

(1) Demonstrations of phenomena related to pressure at 
the macroscopic level  

- 

(2) Demonstrations of phenomena related to pressure at 
the microscopic level 

- 

(3) Discussion and summary  - 

3, 4  C: Factors affecting Pressure: 
(1) Number of particles: comparing between tires with 

different number of air particles inside them  
Open-ended  

)2( Volume: comparing between tires with different 
volumes  

Open-ended 

)3( Temperature: inserting two balloons into water balls 
with different temperatures  

Open-ended 

)4( -yrammusdnanoissucsiD
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als. It was tested, and used in previous research (Saba, Hel-Or & Levy, 2021; Levy & 
Wilensky, 2009; Samon & Levy, 2017).

b.	 CT questionnaire (Appendix B). The questionnaire consists of six items (two multiple-
choice, four open-ended) that include pseudo code and prebuilt models. Pseudo code 
is an informal way of programming, in which verbal descriptions serve as “stand-ins” 
for computer code. The CT questionnaire was built in-house and reviewed by two mid-
dle school science teachers to ensure clarity. Open-ended items 3.1, 3.2 and 3.3 in this 
questionnaire require students to solve a problem regarding the collective behavior of 
fish in changing environments.

Near and Far transfer questionnaires were developed based on Barnett and Ceci’s (2002) 
taxonomy, as described in the literature review. Two dimensions, “knowledge domain” and 
“modality” were used to define far transfer items versus near transfer items. In terms of 
knowledge domain, both the near and far transfer items represented a shift into the mid-
dle of Barnett & Ceci’s taxonomy—moving within the general domain of “science” from 
Chemistry in the learning unit (specifically, gases) to biology in the two transfer questions 
(namely, the behavior of fish and ants). This, on its own, can be considered near trans-
fer because the shift in domains is not extreme. In terms of modality, however, the near 
transfer items are similar in format to the learning situation encountered by the students 
in the “Modeling gas behavior with MMM” learning unit, while the far transfer items are 
not (they require writing explanations, with no support from complexity-based structure). 
Thus, while the far transfer questionnaire reflects a shift in both knowledge domain and 
modality, the near transfer questionnaire reduces some of the difficulty in that transition by 
making the format more similar. Note that, though the content similarity in the near trans-
fer questions is shared by both groups, the modality similarity, which is the combination of 
modeling, visualizing and code, is true only for the experimental group, which means that 
the near transfer for the comparison group is “less” near.

Near-transfer questionnaire. Items 3.1, 3.2, and 3.3 of the posttest CT questionnaire 
were also used as a tool for assessing students’ near transfer. It is important to note that 
these three items in the questionnaire were analyzed through two lenses—one for CT, 
examining the code and logic, and once to test for near transfer of knowledge. The near-
transfer questionnaire requires transfer of the complexity-based structure employed by the 
students when learning about gas particles inside a container to the solving of a compu-
tational problem related to the collective behavior of fish inside an aquarium. To prevent 
overlap of the variables CT and knowledge transfer, in the later path analysis, only far 
transfer was included.

Far-transfer questionnaire (Appendix C). A posttest questionnaire that consists of four 
open-ended items regarding science phenomena not targeted in the activities. The items 
require students to solve a problem regarding the collective behavior of ants in changing 
environments. They were developed in-house, and reviewed by lab members. The transfer 
items test the transferability of the complexity-based structure when moving from learning 
about the behavior of gases to explaining the behavior of ants. The far-transfer question-
naire was built in-house and reviewed by two middle school science teachers to ensure 
clarity. Table 2 illustrates the coding table of students’ responses to the two transfer prob-
lems based on the complexity-based structure. 
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Data analysis

Data analysis consisted of four stages.

1.	 Conceptual knowledge and systems understanding: Students’ answers to the questions 
in the Gases questionnaire were coded as correct (1 point) or incorrect (0 points) for 
conceptual learning, and a total score was computed and converted to percent out of 
100. Similarly, students’ answers to the questions in the Gases questionnaire were coded 
as correct or incorrect for the systems understanding component (as being at the macro 
level of the system, at the micro level of the system, or involving micro–macro transi-
tions) and a total score was computed for each component separately and converted to 
percent out of 100. It is important to note that, as in previous studies (Saba, Hel-Or & 

Table 2   Coding students’ responses to the two transfer problems based on the complexity-based structure. 
The examples are excerpts from the students’ answers to the questionnaires

Complexity-based structure: 
category and variable

Near transfer: fish problem 
example

Far transfer: ants problem example

Properties
      Speed “I would decrease the initial 

speed of the fish.”
“It [Ant 1] can go anywhere and its 

speed will remain constant.”
      Heading “The fish moves randomly until it 

hits a wall; it will collide; and 
if it hits a fish it will turn right 
and decrease speed.”

“Ant 1 moves randomly inside the 
room.”

Interactions
   Interaction with wall
      Mentioned “I think the ball collides with a 

ball and turns right and then 
collides with the wall.”

“The more ants in the room, the 
greater the density; they will col-
lide more with the wall and with 
other ants.”

      Speed “Some of the fish will hit the wall 
and stop”

“The ant walks randomly and 
collides with the wall as a result, 
it changes direction at the same 
speed.”

      Heading “The fish move. When they collide 
with the wall they change their 
direction and speed; if a ball 
hits a ball, it will turn right and 
stay at the same speed.”

“It [Ant 1] moves until it collides 
with a wall and then it changes 
direction and continues on it 
way.”

  Interaction with another entities
     Mentioned “I think the fish first meet each 

other and then, after they reach 
the wall, they die.”

“Because the room is larger, it [Ant 
1] will collide less often with 
other ants.”

   Speed “I would change the speed of 
the fish. if they [fish] collide 
with other fish their speed will 
decrease.”

“Each time Ant 1 collides with the 
other ants it will slow down, and 
its speed will decrease until it 
stops.”

     Heading “They [fish] collide with each 
other so they turn right but in 
all cases their speed does not 
change.”

“The ant will collide more fre-
quently with other ants and as a 
result its speed will become much 
smaller, and change direction.”
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Levy, 2021; Samon & Levy, 2017), we utilized the same data from the questionnaire for 
two distinct analyses: one is the science concepts, where we obtained an overall score. 
The other is systems understanding, where we disregarded the concepts, but looked 
at the systemic structure of each item, examining whether it relates to one or more of 
several systems dimensions, such as micro-level and macro-level behaviors.

Gases questionnaire items were coded by two of the authors. The questionnaire was ana-
lyzed with an analysis of variance (ANOVA) test.

For the following three analyses, blind coding was done only by the second coder. The 
first coder is the first author, who had developed the data categories based on tests. How-
ever, the second coder coded students’ responses without any information related to time 
(pre- post- tests) and condition (experimental vs comparison).

2.	 CT: Students’ answers to the multiple-choice items in the questionnaire (items 1.1 and 
1.2) were coded as correct (1 point) or incorrect (0 points). For open ended items, a 
coding table was developed, using bottom-up coding of the students’ responses, noting 
the patterns and then selecting the dominant categories, creating definitions and adding 
examples. It was then reviewed within the lab. Open-ended items in the CT questionnaire 
were coded by two researchers according to this detailed coding scheme (Appendix B, 
Table B.1). For items 2, 3.1, and 3.2, the maximum points a student could get were four, 
and for item 3.2 a correct answer provided students with one point. Thus, the maximum 
score of this questionnaire was 15 points. The total score was computed and converted 
to percent out of 100, and the questionnaire was analyzed with an analysis of variance 
(ANOVA) test. Open items were coded independently by two researchers. Cohen’s 
(1968) kappa was calculated for each item to test the interrater agreement. Agreement 
was found to be 0.869 on average. Any remaining disagreements were resolved through 
discussion.

3.	 Transfer of learning: the near and far transfer problem questionnaires aimed to test 
students’ use of the complexity-based structure. We sought to determine what the main 
components are that students use when responding to a near transfer problem, namely 
the “aquarium problem,” and what main components of the complexity-based structure 
they use when solving a far transfer problem, namely the “ants problem.”

Near transfer: From the posttest CT questionnaire, the “aquarium problem” (Appendix 
B), was selected for this purpose. It requires transfer of the complexity-based structure 
encountered when learning about gas particles inside a container to the solving of a com-
putational problem related to the collective behavior of fish inside an aquarium. A coding 
table was developed, using bottom-up coding of the students’ responses, noting the pat-
terns and then selecting the dominant categories, creating definitions and adding examples. 
It was then reviewed within the lab. The maximum total score of this problem was 5 points 
(Appendix B, Table B.2). The total score for each student was computed and converted to 
percent out of 100. A Mann–Whitney test was conducted to compare student scores from 
the experimental group versus the comparison group. Effect size was manually computed 
by squared Z-value of Mann–Whitney, divided by (N−1). Items in near-transfer question-
naires were coded independently by two researchers. Cohen’s (1968) kappa was found to 
be 0.891. Any remaining disagreements were resolved through discussion. It is important 
to note that the near transfer items were used in the pretest and posttest, so that students 
from both experimental and comparison groups had prior exposure to the problem. Since 
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this specific exposure is similar for the two groups and transfer was based on only the post-
test results, only the intervention, which had a similar modality of presentation, is the one 
that had an impact on the differences between the groups.

Far transfer: the far-transfer questionnaire presents the “ants problem” (Appendix C). Its 
items require the transfer of the complexity-based structure learned in the context of gas 
particles to the collective behavior of ants inside rooms in an anthill. They test far transfer 
because none of the visual scaffolding for that structure is present in the questions them-
selves. The coding scheme was developed using a process similar to that described for the 
near-transfer questionnaire. The items of the far-transfer questionnaire were coded by two 
researchers according to the detailed coding scheme (Appendix C, Table C.1). For each 
item, students could get a maximum of four points, thus the maximum total score of this 
questionnaire is 16. The total score for each student was computed and converted to percent 
out of 100. A Mann–Whitney test was conducted to compare student scores from the exper-
imental group versus the comparison group. Effect size was manually computed using the 
squared Z-value of the Mann–Whitney test, divided by (N−1). Open items in far-transfer 
questionnaires were coded independently by two researchers. Cohen’s (1968) kappa was 
found to be 0.814. Any remaining disagreements were resolved through discussion.

Comparison between near and far transfer: The two problems, namely the “aquarium 
problem” and the “ants problem,” were coded by two researchers. The coding was based 
on the frequency of use of components within the complexity-based structure. Table  2 
describes our coding table, based on the complexity-based structure, and examples of stu-
dents’ responses to the two transfer problems.

The near-transfer and far-transfer problems were independently coded by two research-
ers, who then compared their results. Agreement was found to be 0.859 on average. These 
results indicate high agreement between the two researchers. Any remaining disagreements 
were resolved through discussion.

4.	 Path analysis is unlike traditional regression methods, which assume that only direct 
associations exist between dependent and independent variables. Path analysis takes into 
account the indirect factors that play an important role in capturing multiple relation-
ships. In addition, it speculates a unit variance by using standardized path coefficients 
to enable comparisons of the magnitudes of each variable (Ahn, 2002). In this study, 
we conducted the path analysis using multiple linear regressions to test for effects of 
the independent variables, conceptual knowledge, systems understanding, and CT, on 
the dependent variable, far transfer of learning. Near transfer was not included in this 
analysis because the item used to test for it is also part of the CT questionnaire. A z-score 
was computed for all variables.

Findings

In this section, we first present a quantitative analysis of the questionnaire scores for con-
ceptual learning, systems understanding, CT and transfer. We next describe a qualitative 
analysis of the students’ responses to the near- and far-transfer questions in relation to the 
element of the complexity-based structure framework. Finally, we present a path analysis 
to examine the relationships between the three components of conceptual learning, systems 
understanding, and CT, and examine their impact on the transfer of learning.
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Conceptual knowledge, systems understanding, CT and transfer

The first research question explores the impact of constructing models of complex sys-
tems on the topic of gases with the MMM platform on students’ conceptual learning, sys-
tems understanding, CT, and near and far knowledge transfer, as compared with norma-
tive instruction of the subject. We performed a quantitative analysis of students’ conceptual 
knowledge and systems understanding from the gases questionnaire scores, and of CT from 
the CT questionnaire scores (Table 3).

Conceptual knowledge

The results show that both groups displayed learning, but that a higher score was obtained 
by the experimental group, differing by 17% of the total score. A repeated-measures analy-
sis of variance (ANOVA) shows a significant time effect (F(1,48) = 74, p < 0.01) from pre- 
to posttest. The interaction between time and group (F(1,48) = 0.13, p < 0.05) indicates the 
superior learning of the experimental group.

Systems understanding and computational thinking 

The results show that both groups significantly enhanced their understanding of the dif-
ferent systems components (Micro, Macro, Micro/Macro). A repeated-measures ANOVA 
shows a significant time effect [Micro: F(1,48) = 15.92, p < 0.01; Macro: F(1,48) = 19.56, 
p < 0.01; Micro/Macro: F(1,48) = 45.85, p < 0.01] from pre- to posttest. The specific com-
ponent that contributes to this result is the micro-level reasoning regarding the systems. 
The interaction between time and group at the micro level (F(1,48) = 6.47, p < 0.05) shows 
the superior learning of the experimental group. It is interesting that although a greater 
advantage of learning gains was seen for the experimental group in both the macro level 
and bridging micro and macro levels, the difference between the groups in these cases was 
not significant.

CT: The results show that both groups increased their CT score from pretest to post-
test. However, the experimental group showed a much greater increase than the compari-
son group (6% vs. 32%). A repeated-measures ANOVA shows a significant time effect [F 
(1,48) = 50.70, p < 0.01] for both groups. The interaction between time and group is signifi-
cant (F (1, 48) = 23.10, p < 0.01), favoring the experimental group.

Near and far transfer

Quantitative analysis of students’ posttest scores in the near and far transfer questionnaires 
shows that for both near and far transfer, the experimental group’s scores were higher 
than the comparison group. To assess near transfer, we analyzed the posttest scores on the 
“aquarium problem” for both the experimental and comparison groups. A Mann–Whit-
ney test showed significantly greater scores for the experimental group (Mdn = 62) com-
pared with the comparison group (Mdn = 11), U = 95.5, p = 0.00, and a small effect size 
of 0.23. To assess far transfer, we conducted a similar comparison of the posttest scores 
for the “ants problem.” A Mann–Whitney test showed significantly greater scores for the 
experimental group (Mdn = 50) compared with the comparison group (Mdn = 31), U = 161, 
p = 0.003, and a medium effect size of 0.36. When comparing near and far transfer, higher 
scores and effect size were found for the far transfer.
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In summary, the quantitative analysis of the Gases questionnaire shows that students in 
the experimental group significantly enhanced their conceptual knowledge of gases as well 
as their systems understanding compared with the comparison group. Systems reasoning 
at the micro level significantly contributed to this result. We further found a significant 
increase in CT scores amongst students from the experimental group compared with the 
comparison group. Finally, higher posttest scores for the experimental group were found on 
both the near-transfer problem and the far-transfer problem.

The contributions of constructing models of complex systems with MMM 
to students’ near transfer and far transfer

To answer the second research question, regarding which aspects of the complexity-
based structure are identifiable in students’ knowledge transfer, we performed a qualita-
tive analysis of the students’ descriptions and explanations for each of the questionnaire 
items. For the qualitative comparison, students’ written answers were coded according 
to the complexity-based structure. Focus was placed on features/terms relating to indi-
vidual entities in the system, in this case fish and ants. The complexity-based structure 
includes three categories: entities’ properties, their actions, and their interactions with 
other entities and with the walls. The students’ answers did not include detailed descrip-
tions of the fish and ants’ actions. Therefore, the focus of analysis was on properties and 
interactions. For each of these categories, the students’ answers referred to changes in 
speed and in heading of the entities. In some cases, students only mentioned that inter-
action occurs, without referring to its consequences in terms of heading or speed vari-
ables. Thus, for the interactions category of the complexity-based structure, we noted 
where speed and heading were mentioned or incorporated into a rule. Table 4 illustrates 
the number of students who used each variable within their responses to the two transfer 
problems.

Experimental group

Results show that in the near transfer problem, students’ explanations were based pri-
marily on two categories of the complexity-based structure—Properties and Interaction. 
In the Properties category, 58% of the students addressed the heading of the fish when 
they moved inside the aquarium. Most students referred to interaction with another fish 
in their response, describing changes in both speed (85% of the students) and heading 
(73% of the students) as a result of interactions with another fish. With respect to the 
interaction of the fish with the edge of the aquarium, 65% of students referred only to 
the speed of the entity (and not to its heading) when describing the interaction.

For the far-transfer items, most students’ responses focused on the Properties cat-
egory: 50% of students referred to the ants’ speed and 92% of students referred to the 
heading variable. Regarding interaction with other ants, 50% of students only mentioned 
that an ant meets another ant, without referring to this meeting’s impact on its heading 
and/or speed. Similar results are seen for interactions with the wall. Most students did 
not refer to the change in speed and heading as a result of changing the size of the room, 
which in turn affects both interactions between the ants and with the room’s walls.
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Comparison group

Results show that students’ responses relied mainly on describing the Properties category 
of the complexity-based structure categories for solving the near- and far-transfer prob-
lems. In the near-transfer problem, 51% of students addressed the heading property of the 
fish. In the far-transfer problem, in their responses, 54% of students focused on the speed 
property of the ant, and 71% on the heading property of the ants.

Table 5 provides examples of responses of two students for near and far transfer prob-
lems. Two representative students were selected from two groups. ST1 is a student from 
the experimental group, and ST2 is a student from the comparison group. These students 
were selected as their responses reflected the responses of their group. Table 5 presents a 
qualitative analysis of these students’ responses for the near and far transfer items.

For both problems, ST1’s response included the entities’ properties mainly describing 
the heading in both near and far transfer. For interactions, in the near transfer he used both 
categories of interactions, with another entity (describing the heading and speed), and with 
the wall (describing only the heading). However, in the far transfer problem, he described 
only interactions with other entities, relating only to their speed and not their heading. Like 
ST1, ST2’s responses in both the near and far transfer problems addressed the entities’ 
properties, describing mainly the heading. However, her use of the interactions categories 
was less frequent compared with ST1, and limited only to the near transfer problem. In that 
problem, she mentioned the interaction with other entities and with the walls, but without 
any indications of the speed and heading components.

In conclusion, a comparison of students’ replies to the two transfer problems showed 
that in the near-transfer problem, students in the experimental group gave explanations that 
were mainly based on describing the heading of the fish, the interactions between the fish, 

Table 4   Students’ responses to the near- and far-transfer problems based on the complexity-based structure, 
comparing the experimental and comparison groups

a Near-transfer problem: the “aquarium problem”
b Far-transfer problem: the “ants problem”
c Grey shading represents cases in which more than half the students mentioned the variable

Complexity-based structure Experimental group (n = 26) Comparison group (n = 24)

Near transfera 
(%)

Far transferb (%) Near transfer 
(%)

Far transfer (%)

Properties
       Speed 19 543 0 54
       Heading 58 92 51 71

Interactions
  With other entities
       Mentioned 15 54 25 0
       Speed 85 30 29 21
       Heading 73 8 20 4
  With wall
       Mentioned 19 8 17 0
       Speed 65 8 20 8
       Heading 30 15 8 8
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and interactions with the aquarium wall. However, in the far-transfer ants problem, students 
explained their answers based on both the heading and the speed, and only half of the stu-
dents mentioned the interaction with other ants. The students did not refer to the effect of 
changes at the macro level on the interaction between the entities and the wall, which in 
turn may be reflected in changes in the entities’ heading and speed. This result indicates 
better performance among students in the near transfer problem, where they engage in 
problem-solving cued and supported by the MMM pseudocode, which includes an explicit 
representation of the complexity-based structure. However, although the pseudocode was 
presented to them as well, most students in the comparison group did not rely on it in their 
answers to the problem. For the far-transfer items, similar to the experimental group, stu-
dents in the comparison group referred only to the ants’ properties of heading and speed to 
answer the problem.

The effect of students’ conceptual knowledge, systems understanding, and CT 
on learning transfer

In this study we used path analysis to study the effects of students’ conceptual learning, 
systems understanding, and CT on their performance in the far-transfer questionnaire. 
Because the near transfer items are also part of the CT questionnaire, it is not included as a 
separate variable. The analysis focuses on the experimental group’s far transfer of learning.

We ran statistical analysis to test for causality between variables. The independent vari-
ables are (1) conceptual knowledge, represented by the posttest scores of the Gases ques-
tionnaire; (2) systems understanding, represented by the micro-level posttest scores of the 

Table 5   Analysis of two students’ responses, ST1 (Experimental group) and ST2 (Comparison group), in 
the near and far transfer problem based on the complexity-based structure components

Student Response of near 
transfer

Response of far transfer The use of complexity-
based components

ST1 At the beginning, balls 
[fish] move randomly, 
when a ball meets 
another ball, the two 
balls turn right and 
they do not change 
their speed. When they 
meet the wall, they 
change their heading, 
but never get outside 
the rectangle [an 
aquarium]

The ant collides with 
other ants several 
times. It moves 
randomly, and when it 
meets another ant its 
speed decreases

When moving to bigger 
room, the ant collide 
less times with other 
ants, its speed will be 
greater

Near transfer
Properties: heading
Interaction with another 

ball: heading, speed
Interaction with wall: 

heading
Far transfer
Properties: heading
Interaction with another 

ball: speed

ST2 The balls [fish] move 
randomly inside the 
rectangle [aquarium]

The balls will collide 
with each other and 
then very quickly they 
will collide with the 
wall

The ant moves around 
the room randomly. 
[When moving to 
larger room], it will be 
more space to the ant 
to move in

Near transfer
Properties: heading
Interaction with another 

ball: only mentioned
Interaction with wall: only 

mentioned
Far transfer
Properties: heading
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questionnaire relating to systems components: this was chosen because learning associated 
with this item was shown to contribute the most to students’ conceptual learning compared 
to the comparison group (see Table 2); and (3) CT competence, represented by the posttest 
scores of the CT questionnaire. The dependent variable is the far-transfer score, as rated in 
the far-transfer questionnaire.

Figure  4 illustrates the results of the analysis, using multiple linear regression to 
test for effects of posttest Gases scores, posttest micro-level scores, and posttest CT 
scores on the independent variable—the far-transfer scores. The results show the direct 
effect of the two variables—posttest micro-level and posttest CT—on the transfer score 
[ R2 = 0.4,F(2, 23) = 4.86, p = 0.01 ]. Significant results were found for both the posttest 
micro-level score (β = 0.64, p = 0.012) and for the posttest CT score (β = 0.41, p = 0.03). 
An indirect effect of the posttest Gases score on the transfer score was also found 
[ R2 = 0.5,F(2, 23) = 11.17, p = 0.00 ]. This indirect effect occurred throughout, affecting 
the posttest micro-level score (β = 0.73, p = 0.000).

Results show that only some of the hypotheses were confirmed: (1) involving students in 
learning using the “Modeling Gas Behavior with MMM” learning unit promotes concep-
tual learning, which impacts systems thinking mainly at the micro level; (2) learning about 
systems at the micro level has a positive effect on students’ performance in the far-transfer 
tasks; and (3) increased CT has a positive direct effect on students’ performance on the 
far-transfer tasks. One hypothesis was disconfirmed: increased CT does not impact concep-
tual knowledge or systems understanding. Thus, conceptual learning using the “Modeling 
gas behavior with MMM” learning unit indirectly impacts the transfer of learning through 
systems thinking but is independent of CT, which, in turn, contributes to learning transfer.

Discussion

This study explored the possible synergy between learning science, computational think-
ing, and a complex systems perspective. In that context, it also addresses a construct—
transfer of learning—that has only rarely been researched in the past decade, especially 
in schools and among students who are learning science. The design of the focal learning 
environment sought to encourage learning transfer by guiding students’ modeling toward 

β = 0.64*

Posttest Gases 
score 

Posttest 
Computational 
thinking score

Transfer score Posttest micro-
level score 

* p < 0.05
** p < 0.01 

Fig. 4   Causal paths with statistically significant direct effects. CT Computational thinking
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a complexity-based structure, which can be generalized across many phenomena. The 
research examined students’ conceptual learning, systems learning, learning of CT, and 
near and far transfer of learning. In all categories, the experimental group outperformed 
the comparison group. Therefore, one main conclusion of this study is that we found a 
higher degree of learning transfer among the experimental group students than among stu-
dents from the comparison group. The second conclusion is that the main contribution of a 
complexity-based structure is to students’ understanding of the properties and interactions 
of entities at the micro level of the system. The third conclusion pertains to the independ-
ent contributions of developing a complex view of scientific phenomena and learning CT 
to the far transfer of learning. These conclusions are discussed in the following sections.

The contribution of model construction to promoting CT, systems understanding, 
conceptual learning of science, and knowledge transfer

In answer to the first research question, our findings show that, compared to students who 
experienced a normative curriculum, students who constructed computational models sig-
nificantly improved their science conceptual knowledge, CT, their systems understanding. 
This result is similar to the results of much of the research on learning about complex 
systems by constructing agent-based computational models (Basu et  al., 2014; Wagh & 
Wilensky, 2018). More specifically, regarding systems understanding, the main contribu-
tion to learning involves the micro level of the system, a result that replicates much previ-
ous research. We saw this result in students’ scores on the conceptual knowledge question-
naire, which presents challenges across the range of science concepts and systems levels. 
We also saw it in the qualitative analysis of students’ explanations on the transfer items, 
where the strong differences involved noticing interactions among entities in the system.

The micro level is addressed in most normative teaching; however, the way it is pre-
sented—as pictures or animations—is not as powerful as constructing and exploring agent-
based models (e.g. see the textbook Material Science (Ben Horin, Orad & Welger, 2013). 
Agent-based models are programmed at the micro-level of the system’s entities, making 
the micro level the main form of access to the modeled system (Bar-Yam, 2003). Moreover, 
the learning units in this and other studies not only foreground these entities in the code, 
but also draw students’ attention to the single entities’ behaviors (Samon & Levy, 2017; 
Dickes, Sengupta, Farris, & Basu, 2016; Sengupta & Wilensky, 2009). It makes sense 
that having students define the agents’ behaviors by coding would result in their explana-
tions incorporating such behaviors. To summarize, the finding that, compared with normal 
teaching, the students in the experimental group more prominently improved their under-
standing of the micro-level of the system, reflects both the differences in focus in the two 
groups’ curricula and the advantages of the MMM platform’s incorporation of a complex 
systems approach.

In this study, we go one step further and claim that engaging in the construction of 
models with the MMM platform not only contributes to promoting students’ conceptual 
learning and systems understanding, but also facilitates their CT. This result addresses the 
importance of providing students with the visual scaffolding, namely the complexity-based 
structure, that guides students’ construction of the models and thus contributes to facilitat-
ing their CT too.

With regards to transfer, our findings showed higher rates of transfer in the experi-
mental group than the comparison group, in both near and far learning transfer. Similar 
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to Fuchs et al. (2003), our results show that the effect size for far transfer was higher than 
that for near transfer. The higher degree of near transfer in the experimental group aligns 
with other theoretical and empirical studies that have argued for the achievability of near 
transfer (Barnett & Ceci, 2002; Day & Goldstone, 2012; Denning, 2017; Falloon, 2020; 
Gentner, 1983; Hummel & Holyoak, 2003; Klahr & Chen, 2011). Providing students an 
explicit scaffold for organizing their problem-solving efforts during the original learning 
phase helps them relate this same scaffold to new situations, thus increasing the rate of 
learning transfer (Catrambone & Holyoak, 1989; Fuchs et al., 2003; Rosholm et al., 2017; 
Terwel et al., 2009).

The complexity-based structure was used in our study to tailor the students’ efforts in 
modeling by compartmentalizing the code blocks into three groups, which are commonly 
used in ABM of complex systems: properties, actions, and interactions. The students from 
the experimental group used this structure to construct several models of gas-related phe-
nomena during the learning unit, so that it may have gradually proved its utility to them. 
The near transfer item used the same complexity-based structure to describe pseudocode 
for modeling a phenomenon that was not learned in the unit. Thus, the condition of explicit 
scaffolding is fulfilled.

The contribution of the complexity‑based structure to learning transfer

In answer to our second research question, we found that the differences between the 
experimental and comparison groups regarding this item are not only in quantity, but also 
in quality. Our qualitative analysis of students’ answers to the near transfer item revealed a 
distinct explanation pattern. The experimental group students described the scenario pre-
sented in the question and their predictions using the system’s entities, their properties, and 
the interactions they undergo, similar to the complexity-based structure. In contrast, the 
comparison group did not attend to the interactions and properties, which were in the pseu-
docode—ignoring them and basing their explanations primarily on the entities’ actions.

Several studies have claimed the difficulty of achieving far transfer (Barnett & Ceci, 
2002; Denning, 2017) and others have argued that only a very limited degree of far trans-
fer can occur (Chi & VanLehn, 2012; Sala & Gobet, 2017). These papers explained that 
the difficulty of achieving far transfer is related to the high impact of surface features on 
reasoning when expertise is lacking. Learners do not note similar deep structures, which 
are not apparent, and they are swayed by the dissimilar surface features (Chi & VanLehn, 
2012; Gick & Holyoak, 1983). However, the experimental group in our study showed a 
medium effect size for far transfer.

Two theoretical approaches implemented in this study may have been useful in promot-
ing learning transfer. One is a complex systems approach, which emphasized the impor-
tance of looking at the many components that make up a system and finding the rules that 
describe their behaviors and interactions as an explanation of emergent patterns (Bar-Yam, 
2003). The way this is implemented in the MMM platform is by (1) using separate sets 
of code for each population (e.g., diffusion of two kinds of molecules inside a container, 
atoms, and electrons inside a conductive wire); (2) organizing the coding actions into com-
plexity-based compartments—properties, actions, and interactions—for each population; 
and (3) designing coding blocks that highlight similarity across phenomena; for example, 
what happens when two entities meet? There is one block for such interactions, with a 
menu that enables students to choose among several actions that take place for different 
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phenomena, such as collide to describe particles in a gas, or attract to describe the forma-
tion of a liquid from gas.

The second theoretical approach is related to CT, a form of reasoning that generalizes 
explicitly by using content-free computer language to describe and construct explanations 
(Wing, 2006). This is applied in MMM by having students construct the models from code 
segments, which are represented as blocks that can be dragged into the program. These 
blocks have different computational relationships among them, such as condition-action 
rules (e.g., what should a gas particle do when it hits a wall) and iterations (e.g., at every 
time-step, a particle needs to check whether it’s about to collide). As described above, the 
behavior of many systems in chemistry and physics is collapsed in the platform into a very 
small set of blocks, where the distinctions between phenomena reside in two parts of the 
program and model. One is the macro-level layout of objects, such as pipes and containers. 
The second is the action segment of the program’s conditionals, whether you ignore, repel, 
attract, or collide with another particle when you collide with it.

It would seem that this combination of two general representations with using the MMM 
platform to create computer models of science phenomena helped some of the students see 
beyond the topics of the learning unit. As we have seen in the qualitative data regarding the 
far-transfer items, unlike the comparison group, the experimental group students indeed 
noticed and mentioned two categories from the complexity-based structure—the properties 
of entities in the system and the interactions between them. This shows us that what carried 
over from the source to the target phenomena is this general form of thinking. Regarding 
CT, we do not have similar data to examine whether this carried over into the target phe-
nomena; however, in the next section we describe its overall impact on transfer.

A comparison between our approach to encouraging transfer and the methods described 
in the research literature revealed only a very partial overlap. One method emphasized in 
the literature, for example, is direct instruction, which explicitly identifies and emphasizes 
the underlying deep principles that the original context and the target context have in com-
mon (Fuchs et al., 2003; Rosholm et al., 2017; Salomon & Perkins, 1989; Terwel et al., 
2009). In our study, the students used the complexity-based structure to construct models, 
but there was no explicit teaching about how this same structure could be used to model 
other systems. Nevertheless, we found that this indirect instruction led to the medium effect 
size of far transfer. A second method of increasing learning transfer is to teach the source 
domain in depth (Chi & VanLehn, 2012; Lobato, 2006; Marton, 2006). The learning activi-
ties in the present research would seem to conform to this stipulation of depth. Learning by 
modeling phenomena involves deep processing of the learned concepts, their instantiation 
in a variety of settings, and their creative integration into a working experiment or device. 
Thus, while direct instruction was not used, learning in depth is typical of the instructional 
unit, as also seen in the greater conceptual learning among the experimental group. A third 
method of increasing transfer of learning is scaffolding learners when they are engaged 
with the target problems, so that they can see the similarity with their previous learning 
of the source problems (Catrambone & Holyoak, 1989). This was not done in the present 
study; the target problems were part of questionnaires at the end, and the students were not 
supported in this respect.

To summarize, of the known methods to increase transfer, we applied only teaching the 
source domain in depth. However, it would seem that a central theoretical contribution of 
this work is to offer a fourth method, using visual epistemic scaffolds of the general think-
ing processes we wish to support and incorporating these visual structures into the core 
problem-solving activities. Based on Malkiewich and Chase (2019), we argue that provid-
ing students with the visual epistemic scaffold, namely the complexity-based structure, 
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enables them not only to notice but also to focus on the deep structure of the phenom-
ena they are modeling. This affordance can be another explanation of our result related to 
medium effect size of far transfer.

The contribution of CT, conceptual learning and systems understanding to learning 
transfer

To answer the third research question, we used path analysis to explore possible depend-
encies between the different forms of learning, CT, systems understanding, conceptual 
learning, and knowledge transfer. Similarly, Zhang et  al., (2020) addressed learning by 
constructing computational models, and used path analysis to test the relation between 
CT, engineering learning, and conceptual science understanding. However, our study dif-
fers from Zhang et al., (2020) by bringing the learning transfer construct to the fore. We 
explored the contributions of CT, understanding of complex systems, and conceptual learn-
ing to learning transfer within a learning environment that is based on the construction of 
computational models. This analysis revealed that science conceptual learning, understand-
ing of complex systems, and CT all have a positive impact on learning transfer, when the 
learning is based on model construction. However, we also gained two more important 
insights that contribute to understanding the interactions between these multiple forms of 
learning.

One is that, in the context of our study, learning CT and learning how to think com-
plexly made independent contributions to learning transfer. Even though the learning 
design includes both creating computational objects and arranging them according to com-
plexity-based categories, the effects of these two design decisions are independent of each 
other, so that they have a cumulative effect on the far transfer of learning.

In conclusion, the design of the visual representation of the complexity-based structure 
in the MMM interface contributes to the significant independent contribution of both CT 
and systems understanding to learning transfer. Based on this, one may surmise that using 
either one of the design decisions—enhancing CT or enhancing thinking through the lens 
of complex systems—could increase learning transfer, a conjecture that could guide further 
research.

A second insight is that conceptual understanding in science impacts learning trans-
fer only through a particular perspective—whether the students understand the micro-
level behaviors of the particles, or individual entities in the system. Thus, while previous 
research has shown that deep teaching of the source topic can enhance learning transfer 
(Chi & VanLehn, 2012; Lobato, 2006; Marton, 2006), in our study, an additional stipula-
tion is added, which relates to the structure of knowledge about systems: when teaching 
about systems in science, framing them with a complexity-based structure is a powerful 
way of increasing learning transfer. It remains to be tested whether these two insights can 
be generalized in additional settings.

Conclusions, limitations and future work

The study focused on interweaving CT and science through the construction of computa-
tional models with MMM, and sought to test the transferability of the tool’s complexity-
based structure across contexts. Our findings reveal the significant effect of this synergy 
on the enhancement of conceptual learning, systems understanding, and CT. In addition, 
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combining these three factors both directly and indirectly contributes to learning transfer 
of the general, complexity-based structure. At the theoretical level, this study contributes 
by providing a method for increasing learning transfer by using visual epistemic scaf-
folds of the general thinking processes and integrating these visual structures into the core 
problem-solving activities. This is particularly true when bringing to the front the synergy 
between CT and complex systems thinking to learn about diverse systems in science.

One limitation of this study is the restricted duration of learning, which in turn revealed 
only a medium effect size of far transfer. Because of COVID-19, students from the experi-
mental group engaged in only four of six 1.5-h sessions, less than we had planned. This 
limitation prevented us from comparing earlier and later construction activities to explore 
the development of CT through modeling with MMM. We believe that facilitating CT and 
transfer of learning may require more time and more opportunities to engage in the con-
struction of models with MMM.

Another limitation, which is also related to the restricted duration of learning, is the lim-
ited sample of students in both groups, again due to COVID-19. We think that analyzing a 
larger sample of students’ responses to near and far transfer problems may provide us with 
more insights related to the core components of the complexity-based structure students 
transfer and use in the transfer problems.

A third limitation is that the same regular teacher did not teach both groups on her 
own. It is important to mention that the regular teacher had no experience in teaching with 
MMM, and due to the pandemic, she did not have enough time to learn the tools and peda-
gogy before conducting the study. In addition, rather than using an experimental design, 
such as splitting the classes in half, the study used a quasi-experimental design in which 
the classes were left intact. This design could have introduced a bias, for example, if one 
teacher was more effective in teaching than the other teacher.

The fact that the data analysis focused on students’ post-test scores and responses in 
the transfer questionnaires is another limitation, assessing only the students’ learning out-
comes. Future work may include analyzing students’ constructed models and their learning 
process (through observations, and responses to the worksheets) to explore how knowledge 
is developed and transferred across contexts.

This study is based on comparison between students who learned by constructing com-
putational models using a computer-based tool and students who learned with the norma-
tive curriculum, which did not include any use of computer-based tools. Other studies may 
explore how learning transfer would be promoted by comparing between two approaches to 
learning by constructing models versus exploring pre-built models.

Finally, learning transfer was not directly instructed in the “Modeling gas behavior with 
MMM” learning unit and in the normative science curriculum. In future research, it would 
be interesting to compare near and far transfer results with the use of direct instruction 
(Fuchs et  al., 2003; Salomon & Perkins, 1989; VanLehn & Chi, 2012) to help students 
abstract the complexity-based structure from its concrete representation in the MMM and 
use it in other domains. Direct instruction could also explicitly illustrate the practice of 
modeling based on the complexity-based structure. It would provide students with several 
phenomena from diverse domains, all of which can be modeled by relying on the complex-
ity-based structure.

In our own future work, we will continue to refine the learning design of this unit, and to 
expand the implementation of the platform to the instruction of other topics, in order to test 
whether the same conclusions are reached and to deepen our understanding of the learn-
ing process. Other research could compare our results with those of studies that employ 
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computational modeling platforms with a different visual scaffold, to further explore the 
significance of employing the complexity-based structure.
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